ERIC Educational Resources Information Center
Wang, Wenyi; Song, Lihong; Chen, Ping; Meng, Yaru; Ding, Shuliang
2015-01-01
Classification consistency and accuracy are viewed as important indicators for evaluating the reliability and validity of classification results in cognitive diagnostic assessment (CDA). Pattern-level classification consistency and accuracy indices were introduced by Cui, Gierl, and Chang. However, the indices at the attribute level have not yet…
Zhou, Tao; Li, Zhaofu; Pan, Jianjun
2018-01-27
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
Ramsey, Elijah W.; Nelson, Gene A.; Sapkota, Sijan
1998-01-01
A progressive classification of a marsh and forest system using Landsat Thematic Mapper (TM), color infrared (CIR) photograph, and ERS-1 synthetic aperture radar (SAR) data improved classification accuracy when compared to classification using solely TM reflective band data. The classification resulted in a detailed identification of differences within a nearly monotypic black needlerush marsh. Accuracy percentages of these classes were surprisingly high given the complexities of classification. The detailed classification resulted in a more accurate portrayal of the marsh transgressive sequence than was obtainable with TM data alone. Individual sensor contribution to the improved classification was compared to that using only the six reflective TM bands. Individually, the green reflective CIR and SAR data identified broad categories of water, marsh, and forest. In combination with TM, SAR and the green CIR band each improved overall accuracy by about 3% and 15% respectively. The SAR data improved the TM classification accuracy mostly in the marsh classes. The green CIR data also improved the marsh classification accuracy and accuracies in some water classes. The final combination of all sensor data improved almost all class accuracies from 2% to 70% with an overall improvement of about 20% over TM data alone. Not only was the identification of vegetation types improved, but the spatial detail of the classification approached 10 m in some areas.
Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?
NASA Astrophysics Data System (ADS)
Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof
2016-10-01
It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.
Belgiu, Mariana; Dr Guţ, Lucian
2014-10-01
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing 'optimal segmentation'. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.
Estimating Classification Consistency and Accuracy for Cognitive Diagnostic Assessment
ERIC Educational Resources Information Center
Cui, Ying; Gierl, Mark J.; Chang, Hua-Hua
2012-01-01
This article introduces procedures for the computation and asymptotic statistical inference for classification consistency and accuracy indices specifically designed for cognitive diagnostic assessments. The new classification indices can be used as important indicators of the reliability and validity of classification results produced by…
Pan, Jianjun
2018-01-01
This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively. PMID:29382073
Minimum distance classification in remote sensing
NASA Technical Reports Server (NTRS)
Wacker, A. G.; Landgrebe, D. A.
1972-01-01
The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.
Improving crop classification through attention to the timing of airborne radar acquisitions
NASA Technical Reports Server (NTRS)
Brisco, B.; Ulaby, F. T.; Protz, R.
1984-01-01
Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.
Bolin, Jocelyn Holden; Finch, W Holmes
2014-01-01
Statistical classification of phenomena into observed groups is very common in the social and behavioral sciences. Statistical classification methods, however, are affected by the characteristics of the data under study. Statistical classification can be further complicated by initial misclassification of the observed groups. The purpose of this study is to investigate the impact of initial training data misclassification on several statistical classification and data mining techniques. Misclassification conditions in the three group case will be simulated and results will be presented in terms of overall as well as subgroup classification accuracy. Results show decreased classification accuracy as sample size, group separation and group size ratio decrease and as misclassification percentage increases with random forests demonstrating the highest accuracy across conditions.
Derivation of an artificial gene to improve classification accuracy upon gene selection.
Seo, Minseok; Oh, Sejong
2012-02-01
Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Accuracy improvement of spectral classification of crop using microwave backscatter data].
Jia, Kun; Li, Qiang-Zi; Tian, Yi-Chen; Wu, Bing-Fang; Zhang, Fei-Fei; Meng, Ji-Hua
2011-02-01
In the present study, VV polarization microwave backscatter data used for improving accuracies of spectral classification of crop is investigated. Classification accuracy using different classifiers based on the fusion data of HJ satellite multi-spectral and Envisat ASAR VV backscatter data are compared. The results indicate that fusion data can take full advantage of spectral information of HJ multi-spectral data and the structure sensitivity feature of ASAR VV polarization data. The fusion data enlarges the spectral difference among different classifications and improves crop classification accuracy. The classification accuracy using fusion data can be increased by 5 percent compared to the single HJ data. Furthermore, ASAR VV polarization data is sensitive to non-agrarian area of planted field, and VV polarization data joined classification can effectively distinguish the field border. VV polarization data associating with multi-spectral data used in crop classification enlarges the application of satellite data and has the potential of spread in the domain of agriculture.
Austin, Peter C; Lee, Douglas S
2011-01-01
Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181
NASA Astrophysics Data System (ADS)
Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher
2012-10-01
Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.
Nationwide forestry applications program. Analysis of forest classification accuracy
NASA Technical Reports Server (NTRS)
Congalton, R. G.; Mead, R. A.; Oderwald, R. G.; Heinen, J. (Principal Investigator)
1981-01-01
The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended.
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
NASA Technical Reports Server (NTRS)
Justice, C.; Townshend, J. (Principal Investigator)
1981-01-01
Two unsupervised classification procedures were applied to ratioed and unratioed LANDSAT multispectral scanner data of an area of spatially complex vegetation and terrain. An objective accuracy assessment was undertaken on each classification and comparison was made of the classification accuracies. The two unsupervised procedures use the same clustering algorithm. By on procedure the entire area is clustered and by the other a representative sample of the area is clustered and the resulting statistics are extrapolated to the remaining area using a maximum likelihood classifier. Explanation is given of the major steps in the classification procedures including image preprocessing; classification; interpretation of cluster classes; and accuracy assessment. Of the four classifications undertaken, the monocluster block approach on the unratioed data gave the highest accuracy of 80% for five coarse cover classes. This accuracy was increased to 84% by applying a 3 x 3 contextual filter to the classified image. A detailed description and partial explanation is provided for the major misclassification. The classification of the unratioed data produced higher percentage accuracies than for the ratioed data and the monocluster block approach gave higher accuracies than clustering the entire area. The moncluster block approach was additionally the most economical in terms of computing time.
Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan
2018-02-01
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bramley, Tom
2010-01-01
Background: A recent article published in "Educational Research" on the reliability of results in National Curriculum testing in England (Newton, "The reliability of results from national curriculum testing in England," "Educational Research" 51, no. 2: 181-212, 2009) suggested that: (1) classification accuracy can be…
Information extraction with object based support vector machines and vegetation indices
NASA Astrophysics Data System (ADS)
Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun
2016-07-01
Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.
A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
NASA Astrophysics Data System (ADS)
Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina
The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.
Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery
LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Classification of right-hand grasp movement based on EMOTIV Epoc+
NASA Astrophysics Data System (ADS)
Tobing, T. A. M. L.; Prawito, Wijaya, S. K.
2017-07-01
Combinations of BCT elements for right-hand grasp movement have been obtained, providing the average value of their classification accuracy. The aim of this study is to find a suitable combination for best classification accuracy of right-hand grasp movement based on EEG headset, EMOTIV Epoc+. There are three movement classifications: grasping hand, relax, and opening hand. These classifications take advantage of Event-Related Desynchronization (ERD) phenomenon that makes it possible to differ relaxation, imagery, and movement state from each other. The combinations of elements are the usage of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu and beta power with their frequency as features, and also classifier Probabilistic Neural Network (PNN) and Radial Basis Function (RBF). The average values of classification accuracy are ± 83% for training and ± 57% for testing. To have a better understanding of the signal quality recorded by EMOTIV Epoc+, the result of classification accuracy of left or right-hand grasping movement EEG signal (provided by Physionet) also be given, i.e.± 85% for training and ± 70% for testing. The comparison of accuracy value from each combination, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy.
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
A fuzzy hill-climbing algorithm for the development of a compact associative classifier
NASA Astrophysics Data System (ADS)
Mitra, Soumyaroop; Lam, Sarah S.
2012-02-01
Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.
Variance estimates and confidence intervals for the Kappa measure of classification accuracy
M. A. Kalkhan; R. M. Reich; R. L. Czaplewski
1997-01-01
The Kappa statistic is frequently used to characterize the results of an accuracy assessment used to evaluate land use and land cover classifications obtained by remotely sensed data. This statistic allows comparisons of alternative sampling designs, classification algorithms, photo-interpreters, and so forth. In order to make these comparisons, it is...
NASA Technical Reports Server (NTRS)
Cibula, William G.; Nyquist, Maurice O.
1987-01-01
An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.
Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal
2018-01-17
The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.
SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
Madison, Matthew J; Bradshaw, Laine P
2015-06-01
Diagnostic classification models are psychometric models that aim to classify examinees according to their mastery or non-mastery of specified latent characteristics. These models are well-suited for providing diagnostic feedback on educational assessments because of their practical efficiency and increased reliability when compared with other multidimensional measurement models. A priori specifications of which latent characteristics or attributes are measured by each item are a core element of the diagnostic assessment design. This item-attribute alignment, expressed in a Q-matrix, precedes and supports any inference resulting from the application of the diagnostic classification model. This study investigates the effects of Q-matrix design on classification accuracy for the log-linear cognitive diagnosis model. Results indicate that classification accuracy, reliability, and convergence rates improve when the Q-matrix contains isolated information from each measured attribute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongjun; Lim, Jonghyuck; Kim, Namkug
2013-05-15
Purpose: To investigate the effect of using different computed tomography (CT) scanners on the accuracy of high-resolution CT (HRCT) images in classifying regional disease patterns in patients with diffuse lung disease, support vector machine (SVM) and Bayesian classifiers were applied to multicenter data. Methods: Two experienced radiologists marked sets of 600 rectangular 20 Multiplication-Sign 20 pixel regions of interest (ROIs) on HRCT images obtained from two scanners (GE and Siemens), including 100 ROIs for each of local patterns of lungs-normal lung and five of regional pulmonary disease patterns (ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation). Each ROI was assessedmore » using 22 quantitative features belonging to one of the following descriptors: histogram, gradient, run-length, gray level co-occurrence matrix, low-attenuation area cluster, and top-hat transform. For automatic classification, a Bayesian classifier and a SVM classifier were compared under three different conditions. First, classification accuracies were estimated using data from each scanner. Next, data from the GE and Siemens scanners were used for training and testing, respectively, and vice versa. Finally, all ROI data were integrated regardless of the scanner type and were then trained and tested together. All experiments were performed based on forward feature selection and fivefold cross-validation with 20 repetitions. Results: For each scanner, better classification accuracies were achieved with the SVM classifier than the Bayesian classifier (92% and 82%, respectively, for the GE scanner; and 92% and 86%, respectively, for the Siemens scanner). The classification accuracies were 82%/72% for training with GE data and testing with Siemens data, and 79%/72% for the reverse. The use of training and test data obtained from the HRCT images of different scanners lowered the classification accuracy compared to the use of HRCT images from the same scanner. For integrated ROI data obtained from both scanners, the classification accuracies with the SVM and Bayesian classifiers were 92% and 77%, respectively. The selected features resulting from the classification process differed by scanner, with more features included for the classification of the integrated HRCT data than for the classification of the HRCT data from each scanner. For the integrated data, consisting of HRCT images of both scanners, the classification accuracy based on the SVM was statistically similar to the accuracy of the data obtained from each scanner. However, the classification accuracy of the integrated data using the Bayesian classifier was significantly lower than the classification accuracy of the ROI data of each scanner. Conclusions: The use of an integrated dataset along with a SVM classifier rather than a Bayesian classifier has benefits in terms of the classification accuracy of HRCT images acquired with more than one scanner. This finding is of relevance in studies involving large number of images, as is the case in a multicenter trial with different scanners.« less
Comparing Features for Classification of MEG Responses to Motor Imagery.
Halme, Hanna-Leena; Parkkonen, Lauri
2016-01-01
Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio-spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system.
A review of supervised object-based land-cover image classification
NASA Astrophysics Data System (ADS)
Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue
2017-08-01
Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.
Comparing Features for Classification of MEG Responses to Motor Imagery
Halme, Hanna-Leena; Parkkonen, Lauri
2016-01-01
Background Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest. Methods MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns (CSP), filter-bank common spatial patterns (FBCSP), spatio—spectral decomposition (SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject. Results The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%) and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results. Conclusions We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction methods utilizing both the spatial and spectral profile of MI-related signals provided the best classification results, suggesting good performance of these methods in an online MEG neurofeedback system. PMID:27992574
NASA Astrophysics Data System (ADS)
Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.
2014-11-01
This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.
Comparison of wheat classification accuracy using different classifiers of the image-100 system
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.
1981-01-01
Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.
Porras-Alfaro, Andrea; Liu, Kuan-Liang; Kuske, Cheryl R; Xie, Gary
2014-02-01
We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5' section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets.
Liu, Kuan-Liang; Kuske, Cheryl R.
2014-01-01
We compared the classification accuracy of two sections of the fungal internal transcribed spacer (ITS) region, individually and combined, and the 5′ section (about 600 bp) of the large-subunit rRNA (LSU), using a naive Bayesian classifier and BLASTN. A hand-curated ITS-LSU training set of 1,091 sequences and a larger training set of 8,967 ITS region sequences were used. Of the factors evaluated, database composition and quality had the largest effect on classification accuracy, followed by fragment size and use of a bootstrap cutoff to improve classification confidence. The naive Bayesian classifier and BLASTN gave similar results at higher taxonomic levels, but the classifier was faster and more accurate at the genus level when a bootstrap cutoff was used. All of the ITS and LSU sections performed well (>97.7% accuracy) at higher taxonomic ranks from kingdom to family, and differences between them were small at the genus level (within 0.66 to 1.23%). When full-length sequence sections were used, the LSU outperformed the ITS1 and ITS2 fragments at the genus level, but the ITS1 and ITS2 showed higher accuracy when smaller fragment sizes of the same length and a 50% bootstrap cutoff were used. In a comparison using the larger ITS training set, ITS1 and ITS2 had very similar accuracy classification for fragments between 100 and 200 bp. Collectively, the results show that any of the ITS or LSU sections we tested provided comparable classification accuracy to the genus level and underscore the need for larger and more diverse classification training sets. PMID:24242255
Analyzing thematic maps and mapping for accuracy
Rosenfield, G.H.
1982-01-01
Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio
NASA Astrophysics Data System (ADS)
Nababan, A. A.; Sitompul, O. S.; Tulus
2018-04-01
K- Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to miss-classification of the class assignment for new data. In this research, we proposed Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
Transportation Modes Classification Using Sensors on Smartphones.
Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu
2016-08-19
This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user's transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.
Transportation Modes Classification Using Sensors on Smartphones
Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu
2016-01-01
This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes. PMID:27548182
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
NASA Astrophysics Data System (ADS)
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A
2013-08-01
In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.
Multi-source remotely sensed data fusion for improving land cover classification
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Bo; Xu, Bing
2017-02-01
Although many advances have been made in past decades, land cover classification of fine-resolution remotely sensed (RS) data integrating multiple temporal, angular, and spectral features remains limited, and the contribution of different RS features to land cover classification accuracy remains uncertain. We proposed to improve land cover classification accuracy by integrating multi-source RS features through data fusion. We further investigated the effect of different RS features on classification performance. The results of fusing Landsat-8 Operational Land Imager (OLI) data with Moderate Resolution Imaging Spectroradiometer (MODIS), China Environment 1A series (HJ-1A), and Advanced Spaceborne Thermal Emission and Reflection (ASTER) digital elevation model (DEM) data, showed that the fused data integrating temporal, spectral, angular, and topographic features achieved better land cover classification accuracy than the original RS data. Compared with the topographic feature, the temporal and angular features extracted from the fused data played more important roles in classification performance, especially those temporal features containing abundant vegetation growth information, which markedly increased the overall classification accuracy. In addition, the multispectral and hyperspectral fusion successfully discriminated detailed forest types. Our study provides a straightforward strategy for hierarchical land cover classification by making full use of available RS data. All of these methods and findings could be useful for land cover classification at both regional and global scales.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
Application of Sensor Fusion to Improve Uav Image Classification
NASA Astrophysics Data System (ADS)
Jabari, S.; Fathollahi, F.; Zhang, Y.
2017-08-01
Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.
NASA Technical Reports Server (NTRS)
Spann, G. W.; Faust, N. L.
1974-01-01
It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.
Multi-Temporal Classification and Change Detection Using Uav Images
NASA Astrophysics Data System (ADS)
Makuti, S.; Nex, F.; Yang, M. Y.
2018-05-01
In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.
An Evaluation of Item Response Theory Classification Accuracy and Consistency Indices
ERIC Educational Resources Information Center
Wyse, Adam E.; Hao, Shiqi
2012-01-01
This article introduces two new classification consistency indices that can be used when item response theory (IRT) models have been applied. The new indices are shown to be related to Rudner's classification accuracy index and Guo's classification accuracy index. The Rudner- and Guo-based classification accuracy and consistency indices are…
NASA Astrophysics Data System (ADS)
Geelen, Christopher D.; Wijnhoven, Rob G. J.; Dubbelman, Gijs; de With, Peter H. N.
2015-03-01
This research considers gender classification in surveillance environments, typically involving low-resolution images and a large amount of viewpoint variations and occlusions. Gender classification is inherently difficult due to the large intra-class variation and interclass correlation. We have developed a gender classification system, which is successfully evaluated on two novel datasets, which realistically consider the above conditions, typical for surveillance. The system reaches a mean accuracy of up to 90% and approaches our human baseline of 92.6%, proving a high-quality gender classification system. We also present an in-depth discussion of the fundamental differences between SVM and RF classifiers. We conclude that balancing the degree of randomization in any classifier is required for the highest classification accuracy. For our problem, an RF-SVM hybrid classifier exploiting the combination of HSV and LBP features results in the highest classification accuracy of 89.9 0.2%, while classification computation time is negligible compared to the detection time of pedestrians.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
The use of Landsat data to inventory cotton and soybean acreage in North Alabama
NASA Technical Reports Server (NTRS)
Downs, S. W., Jr.; Faust, N. L.
1980-01-01
This study was performed to determine if Landsat data could be used to improve the accuracy of the estimation of cotton acreage. A linear classification algorithm and a maximum likelihood algorithm were used for computer classification of the area, and the classification was compared with ground truth. The classification accuracy for some fields was greater than 90 percent; however, the overall accuracy was 71 percent for cotton and 56 percent for soybeans. The results of this research indicate that computer analysis of Landsat data has potential for improving upon the methods presently being used to determine cotton acreage; however, additional experiments and refinements are needed before the method can be used operationally.
NASA Technical Reports Server (NTRS)
Card, Don H.; Strong, Laurence L.
1989-01-01
An application of a classification accuracy assessment procedure is described for a vegetation and land cover map prepared by digital image processing of LANDSAT multispectral scanner data. A statistical sampling procedure called Stratified Plurality Sampling was used to assess the accuracy of portions of a map of the Arctic National Wildlife Refuge coastal plain. Results are tabulated as percent correct classification overall as well as per category with associated confidence intervals. Although values of percent correct were disappointingly low for most categories, the study was useful in highlighting sources of classification error and demonstrating shortcomings of the plurality sampling method.
Sub-pixel image classification for forest types in East Texas
NASA Astrophysics Data System (ADS)
Westbrook, Joey
Sub-pixel classification is the extraction of information about the proportion of individual materials of interest within a pixel. Landcover classification at the sub-pixel scale provides more discrimination than traditional per-pixel multispectral classifiers for pixels where the material of interest is mixed with other materials. It allows for the un-mixing of pixels to show the proportion of each material of interest. The materials of interest for this study are pine, hardwood, mixed forest and non-forest. The goal of this project was to perform a sub-pixel classification, which allows a pixel to have multiple labels, and compare the result to a traditional supervised classification, which allows a pixel to have only one label. The satellite image used was a Landsat 5 Thematic Mapper (TM) scene of the Stephen F. Austin Experimental Forest in Nacogdoches County, Texas and the four cover type classes are pine, hardwood, mixed forest and non-forest. Once classified, a multi-layer raster datasets was created that comprised four raster layers where each layer showed the percentage of that cover type within the pixel area. Percentage cover type maps were then produced and the accuracy of each was assessed using a fuzzy error matrix for the sub-pixel classifications, and the results were compared to the supervised classification in which a traditional error matrix was used. The overall accuracy of the sub-pixel classification using the aerial photo for both training and reference data had the highest (65% overall) out of the three sub-pixel classifications. This was understandable because the analyst can visually observe the cover types actually on the ground for training data and reference data, whereas using the FIA (Forest Inventory and Analysis) plot data, the analyst must assume that an entire pixel contains the exact percentage of a cover type found in a plot. An increase in accuracy was found after reclassifying each sub-pixel classification from nine classes with 10 percent interval each to five classes with 20 percent interval each. When compared to the supervised classification which has a satisfactory overall accuracy of 90%, none of the sub-pixel classification achieved the same level. However, since traditional per-pixel classifiers assign only one label to pixels throughout the landscape while sub-pixel classifications assign multiple labels to each pixel, the traditional 85% accuracy of acceptance for pixel-based classifications should not apply to sub-pixel classifications. More research is needed in order to define the level of accuracy that is deemed acceptable for sub-pixel classifications.
Classification of urban features using airborne hyperspectral data
NASA Astrophysics Data System (ADS)
Ganesh Babu, Bharath
Accurate mapping and modeling of urban environments are critical for their efficient and successful management. Superior understanding of complex urban environments is made possible by using modern geospatial technologies. This research focuses on thematic classification of urban land use and land cover (LULC) using 248 bands of 2.0 meter resolution hyperspectral data acquired from an airborne imaging spectrometer (AISA+) on 24th July 2006 in and near Terre Haute, Indiana. Three distinct study areas including two commercial classes, two residential classes, and two urban parks/recreational classes were selected for classification and analysis. Four commonly used classification methods -- maximum likelihood (ML), extraction and classification of homogeneous objects (ECHO), spectral angle mapper (SAM), and iterative self organizing data analysis (ISODATA) - were applied to each data set. Accuracy assessment was conducted and overall accuracies were compared between the twenty four resulting thematic maps. With the exception of SAM and ISODATA in a complex commercial area, all methods employed classified the designated urban features with more than 80% accuracy. The thematic classification from ECHO showed the best agreement with ground reference samples. The residential area with relatively homogeneous composition was classified consistently with highest accuracy by all four of the classification methods used. The average accuracy amongst the classifiers was 93.60% for this area. When individually observed, the complex recreational area (Deming Park) was classified with the highest accuracy by ECHO, with an accuracy of 96.80% and 96.10% Kappa. The average accuracy amongst all the classifiers was 92.07%. The commercial area with relatively high complexity was classified with the least accuracy by all classifiers. The lowest accuracy was achieved by SAM at 63.90% with 59.20% Kappa. This was also the lowest accuracy in the entire analysis. This study demonstrates the potential for using the visible and near infrared (VNIR) bands from AISA+ hyperspectral data in urban LULC classification. Based on their performance, the need for further research using ECHO and SAM is underscored. The importance incorporating imaging spectrometer data in high resolution urban feature mapping is emphasized.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.
1984-01-01
An initial analysis of LANDSAT 4 Thematic Mapper (TM) data for the discrimination of agricultural, forested wetland, and urban land covers is conducted using a scene of data collected over Arkansas and Tennessee. A classification of agricultural lands derived from multitemporal LANDSAT Multispectral Scanner (MSS) data is compared with a classification of TM data for the same area. Results from this comparative analysis show that the multitemporal MSS classification produced an overall accuracy of 80.91% while the TM classification yields an overall classification accuracy of 97.06% correct.
NASA Technical Reports Server (NTRS)
Chang, C. Y.
1974-01-01
The author has identified the following significant results. The Skylab S192 data was evaluated by: (1) comparing the classification results using S192 and ERTS-1 data over the Holt County, Nebraska agricultural study area, and (2) investigating the impact of signal-to-noise ratio on classification accuracies using registered S192 and ERTS-1 data. Results indicate: (1) The classification accuracy obtained on S192 data using its best subset of four bands can be expected to be as high as that on ERTS-1 data. (2) When a subset of four S192 bands that are spectrally similar to the ERTS-1 bands was used for classification, an obvious deterioration in the classification accuracy was observed with respect to the ERTS-1 results. (3) The thermal bands 13 and 14 as well as the near IR bands were found to be relatively important in the classification of agricultural data. Although bands 11 and 12 were highly correlated, both were invariably included in the best subsets of the band sizes, four and beyond, according to the divergence criterion. (4) The differentiation of corn from popcorn was difficult on both S192 and ERTS-1 data acquired at an early summer date. (5) The results on both sets of data indicate that it was relatively easy to differentiate grass from any other class.
Wang, Xueyi; Davidson, Nicholas J.
2011-01-01
Ensemble methods have been widely used to improve prediction accuracy over individual classifiers. In this paper, we achieve a few results about the prediction accuracies of ensemble methods for binary classification that are missed or misinterpreted in previous literature. First we show the upper and lower bounds of the prediction accuracies (i.e. the best and worst possible prediction accuracies) of ensemble methods. Next we show that an ensemble method can achieve > 0.5 prediction accuracy, while individual classifiers have < 0.5 prediction accuracies. Furthermore, for individual classifiers with different prediction accuracies, the average of the individual accuracies determines the upper and lower bounds. We perform two experiments to verify the results and show that it is hard to achieve the upper and lower bounds accuracies by random individual classifiers and better algorithms need to be developed. PMID:21853162
Evaluation of airborne image data for mapping riparian vegetation within the Grand Canyon
Davis, Philip A.; Staid, Matthew I.; Plescia, Jeffrey B.; Johnson, Jeffrey R.
2002-01-01
This study examined various types of remote-sensing data that have been acquired during a 12-month period over a portion of the Colorado River corridor to determine the type of data and conditions for data acquisition that provide the optimum classification results for mapping riparian vegetation. Issues related to vegetation mapping included time of year, number and positions of wavelength bands, and spatial resolution for data acquisition to produce accurate vegetation maps versus cost of data. Image data considered in the study consisted of scanned color-infrared (CIR) film, digital CIR, and digital multispectral data, whose resolutions from 11 cm (photographic film) to 100 cm (multispectral), that were acquired during the Spring, Summer, and Fall seasons in 2000 for five long-term monitoring sites containing riparian vegetation. Results show that digitally acquired data produce higher and more consistent classification accuracies for mapping vegetation units than do film products. The highest accuracies were obtained from nine-band multispectral data; however, a four-band subset of these data, that did not include short-wave infrared bands, produced comparable mapping results. The four-band subset consisted of the wavelength bands 0.52-0.59 µm, 0.59-0.62 µm, 0.67-0.72 µm, and 0.73-0.85 µm. Use of only three of these bands that simulate digital CIR sensors produced accuracies for several vegetation units that were 10% lower than those obtained using the full multispectral data set. Classification tests using band ratios produced lower accuracies than those using band reflectance for scanned film data; a result attributed to the relatively poor radiometric fidelity maintained by the film scanning process, whereas calibrated multispectral data produced similar classification accuracies using band reflectance and band ratios. This suggests that the intrinsic band reflectance of the vegetation is more important than inter-band reflectance differences in attaining high mapping accuracies. These results also indicate that radiometrically calibrated sensors that record a wide range of radiance produce superior results and that such sensors should be used for monitoring purposes. When texture (spatial variance) at near-infrared wavelength is combined with spectral data in classification, accuracy increased most markedly (20-30%) for the highest resolution (11-cm) CIR film data, but decreased in its effect on accuracy in lower-resolution multi-spectral image data; a result observed in previous studies (Franklin and McDermid 1993, Franklin et al. 2000, 2001). While many classification unit accuracies obtained from the 11-cm film CIR band with texture data were in fact higher than those produced using the 100-cm, nine-band multispectral data with texture, the 11-cm film CIR data produced much lower accuracies than the 100-cm multispectral data for the more sparsely populated vegetation units due to saturation of picture elements during the film scanning process in vegetation units with a high proportion of alluvium. Overall classification accuracies obtained from spectral band and texture data range from 36% to 78% for all databases considered, from 57% to 71% for the 11-cm film CIR data, and from 54% to 78% for the 100-cm multispectral data. Classification results obtained from 20-cm film CIR band and texture data, which were produced by applying a Gaussian filter to the 11-cm film CIR data, showed increases in accuracy due to texture that were similar to those observed using the original 11-cm film CIR data. This suggests that data can be collected at the lower resolution and still retain the added power of vegetation texture. Classification accuracies for the riparian vegetation units examined in this study do not appear to be influenced by season of data acquisition, although data acquired under direct sunlight produced higher overall accuracies than data acquired under overcast conditions. The latter observation, in addition to the importance of band reflectance for classification, implies that data should be acquired near summer solstice when sun elevation and reflectance is highest and when shadows cast by steep canyon walls are minimized.
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
NASA Astrophysics Data System (ADS)
Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.
2018-04-01
The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.
NASA Astrophysics Data System (ADS)
Dondurur, Mehmet
The primary objective of this study was to determine the degree to which modern SAR systems can be used to obtain information about the Earth's vegetative resources. Information obtainable from microwave synthetic aperture radar (SAR) data was compared with that obtainable from LANDSAT-TM and SPOT data. Three hypotheses were tested: (a) Classification of land cover/use from SAR data can be accomplished on a pixel-by-pixel basis with the same overall accuracy as from LANDSAT-TM and SPOT data. (b) Classification accuracy for individual land cover/use classes will differ between sensors. (c) Combining information derived from optical and SAR data into an integrated monitoring system will improve overall and individual land cover/use class accuracies. The study was conducted with three data sets for the Sleeping Bear Dunes test site in the northwestern part of Michigan's lower peninsula, including an October 1982 LANDSAT-TM scene, a June 1989 SPOT scene and C-, L- and P-Band radar data from the Jet Propulsion Laboratory AIRSAR. Reference data were derived from the Michigan Resource Information System (MIRIS) and available color infrared aerial photos. Classification and rectification of data sets were done using ERDAS Image Processing Programs. Classification algorithms included Maximum Likelihood, Mahalanobis Distance, Minimum Spectral Distance, ISODATA, Parallelepiped, and Sequential Cluster Analysis. Classified images were rectified as necessary so that all were at the same scale and oriented north-up. Results were analyzed with contingency tables and percent correctly classified (PCC) and Cohen's Kappa (CK) as accuracy indices using CSLANT and ImagePro programs developed for this study. Accuracy analyses were based upon a 1.4 by 6.5 km area with its long axis east-west. Reference data for this subscene total 55,770 15 by 15 m pixels with sixteen cover types, including seven level III forest classes, three level III urban classes, two level II range classes, two water classes, one wetland class and one agriculture class. An initial analysis was made without correcting the 1978 MIRIS reference data to the different dates of the TM, SPOT and SAR data sets. In this analysis, highest overall classification accuracy (PCC) was 87% with the TM data set, with both SPOT and C-Band SAR at 85%, a difference statistically significant at the 0.05 level. When the reference data were corrected for land cover change between 1978 and 1991, classification accuracy with the C-Band SAR data increased to 87%. Classification accuracy differed from sensor to sensor for individual land cover classes, Combining sensors into hypothetical multi-sensor systems resulted in higher accuracies than for any single sensor. Combining LANDSAT -TM and C-Band SAR yielded an overall classification accuracy (PCC) of 92%. The results of this study indicate that C-Band SAR data provide an acceptable substitute for LANDSAT-TM or SPOT data when land cover information is desired of areas where cloud cover obscures the terrain. Even better results can be obtained by integrating TM and C-Band SAR data into a multi-sensor system.
AVNM: A Voting based Novel Mathematical Rule for Image Classification.
Vidyarthi, Ankit; Mittal, Namita
2016-12-01
In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei
2018-02-01
Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.
Hao, Pengyu; Wang, Li; Niu, Zheng
2015-01-01
A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597
Koch, Stefan P.; Hägele, Claudia; Haynes, John-Dylan; Heinz, Andreas; Schlagenhauf, Florian; Sterzer, Philipp
2015-01-01
Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way. PMID:25799236
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
2011-01-01
Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). Conclusions The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test. PMID:22129438
Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.
Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong
2018-05-24
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.
Multi-site evaluation of IKONOS data for classification of tropical coral reef environments
Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.
2003-01-01
Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.
Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing
2018-03-19
In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.
Compensatory neurofuzzy model for discrete data classification in biomedical
NASA Astrophysics Data System (ADS)
Ceylan, Rahime
2015-03-01
Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.
AVHRR composite period selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Multitemporal satellite image datasets provide valuable information on the phenological characteristics of vegetation, thereby significantly increasing the accuracy of cover type classifications compared to single date classifications. However, the processing of these datasets can become very complex when dealing with multitemporal data combined with multispectral data. Advanced Very High Resolution Radiometer (AVHRR) biweekly composite data are commonly used to classify land cover over large regions. Selecting a subset of these biweekly composite periods may be required to reduce the complexity and cost of land cover mapping. The objective of our research was to evaluate the effect of reducing the number of composite periods and altering the spacing of those composite periods on classification accuracy. Because inter-annual variability can have a major impact on classification results, 5 years of AVHRR data were evaluated. AVHRR biweekly composite images for spectral channels 1-4 (visible, near-infrared and two thermal bands) covering the entire growing season were used to classify 14 cover types over the entire state of Colorado for each of five different years. A supervised classification method was applied to maintain consistent procedures for each case tested. Results indicate that the number of composite periods can be halved-reduced from 14 composite dates to seven composite dates-without significantly reducing overall classification accuracy (80.4% Kappa accuracy for the 14-composite data-set as compared to 80.0% for a seven-composite dataset). At least seven composite periods were required to ensure the classification accuracy was not affected by inter-annual variability due to climate fluctuations. Concentrating more composites near the beginning and end of the growing season, as compared to using evenly spaced time periods, consistently produced slightly higher classification values over the 5 years tested (average Kappa) of 80.3% for the heavy early/late case as compared to 79.0% for the alternate dataset case).
Test of spectral/spatial classifier
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Kast, J. L.; Davis, B. J.
1977-01-01
The author has identified the following significant results. The supervised ECHO processor (which utilizes class statistics for object identification) successfully exploits the redundancy of states characteristic of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The nonsupervised ECHO processor (which identifies objects without the benefit of class statistics) successfully reduces the number of classifications required and the variability of the classification results.
NASA Astrophysics Data System (ADS)
Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd
2018-01-01
The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.
ERIC Educational Resources Information Center
Pena, Elizabeth D.; Gillam, Ronald B.; Malek, Melynn; Ruiz-Felter, Roxanna; Resendiz, Maria; Fiestas, Christine; Sabel, Tracy
2006-01-01
Two experiments examined reliability and classification accuracy of a narration-based dynamic assessment task. Purpose: The first experiment evaluated whether parallel results were obtained from stories created in response to 2 different wordless picture books. If so, the tasks and measures would be appropriate for assessing pretest and posttest…
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
NASA Astrophysics Data System (ADS)
Roychowdhury, K.
2016-06-01
Landcover is the easiest detectable indicator of human interventions on land. Urban and peri-urban areas present a complex combination of landcover, which makes classification challenging. This paper assesses the different methods of classifying landcover using dual polarimetric Sentinel-1 data collected during monsoon (July) and winter (December) months of 2015. Four broad landcover classes such as built up areas, water bodies and wetlands, vegetation and open spaces of Kolkata and its surrounding regions were identified. Polarimetric analyses were conducted on Single Look Complex (SLC) data of the region while ground range detected (GRD) data were used for spectral and spatial classification. Unsupervised classification by means of K-Means clustering used backscatter values and was able to identify homogenous landcovers over the study area. The results produced an overall accuracy of less than 50% for both the seasons. Higher classification accuracy (around 70%) was achieved by adding texture variables as inputs along with the backscatter values. However, the accuracy of classification increased significantly with polarimetric analyses. The overall accuracy was around 80% in Wishart H-A-Alpha unsupervised classification. The method was useful in identifying urban areas due to their double-bounce scattering and vegetated areas, which have more random scattering. Normalized Difference Built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) obtained from Landsat 8 data over the study area were used to verify vegetation and urban classes. The study compares the accuracies of different methods of classifying landcover using medium resolution SAR data in a complex urban area and suggests that polarimetric analyses present the most accurate results for urban and suburban areas.
Developing collaborative classifiers using an expert-based model
Mountrakis, G.; Watts, R.; Luo, L.; Wang, Jingyuan
2009-01-01
This paper presents a hierarchical, multi-stage adaptive strategy for image classification. We iteratively apply various classification methods (e.g., decision trees, neural networks), identify regions of parametric and geographic space where accuracy is low, and in these regions, test and apply alternate methods repeating the process until the entire image is classified. Currently, classifiers are evaluated through human input using an expert-based system; therefore, this paper acts as the proof of concept for collaborative classifiers. Because we decompose the problem into smaller, more manageable sub-tasks, our classification exhibits increased flexibility compared to existing methods since classification methods are tailored to the idiosyncrasies of specific regions. A major benefit of our approach is its scalability and collaborative support since selected low-accuracy classifiers can be easily replaced with others without affecting classification accuracy in high accuracy areas. At each stage, we develop spatially explicit accuracy metrics that provide straightforward assessment of results by non-experts and point to areas that need algorithmic improvement or ancillary data. Our approach is demonstrated in the task of detecting impervious surface areas, an important indicator for human-induced alterations to the environment, using a 2001 Landsat scene from Las Vegas, Nevada. ?? 2009 American Society for Photogrammetry and Remote Sensing.
NASA Astrophysics Data System (ADS)
Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco
2016-10-01
The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.
Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang
2016-08-01
Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.
NASA Astrophysics Data System (ADS)
Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert
2005-12-01
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.
The Effect of Normalization in Violence Video Classification Performance
NASA Astrophysics Data System (ADS)
Ali, Ashikin; Senan, Norhalina
2017-08-01
Basically, data pre-processing is an important part of data mining. Normalization is a pre-processing stage for any type of problem statement, especially in video classification. Challenging problems that arises in video classification is because of the heterogeneous content, large variations in video quality and complex semantic meanings of the concepts involved. Therefore, to regularize this problem, it is thoughtful to ensure normalization or basically involvement of thorough pre-processing stage aids the robustness of classification performance. This process is to scale all the numeric variables into certain range to make it more meaningful for further phases in available data mining techniques. Thus, this paper attempts to examine the effect of 2 normalization techniques namely Min-max normalization and Z-score in violence video classifications towards the performance of classification rate using Multi-layer perceptron (MLP) classifier. Using Min-Max Normalization range of [0,1] the result shows almost 98% of accuracy, meanwhile Min-Max Normalization range of [-1,1] accuracy is 59% and for Z-score the accuracy is 50%.
NASA Astrophysics Data System (ADS)
Kurniawan, Dian; Suparti; Sugito
2018-05-01
Population growth in Indonesia has increased every year. According to the population census conducted by the Central Bureau of Statistics (BPS) in 2010, the population of Indonesia has reached 237.6 million people. Therefore, to control the population growth rate, the government hold Family Planning or Keluarga Berencana (KB) program for couples of childbearing age. The purpose of this program is to improve the health of mothers and children in order to manifest prosperous society by controlling births while ensuring control of population growth. The data used in this study is the updated family data of Semarang city in 2016 that conducted by National Family Planning Coordinating Board (BKKBN). From these data, classifiers with kernel discriminant analysis will be obtained, and also classification accuracy will be obtained from that method. The result of the analysis showed that normal kernel discriminant analysis gives 71.05 % classification accuracy with 28.95 % classification error. Whereas triweight kernel discriminant analysis gives 73.68 % classification accuracy with 26.32 % classification error. Using triweight kernel discriminant for data preprocessing of family planning participation of childbearing age couples in Semarang City of 2016 can be stated better than with normal kernel discriminant.
AVHRR channel selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.
Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas
2015-06-30
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Daniel J
2008-01-01
Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic datamore » (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.« less
Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.
Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita
2018-03-01
Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.
[Object-oriented aquatic vegetation extracting approach based on visible vegetation indices.
Jing, Ran; Deng, Lei; Zhao, Wen Ji; Gong, Zhao Ning
2016-05-01
Using the estimation of scale parameters (ESP) image segmentation tool to determine the ideal image segmentation scale, the optimal segmented image was created by the multi-scale segmentation method. Based on the visible vegetation indices derived from mini-UAV imaging data, we chose a set of optimal vegetation indices from a series of visible vegetation indices, and built up a decision tree rule. A membership function was used to automatically classify the study area and an aquatic vegetation map was generated. The results showed the overall accuracy of image classification using the supervised classification was 53.7%, and the overall accuracy of object-oriented image analysis (OBIA) was 91.7%. Compared with pixel-based supervised classification method, the OBIA method improved significantly the image classification result and further increased the accuracy of extracting the aquatic vegetation. The Kappa value of supervised classification was 0.4, and the Kappa value based OBIA was 0.9. The experimental results demonstrated that using visible vegetation indices derived from the mini-UAV data and OBIA method extracting the aquatic vegetation developed in this study was feasible and could be applied in other physically similar areas.
ERIC Educational Resources Information Center
Zytowski, Donald G.
1972-01-01
Owing to the uncertainty concerning the concurrent validity of the SVIB and the KOIS, a test of accuracy of classification of men in the occupations common to both inventories was undertaken. The results suggest that neither show any less validity than had been shown in separate studies previously. (Author)
Factors Affecting the Item Parameter Estimation and Classification Accuracy of the DINA Model
ERIC Educational Resources Information Center
de la Torre, Jimmy; Hong, Yuan; Deng, Weiling
2010-01-01
To better understand the statistical properties of the deterministic inputs, noisy "and" gate cognitive diagnosis (DINA) model, the impact of several factors on the quality of the item parameter estimates and classification accuracy was investigated. Results of the simulation study indicate that the fully Bayes approach is most accurate when the…
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009
Spatial modeling and classification of corneal shape.
Marsolo, Keith; Twa, Michael; Bullimore, Mark A; Parthasarathy, Srinivasan
2007-03-01
One of the most promising applications of data mining is in biomedical data used in patient diagnosis. Any method of data analysis intended to support the clinical decision-making process should meet several criteria: it should capture clinically relevant features, be computationally feasible, and provide easily interpretable results. In an initial study, we examined the feasibility of using Zernike polynomials to represent biomedical instrument data in conjunction with a decision tree classifier to distinguish between the diseased and non-diseased eyes. Here, we provide a comprehensive follow-up to that work, examining a second representation, pseudo-Zernike polynomials, to determine whether they provide any increase in classification accuracy. We compare the fidelity of both methods using residual root-mean-square (rms) error and evaluate accuracy using several classifiers: neural networks, C4.5 decision trees, Voting Feature Intervals, and Naïve Bayes. We also examine the effect of several meta-learning strategies: boosting, bagging, and Random Forests (RFs). We present results comparing accuracy as it relates to dataset and transformation resolution over a larger, more challenging, multi-class dataset. They show that classification accuracy is similar for both data transformations, but differs by classifier. We find that the Zernike polynomials provide better feature representation than the pseudo-Zernikes and that the decision trees yield the best balance of classification accuracy and interpretability.
Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data
NASA Astrophysics Data System (ADS)
Elhag, Mohamed; Boteva, Silvena
2016-10-01
Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-01-01
Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184
Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li
2011-02-16
Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.
NASA Astrophysics Data System (ADS)
Melville, Bethany; Lucieer, Arko; Aryal, Jagannath
2018-04-01
This paper presents a random forest classification approach for identifying and mapping three types of lowland native grassland communities found in the Tasmanian Midlands region. Due to the high conservation priority assigned to these communities, there has been an increasing need to identify appropriate datasets that can be used to derive accurate and frequently updateable maps of community extent. Therefore, this paper proposes a method employing repeat classification and statistical significance testing as a means of identifying the most appropriate dataset for mapping these communities. Two datasets were acquired and analysed; a Landsat ETM+ scene, and a WorldView-2 scene, both from 2010. Training and validation data were randomly subset using a k-fold (k = 50) approach from a pre-existing field dataset. Poa labillardierei, Themeda triandra and lowland native grassland complex communities were identified in addition to dry woodland and agriculture. For each subset of randomly allocated points, a random forest model was trained based on each dataset, and then used to classify the corresponding imagery. Validation was performed using the reciprocal points from the independent subset that had not been used to train the model. Final training and classification accuracies were reported as per class means for each satellite dataset. Analysis of Variance (ANOVA) was undertaken to determine whether classification accuracy differed between the two datasets, as well as between classifications. Results showed mean class accuracies between 54% and 87%. Class accuracy only differed significantly between datasets for the dry woodland and Themeda grassland classes, with the WorldView-2 dataset showing higher mean classification accuracies. The results of this study indicate that remote sensing is a viable method for the identification of lowland native grassland communities in the Tasmanian Midlands, and that repeat classification and statistical significant testing can be used to identify optimal datasets for vegetation community mapping.
Evaluation of space SAR as a land-cover classification
NASA Technical Reports Server (NTRS)
Brisco, B.; Ulaby, F. T.; Williams, T. H. L.
1985-01-01
The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories.
Classification with spatio-temporal interpixel class dependency contexts
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David A.
1992-01-01
A contextual classifier which can utilize both spatial and temporal interpixel dependency contexts is investigated. After spatial and temporal neighbors are defined, a general form of maximum a posterior spatiotemporal contextual classifier is derived. This contextual classifier is simplified under several assumptions. Joint prior probabilities of the classes of each pixel and its spatial neighbors are modeled by the Gibbs random field. The classification is performed in a recursive manner to allow a computationally efficient contextual classification. Experimental results with bitemporal TM data show significant improvement of classification accuracy over noncontextual pixelwise classifiers. This spatiotemporal contextual classifier should find use in many applications of remote sensing, especially when the classification accuracy is important.
Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul
2011-11-30
Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p < 10-3) in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result) rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p < 10-3). In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p < 10-3) or Fibrotest (0.84 ± 0.80, p < 10-3). In population #3 (and #4) including 458 (359) patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p < 10-3 (p < 10-3). Significant discrepancy (≥ 2 FM) rates were, respectively: Fibrotest: 21.3% (22.2%), Fibroscan: 12.9% (12.3%), FibroMeter2G: 5.7% (6.0%), FibroMeter3G: 0.9% (0.9%), p < 10-3 (p < 10-3). The accuracy in detailed fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.
Variance approximations for assessments of classification accuracy
R. L. Czaplewski
1994-01-01
Variance approximations are derived for the weighted and unweighted kappa statistics, the conditional kappa statistic, and conditional probabilities. These statistics are useful to assess classification accuracy, such as accuracy of remotely sensed classifications in thematic maps when compared to a sample of reference classifications made in the field. Published...
Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi
2015-01-01
The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.
NASA Astrophysics Data System (ADS)
Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.
2018-04-01
The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.
Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification
NASA Astrophysics Data System (ADS)
Sharif, I.; Khare, S.
2014-11-01
With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.
ANALYSIS OF A CLASSIFICATION ERROR MATRIX USING CATEGORICAL DATA TECHNIQUES.
Rosenfield, George H.; Fitzpatrick-Lins, Katherine
1984-01-01
Summary form only given. A classification error matrix typically contains tabulation results of an accuracy evaluation of a thematic classification, such as that of a land use and land cover map. The diagonal elements of the matrix represent the counts corrected, and the usual designation of classification accuracy has been the total percent correct. The nondiagonal elements of the matrix have usually been neglected. The classification error matrix is known in statistical terms as a contingency table of categorical data. As an example, an application of these methodologies to a problem of remotely sensed data concerning two photointerpreters and four categories of classification indicated that there is no significant difference in the interpretation between the two photointerpreters, and that there are significant differences among the interpreted category classifications. However, two categories, oak and cottonwood, are not separable in classification in this experiment at the 0. 51 percent probability. A coefficient of agreement is determined for the interpreted map as a whole, and individually for each of the interpreted categories. A conditional coefficient of agreement for the individual categories is compared to other methods for expressing category accuracy which have already been presented in the remote sensing literature.
Applications of remote sensing, volume 1
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1977-01-01
The author has identified the following significant results. ECHO successfully exploits the redundancy of states characteristics of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The information required to produce ECHO classifications are cell size, cell homogeneity, cell-to-field annexation parameters, input data, and a class conditional marginal density statistics deck.
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Acevedo, W.; Alexander, D.; Buis, J.; Card, D.
1984-01-01
An experiment of a factorial design was conducted to test the effects on classification accuracy of land cover types due to the improved spatial, spectral and radiometric characteristics of the Thematic Mapper (TM) in comparison to the Multispectral Scanner (MSS). High altitude aircraft scanner data from the Airborne Thematic Mapper instrument was acquired over central California in August, 1983 and used to simulate Thematic Mapper data as well as all combinations of the three characteristics for eight data sets in all. Results for the training sites (field center pixels) showed better classification accuracies for MSS spatial resolution, TM spectral bands and TM radiometry in order of importance.
Forest tree species discrimination in western Himalaya using EO-1 Hyperion
NASA Astrophysics Data System (ADS)
George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.
2014-05-01
The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...
ERIC Educational Resources Information Center
Ball, Carrie R.; O'Connor, Edward
2016-01-01
This study examined the predictive validity and classification accuracy of two commonly used universal screening measures relative to a statewide achievement test. Results indicated that second-grade performance on oral reading fluency and the Measures of Academic Progress (MAP), together with special education status, explained 68% of the…
Classification of EEG Signals Based on Pattern Recognition Approach.
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.
Classification of EEG Signals Based on Pattern Recognition Approach
Amin, Hafeez Ullah; Mumtaz, Wajid; Subhani, Ahmad Rauf; Saad, Mohamad Naufal Mohamad; Malik, Aamir Saeed
2017-01-01
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a “pattern recognition” approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90–7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy. PMID:29209190
NASA Astrophysics Data System (ADS)
Dou, P.
2017-12-01
Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.
NASA Astrophysics Data System (ADS)
Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan
2015-12-01
In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.
Landenburger, L.; Lawrence, R.L.; Podruzny, S.; Schwartz, C.C.
2008-01-01
Moderate resolution satellite imagery traditionally has been thought to be inadequate for mapping vegetation at the species level. This has made comprehensive mapping of regional distributions of sensitive species, such as whitebark pine, either impractical or extremely time consuming. We sought to determine whether using a combination of moderate resolution satellite imagery (Landsat Enhanced Thematic Mapper Plus), extensive stand data collected by land management agencies for other purposes, and modern statistical classification techniques (boosted classification trees) could result in successful mapping of whitebark pine. Overall classification accuracies exceeded 90%, with similar individual class accuracies. Accuracies on a localized basis varied based on elevation. Accuracies also varied among administrative units, although we were not able to determine whether these differences related to inherent spatial variations or differences in the quality of available reference data.
NASA Astrophysics Data System (ADS)
Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk
2016-07-01
Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.
Balanced VS Imbalanced Training Data: Classifying Rapideye Data with Support Vector Machines
NASA Astrophysics Data System (ADS)
Ustuner, M.; Sanli, F. B.; Abdikan, S.
2016-06-01
The accuracy of supervised image classification is highly dependent upon several factors such as the design of training set (sample selection, composition, purity and size), resolution of input imagery and landscape heterogeneity. The design of training set is still a challenging issue since the sensitivity of classifier algorithm at learning stage is different for the same dataset. In this paper, the classification of RapidEye imagery with balanced and imbalanced training data for mapping the crop types was addressed. Classification with imbalanced training data may result in low accuracy in some scenarios. Support Vector Machines (SVM), Maximum Likelihood (ML) and Artificial Neural Network (ANN) classifications were implemented here to classify the data. For evaluating the influence of the balanced and imbalanced training data on image classification algorithms, three different training datasets were created. Two different balanced datasets which have 70 and 100 pixels for each class of interest and one imbalanced dataset in which each class has different number of pixels were used in classification stage. Results demonstrate that ML and NN classifications are affected by imbalanced training data in resulting a reduction in accuracy (from 90.94% to 85.94% for ML and from 91.56% to 88.44% for NN) while SVM is not affected significantly (from 94.38% to 94.69%) and slightly improved. Our results highlighted that SVM is proven to be a very robust, consistent and effective classifier as it can perform very well under balanced and imbalanced training data situations. Furthermore, the training stage should be precisely and carefully designed for the need of adopted classifier.
Word pair classification during imagined speech using direct brain recordings
NASA Astrophysics Data System (ADS)
Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José Del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.
2016-05-01
People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70-150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58% p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications.
Word pair classification during imagined speech using direct brain recordings
Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.
2016-01-01
People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70–150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58%; p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications. PMID:27165452
Quantitative falls risk estimation through multi-sensor assessment of standing balance.
Greene, Barry R; McGrath, Denise; Walsh, Lorcan; Doheny, Emer P; McKeown, David; Garattini, Chiara; Cunningham, Clodagh; Crosby, Lisa; Caulfield, Brian; Kenny, Rose A
2012-12-01
Falls are the most common cause of injury and hospitalization and one of the principal causes of death and disability in older adults worldwide. Measures of postural stability have been associated with the incidence of falls in older adults. The aim of this study was to develop a model that accurately classifies fallers and non-fallers using novel multi-sensor quantitative balance metrics that can be easily deployed into a home or clinic setting. We compared the classification accuracy of our model with an established method for falls risk assessment, the Berg balance scale. Data were acquired using two sensor modalities--a pressure sensitive platform sensor and a body-worn inertial sensor, mounted on the lower back--from 120 community dwelling older adults (65 with a history of falls, 55 without, mean age 73.7 ± 5.8 years, 63 female) while performing a number of standing balance tasks in a geriatric research clinic. Results obtained using a support vector machine yielded a mean classification accuracy of 71.52% (95% CI: 68.82-74.28) in classifying falls history, obtained using one model classifying all data points. Considering male and female participant data separately yielded classification accuracies of 72.80% (95% CI: 68.85-77.17) and 73.33% (95% CI: 69.88-76.81) respectively, leading to a mean classification accuracy of 73.07% in identifying participants with a history of falls. Results compare favourably to those obtained using the Berg balance scale (mean classification accuracy: 59.42% (95% CI: 56.96-61.88)). Results from the present study could lead to a robust method for assessing falls risk in both supervised and unsupervised environments.
NASA Astrophysics Data System (ADS)
Karakacan Kuzucu, A.; Bektas Balcik, F.
2017-11-01
Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.
2011-01-01
Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5. Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing. PMID:21849043
Wen, Tingxi; Zhang, Zhongnan
2017-01-01
Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
A new self-report inventory of dyslexia for students: criterion and construct validity.
Tamboer, Peter; Vorst, Harrie C M
2015-02-01
The validity of a Dutch self-report inventory of dyslexia was ascertained in two samples of students. Six biographical questions, 20 general language statements and 56 specific language statements were based on dyslexia as a multi-dimensional deficit. Dyslexia and non-dyslexia were assessed with two criteria: identification with test results (Sample 1) and classification using biographical information (both samples). Using discriminant analyses, these criteria were predicted with various groups of statements. All together, 11 discriminant functions were used to estimate classification accuracy of the inventory. In Sample 1, 15 statements predicted the test criterion with classification accuracy of 98%, and 18 statements predicted the biographical criterion with classification accuracy of 97%. In Sample 2, 16 statements predicted the biographical criterion with classification accuracy of 94%. Estimations of positive and negative predictive value were 89% and 99%. Items of various discriminant functions were factor analysed to find characteristic difficulties of students with dyslexia, resulting in a five-factor structure in Sample 1 and a four-factor structure in Sample 2. Answer bias was investigated with measures of internal consistency reliability. Less than 20 self-report items are sufficient to accurately classify students with and without dyslexia. This supports the usefulness of self-assessment of dyslexia as a valid alternative to diagnostic test batteries. Copyright © 2015 John Wiley & Sons, Ltd.
Gastric precancerous diseases classification using CNN with a concise model.
Zhang, Xu; Hu, Weiling; Chen, Fei; Liu, Jiquan; Yang, Yuanhang; Wang, Liangjing; Duan, Huilong; Si, Jianmin
2017-01-01
Gastric precancerous diseases (GPD) may deteriorate into early gastric cancer if misdiagnosed, so it is important to help doctors recognize GPD accurately and quickly. In this paper, we realize the classification of 3-class GPD, namely, polyp, erosion, and ulcer using convolutional neural networks (CNN) with a concise model called the Gastric Precancerous Disease Network (GPDNet). GPDNet introduces fire modules from SqueezeNet to reduce the model size and parameters about 10 times while improving speed for quick classification. To maintain classification accuracy with fewer parameters, we propose an innovative method called iterative reinforced learning (IRL). After training GPDNet from scratch, we apply IRL to fine-tune the parameters whose values are close to 0, and then we take the modified model as a pretrained model for the next training. The result shows that IRL can improve the accuracy about 9% after 6 iterations. The final classification accuracy of our GPDNet was 88.90%, which is promising for clinical GPD recognition.
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System.
de Moura, Karina de O A; Balbinot, Alexandre
2018-05-01
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
Balbinot, Alexandre
2018-01-01
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. PMID:29723994
2013-01-01
Background and purpose Guidelines for fracture treatment and evaluation require a valid classification. Classifications especially designed for children are available, but they might lead to reduced accuracy, considering the relative infrequency of childhood fractures in a general orthopedic department. We tested the reliability and accuracy of the Müller classification when used for long bone fractures in children. Methods We included all long bone fractures in children aged < 16 years who were treated in 2008 at the surgical ward of Stavanger University Hospital. 20 surgeons recorded 232 fractures. Datasets were generated for intra- and inter-rater analysis, as well as a reference dataset for accuracy calculations. We present proportion of agreement (PA) and kappa (K) statistics. Results For intra-rater analysis, overall agreement (κ) was 0.75 (95% CI: 0.68–0.81) and PA was 79%. For inter-rater assessment, K was 0.71 (95% CI: 0.61–0.80) and PA was 77%. Accuracy was estimated: κ = 0.72 (95% CI: 0.64–0.79) and PA = 76%. Interpretation The Müller classification (slightly adjusted for pediatric fractures) showed substantial to excellent accuracy among general orthopedic surgeons when applied to long bone fractures in children. However, separate knowledge about the child-specific fracture pattern, the maturity of the bone, and the degree of displacement must be considered when the treatment and the prognosis of the fractures are evaluated. PMID:23245225
NASA Astrophysics Data System (ADS)
Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao
2017-03-01
Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.
Application of LANDSAT-2 to the management of Delaware's marine and wetland resources
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Bartlett, D.; Philpot, W.; Davis, G.
1976-01-01
The author has identified the following significant results. Digital multispectral classification techniques can be used to discriminate coastal land use and vegetation with 87% to 94% categorization accuracy. Wetlands plant species, representing more detail than U.S.G.S. classification system level 2 categories can be discriminated using LANDSAT data with 85% to 88% accuracy at scales up to 1:24,000.
NASA Technical Reports Server (NTRS)
Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.
2015-01-01
An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.
Evaluation criteria for software classification inventories, accuracies, and maps
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.
1976-01-01
Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.
NASA Astrophysics Data System (ADS)
Ahmed, H. M.; Al-azawi, R. J.; Abdulhameed, A. A.
2018-05-01
Huge efforts have been put in the developing of diagnostic methods to skin cancer disease. In this paper, two different approaches have been addressed for detection the skin cancer in dermoscopy images. The first approach uses a global method that uses global features for classifying skin lesions, whereas the second approach uses a local method that uses local features for classifying skin lesions. The aim of this paper is selecting the best approach for skin lesion classification. The dataset has been used in this paper consist of 200 dermoscopy images from Pedro Hispano Hospital (PH2). The achieved results are; sensitivity about 96%, specificity about 100%, precision about 100%, and accuracy about 97% for globalization approach while, sensitivity about 100%, specificity about 100%, precision about 100%, and accuracy about 100% for Localization Approach, these results showed that the localization approach achieved acceptable accuracy and better than globalization approach for skin cancer lesions classification.
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
NASA Technical Reports Server (NTRS)
Stoner, E. R.; May, G. A.; Kalcic, M. T. (Principal Investigator)
1981-01-01
Sample segments of ground-verified land cover data collected in conjunction with the USDA/ESS June Enumerative Survey were merged with LANDSAT data and served as a focus for unsupervised spectral class development and accuracy assessment. Multitemporal data sets were created from single-date LANDSAT MSS acquisitions from a nominal scene covering an eleven-county area in north central Missouri. Classification accuracies for the four land cover types predominant in the test site showed significant improvement in going from unitemporal to multitemporal data sets. Transformed LANDSAT data sets did not significantly improve classification accuracies. Regression estimators yielded mixed results for different land covers. Misregistration of two LANDSAT data sets by as much and one half pixels did not significantly alter overall classification accuracies. Existing algorithms for scene-to scene overlay proved adequate for multitemporal data analysis as long as statistical class development and accuracy assessment were restricted to field interior pixels.
A novel artificial immune clonal selection classification and rule mining with swarm learning model
NASA Astrophysics Data System (ADS)
Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.
2013-06-01
Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-10-03
A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin
2016-08-01
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
Rajagopal, Rekha; Ranganathan, Vidhyapriya
2018-06-05
Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.
Rey, Sergio J.; Stephens, Philip A.; Laura, Jason R.
2017-01-01
Large data contexts present a number of challenges to optimal choropleth map classifiers. Application of optimal classifiers to a sample of the attribute space is one proposed solution. The properties of alternative sampling-based classification methods are examined through a series of Monte Carlo simulations. The impacts of spatial autocorrelation, number of desired classes, and form of sampling are shown to have significant impacts on the accuracy of map classifications. Tradeoffs between improved speed of the sampling approaches and loss of accuracy are also considered. The results suggest the possibility of guiding the choice of classification scheme as a function of the properties of large data sets.
Analysis of spatial distribution of land cover maps accuracy
NASA Astrophysics Data System (ADS)
Khatami, R.; Mountrakis, G.; Stehman, S. V.
2017-12-01
Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain yielded similar AUC; iv) for the larger sample size (i.e., very dense spatial sample) and per-class predictions, the spatial domain yielded larger AUC; v) increasing the sample size improved accuracy predictions with a greater benefit accruing to the spatial domain; and vi) the function used for interpolation had the smallest effect on AUC.
Multiclass cancer diagnosis using tumor gene expression signatures
Ramaswamy, S.; Tamayo, P.; Rifkin, R.; ...
2001-12-11
The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a supportmore » vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (9%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.« less
NASA Technical Reports Server (NTRS)
Wu, S. T.
1983-01-01
Data acquired by synthetic aperture radar (SAR) and LANDSAT multispectral scanner (MSS) were processed and analyzed to derive forest-related resources inventory information. The SAR data were acquired by using the NASA aircraft X-band SAR with linear (HH, VV) and cross (HV, VH) polarizations and the SEASAT L-band SAR. After data processing and data quality examination, the three polarization (HH, HV, and VV) data from the aircraft X-band SAR were used in conjunction with LANDSAT MSS for multisensor data classification. The results of accuracy evaluation for the SAR, MSS and SAR/MSS data using supervised classification show that the SAR-only data set contains low classification accuracy for several land cover classes. However, the SAR/MSS data show that significant improvement in classification accuracy is obtained for all eight land cover classes. These results suggest the usefulness of using combined SAR/MSS data for forest-related cover mapping. The SAR data also detect several small special surface features that are not detectable by MSS data.
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan
2014-07-01
A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the performances of a variety of mental task combinations in order to determine the mental task pairs that are best suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while seven participants performed eight different mental tasks. Classification accuracies were then estimated for all possible pairs of the eight mental tasks (C=28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: "mental multiplication," "mental rotation," and "right-hand motor imagery." Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.
Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S
2017-06-08
Auscultation is a medical procedure used for the initial diagnosis and assessment of lung and heart diseases. From this perspective, we propose assessing the performance of the extreme learning machine (ELM) classifiers for the diagnosis of pulmonary pathology using breath sounds. Energy and entropy features were extracted from the breath sound using the wavelet packet transform. The statistical significance of the extracted features was evaluated by one-way analysis of variance (ANOVA). The extracted features were inputted into the ELM classifier. The maximum classification accuracies obtained for the conventional validation (CV) of the energy and entropy features were 97.36% and 98.37%, respectively, whereas the accuracies obtained for the cross validation (CRV) of the energy and entropy features were 96.80% and 97.91%, respectively. In addition, maximum classification accuracies of 98.25% and 99.25% were obtained for the CV and CRV of the ensemble features, respectively. The results indicate that the classification accuracy obtained with the ensemble features was higher than those obtained with the energy and entropy features.
NASA Astrophysics Data System (ADS)
Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.
2018-01-01
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods.
Semi-supervised classification tool for DubaiSat-2 multispectral imagery
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed
2015-10-01
This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Subasi, Abdulhamit
2013-06-01
Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gómez-Valdés, Jorge A; Menéndez Garmendia, Antinea; García-Barzola, Lizbeth; Sánchez-Mejorada, Gabriela; Karam, Carlos; Baraybar, José Pablo; Klales, Alexandra
2017-03-01
The aim of this study was to test the accuracy of the Klales et al. (2012) equation for sex estimation in contemporary Mexican population. Our investigation was carried out on a sample of 203 left innominates of identified adult skeletons from the UNAM-Collection and the Santa María Xigui Cemetery, in Central Mexico. The Klales' original equation produces a sex bias in sex estimation against males (86-92% accuracy versus 100% accuracy in females). Based on these results, the Klales et al. (2012) method was recalibrated for a new cutt-of-point for sex estimation in contemporary Mexican populations. The results show cross-validated classification accuracy rates as high as 100% after recalibrating the original logistic regression equation. Recalibration improved classification accuracy and eliminated sex bias. This new formula will improve sex estimation for Mexican contemporary populations. © 2017 Wiley Periodicals, Inc.
Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Timothy; Steinmaus, Karen L.
2005-02-01
New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.
D Land Cover Classification Based on Multispectral LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong
2016-06-01
Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.
Prediction of customer behaviour analysis using classification algorithms
NASA Astrophysics Data System (ADS)
Raju, Siva Subramanian; Dhandayudam, Prabha
2018-04-01
Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.
Mumtaz, Wajid; Ali, Syed Saad Azhar; Yasin, Mohd Azhar Mohd; Malik, Aamir Saeed
2018-02-01
Major depressive disorder (MDD), a debilitating mental illness, could cause functional disabilities and could become a social problem. An accurate and early diagnosis for depression could become challenging. This paper proposed a machine learning framework involving EEG-derived synchronization likelihood (SL) features as input data for automatic diagnosis of MDD. It was hypothesized that EEG-based SL features could discriminate MDD patients and healthy controls with an acceptable accuracy better than measures such as interhemispheric coherence and mutual information. In this work, classification models such as support vector machine (SVM), logistic regression (LR) and Naïve Bayesian (NB) were employed to model relationship between the EEG features and the study groups (MDD patient and healthy controls) and ultimately achieved discrimination of study participants. The results indicated that the classification rates were better than chance. More specifically, the study resulted into SVM classification accuracy = 98%, sensitivity = 99.9%, specificity = 95% and f-measure = 0.97; LR classification accuracy = 91.7%, sensitivity = 86.66%, specificity = 96.6% and f-measure = 0.90; NB classification accuracy = 93.6%, sensitivity = 100%, specificity = 87.9% and f-measure = 0.95. In conclusion, SL could be a promising method for diagnosing depression. The findings could be generalized to develop a robust CAD-based tool that may help for clinical purposes.
Mapping Mangrove Density from Rapideye Data in Central America
NASA Astrophysics Data System (ADS)
Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru
2017-06-01
Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.
NASA Astrophysics Data System (ADS)
Hale Topaloğlu, Raziye; Sertel, Elif; Musaoğlu, Nebiye
2016-06-01
This study aims to compare classification accuracies of land cover/use maps created from Sentinel-2 and Landsat-8 data. Istanbul metropolitan city of Turkey, with a population of around 14 million, having different landscape characteristics was selected as study area. Water, forest, agricultural areas, grasslands, transport network, urban, airport- industrial units and barren land- mine land cover/use classes adapted from CORINE nomenclature were used as main land cover/use classes to identify. To fulfil the aims of this research, recently acquired dated 08/02/2016 Sentinel-2 and dated 22/02/2016 Landsat-8 images of Istanbul were obtained and image pre-processing steps like atmospheric and geometric correction were employed. Both Sentinel-2 and Landsat-8 images were resampled to 30m pixel size after geometric correction and similar spectral bands for both satellites were selected to create a similar base for these multi-sensor data. Maximum Likelihood (MLC) and Support Vector Machine (SVM) supervised classification methods were applied to both data sets to accurately identify eight different land cover/ use classes. Error matrix was created using same reference points for Sentinel-2 and Landsat-8 classifications. After the classification accuracy, results were compared to find out the best approach to create current land cover/use map of the region. The results of MLC and SVM classification methods were compared for both images.
Sørensen, Lauge; Nielsen, Mads
2018-05-15
The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.
Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E; Moran, Emilio
2008-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.
Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio
2009-01-01
Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716
Cognitive-motivational deficits in ADHD: development of a classification system.
Gupta, Rashmi; Kar, Bhoomika R; Srinivasan, Narayanan
2011-01-01
The classification systems developed so far to detect attention deficit/hyperactivity disorder (ADHD) do not have high sensitivity and specificity. We have developed a classification system based on several neuropsychological tests that measure cognitive-motivational functions that are specifically impaired in ADHD children. A total of 240 (120 ADHD children and 120 healthy controls) children in the age range of 6-9 years and 32 Oppositional Defiant Disorder (ODD) children (aged 9 years) participated in the study. Stop-Signal, Task-Switching, Attentional Network, and Choice Delay tests were administered to all the participants. Receiver operating characteristic (ROC) analysis indicated that percentage choice of long-delay reward best classified the ADHD children from healthy controls. Single parameters were not helpful in making a differential classification of ADHD with ODD. Multinominal logistic regression (MLR) was performed with multiple parameters (data fusion) that produced improved overall classification accuracy. A combination of stop-signal reaction time, posterror-slowing, mean delay, switch cost, and percentage choice of long-delay reward produced an overall classification accuracy of 97.8%; with internal validation, the overall accuracy was 92.2%. Combining parameters from different tests of control functions not only enabled us to accurately classify ADHD children from healthy controls but also in making a differential classification with ODD. These results have implications for the theories of ADHD.
NASA Astrophysics Data System (ADS)
Seo, Young Wook; Yoon, Seung Chul; Park, Bosoon; Hinton, Arthur; Windham, William R.; Lawrence, Kurt C.
2013-05-01
Salmonella is a major cause of foodborne disease outbreaks resulting from the consumption of contaminated food products in the United States. This paper reports the development of a hyperspectral imaging technique for detecting and differentiating two of the most common Salmonella serotypes, Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST), from background microflora that are often found in poultry carcass rinse. Presumptive positive screening of colonies with a traditional direct plating method is a labor intensive and time consuming task. Thus, this paper is concerned with the detection of differences in spectral characteristics among the pure SE, ST, and background microflora grown on brilliant green sulfa (BGS) and xylose lysine tergitol 4 (XLT4) agar media with a spread plating technique. Visible near-infrared hyperspectral imaging, providing the spectral and spatial information unique to each microorganism, was utilized to differentiate SE and ST from the background microflora. A total of 10 classification models, including five machine learning algorithms, each without and with principal component analysis (PCA), were validated and compared to find the best model in classification accuracy. The five machine learning (classification) algorithms used in this study were Mahalanobis distance (MD), k-nearest neighbor (kNN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM). The average classification accuracy of all 10 models on a calibration (or training) set of the pure cultures on BGS agar plates was 98% (Kappa coefficient = 0.95) in determining the presence of SE and/or ST although it was difficult to differentiate between SE and ST. The average classification accuracy of all 10 models on a training set for ST detection on XLT4 agar was over 99% (Kappa coefficient = 0.99) although SE colonies on XLT4 agar were difficult to differentiate from background microflora. The average classification accuracy of all 10 models on a validation set of chicken carcass rinses spiked with SE or ST and incubated on BGS agar plates was 94.45% and 83.73%, without and with PCA for classification, respectively. The best performing classification model on the validation set was QDA without PCA by achieving the classification accuracy of 98.65% (Kappa coefficient=0.98). The overall best performing classification model regardless of using PCA was MD with the classification accuracy of 94.84% (Kappa coefficient=0.88) on the validation set.
NASA Astrophysics Data System (ADS)
Suiter, Ashley Elizabeth
Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, indicating moderate to strong agreement. However, Classification C, performed with LiDAR derivative without intensity data had less agreement than would be expected by chance, indicating that LiDAR contributed significantly to the accuracy of Classification B.
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
Automatic photointerpretation for plant species and stress identification (ERTS-A1)
NASA Technical Reports Server (NTRS)
Swanlund, G. D. (Principal Investigator); Kirvida, L.; Johnson, G. R.
1973-01-01
The author has identified the following significant results. Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wildlife management, forest inventory, and forest condition monitoring. Automatic procedures based on both multispectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74 percent was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 90 percent was obtained.
The effect of finite field size on classification and atmospheric correction
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1981-01-01
The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.
Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian
2015-07-01
Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.
Link prediction boosted psychiatry disorder classification for functional connectivity network
NASA Astrophysics Data System (ADS)
Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang
2017-02-01
Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.
Lukas, Vanessa A; Fishbein, Kenneth W; Reiter, David A; Lin, Ping-Chang; Schneider, Erika; Spencer, Richard G
2015-07-01
To evaluate the sensitivity and specificity of classification of pathomimetically degraded bovine nasal cartilage at 3 Tesla and 37°C using univariate MRI measurements of both pure parameter values and intensities of parameter-weighted images. Pre- and posttrypsin degradation values of T1 , T2 , T2 *, magnetization transfer ratio (MTR), and apparent diffusion coefficient (ADC), and corresponding weighted images, were analyzed. Classification based on the Euclidean distance was performed and the quality of classification was assessed through sensitivity, specificity and accuracy (ACC). The classifiers with the highest accuracy values were ADC (ACC = 0.82 ± 0.06), MTR (ACC = 0.78 ± 0.06), T1 (ACC = 0.99 ± 0.01), T2 derived from a three-dimensional (3D) spin-echo sequence (ACC = 0.74 ± 0.05), and T2 derived from a 2D spin-echo sequence (ACC = 0.77 ± 0.06), along with two of the diffusion-weighted signal intensities (b = 333 s/mm(2) : ACC = 0.80 ± 0.05; b = 666 s/mm(2) : ACC = 0.85 ± 0.04). In particular, T1 values differed substantially between the groups, resulting in atypically high classification accuracy. The second-best classifier, diffusion weighting with b = 666 s/mm(2) , as well as all other parameters evaluated, exhibited substantial overlap between pre- and postdegradation groups, resulting in decreased accuracies. Classification according to T1 values showed excellent test characteristics (ACC = 0.99), with several other parameters also showing reasonable performance (ACC > 0.70). Of these, diffusion weighting is particularly promising as a potentially practical clinical modality. As in previous work, we again find that highly statistically significant group mean differences do not necessarily translate into accurate clinical classification rules. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, T.; Geng, R.; Wang, L.
2018-04-01
In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.
NASA Astrophysics Data System (ADS)
Liu, Yansong; Monteiro, Sildomar T.; Saber, Eli
2015-10-01
Changes in vegetation cover, building construction, road network and traffic conditions caused by urban expansion affect the human habitat as well as the natural environment in rapidly developing cities. It is crucial to assess these changes and respond accordingly by identifying man-made and natural structures with accurate classification algorithms. With the increase in use of multi-sensor remote sensing systems, researchers are able to obtain a more complete description of the scene of interest. By utilizing multi-sensor data, the accuracy of classification algorithms can be improved. In this paper, we propose a method for combining 3D LiDAR point clouds and high-resolution color images to classify urban areas using Gaussian processes (GP). GP classification is a powerful non-parametric classification method that yields probabilistic classification results. It makes predictions in a way that addresses the uncertainty of real world. In this paper, we attempt to identify man-made and natural objects in urban areas including buildings, roads, trees, grass, water and vehicles. LiDAR features are derived from the 3D point clouds and the spatial and color features are extracted from RGB images. For classification, we use the Laplacian approximation for GP binary classification on the new combined feature space. The multiclass classification has been implemented by using one-vs-all binary classification strategy. The result of applying support vector machines (SVMs) and logistic regression (LR) classifier is also provided for comparison. Our experiments show a clear improvement of classification results by using the two sensors combined instead of each sensor separately. Also we found the advantage of applying GP approach to handle the uncertainty in classification result without compromising accuracy compared to SVM, which is considered as the state-of-the-art classification method.
Yang, Hao; Zhang, Junran; Jiang, Xiaomei; Liu, Fei
2018-04-01
In recent years, with the rapid development of machine learning techniques,the deep learning algorithm has been widely used in one-dimensional physiological signal processing. In this paper we used electroencephalography (EEG) signals based on deep belief network (DBN) model in open source frameworks of deep learning to identify emotional state (positive, negative and neutrals), then the results of DBN were compared with support vector machine (SVM). The EEG signals were collected from the subjects who were under different emotional stimuli, and DBN and SVM were adopted to identify the EEG signals with changes of different characteristics and different frequency bands. We found that the average accuracy of differential entropy (DE) feature by DBN is 89.12%±6.54%, which has a better performance than previous research based on the same data set. At the same time, the classification effects of DBN are better than the results from traditional SVM (the average classification accuracy of 84.2%±9.24%) and its accuracy and stability have a better trend. In three experiments with different time points, single subject can achieve the consistent results of classification by using DBN (the mean standard deviation is1.44%), and the experimental results show that the system has steady performance and good repeatability. According to our research, the characteristic of DE has a better classification result than other characteristics. Furthermore, the Beta band and the Gamma band in the emotional recognition model have higher classification accuracy. To sum up, the performances of classifiers have a promotion by using the deep learning algorithm, which has a reference for establishing a more accurate system of emotional recognition. Meanwhile, we can trace through the results of recognition to find out the brain regions and frequency band that are related to the emotions, which can help us to understand the emotional mechanism better. This study has a high academic value and practical significance, so further investigation still needs to be done.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Meng, Peng; Xu, Feifei
2013-08-01
Hyperspectral data, consisting of hundreds of spectral bands with a high spectral resolution, enables acquisition of continuous spectral characteristic curves, and therefore have served as a powerful tool for vegetation classification. The difficulty of using hyperspectral data is that they are usually redundant, strongly correlated and subject to Hughes phenomenon where classification accuracy increases gradually in the beginning as the number of spectral bands or dimensions increases, but decreases dramatically when the band number reaches some value. In recent years,some algorithms have been proposed to overcome the Hughes phenomenon in classification, such as selecting several bands from full bands, PCA- and MNF-based feature transformations. Up to date, however, few studies have been conducted to investigate the turning point of Hughes phenomenon (i.e., the point at which the classification accuracy begins to decline). In this paper, we firstly analyze reasons for occurrence of Hughes phenomenon, and then based on the Mahalanobis classifier, classify the ground spectrum of several grasslands which were recorded in September 2012 using FieldSpec3 spectrometer in the regions around Qinghai Lake,a important pasturing area in the north of China. Before classification, we extract features from hyperspectral data by bands selecting and PCA- based feature transformations, and In the process of classification, we analyze how the correlation coefficient between wavebands, the number of waveband channels and the number of principal components affect the classification result. The results show that Hushes phenomenon may occur when the correlation coefficient between wavebands is greater than 94%,the number of wavebands is greater than 6, or the number of principal components is greater than 6. Best classification result can be achieved (overall accuracy of grasslands 90%) if the number of wavebands equals to 3 (the band positions are 370nm, 509nm and 886nm respectively) or the number of principal components ranges from 4 to 6.
Di-codon Usage for Gene Classification
NASA Astrophysics Data System (ADS)
Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.
Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.
Pathological brain detection based on wavelet entropy and Hu moment invariants.
Zhang, Yudong; Wang, Shuihua; Sun, Ping; Phillips, Preetha
2015-01-01
With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed "WE + HMI + GEPSVM + RBF" method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use.
Activity classification using realistic data from wearable sensors.
Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka
2006-01-01
Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.
A hybrid sensing approach for pure and adulterated honey classification.
Subari, Norazian; Mohamad Saleh, Junita; Md Shakaff, Ali Yeon; Zakaria, Ammar
2012-10-17
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
NASA Astrophysics Data System (ADS)
Park, M.; Stenstrom, M. K.
2004-12-01
Recognizing urban information from the satellite imagery is problematic due to the diverse features and dynamic changes of urban landuse. The use of Landsat imagery for urban land use classification involves inherent uncertainty due to its spatial resolution and the low separability among land uses. To resolve the uncertainty problem, we investigated the performance of Bayesian networks to classify urban land use since Bayesian networks provide a quantitative way of handling uncertainty and have been successfully used in many areas. In this study, we developed the optimized networks for urban land use classification from Landsat ETM+ images of Marina del Rey area based on USGS land cover/use classification level III. The networks started from a tree structure based on mutual information between variables and added the links to improve accuracy. This methodology offers several advantages: (1) The network structure shows the dependency relationships between variables. The class node value can be predicted even with particular band information missing due to sensor system error. The missing information can be inferred from other dependent bands. (2) The network structure provides information of variables that are important for the classification, which is not available from conventional classification methods such as neural networks and maximum likelihood classification. In our case, for example, bands 1, 5 and 6 are the most important inputs in determining the land use of each pixel. (3) The networks can be reduced with those input variables important for classification. This minimizes the problem without considering all possible variables. We also examined the effect of incorporating ancillary data: geospatial information such as X and Y coordinate values of each pixel and DEM data, and vegetation indices such as NDVI and Tasseled Cap transformation. The results showed that the locational information improved overall accuracy (81%) and kappa coefficient (76%), and lowered the omission and commission errors compared with using only spectral data (accuracy 71%, kappa coefficient 62%). Incorporating DEM data did not significantly improve overall accuracy (74%) and kappa coefficient (66%) but lowered the omission and commission errors. Incorporating NDVI did not much improve the overall accuracy (72%) and k coefficient (65%). Including Tasseled Cap transformation reduced the accuracy (accuracy 70%, kappa 61%). Therefore, additional information from the DEM and vegetation indices was not useful as locational ancillary data.
NASA Astrophysics Data System (ADS)
Liu, Wanjun; Liang, Xuejian; Qu, Haicheng
2017-11-01
Hyperspectral image (HSI) classification is one of the most popular topics in remote sensing community. Traditional and deep learning-based classification methods were proposed constantly in recent years. In order to improve the classification accuracy and robustness, a dimensionality-varied convolutional neural network (DVCNN) was proposed in this paper. DVCNN was a novel deep architecture based on convolutional neural network (CNN). The input of DVCNN was a set of 3D patches selected from HSI which contained spectral-spatial joint information. In the following feature extraction process, each patch was transformed into some different 1D vectors by 3D convolution kernels, which were able to extract features from spectral-spatial data. The rest of DVCNN was about the same as general CNN and processed 2D matrix which was constituted by by all 1D data. So that the DVCNN could not only extract more accurate and rich features than CNN, but also fused spectral-spatial information to improve classification accuracy. Moreover, the robustness of network on water-absorption bands was enhanced in the process of spectral-spatial fusion by 3D convolution, and the calculation was simplified by dimensionality varied convolution. Experiments were performed on both Indian Pines and Pavia University scene datasets, and the results showed that the classification accuracy of DVCNN improved by 32.87% on Indian Pines and 19.63% on Pavia University scene than spectral-only CNN. The maximum accuracy improvement of DVCNN achievement was 13.72% compared with other state-of-the-art HSI classification methods, and the robustness of DVCNN on water-absorption bands noise was demonstrated.
Estimation of different data compositions for early-season crop type classification.
Hao, Pengyu; Wu, Mingquan; Niu, Zheng; Wang, Li; Zhan, Yulin
2018-01-01
Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer's accuracies (PAs) and user's accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.
Estimation of different data compositions for early-season crop type classification
Wu, Mingquan; Wang, Li; Zhan, Yulin
2018-01-01
Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study. PMID:29868265
Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.
2008-01-01
Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.
Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.
2008-01-01
Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757
SENTINEL-1 and SENTINEL-2 Data Fusion for Wetlands Mapping: Balikdami, Turkey
NASA Astrophysics Data System (ADS)
Kaplan, G.; Avdan, U.
2018-04-01
Wetlands provide a number of environmental and socio-economic benefits such as their ability to store floodwaters and improve water quality, providing habitats for wildlife and supporting biodiversity, as well as aesthetic values. Remote sensing technology has proven to be a useful and frequent application in monitoring and mapping wetlands. Combining optical and microwave satellite data can help with mapping and monitoring the biophysical characteristics of wetlands and wetlands` vegetation. Also, fusing radar and optical remote sensing data can increase the wetland classification accuracy. In this paper, data from the fine spatial resolution optical satellite, Sentinel-2 and the Synthetic Aperture Radar Satellite, Sentinel-1, were fused for mapping wetlands. Both Sentinel-1 and Sentinel-2 images were pre-processed. After the pre-processing, vegetation indices were calculated using the Sentinel-2 bands and the results were included in the fusion data set. For the classification of the fused data, three different classification approaches were used and compared. The results showed significant improvement in the wetland classification using both multispectral and microwave data. Also, the presence of the red edge bands and the vegetation indices used in the data set showed significant improvement in the discrimination between wetlands and other vegetated areas. The statistical results of the fusion of the optical and radar data showed high wetland mapping accuracy, showing an overall classification accuracy of approximately 90 % in the object-based classification method. For future research, we recommend multi-temporal image use, terrain data collection, as well as a comparison of the used method with the traditional image fusion techniques.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos
2017-04-13
Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.
Corn and soybean Landsat MSS classification performance as a function of scene characteristics
NASA Technical Reports Server (NTRS)
Batista, G. T.; Hixson, M. M.; Bauer, M. E.
1982-01-01
In order to fully utilize remote sensing to inventory crop production, it is important to identify the factors that affect the accuracy of Landsat classifications. The objective of this study was to investigate the effect of scene characteristics involving crop, soil, and weather variables on the accuracy of Landsat classifications of corn and soybeans. Segments sampling the U.S. Corn Belt were classified using a Gaussian maximum likelihood classifier on multitemporally registered data from two key acquisition periods. Field size had a strong effect on classification accuracy with small fields tending to have low accuracies even when the effect of mixed pixels was eliminated. Other scene characteristics accounting for variability in classification accuracy included proportions of corn and soybeans, crop diversity index, proportion of all field crops, soil drainage, slope, soil order, long-term average soybean yield, maximum yield, relative position of the segment in the Corn Belt, weather, and crop development stage.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
NASA Astrophysics Data System (ADS)
Zhang, Zhiming; de Wulf, Robert R.; van Coillie, Frieke M. B.; Verbeke, Lieven P. C.; de Clercq, Eva M.; Ou, Xiaokun
2011-01-01
Mapping of vegetation using remote sensing in mountainous areas is considerably hampered by topographic effects on the spectral response pattern. A variety of topographic normalization techniques have been proposed to correct these illumination effects due to topography. The purpose of this study was to compare six different topographic normalization methods (Cosine correction, Minnaert correction, C-correction, Sun-canopy-sensor correction, two-stage topographic normalization, and slope matching technique) for their effectiveness in enhancing vegetation classification in mountainous environments. Since most of the vegetation classes in the rugged terrain of the Lancang Watershed (China) did not feature a normal distribution, artificial neural networks (ANNs) were employed as a classifier. Comparing the ANN classifications, none of the topographic correction methods could significantly improve ETM+ image classification overall accuracy. Nevertheless, at the class level, the accuracy of pine forest could be increased by using topographically corrected images. On the contrary, oak forest and mixed forest accuracies were significantly decreased by using corrected images. The results also showed that none of the topographic normalization strategies was satisfactorily able to correct for the topographic effects in severely shadowed areas.
Support vector machine and principal component analysis for microarray data classification
NASA Astrophysics Data System (ADS)
Astuti, Widi; Adiwijaya
2018-03-01
Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.
Aided diagnosis methods of breast cancer based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Yue; Wang, Nian; Cui, Xiaoyu
2017-08-01
In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.
[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].
Zhou, Jinzhi; Tang, Xiaofang
2015-08-01
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
NASA Astrophysics Data System (ADS)
Yang, Huijuan; Guan, Cuntai; Sui Geok Chua, Karen; San Chok, See; Wang, Chuan Chu; Kok Soon, Phua; Tang, Christina Ka Yin; Keng Ang, Kai
2014-06-01
Objective. Detection of motor imagery of hand/arm has been extensively studied for stroke rehabilitation. This paper firstly investigates the detection of motor imagery of swallow (MI-SW) and motor imagery of tongue protrusion (MI-Ton) in an attempt to find a novel solution for post-stroke dysphagia rehabilitation. Detection of MI-SW from a simple yet relevant modality such as MI-Ton is then investigated, motivated by the similarity in activation patterns between tongue movements and swallowing and there being fewer movement artifacts in performing tongue movements compared to swallowing. Approach. Novel features were extracted based on the coefficients of the dual-tree complex wavelet transform to build multiple training models for detecting MI-SW. The session-to-session classification accuracy was boosted by adaptively selecting the training model to maximize the ratio of between-classes distances versus within-class distances, using features of training and evaluation data. Main results. Our proposed method yielded averaged cross-validation (CV) classification accuracies of 70.89% and 73.79% for MI-SW and MI-Ton for ten healthy subjects, which are significantly better than the results from existing methods. In addition, averaged CV accuracies of 66.40% and 70.24% for MI-SW and MI-Ton were obtained for one stroke patient, demonstrating the detectability of MI-SW and MI-Ton from the idle state. Furthermore, averaged session-to-session classification accuracies of 72.08% and 70% were achieved for ten healthy subjects and one stroke patient using the MI-Ton model. Significance. These results and the subjectwise strong correlations in classification accuracies between MI-SW and MI-Ton demonstrated the feasibility of detecting MI-SW from MI-Ton models.
NASA Astrophysics Data System (ADS)
Georganos, Stefanos; Grippa, Tais; Vanhuysse, Sabine; Lennert, Moritz; Shimoni, Michal; Wolff, Eléonore
2017-10-01
This study evaluates the impact of three Feature Selection (FS) algorithms in an Object Based Image Analysis (OBIA) framework for Very-High-Resolution (VHR) Land Use-Land Cover (LULC) classification. The three selected FS algorithms, Correlation Based Selection (CFS), Mean Decrease in Accuracy (MDA) and Random Forest (RF) based Recursive Feature Elimination (RFE), were tested on Support Vector Machine (SVM), K-Nearest Neighbor, and Random Forest (RF) classifiers. The results demonstrate that the accuracy of SVM and KNN classifiers are the most sensitive to FS. The RF appeared to be more robust to high dimensionality, although a significant increase in accuracy was found by using the RFE method. In terms of classification accuracy, SVM performed the best using FS, followed by RF and KNN. Finally, only a small number of features is needed to achieve the highest performance using each classifier. This study emphasizes the benefits of rigorous FS for maximizing performance, as well as for minimizing model complexity and interpretation.
SVM classifier on chip for melanoma detection.
Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak
2017-07-01
Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.
Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.
Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa
2015-01-01
The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1994-01-01
Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.
Papageorgiou, Eirini; Nieuwenhuys, Angela; Desloovere, Kaat
2017-01-01
Background This study aimed to improve the automatic probabilistic classification of joint motion gait patterns in children with cerebral palsy by using the expert knowledge available via a recently developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and Logistic Regression classification with varying degrees of usage of the expert knowledge (expert-defined and discretized features). A database of 356 patients and 1719 gait trials was used to validate the classification performance of eleven joint motions. Hypotheses Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can be automatically classified following a probabilistic approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of clinical expert knowledge in the selection of relevant gait features and the discretization of continuous features increases the performance of automatic probabilistic joint motion classification. Findings This study provided objective evidence supporting the first hypothesis. Automatic probabilistic gait classification using the expert knowledge available from the Delphi-consensus study resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher accuracy than that obtained with non-expert raters (78%). Regarding the second hypothesis, this study demonstrated that the use of more advanced machine learning techniques such as automatic feature selection and discretization instead of expert-defined and discretized features can result in slightly higher joint motion classification performance. However, the increase in performance is limited and does not outweigh the additional computational cost and the higher risk of loss of clinical interpretability, which threatens the clinical acceptance and applicability. PMID:28570616
NASA Astrophysics Data System (ADS)
Raziff, Abdul Rafiez Abdul; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran
2017-10-01
Gait recognition is widely used in many applications. In the application of the gait identification especially in people, the number of classes (people) is many which may comprise to more than 20. Due to the large amount of classes, the usage of single classification mapping (direct classification) may not be suitable as most of the existing algorithms are mostly designed for the binary classification. Furthermore, having many classes in a dataset may result in the possibility of having a high degree of overlapped class boundary. This paper discusses the application of multiclass classifier mappings such as one-vs-all (OvA), one-vs-one (OvO) and random correction code (RCC) on handheld based smartphone gait signal for person identification. The results is then compared with a single J48 decision tree for benchmark. From the result, it can be said that using multiclass classification mapping method thus partially improved the overall accuracy especially on OvO and RCC with width factor more than 4. For OvA, the accuracy result is worse than a single J48 due to a high number of classes.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Seeland, Marco; Rzanny, Michael; Alaqraa, Nedal; Wäldchen, Jana; Mäder, Patrick
2017-01-01
Steady improvements of image description methods induced a growing interest in image-based plant species classification, a task vital to the study of biodiversity and ecological sensitivity. Various techniques have been proposed for general object classification over the past years and several of them have already been studied for plant species classification. However, results of these studies are selective in the evaluated steps of a classification pipeline, in the utilized datasets for evaluation, and in the compared baseline methods. No study is available that evaluates the main competing methods for building an image representation on the same datasets allowing for generalized findings regarding flower-based plant species classification. The aim of this paper is to comparatively evaluate methods, method combinations, and their parameters towards classification accuracy. The investigated methods span from detection, extraction, fusion, pooling, to encoding of local features for quantifying shape and color information of flower images. We selected the flower image datasets Oxford Flower 17 and Oxford Flower 102 as well as our own Jena Flower 30 dataset for our experiments. Findings show large differences among the various studied techniques and that their wisely chosen orchestration allows for high accuracies in species classification. We further found that true local feature detectors in combination with advanced encoding methods yield higher classification results at lower computational costs compared to commonly used dense sampling and spatial pooling methods. Color was found to be an indispensable feature for high classification results, especially while preserving spatial correspondence to gray-level features. In result, our study provides a comprehensive overview of competing techniques and the implications of their main parameters for flower-based plant species classification. PMID:28234999
Accurate crop classification using hierarchical genetic fuzzy rule-based systems
NASA Astrophysics Data System (ADS)
Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.
2014-10-01
This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.
Das, D K; Maiti, A K; Chakraborty, C
2015-03-01
In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Deep Recurrent Neural Networks for Supernovae Classification
NASA Astrophysics Data System (ADS)
Charnock, Tom; Moss, Adam
2017-03-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.
Classification of large-scale fundus image data sets: a cloud-computing framework.
Roychowdhury, Sohini
2016-08-01
Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.
Uav-Based Crops Classification with Joint Features from Orthoimage and Dsm Data
NASA Astrophysics Data System (ADS)
Liu, B.; Shi, Y.; Duan, Y.; Wu, W.
2018-04-01
Accurate crops classification remains a challenging task due to the same crop with different spectra and different crops with same spectrum phenomenon. Recently, UAV-based remote sensing approach gains popularity not only for its high spatial and temporal resolution, but also for its ability to obtain spectraand spatial data at the same time. This paper focus on how to take full advantages of spatial and spectrum features to improve crops classification accuracy, based on an UAV platform equipped with a general digital camera. Texture and spatial features extracted from the RGB orthoimage and the digital surface model of the monitoring area are analysed and integrated within a SVM classification framework. Extensive experiences results indicate that the overall classification accuracy is drastically improved from 72.9 % to 94.5 % when the spatial features are combined together, which verified the feasibility and effectiveness of the proposed method.
Real-time, resource-constrained object classification on a micro-air vehicle
NASA Astrophysics Data System (ADS)
Buck, Louis; Ray, Laura
2013-12-01
A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.
A Nonparametric Approach to Estimate Classification Accuracy and Consistency
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2014-01-01
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
Simulation of seagrass bed mapping by satellite images based on the radiative transfer model
NASA Astrophysics Data System (ADS)
Sagawa, Tatsuyuki; Komatsu, Teruhisa
2015-06-01
Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.
NASA Astrophysics Data System (ADS)
Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.
Mexican Hat Wavelet Kernel ELM for Multiclass Classification.
Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei
2017-01-01
Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.
Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
NASA Astrophysics Data System (ADS)
Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad
2016-04-01
Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel
2014-01-01
This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure. PMID:25254303
Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel
2014-09-24
This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.
Texture classification of vegetation cover in high altitude wetlands zone
NASA Astrophysics Data System (ADS)
Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu
2014-03-01
The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data.
Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan
2013-02-01
The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Variability of wetland reflectance and its effect on automatic categorization of satellite imagery
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Bartlett, D.
1977-01-01
The author has identified the following significant results. Land cover categorization of data from the same overpass in four test wetland areas was carried out using a four category classification system. The tests indicate that training data based on in situ reflectance measurements and atmospheric correction of LANDSAT data can produce comparable accuracy of categorization to that achieved using more than four wetlands cover categories (salt marsh cordgrass, salt hay, unvegetated, and water tidal flat) produced overall classification accuracies of 85% by conventional and relative radiance training and 81% by use of in situ measurements. Overall mapping accuracies were 76% and 72% respectively.
NASA Technical Reports Server (NTRS)
Dillman, R. D. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The Kershaw County site, South Carolina, was selected to be representative of both the oak-pine ecosystem and the southeastern pine ecosystem. The following processing results have concluded that: (1) early spring LANDSAT data provide the best contrast between forest features; (2) level 2 forest features (softwood, hardwood, grassland, and water) can be classified with an accuracy of 70% + or - 5.7% at the 90% confidence level; (3) level 3 species classification was inconclusive; (4) temporal data did not provide a significant increase in classification accuracy of level 2 features, over single date classification to warrant the additional processing; and (5) training fields from only 10% of the site can be used to classify the entire site.
Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang
2016-11-16
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
Activity classification using the GENEA: optimum sampling frequency and number of axes.
Zhang, Shaoyan; Murray, Peter; Zillmer, Ruediger; Eston, Roger G; Catt, Michael; Rowlands, Alex V
2012-11-01
The GENEA shows high accuracy for classification of sedentary, household, walking, and running activities when sampling at 80 Hz on three axes. It is not known whether it is possible to decrease this sampling frequency and/or the number of axes without detriment to classification accuracy. The purpose of this study was to compare the classification rate of activities on the basis of data from a single axis, two axes, and three axes, with sampling rates ranging from 5 to 80 Hz. Sixty participants (age, 49.4 yr (6.5 yr); BMI, 24.6 kg·m (3.4 kg·m)) completed 10-12 semistructured activities in the laboratory and outdoor environment while wearing a GENEA accelerometer on the right wrist. We analyzed data from single axis, dual axes, and three axes at sampling rates of 5, 10, 20, 40, and 80 Hz. Mathematical models based on features extracted from mean, SD, fast Fourier transform, and wavelet decomposition were built, which combined one of the numbers of axes with one of the sampling rates to classify activities into sedentary, household, walking, and running. Classification accuracy was high irrespective of the number of axes for data collected at 80 Hz (96.93% ± 0.97%), 40 Hz (97.4% ± 0.73%), 20 Hz (96.86% ± 1.12%), and 10 Hz (97.01% ± 1.01%) but dropped for data collected at 5 Hz (94.98% ± 1.36%). Sampling frequencies >10 Hz and/or more than one axis of measurement were not associated with greater classification accuracy. Lower sampling rates and measurement of a single axis would result in a lower data load, longer battery life, and higher efficiency of data processing. Further research should investigate whether a lower sampling rate and a single axis affects classification accuracy when considering a wider range of activities.
NASA Astrophysics Data System (ADS)
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
NASA Technical Reports Server (NTRS)
Hill, C. L.
1984-01-01
A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.
Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith
2014-05-01
An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.
Automatic interpretation of ERTS data for forest management
NASA Technical Reports Server (NTRS)
Kirvida, L.; Johnson, G. R.
1973-01-01
Automatic stratification of forested land from ERTS-1 data provides a valuable tool for resource management. The results are useful for wood product yield estimates, recreation and wild life management, forest inventory and forest condition monitoring. Automatic procedures based on both multi-spectral and spatial features are evaluated. With five classes, training and testing on the same samples, classification accuracy of 74% was achieved using the MSS multispectral features. When adding texture computed from 8 x 8 arrays, classification accuracy of 99% was obtained.
Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas
2017-12-01
In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data
Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha
2011-01-01
Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894
Tree classification with fused mobile laser scanning and hyperspectral data.
Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha
2011-01-01
Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin.
Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie
2013-01-01
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652
NASA Astrophysics Data System (ADS)
Hammann, Mark Gregory
The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted in higher overall classification accuracies. In many cases using more than a single SAR band also improved the classification accuracy. There was no single best SAR band for all cases; for specific study areas or LC classes, different SAR bands were better. For Wad Medani, the overall accuracy increased nearly 25% over EO by using all three SAR bands and GLCM texture. For Campinas, the improvement over EO was 4.3%; the large areas of vegetation were classified by EO with good accuracy. At Fresno-Kings Counties, EO+SAR fusion improved the overall classification accuracy by 7%. For times or regions where EO is not available due to extended cloud cover, classification with SAR is often the only option; note that SAR alone typically results in lower classification accuracies than when using EO or EO-SAR fusion. Fusion of EO and SAR was especially important to improve the separability of orchards from other crops, and separating urban areas with buildings from bare soil; those classes are difficult to accurately separate with EO. The outcome of this dissertation contributes to the understanding of the benefits of combining data from EO imagery with different SAR bands and SAR derived texture data to identify different LC classes. In times of increased public and private budget constraints and industry consolidation, this dissertation provides insight as to which band packages could be most useful for increased accuracy in LC classification.
NASA Technical Reports Server (NTRS)
Spruce, J. P.; Smoot, James; Ellis, Jean; Hilbert, Kent; Swann, Roberta
2012-01-01
This paper discusses the development and implementation of a geospatial data processing method and multi-decadal Landsat time series for computing general coastal U.S. land-use and land-cover (LULC) classifications and change products consisting of seven classes (water, barren, upland herbaceous, non-woody wetland, woody upland, woody wetland, and urban). Use of this approach extends the observational period of the NOAA-generated Coastal Change and Analysis Program (C-CAP) products by almost two decades, assuming the availability of one cloud free Landsat scene from any season for each targeted year. The Mobile Bay region in Alabama was used as a study area to develop, demonstrate, and validate the method that was applied to derive LULC products for nine dates at approximate five year intervals across a 34-year time span, using single dates of data for each classification in which forests were either leaf-on, leaf-off, or mixed senescent conditions. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and C-CAP value-added products. Each classification's overall accuracy was assessed by comparing stratified random locations to available reference data, including higher spatial resolution satellite and aerial imagery, field survey data, and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall Kappa statistics ranging from 0.78 to 0.89. The accuracies are comparable to those from similar, generalized LULC products derived from C-CAP data. The Landsat MSS-based LULC product accuracies are similar to those from Landsat TM or ETM+ data. Accurate classifications were computed for all nine dates, yielding effective results regardless of season. This classification method yielded products that were used to compute LULC change products via additive GIS overlay techniques.
Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.
2013-01-01
Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.
Detailed analysis of CAMS procedures for phase 3 using ground truth inventories
NASA Technical Reports Server (NTRS)
Carnes, J. G.
1979-01-01
The results of a study of Procedure 1 as used during LACIE Phase 3 are presented. The study was performed by comparing the Procedure 1 classification results with digitized ground-truth inventories. The proportion estimation accuracy, dot labeling accuracy, and clustering effectiveness are discussed.
Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan
2018-01-01
The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.
Selective classification for improved robustness of myoelectric control under nonideal conditions.
Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S
2011-06-01
Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.
NASA Astrophysics Data System (ADS)
Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.
2011-12-01
Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because individual classes differed in scales at which they were best discriminated from others. Main classification challenges included a) presence of C3 grasses in C4-grass areas, particularly following harvesting of C4 reeds and b) mixtures of emergent, floating and submerged aquatic plants at sub-object and sub-pixel scales. We conclude that OBIA with advanced statistical classifiers offers useful instruments for landscape vegetation analyses, and that spatial scale considerations are critical in mapping PFTs, while multi-scale comparisons can be used to guide class selection. Future work will further apply fuzzy classification and field-collected spectral data for PFT analysis and compare results with MODIS PFT products.
Research on cardiovascular disease prediction based on distance metric learning
NASA Astrophysics Data System (ADS)
Ni, Zhuang; Liu, Kui; Kang, Guixia
2018-04-01
Distance metric learning algorithm has been widely applied to medical diagnosis and exhibited its strengths in classification problems. The k-nearest neighbour (KNN) is an efficient method which treats each feature equally. The large margin nearest neighbour classification (LMNN) improves the accuracy of KNN by learning a global distance metric, which did not consider the locality of data distributions. In this paper, we propose a new distance metric algorithm adopting cosine metric and LMNN named COS-SUBLMNN which takes more care about local feature of data to overcome the shortage of LMNN and improve the classification accuracy. The proposed methodology is verified on CVDs patient vector derived from real-world medical data. The Experimental results show that our method provides higher accuracy than KNN and LMNN did, which demonstrates the effectiveness of the Risk predictive model of CVDs based on COS-SUBLMNN.
Fault detection and diagnosis of diesel engine valve trains
NASA Astrophysics Data System (ADS)
Flett, Justin; Bone, Gary M.
2016-05-01
This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.
Tuberculosis disease diagnosis using artificial immune recognition system.
Shamshirband, Shahaboddin; Hessam, Somayeh; Javidnia, Hossein; Amiribesheli, Mohsen; Vahdat, Shaghayegh; Petković, Dalibor; Gani, Abdullah; Kiah, Miss Laiha Mat
2014-01-01
There is a high risk of tuberculosis (TB) disease diagnosis among conventional methods. This study is aimed at diagnosing TB using hybrid machine learning approaches. Patient epicrisis reports obtained from the Pasteur Laboratory in the north of Iran were used. All 175 samples have twenty features. The features are classified based on incorporating a fuzzy logic controller and artificial immune recognition system. The features are normalized through a fuzzy rule based on a labeling system. The labeled features are categorized into normal and tuberculosis classes using the Artificial Immune Recognition Algorithm. Overall, the highest classification accuracy reached was for the 0.8 learning rate (α) values. The artificial immune recognition system (AIRS) classification approaches using fuzzy logic also yielded better diagnosis results in terms of detection accuracy compared to other empirical methods. Classification accuracy was 99.14%, sensitivity 87.00%, and specificity 86.12%.
Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin
2015-08-01
Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.
A Hybrid Sensing Approach for Pure and Adulterated Honey Classification
Subari, Norazian; Saleh, Junita Mohamad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2012-01-01
This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data. PMID:23202033
Blob-level active-passive data fusion for Benthic classification
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady
2012-06-01
We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.
NASA Astrophysics Data System (ADS)
Liu, Tao; Abd-Elrahman, Amr
2018-05-01
Deep convolutional neural network (DCNN) requires massive training datasets to trigger its image classification power, while collecting training samples for remote sensing application is usually an expensive process. When DCNN is simply implemented with traditional object-based image analysis (OBIA) for classification of Unmanned Aerial systems (UAS) orthoimage, its power may be undermined if the number training samples is relatively small. This research aims to develop a novel OBIA classification approach that can take advantage of DCNN by enriching the training dataset automatically using multi-view data. Specifically, this study introduces a Multi-View Object-based classification using Deep convolutional neural network (MODe) method to process UAS images for land cover classification. MODe conducts the classification on multi-view UAS images instead of directly on the orthoimage, and gets the final results via a voting procedure. 10-fold cross validation results show the mean overall classification accuracy increasing substantially from 65.32%, when DCNN was applied on the orthoimage to 82.08% achieved when MODe was implemented. This study also compared the performances of the support vector machine (SVM) and random forest (RF) classifiers with DCNN under traditional OBIA and the proposed multi-view OBIA frameworks. The results indicate that the advantage of DCNN over traditional classifiers in terms of accuracy is more obvious when these classifiers were applied with the proposed multi-view OBIA framework than when these classifiers were applied within the traditional OBIA framework.
Urban Change Detection of Pingtan City based on Bi-temporal Remote Sensing Images
NASA Astrophysics Data System (ADS)
Degang, JIANG; Jinyan, XU; Yikang, GAO
2017-02-01
In this paper, a pair of SPOT 5-6 images with the resolution of 0.5m is selected. An object-oriented classification method is used to the two images and five classes of ground features were identified as man-made objects, farmland, forest, waterbody and unutilized land. An auxiliary ASTER GDEM was used to improve the classification accuracy. And the change detection based on the classification results was performed. Accuracy assessment was carried out finally. Consequently, satisfactory results were obtained. The results show that great changes of the Pingtan city have been detected as the expansion of the city area and the intensity increase of man-made buildings, roads and other infrastructures with the establishment of Pingtan comprehensive experimental zone. Wide range of open sea area along the island coast zones has been reclaimed for port and CBDs construction.
Burlina, Philippe; Billings, Seth; Joshi, Neil
2017-01-01
Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220
Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li
2015-01-01
Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert–Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500–800 and a m range of 50–300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction. PMID:26540059
Yu, Xiao; Ding, Enjie; Chen, Chunxu; Liu, Xiaoming; Li, Li
2015-11-03
Because roller element bearings (REBs) failures cause unexpected machinery breakdowns, their fault diagnosis has attracted considerable research attention. Established fault feature extraction methods focus on statistical characteristics of the vibration signal, which is an approach that loses sight of the continuous waveform features. Considering this weakness, this article proposes a novel feature extraction method for frequency bands, named Window Marginal Spectrum Clustering (WMSC) to select salient features from the marginal spectrum of vibration signals by Hilbert-Huang Transform (HHT). In WMSC, a sliding window is used to divide an entire HHT marginal spectrum (HMS) into window spectrums, following which Rand Index (RI) criterion of clustering method is used to evaluate each window. The windows returning higher RI values are selected to construct characteristic frequency bands (CFBs). Next, a hybrid REBs fault diagnosis is constructed, termed by its elements, HHT-WMSC-SVM (support vector machines). The effectiveness of HHT-WMSC-SVM is validated by running series of experiments on REBs defect datasets from the Bearing Data Center of Case Western Reserve University (CWRU). The said test results evidence three major advantages of the novel method. First, the fault classification accuracy of the HHT-WMSC-SVM model is higher than that of HHT-SVM and ST-SVM, which is a method that combines statistical characteristics with SVM. Second, with Gauss white noise added to the original REBs defect dataset, the HHT-WMSC-SVM model maintains high classification accuracy, while the classification accuracy of ST-SVM and HHT-SVM models are significantly reduced. Third, fault classification accuracy by HHT-WMSC-SVM can exceed 95% under a Pmin range of 500-800 and a m range of 50-300 for REBs defect dataset, adding Gauss white noise at Signal Noise Ratio (SNR) = 5. Experimental results indicate that the proposed WMSC method yields a high REBs fault classification accuracy and a good performance in Gauss white noise reduction.
Analysis on the Utility of Satellite Imagery for Detection of Agricultural Facility
NASA Astrophysics Data System (ADS)
Kang, J.-M.; Baek, S.-H.; Jung, K.-Y.
2012-07-01
Now that the agricultural facilities are being increase owing to development of technology and diversification of agriculture and the ratio of garden crops that are imported a lot and the crops cultivated in facilities are raised in Korea, the number of vinyl greenhouses is tending upward. So, it is important to grasp the distribution of vinyl greenhouses as much as that of rice fields, dry fields and orchards, but it is difficult to collect the information of wide areas economically and correctly. Remote sensing using satellite imagery is able to obtain data of wide area at the same time, quickly and cost-effectively collect, monitor and analyze information from every object on earth. In this study, in order to analyze the utilization of satellite imagery at detection of agricultural facility, image classification was performed about the agricultural facility, vinyl greenhouse using Formosat-2 satellite imagery. The training set of sea, vegetation, building, bare ground and vinyl greenhouse was set to monitor the agricultural facilities of the object area and the training set for the vinyl greenhouses that are main monitoring object was classified and set again into 3 types according the spectral characteristics. The image classification using 4 kinds of supervise classification methods applied by the same training set were carried out to grasp the image classification method which is effective for monitoring agricultural facilities. And, in order to minimize the misclassification appeared in the classification using the spectral information, the accuracy of classification was intended to be raised by adding texture information. The results of classification were analyzed regarding the accuracy comparing with that of naked-eyed detection. As the results of classification, the method of Mahalanobis distance was shown as more efficient than other methods and the accuracy of classification was higher when adding texture information. Hence the more effective monitoring of agricultural facilities is expected to be available if the characteristics such as texture information including satellite images or spatial pattern are studied in detail.
Accuracy of Remotely Sensed Classifications For Stratification of Forest and Nonforest Lands
Raymond L. Czaplewski; Paul L. Patterson
2001-01-01
We specify accuracy standards for remotely sensed classifications used by FIA to stratify landscapes into two categories: forest and nonforest. Accuracy must be highest when forest area approaches 100 percent of the landscape. If forest area is rare in a landscape, then accuracy in the nonforest stratum must be very high, even at the expense of accuracy in the forest...
NASA Astrophysics Data System (ADS)
Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko
2015-01-01
Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.
Comparison of seven protocols to identify fecal contamination sources using Escherichia coli
Stoeckel, D.M.; Mathes, M.V.; Hyer, K.E.; Hagedorn, C.; Kator, H.; Lukasik, J.; O'Brien, T. L.; Fenger, T.W.; Samadpour, M.; Strickler, K.M.; Wiggins, B.A.
2004-01-01
Microbial source tracking (MST) uses various approaches to classify fecal-indicator microorganisms to source hosts. Reproducibility, accuracy, and robustness of seven phenotypic and genotypic MST protocols were evaluated by use of Escherichia coli from an eight-host library of known-source isolates and a separate, blinded challenge library. In reproducibility tests, measuring each protocol's ability to reclassify blinded replicates, only one (pulsed-field gel electrophoresis; PFGE) correctly classified all test replicates to host species; three protocols classified 48-62% correctly, and the remaining three classified fewer than 25% correctly. In accuracy tests, measuring each protocol's ability to correctly classify new isolates, ribotyping with EcoRI and PvuII approached 100% correct classification but only 6% of isolates were classified; four of the other six protocols (antibiotic resistance analysis, PFGE, and two repetitive-element PCR protocols) achieved better than random accuracy rates when 30-100% of challenge isolates were classified. In robustness tests, measuring each protocol's ability to recognize isolates from nonlibrary hosts, three protocols correctly classified 33-100% of isolates as "unknown origin," whereas four protocols classified all isolates to a source category. A relevance test, summarizing interpretations for a hypothetical water sample containing 30 challenge isolates, indicated that false-positive classifications would hinder interpretations for most protocols. Study results indicate that more representation in known-source libraries and better classification accuracy would be needed before field application. Thorough reliability assessment of classification results is crucial before and during application of MST protocols.
NASA Astrophysics Data System (ADS)
Adi Putra, Januar
2018-04-01
In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.
A Study of Light Level Effect on the Accuracy of Image Processing-based Tomato Grading
NASA Astrophysics Data System (ADS)
Prijatna, D.; Muhaemin, M.; Wulandari, R. P.; Herwanto, T.; Saukat, M.; Sugandi, W. K.
2018-05-01
Image processing method has been used in non-destructive tests of agricultural products. Compared to manual method, image processing method may produce more objective and consistent results. Image capturing box installed in currently used tomato grading machine (TEP-4) is equipped with four fluorescence lamps to illuminate the processed tomatoes. Since the performance of any lamp will decrease if its service time has exceeded its lifetime, it is predicted that this will affect tomato classification. The objective of this study was to determine the minimum light levels which affect classification accuracy. This study was conducted by varying light level from minimum and maximum on tomatoes in image capturing boxes and then investigates its effects on image characteristics. Research results showed that light intensity affects two variables which are important for classification, for example, area and color of captured image. Image processing program was able to determine correctly the weight and classification of tomatoes when light level was 30 lx to 140 lx.
NASA Technical Reports Server (NTRS)
Jung, Jinha; Pasolli, Edoardo; Prasad, Saurabh; Tilton, James C.; Crawford, Melba M.
2014-01-01
Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach.
IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY
Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy.
Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...
Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo
2017-01-01
Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W
2013-11-07
Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.
Tahmasian, Masoud; Jamalabadi, Hamidreza; Abedini, Mina; Ghadami, Mohammad R; Sepehry, Amir A; Knight, David C; Khazaie, Habibolah
2017-05-22
Sleep disturbance is common in chronic post-traumatic stress disorder (PTSD). However, prior work has demonstrated that there are inconsistencies between subjective and objective assessments of sleep disturbance in PTSD. Therefore, we investigated whether subjective or objective sleep assessment has greater clinical utility to differentiate PTSD patients from healthy subjects. Further, we evaluated whether the combination of subjective and objective methods improves the accuracy of classification into patient versus healthy groups, which has important diagnostic implications. We recruited 32 chronic war-induced PTSD patients and 32 age- and gender-matched healthy subjects to participate in this study. Subjective (i.e. from three self-reported sleep questionnaires) and objective sleep-related data (i.e. from actigraphy scores) were collected from each participant. Subjective, objective, and combined (subjective and objective) sleep data were then analyzed using support vector machine classification. The classification accuracy, sensitivity, and specificity for subjective variables were 89.2%, 89.3%, and 89%, respectively. The classification accuracy, sensitivity, and specificity for objective variables were 65%, 62.3%, and 67.8%, respectively. The classification accuracy, sensitivity, and specificity for the aggregate variables (combination of subjective and objective variables) were 91.6%, 93.0%, and 90.3%, respectively. Our findings indicate that classification accuracy using subjective measurements is superior to objective measurements and the combination of both assessments appears to improve the classification accuracy for differentiating PTSD patients from healthy individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Erener, A.
2013-04-01
Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.
NASA Astrophysics Data System (ADS)
Gutierrez-Velez, V. H.; DeFries, R. S.
2011-12-01
Oil palm expansion has led to clearing of extensive forest areas in the tropics. However quantitative assessments of the magnitude of oil palm expansion to deforestation have been challenging due in large part to the limitations presented by conventional optical data sets for discriminating plantations from forests and other tree cover vegetations. Recently available information from active remote sensors has opened the possibility of using these data sources to overcome these limitations. The purpose of this analysis is to evaluate the accuracy of oil palm classification when using ALOS/PALSAR active satellite data in conjunction with Landsat information, compared to the use of Landsat data only. The analysis takes place in a focused region around the city of Pucallpa in the Ucayali province of the Peruvian Amazon for the year 2010. Oil palm plantations were separated in five categories consisting of four age classes (0-3, 3-5, 5-10 and > 10 yrs) and an additional class accounting for degraded plantations older than 15 yr. Other land covers were water bodies, unvegetated land, short and tall grass, fallow, secondary vegetation, and forest. Classifications were performed using random forests. Training points for calibration and validation consisted of 411 polygons measured in areas representative of the land covers of interest and totaled 6,367 ha. Overall classification accuracy increased from 89.9% using only Landsat data sets to 94.3% using both Landast and ALOS/PALSAR. Both user's and producer's accuracy increased in all classes when using both data sets except for producer's accuracy in short grass which decreased by 1%. The largest increase in user's accuracy was obtained in oil palm plantations older than 10 years from 62 to 80% while producer's accuracy improved the most in plantations in age class 3-5 from 63 to 80%. Results demonstrate the suitability of data from ALOS/PALSAR and other active remote sensors to improve classification of oil palm plantations in age classes and discriminate them from other land covers. Results suggest a potential for improving discrimination of other tree cover types using a combination of active and conventional optical remote sensors.
Multiple Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2010-01-01
A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.
Improving zero-training brain-computer interfaces by mixing model estimators
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.
2017-06-01
Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.
High-accuracy user identification using EEG biometrics.
Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip
2016-08-01
We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.
Marciano, Michael A; Adelman, Jonathan D
2017-03-01
The deconvolution of DNA mixtures remains one of the most critical challenges in the field of forensic DNA analysis. In addition, of all the data features required to perform such deconvolution, the number of contributors in the sample is widely considered the most important, and, if incorrectly chosen, the most likely to negatively influence the mixture interpretation of a DNA profile. Unfortunately, most current approaches to mixture deconvolution require the assumption that the number of contributors is known by the analyst, an assumption that can prove to be especially faulty when faced with increasingly complex mixtures of 3 or more contributors. In this study, we propose a probabilistic approach for estimating the number of contributors in a DNA mixture that leverages the strengths of machine learning. To assess this approach, we compare classification performances of six machine learning algorithms and evaluate the model from the top-performing algorithm against the current state of the art in the field of contributor number classification. Overall results show over 98% accuracy in identifying the number of contributors in a DNA mixture of up to 4 contributors. Comparative results showed 3-person mixtures had a classification accuracy improvement of over 6% compared to the current best-in-field methodology, and that 4-person mixtures had a classification accuracy improvement of over 20%. The Probabilistic Assessment for Contributor Estimation (PACE) also accomplishes classification of mixtures of up to 4 contributors in less than 1s using a standard laptop or desktop computer. Considering the high classification accuracy rates, as well as the significant time commitment required by the current state of the art model versus seconds required by a machine learning-derived model, the approach described herein provides a promising means of estimating the number of contributors and, subsequently, will lead to improved DNA mixture interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Detection of artificially ripened mango using spectrometric analysis
NASA Astrophysics Data System (ADS)
Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay
2017-05-01
Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence
Ozcift, Akin
2012-08-01
Parkinson disease (PD) is an age-related deterioration of certain nerve systems, which affects movement, balance, and muscle control of clients. PD is one of the common diseases which affect 1% of people older than 60 years. A new classification scheme based on support vector machine (SVM) selected features to train rotation forest (RF) ensemble classifiers is presented for improving diagnosis of PD. The dataset contains records of voice measurements from 31 people, 23 with PD and each record in the dataset is defined with 22 features. The diagnosis model first makes use of a linear SVM to select ten most relevant features from 22. As a second step of the classification model, six different classifiers are trained with the subset of features. Subsequently, at the third step, the accuracies of classifiers are improved by the utilization of RF ensemble classification strategy. The results of the experiments are evaluated using three metrics; classification accuracy (ACC), Kappa Error (KE) and Area under the Receiver Operating Characteristic (ROC) Curve (AUC). Performance measures of two base classifiers, i.e. KStar and IBk, demonstrated an apparent increase in PD diagnosis accuracy compared to similar studies in literature. After all, application of RF ensemble classification scheme improved PD diagnosis in 5 of 6 classifiers significantly. We, numerically, obtained about 97% accuracy in RF ensemble of IBk (a K-Nearest Neighbor variant) algorithm, which is a quite high performance for Parkinson disease diagnosis.
Ruiz Hidalgo, Irene; Rodriguez, Pablo; Rozema, Jos J; Ní Dhubhghaill, Sorcha; Zakaria, Nadia; Tassignon, Marie-José; Koppen, Carina
2016-06-01
To evaluate the performance of a support vector machine algorithm that automatically and objectively identifies corneal patterns based on a combination of 22 parameters obtained from Pentacam measurements and to compare this method with other known keratoconus (KC) classification methods. Pentacam data from 860 eyes were included in the study and divided into 5 groups: 454 KC, 67 forme fruste (FF), 28 astigmatic, 117 after refractive surgery (PR), and 194 normal eyes (N). Twenty-two parameters were used for classification using a support vector machine algorithm developed in Weka, a machine-learning computer software. The cross-validation accuracy for 3 different classification tasks (KC vs. N, FF vs. N and all 5 groups) was calculated and compared with other known classification methods. The accuracy achieved in the KC versus N discrimination task was 98.9%, with 99.1% sensitivity and 98.5% specificity for KC detection. The accuracy in the FF versus N task was 93.1%, with 79.1% sensitivity and 97.9% specificity for the FF discrimination. Finally, for the 5-groups classification, the accuracy was 88.8%, with a weighted average sensitivity of 89.0% and specificity of 95.2%. Despite using the strictest definition for FF KC, the present study obtained comparable or better results than the single-parameter methods and indices reported in the literature. In some cases, direct comparisons with the literature were not possible because of differences in the compositions and definitions of the study groups, especially the FF KC.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Haijian; Wu, Changshan
2018-06-01
Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
Zhang, Chu; Liu, Fei; He, Yong
2018-02-01
Hyperspectral imaging was used to identify and to visualize the coffee bean varieties. Spectral preprocessing of pixel-wise spectra was conducted by different methods, including moving average smoothing (MA), wavelet transform (WT) and empirical mode decomposition (EMD). Meanwhile, spatial preprocessing of the gray-scale image at each wavelength was conducted by median filter (MF). Support vector machine (SVM) models using full sample average spectra and pixel-wise spectra, and the selected optimal wavelengths by second derivative spectra all achieved classification accuracy over 80%. Primarily, the SVM models using pixel-wise spectra were used to predict the sample average spectra, and these models obtained over 80% of the classification accuracy. Secondly, the SVM models using sample average spectra were used to predict pixel-wise spectra, but achieved with lower than 50% of classification accuracy. The results indicated that WT and EMD were suitable for pixel-wise spectra preprocessing. The use of pixel-wise spectra could extend the calibration set, and resulted in the good prediction results for pixel-wise spectra and sample average spectra. The overall results indicated the effectiveness of using spectral preprocessing and the adoption of pixel-wise spectra. The results provided an alternative way of data processing for applications of hyperspectral imaging in food industry.
2012-01-01
Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695
Object oriented classification of high resolution data for inventory of horticultural crops
NASA Astrophysics Data System (ADS)
Hebbar, R.; Ravishankar, H. M.; Trivedi, S.; Subramoniam, S. R.; Uday, R.; Dadhwal, V. K.
2014-11-01
High resolution satellite images are associated with large variance and thus, per pixel classifiers often result in poor accuracy especially in delineation of horticultural crops. In this context, object oriented techniques are powerful and promising methods for classification. In the present study, a semi-automatic object oriented feature extraction model has been used for delineation of horticultural fruit and plantation crops using Erdas Objective Imagine. Multi-resolution data from Resourcesat LISS-IV and Cartosat-1 have been used as source data in the feature extraction model. Spectral and textural information along with NDVI were used as inputs for generation of Spectral Feature Probability (SFP) layers using sample training pixels. The SFP layers were then converted into raster objects using threshold and clump function resulting in pixel probability layer. A set of raster and vector operators was employed in the subsequent steps for generating thematic layer in the vector format. This semi-automatic feature extraction model was employed for classification of major fruit and plantations crops viz., mango, banana, citrus, coffee and coconut grown under different agro-climatic conditions. In general, the classification accuracy of about 75-80 per cent was achieved for these crops using object based classification alone and the same was further improved using minimal visual editing of misclassified areas. A comparison of on-screen visual interpretation with object oriented approach showed good agreement. It was observed that old and mature plantations were classified more accurately while young and recently planted ones (3 years or less) showed poor classification accuracy due to mixed spectral signature, wider spacing and poor stands of plantations. The results indicated the potential use of object oriented approach for classification of high resolution data for delineation of horticultural fruit and plantation crops. The present methodology is applicable at local levels and future development is focused on up-scaling the methodology for generation of fruit and plantation crop maps at regional and national level which is important for creation of database for overall horticultural crop development.
NASA Astrophysics Data System (ADS)
Siregar, V. P.; Agus, S. B.; Subarno, T.; Prabowo, N. W.
2018-05-01
The availability of satellite imagery with a variety of spatial resolution, both free access and commercial become as an option in utilizing the remote sensing technology. Variability of the water column is one of the factors affecting the interpretation results when mapping marine shallow waters. This study aimed to evaluate the influence of water column correction (depth-invariant index) on the accuracy of shallow water habitat classification results using OBIA. This study was conducted in North of Kepulauan Seribu, precisely in Harapan Island and its surrounding areas. Habitat class schemes were based on field observations, which were then used to build habitat classes on satellite imagery. The water column correction was applied to the three pairs of SPOT-7 multispectral bands, which were subsequently used in object-based classification. Satellite image classification was performed with four different approaches, namely (i) using DII transformed bands with single pair band input (B1B2), (ii) multi pairs bands (B1B2, B1B3, and B2B3), (iii) combination of multi pairs band and initial bands, and (iv) only using initial bands. The accuracy test results of the four inputs show the values of Overall Accuracy and Kappa Statistics, respectively 55.84 and 0.48; 68.53 and 0.64; 78.68 and 0.76; 77.66 and 0.74. It shows that the best results when using DII and initial band combination for shallow water benthic classification in this study site.
Ensemble of classifiers for confidence-rated classification of NDE signal
NASA Astrophysics Data System (ADS)
Banerjee, Portia; Safdarnejad, Seyed; Udpa, Lalita; Udpa, Satish
2016-02-01
Ensemble of classifiers in general, aims to improve classification accuracy by combining results from multiple weak hypotheses into a single strong classifier through weighted majority voting. Improved versions of ensemble of classifiers generate self-rated confidence scores which estimate the reliability of each of its prediction and boost the classifier using these confidence-rated predictions. However, such a confidence metric is based only on the rate of correct classification. In existing works, although ensemble of classifiers has been widely used in computational intelligence, the effect of all factors of unreliability on the confidence of classification is highly overlooked. With relevance to NDE, classification results are affected by inherent ambiguity of classifica-tion, non-discriminative features, inadequate training samples and noise due to measurement. In this paper, we extend the existing ensemble classification by maximizing confidence of every classification decision in addition to minimizing the classification error. Initial results of the approach on data from eddy current inspection show improvement in classification performance of defect and non-defect indications.
NASA Astrophysics Data System (ADS)
Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad
2016-01-01
In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.
A Spiking Neural Network in sEMG Feature Extraction.
Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor
2015-11-03
We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.
NASA Technical Reports Server (NTRS)
Craig, R. G. (Principal Investigator)
1983-01-01
Richmond, Virginia and Denver, Colorado were study sites in an effort to determine the effect of autocorrelation on the accuracy of a parallelopiped classifier of LANDSAT digital data. The autocorrelation was assumed to decay to insignificant levels when sampled at distances of at least ten pixels. Spectral themes developed using blocks of adjacent pixels, and using groups of pixels spaced at least 10 pixels apart were used. Effects of geometric distortions were minimized by using only pixels from the interiors of land cover sections. Accuracy was evaluated for three classes; agriculture, residential and "all other"; both type 1 and type 2 errors were evaluated by means of overall classification accuracy. All classes give comparable results. Accuracy is approximately the same in both techniques; however, the variance in accuracy is significantly higher using the themes developed from autocorrelated data. The vectors of mean spectral response were nearly identical regardless of sampling method used. The estimated variances were much larger when using autocorrelated pixels.
On the classification techniques in data mining for microarray data classification
NASA Astrophysics Data System (ADS)
Aydadenta, Husna; Adiwijaya
2018-03-01
Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.
Youn, Su Hyun; Sim, Taeyong; Choi, Ahnryul; Song, Jinsung; Shin, Ki Young; Lee, Il Kwon; Heo, Hyun Mu; Lee, Daeweon; Mun, Joung Hwan
2015-06-01
Ultrasonic surgical units (USUs) have the advantage of minimizing tissue damage during surgeries that require tissue dissection by reducing problems such as coagulation and unwanted carbonization, but the disadvantage of requiring manual adjustment of power output according to the target tissue. In order to overcome this limitation, it is necessary to determine the properties of in vivo tissues automatically. We propose a multi-classifier that can accurately classify tissues based on the unique impedance of each tissue. For this purpose, a multi-classifier was built based on single classifiers with high classification rates, and the classification accuracy of the proposed model was compared with that of single classifiers for various electrode types (Type-I: 6 mm invasive; Type-II: 3 mm invasive; Type-III: surface). The sensitivity and positive predictive value (PPV) of the multi-classifier by cross checks were determined. According to the 10-fold cross validation results, the classification accuracy of the proposed model was significantly higher (p<0.05 or <0.01) than that of existing single classifiers for all electrode types. In particular, the classification accuracy of the proposed model was highest when the 3mm invasive electrode (Type-II) was used (sensitivity=97.33-100.00%; PPV=96.71-100.00%). The results of this study are an important contribution to achieving automatic optimal output power adjustment of USUs according to the properties of individual tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Skimming Digits: Neuromorphic Classification of Spike-Encoded Images
Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André
2016-01-01
The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646
NASA Astrophysics Data System (ADS)
Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Homayouni, S.
2016-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) imagery is a complex multi-dimensional dataset, which is an important source of information for various natural resources and environmental classification and monitoring applications. PolSAR imagery produces valuable information by observing scattering mechanisms from different natural and man-made objects. Land cover mapping using PolSAR data classification is one of the most important applications of SAR remote sensing earth observations, which have gained increasing attention in the recent years. However, one of the most challenging aspects of classification is selecting features with maximum discrimination capability. To address this challenge, a statistical approach based on the Fisher Linear Discriminant Analysis (FLDA) and the incorporation of physical interpretation of PolSAR data into classification is proposed in this paper. After pre-processing of PolSAR data, including the speckle reduction, the H/α classification is used in order to classify the basic scattering mechanisms. Then, a new method for feature weighting, based on the fusion of FLDA and physical interpretation, is implemented. This method proves to increase the classification accuracy as well as increasing between-class discrimination in the final Wishart classification. The proposed method was applied to a full polarimetric C-band RADARSAT-2 data set from Avalon area, Newfoundland and Labrador, Canada. This imagery has been acquired in June 2015, and covers various types of wetlands including bogs, fens, marshes and shallow water. The results were compared with the standard Wishart classification, and an improvement of about 20% was achieved in the overall accuracy. This method provides an opportunity for operational wetland classification in northern latitude with high accuracy using only SAR polarimetric data.
Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin
2016-12-01
In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.
GMM-based speaker age and gender classification in Czech and Slovak
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Matoušek, Jindřich
2017-01-01
The paper describes an experiment with using the Gaussian mixture models (GMM) for automatic classification of the speaker age and gender. It analyses and compares the influence of different number of mixtures and different types of speech features used for GMM gender/age classification. Dependence of the computational complexity on the number of used mixtures is also analysed. Finally, the GMM classification accuracy is compared with the output of the conventional listening tests. The results of these objective and subjective evaluations are in correspondence.
The effect of lossy image compression on image classification
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.
The decision tree approach to classification
NASA Technical Reports Server (NTRS)
Wu, C.; Landgrebe, D. A.; Swain, P. H.
1975-01-01
A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.
Parsons, Helen M; Ludwig, Christian; Günther, Ulrich L; Viant, Mark R
2007-01-01
Background Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES). Results Here, the effects of the glog transform are compared against two commonly used variance stabilising techniques, autoscaling and Pareto scaling, as well as unscaled data. The four methods are evaluated in terms of the effects on the variance of NMR metabolomics data and on the classification accuracy following multivariate analysis, the latter achieved using principal component analysis followed by linear discriminant analysis. For two of three datasets analysed, classification accuracies were highest following glog transformation: 100% accuracy for discriminating 1D NMR spectra of hypoxic and normoxic invertebrate muscle, and 100% accuracy for discriminating 2D JRES spectra of fish livers sampled from two rivers. For the third dataset, pJRES spectra of urine from two breeds of dog, the glog transform and autoscaling achieved equal highest accuracies. Additionally we extended the glog algorithm to effectively suppress noise, which proved critical for the analysis of 2D JRES spectra. Conclusion We have demonstrated that the glog and extended glog transforms stabilise the technical variance in NMR metabolomics datasets. This significantly improves the discrimination between sample classes and has resulted in higher classification accuracies compared to unscaled, autoscaled or Pareto scaled data. Additionally we have confirmed the broad applicability of the glog approach using three disparate datasets from different biological samples using 1D NMR spectra, 1D projections of 2D JRES spectra, and intact 2D JRES spectra. PMID:17605789
Automotive System for Remote Surface Classification.
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-04-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.
Automotive System for Remote Surface Classification
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-01-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297
Zhang, Jianhua; Li, Sunan; Wang, Rubin
2017-01-01
In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.
Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study
NASA Astrophysics Data System (ADS)
Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin
2011-03-01
Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Darmawan, M F; Yusuf, Suhaila M; Kadir, M R Abdul; Haron, H
2015-02-01
Sex estimation is used in forensic anthropology to assist the identification of individual remains. However, the estimation techniques tend to be unique and applicable only to a certain population. This paper analyzed sex estimation on living individual child below 19 years old using the length of 19 bones of left hand applied for three classification techniques, which were Discriminant Function Analysis (DFA), Support Vector Machine (SVM) and Artificial Neural Network (ANN) multilayer perceptron. These techniques were carried out on X-ray images of the left hand taken from an Asian population data set. All the 19 bones of the left hand were measured using Free Image software, and all the techniques were performed using MATLAB. The group of age "16-19" years old and "7-9" years old were the groups that could be used for sex estimation with as their average of accuracy percentage was above 80%. ANN model was the best classification technique with the highest average of accuracy percentage in the two groups of age compared to other classification techniques. The results show that each classification technique has the best accuracy percentage on each different group of age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok
2016-12-05
High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.
A Survey on Sentiment Classification in Face Recognition
NASA Astrophysics Data System (ADS)
Qian, Jingyu
2018-01-01
Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification
Liu, Fuxian
2018-01-01
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references. PMID:29581722
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification.
Yu, Yunlong; Liu, Fuxian
2018-01-01
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.
Classification of permafrost active layer depth from remotely sensed and topographic evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peddle, D.R.; Franklin, S.E.
1993-04-01
The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to thismore » study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth.« less
An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
Rasouli, Mahdi; Chen, Yi; Basu, Arindam; Kukreja, Sunil L; Thakor, Nitish V
2018-04-01
Despite significant advances in computational algorithms and development of tactile sensors, artificial tactile sensing is strikingly less efficient and capable than the human tactile perception. Inspired by efficiency of biological systems, we aim to develop a neuromorphic system for tactile pattern recognition. We particularly target texture recognition as it is one of the most necessary and challenging tasks for artificial sensory systems. Our system consists of a piezoresistive fabric material as the sensor to emulate skin, an interface that produces spike patterns to mimic neural signals from mechanoreceptors, and an extreme learning machine (ELM) chip to analyze spiking activity. Benefiting from intrinsic advantages of biologically inspired event-driven systems and massively parallel and energy-efficient processing capabilities of the ELM chip, the proposed architecture offers a fast and energy-efficient alternative for processing tactile information. Moreover, it provides the opportunity for the development of low-cost tactile modules for large-area applications by integration of sensors and processing circuits. We demonstrate the recognition capability of our system in a texture discrimination task, where it achieves a classification accuracy of 92% for categorization of ten graded textures. Our results confirm that there exists a tradeoff between response time and classification accuracy (and information transfer rate). A faster decision can be achieved at early time steps or by using a shorter time window. This, however, results in deterioration of the classification accuracy and information transfer rate. We further observe that there exists a tradeoff between the classification accuracy and the input spike rate (and thus energy consumption). Our work substantiates the importance of development of efficient sparse codes for encoding sensory data to improve the energy efficiency. These results have a significance for a wide range of wearable, robotic, prosthetic, and industrial applications.
Telephone-quality pathological speech classification using empirical mode decomposition.
Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S
2011-01-01
This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.
Deep Convolutional Neural Networks for Classifying Body Constitution Based on Face Image.
Huan, Er-Yang; Wen, Gui-Hua; Zhang, Shi-Jun; Li, Dan-Yang; Hu, Yang; Chang, Tian-Yuan; Wang, Qing; Huang, Bing-Lin
2017-01-01
Body constitution classification is the basis and core content of traditional Chinese medicine constitution research. It is to extract the relevant laws from the complex constitution phenomenon and finally build the constitution classification system. Traditional identification methods have the disadvantages of inefficiency and low accuracy, for instance, questionnaires. This paper proposed a body constitution recognition algorithm based on deep convolutional neural network, which can classify individual constitution types according to face images. The proposed model first uses the convolutional neural network to extract the features of face image and then combines the extracted features with the color features. Finally, the fusion features are input to the Softmax classifier to get the classification result. Different comparison experiments show that the algorithm proposed in this paper can achieve the accuracy of 65.29% about the constitution classification. And its performance was accepted by Chinese medicine practitioners.
Deep Multi-Task Learning for Tree Genera Classification
NASA Astrophysics Data System (ADS)
Ko, C.; Kang, J.; Sohn, G.
2018-05-01
The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.
Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
Ortiz-Catalan, Max; Håkansson, Bo; Brånemark, Rickard
2014-07-01
The prediction of simultaneous limb motions is a highly desirable feature for the control of artificial limbs. In this work, we investigate different classification strategies for individual and simultaneous movements based on pattern recognition of myoelectric signals. Our results suggest that any classifier can be potentially employed in the prediction of simultaneous movements if arranged in a distributed topology. On the other hand, classifiers inherently capable of simultaneous predictions, such as the multi-layer perceptron (MLP), were found to be more cost effective, as they can be successfully employed in their simplest form. In the prediction of individual movements, the one-vs-one (OVO) topology was found to improve classification accuracy across different classifiers and it was therefore used to benchmark the benefits of simultaneous control. As opposed to previous work reporting only offline accuracy, the classification performance and the resulting controllability are evaluated in real time using the motion test and target achievement control (TAC) test, respectively. We propose a simultaneous classification strategy based on MLP that outperformed a top classifier for individual movements (LDA-OVO), thus improving the state-of-the-art classification approach. Furthermore, all the presented classification strategies and data collected in this study are freely available in BioPatRec, an open source platform for the development of advanced prosthetic control strategies.
NASA Astrophysics Data System (ADS)
Jamal, Wasifa; Das, Saptarshi; Oprescu, Ioana-Anastasia; Maharatna, Koushik; Apicella, Fabio; Sicca, Federico
2014-08-01
Objective. The paper investigates the presence of autism using the functional brain connectivity measures derived from electro-encephalogram (EEG) of children during face perception tasks. Approach. Phase synchronized patterns from 128-channel EEG signals are obtained for typical children and children with autism spectrum disorder (ASD). The phase synchronized states or synchrostates temporally switch amongst themselves as an underlying process for the completion of a particular cognitive task. We used 12 subjects in each group (ASD and typical) for analyzing their EEG while processing fearful, happy and neutral faces. The minimal and maximally occurring synchrostates for each subject are chosen for extraction of brain connectivity features, which are used for classification between these two groups of subjects. Among different supervised learning techniques, we here explored the discriminant analysis and support vector machine both with polynomial kernels for the classification task. Main results. The leave one out cross-validation of the classification algorithm gives 94.7% accuracy as the best performance with corresponding sensitivity and specificity values as 85.7% and 100% respectively. Significance. The proposed method gives high classification accuracies and outperforms other contemporary research results. The effectiveness of the proposed method for classification of autistic and typical children suggests the possibility of using it on a larger population to validate it for clinical practice.
Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan
2016-01-01
Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.
Landcover Classification Using Deep Fully Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Wang, J.; Li, X.; Zhou, S.; Tang, J.
2017-12-01
Land cover classification has always been an essential application in remote sensing. Certain image features are needed for land cover classification whether it is based on pixel or object-based methods. Different from other machine learning methods, deep learning model not only extracts useful information from multiple bands/attributes, but also learns spatial characteristics. In recent years, deep learning methods have been developed rapidly and widely applied in image recognition, semantic understanding, and other application domains. However, there are limited studies applying deep learning methods in land cover classification. In this research, we used fully convolutional networks (FCN) as the deep learning model to classify land covers. The National Land Cover Database (NLCD) within the state of Kansas was used as training dataset and Landsat images were classified using the trained FCN model. We also applied an image segmentation method to improve the original results from the FCN model. In addition, the pros and cons between deep learning and several machine learning methods were compared and explored. Our research indicates: (1) FCN is an effective classification model with an overall accuracy of 75%; (2) image segmentation improves the classification results with better match of spatial patterns; (3) FCN has an excellent ability of learning which can attains higher accuracy and better spatial patterns compared with several machine learning methods.
Stinchfield, Randy; McCready, John; Turner, Nigel E; Jimenez-Murcia, Susana; Petry, Nancy M; Grant, Jon; Welte, John; Chapman, Heather; Winters, Ken C
2016-09-01
The DSM-5 was published in 2013 and it included two substantive revisions for gambling disorder (GD). These changes are the reduction in the threshold from five to four criteria and elimination of the illegal activities criterion. The purpose of this study was to twofold. First, to assess the reliability, validity and classification accuracy of the DSM-5 diagnostic criteria for GD. Second, to compare the DSM-5-DSM-IV on reliability, validity, and classification accuracy, including an examination of the effect of the elimination of the illegal acts criterion on diagnostic accuracy. To compare DSM-5 and DSM-IV, eight datasets from three different countries (Canada, USA, and Spain; total N = 3247) were used. All datasets were based on similar research methods. Participants were recruited from outpatient gambling treatment services to represent the group with a GD and from the community to represent the group without a GD. All participants were administered a standardized measure of diagnostic criteria. The DSM-5 yielded satisfactory reliability, validity and classification accuracy. In comparing the DSM-5 to the DSM-IV, most comparisons of reliability, validity and classification accuracy showed more similarities than differences. There was evidence of modest improvements in classification accuracy for DSM-5 over DSM-IV, particularly in reduction of false negative errors. This reduction in false negative errors was largely a function of lowering the cut score from five to four and this revision is an improvement over DSM-IV. From a statistical standpoint, eliminating the illegal acts criterion did not make a significant impact on diagnostic accuracy. From a clinical standpoint, illegal acts can still be addressed in the context of the DSM-5 criterion of lying to others.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet; Kabiri, Keivan
2012-07-01
This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island
Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT
ERIC Educational Resources Information Center
Lathrop, Quinn N.
2015-01-01
There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…
Yoon, Jong H.; Tamir, Diana; Minzenberg, Michael J.; Ragland, J. Daniel; Ursu, Stefan; Carter, Cameron S.
2009-01-01
Background Multivariate pattern analysis is an alternative method of analyzing fMRI data, which is capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed representations in schizophrenia. We also compared the results of this method with traditional GLM-based univariate analysis. Methods 19 schizophrenia and 15 control subjects viewed two runs of stimuli--exemplars of faces, scenes, objects, and scrambled images. To verify engagement with stimuli, subjects completed a 1-back matching task. A multi-voxel pattern classifier was trained to identify category-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of voxel-wise activity across runs evaluated variance over time in activity patterns. Results Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished classification accuracy in patients compared to controls, 59% and 72% respectively. In contrast, there was no group difference in GLM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups showed highly significant correlation between inter-run correlations and classification accuracy. Conclusions Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished task performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with univariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of non-specific factors driving these results. PMID:18822407
Moncada-Torres, A; Leuenberger, K; Gonzenbach, R; Luft, A; Gassert, R
2014-07-01
Miniature, wearable sensor modules are a promising technology to monitor activities of daily living (ADL) over extended periods of time. To assure both user compliance and meaningful results, the selection and placement site of sensors requires careful consideration. We investigated these aspects for the classification of 16 ADL in 6 healthy subjects under laboratory conditions using ReSense, our custom-made inertial measurement unit enhanced with a barometric pressure sensor used to capture activity-related altitude changes. Subjects wore a module on each wrist and ankle, and one on the trunk. Activities comprised whole body movements as well as gross and dextrous upper-limb activities. Wrist-module data outperformed the other locations for the three activity groups. Specifically, overall classification accuracy rates of almost 93% and more than 95% were achieved for the repeated holdout and user-specific validation methods, respectively, for all 16 activities. Including the altitude profile resulted in a considerable improvement of up to 20% in the classification accuracy for stair ascent and descent. The gyroscopes provided no useful information for activity classification under this scheme. The proposed sensor setting could allow for robust long-term activity monitoring with high compliance in different patient populations.
Gadermayr, M.; Liedlgruber, M.; Uhl, A.; Vécsei, A.
2013-01-01
Due to the optics used in endoscopes, a typical degradation observed in endoscopic images are barrel-type distortions. In this work we investigate the impact of methods used to correct such distortions in images on the classification accuracy in the context of automated celiac disease classification. For this purpose we compare various different distortion correction methods and apply them to endoscopic images, which are subsequently classified. Since the interpolation used in such methods is also assumed to have an influence on the resulting classification accuracies, we also investigate different interpolation methods and their impact on the classification performance. In order to be able to make solid statements about the benefit of distortion correction we use various different feature extraction methods used to obtain features for the classification. Our experiments show that it is not possible to make a clear statement about the usefulness of distortion correction methods in the context of an automated diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit of distortion correction highly depends on the feature extraction method used for the classification. PMID:23981585
ICA-Based Imagined Conceptual Words Classification on EEG Signals.
Imani, Ehsan; Pourmohammad, Ali; Bagheri, Mahsa; Mobasheri, Vida
2017-01-01
Independent component analysis (ICA) has been used for detecting and removing the eye artifacts conventionally. However, in this research, it was used not only for detecting the eye artifacts, but also for detecting the brain-produced signals of two conceptual danger and information category words. In this cross-sectional research, electroencephalography (EEG) signals were recorded using Micromed and 19-channel helmet devices in unipolar mode, wherein Cz electrode was selected as the reference electrode. In the first part of this research, the statistical community test case included four men and four women, who were 25-30 years old. In the designed task, three groups of traffic signs were considered, in which two groups referred to the concept of danger, and the third one referred to the concept of information. In the second part, the three volunteers, two men and one woman, who had the best results, were chosen from among eight participants. In the second designed task, direction arrows (up, down, left, and right) were used. For the 2/8 volunteers in the rest times, very high-power alpha waves were observed from the back of the head; however, in the thinking times, they were different. According to this result, alpha waves for changing the task from thinking to rest condition took at least 3 s for the two volunteers, and it was at most 5 s until they went to the absolute rest condition. For the 7/8 volunteers, the danger and information signals were well classified; these differences for the 5/8 volunteers were observed in the right hemisphere, and, for the other three volunteers, the differences were observed in the left hemisphere. For the second task, simulations showed that the best classification accuracies resulted when the time window was 2.5 s. In addition, it also showed that the features of the autoregressive (AR)-15 model coefficients were the best choices for extracting the features. For all the states of neural network except hardlim discriminator function, the classification accuracies were almost the same and not very different. Linear discriminant analysis (LDA) in comparison with the neural network yielded higher classification accuracies. ICA is a suitable algorithm for recognizing of the word's concept and its place in the brain. Achieved results from this experiment were the same compared with the results from other methods such as functional magnetic resonance imaging and methods based on the brain signals (EEG) in the vowel imagination and covert speech. Herein, the highest classification accuracy was obtained by extracting the target signal from the output of the ICA and extracting the features of coefficients AR model with time interval of 2.5 s. Finally, LDA resulted in the highest classification accuracy more than 60%.
Dyrba, Martin; Barkhof, Frederik; Fellgiebel, Andreas; Filippi, Massimo; Hausner, Lucrezia; Hauenstein, Karlheinz; Kirste, Thomas; Teipel, Stefan J
2015-01-01
Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume. We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality. Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD. Copyright © 2015 by the American Society of Neuroimaging.
TMS combined with EEG in genetic generalized epilepsy: A phase II diagnostic accuracy study.
Kimiskidis, Vasilios K; Tsimpiris, Alkiviadis; Ryvlin, Philippe; Kalviainen, Reetta; Koutroumanidis, Michalis; Valentin, Antonio; Laskaris, Nikolaos; Kugiumtzis, Dimitris
2017-02-01
(A) To develop a TMS-EEG stimulation and data analysis protocol in genetic generalized epilepsy (GGE). (B) To investigate the diagnostic accuracy of TMS-EEG in GGE. Pilot experiments resulted in the development and optimization of a paired-pulse TMS-EEG protocol at rest, during hyperventilation (HV), and post-HV combined with multi-level data analysis. This protocol was applied in 11 controls (C) and 25 GGE patients (P), further dichotomized into responders to antiepileptic drugs (R, n=13) and non-responders (n-R, n=12).Features (n=57) extracted from TMS-EEG responses after multi-level analysis were given to a feature selection scheme and a Bayesian classifier, and the accuracy of assigning participants into the classes P-C and R-nR was computed. On the basis of the optimal feature subset, the cross-validated accuracy of TMS-EEG for the classification P-C was 0.86 at rest, 0.81 during HV and 0.92 at post-HV, whereas for R-nR the corresponding figures are 0.80, 0.78 and 0.65, respectively. Applying a fusion approach on all conditions resulted in an accuracy of 0.84 for the classification P-C and 0.76 for the classification R-nR. TMS-EEG can be used for diagnostic purposes and for assessing the response to antiepileptic drugs. TMS-EEG holds significant diagnostic potential in GGE. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment
NASA Astrophysics Data System (ADS)
Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil
2016-05-01
Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.
Fiannaca, Antonino; La Rosa, Massimo; Rizzo, Riccardo; Urso, Alfonso
2015-07-01
In this paper, an alignment-free method for DNA barcode classification that is based on both a spectral representation and a neural gas network for unsupervised clustering is proposed. In the proposed methodology, distinctive words are identified from a spectral representation of DNA sequences. A taxonomic classification of the DNA sequence is then performed using the sequence signature, i.e., the smallest set of k-mers that can assign a DNA sequence to its proper taxonomic category. Experiments were then performed to compare our method with other supervised machine learning classification algorithms, such as support vector machine, random forest, ripper, naïve Bayes, ridor, and classification tree, which also consider short DNA sequence fragments of 200 and 300 base pairs (bp). The experimental tests were conducted over 10 real barcode datasets belonging to different animal species, which were provided by the on-line resource "Barcode of Life Database". The experimental results showed that our k-mer-based approach is directly comparable, in terms of accuracy, recall and precision metrics, with the other classifiers when considering full-length sequences. In addition, we demonstrate the robustness of our method when a classification is performed task with a set of short DNA sequences that were randomly extracted from the original data. For example, the proposed method can reach the accuracy of 64.8% at the species level with 200-bp fragments. Under the same conditions, the best other classifier (random forest) reaches the accuracy of 20.9%. Our results indicate that we obtained a clear improvement over the other classifiers for the study of short DNA barcode sequence fragments. Copyright © 2015 Elsevier B.V. All rights reserved.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks
Ojeda, Lauro; Johnson, Daniel D.; Gates, Deanna; Mower Provost, Emily; Barton, Kira
2018-01-01
Objective Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. Methods Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. Results Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69–92%. Conclusion These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. Significance Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user. PMID:29447252
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2009-10-01
Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.
NASA Astrophysics Data System (ADS)
Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F.
2014-06-01
Objective. Several ERP-based brain-computer interfaces (BCIs) that can be controlled even without eye movements (covert attention) have been recently proposed. However, when compared to similar systems based on overt attention, they displayed significantly lower accuracy. In the current interpretation, this is ascribed to the absence of the contribution of short-latency visual evoked potentials (VEPs) in the tasks performed in the covert attention modality. This study aims to investigate if this decrement (i) is fully explained by the lack of VEP contribution to the classification accuracy; (ii) correlates with lower temporal stability of the single-trial P300 potentials elicited in the covert attention modality. Approach. We evaluated the latency jitter of P300 evoked potentials in three BCI interfaces exploiting either overt or covert attention modalities in 20 healthy subjects. The effect of attention modality on the P300 jitter, and the relative contribution of VEPs and P300 jitter to the classification accuracy have been analyzed. Main results. The P300 jitter is higher when the BCI is controlled in covert attention. Classification accuracy negatively correlates with jitter. Even disregarding short-latency VEPs, overt-attention BCI yields better accuracy than covert. When the latency jitter is compensated offline, the difference between accuracies is not significant. Significance. The lower temporal stability of the P300 evoked potential generated during the tasks performed in covert attention modality should be regarded as the main contributing explanation of lower accuracy of covert-attention ERP-based BCIs.
EXhype: A tool for mineral classification using hyperspectral data
NASA Astrophysics Data System (ADS)
Adep, Ramesh Nityanand; shetty, Amba; Ramesh, H.
2017-02-01
Various supervised classification algorithms have been developed to classify earth surface features using hyperspectral data. Each algorithm is modelled based on different human expertises. However, the performance of conventional algorithms is not satisfactory to map especially the minerals in view of their typical spectral responses. This study introduces a new expert system named 'EXhype (Expert system for hyperspectral data classification)' to map minerals. The system incorporates human expertise at several stages of it's implementation: (i) to deal with intra-class variation; (ii) to identify absorption features; (iii) to discriminate spectra by considering absorption features, non-absorption features and by full spectra comparison; and (iv) finally takes a decision based on learning and by emphasizing most important features. It is developed using a knowledge base consisting of an Optimal Spectral Library, Segmented Upper Hull method, Spectral Angle Mapper (SAM) and Artificial Neural Network. The performance of the EXhype is compared with a traditional, most commonly used SAM algorithm using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired over Cuprite, Nevada, USA. A virtual verification method is used to collect samples information for accuracy assessment. Further, a modified accuracy assessment method is used to get a real users accuracies in cases where only limited or desired classes are considered for classification. With the modified accuracy assessment method, SAM and EXhype yields an overall accuracy of 60.35% and 90.75% and the kappa coefficient of 0.51 and 0.89 respectively. It was also found that the virtual verification method allows to use most desired stratified random sampling method and eliminates all the difficulties associated with it. The experimental results show that EXhype is not only producing better accuracy compared to traditional SAM but, can also rightly classify the minerals. It is proficient in avoiding misclassification between target classes when applied on minerals.
Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.
Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet
2018-05-01
Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Migraine classification using magnetic resonance imaging resting-state functional connectivity data.
Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J
2017-08-01
Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.
Renjith, Arokia; Manjula, P; Mohan Kumar, P
2015-01-01
Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method.
A stereo remote sensing feature selection method based on artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi
2014-05-01
To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.
A neural network approach to cloud classification
NASA Technical Reports Server (NTRS)
Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.
1990-01-01
It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.
Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region
Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao
2017-01-01
Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure–up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data. PMID:28587066
Sugimoto, Katsutoshi; Shiraishi, Junji; Moriyasu, Fuminori; Doi, Kunio
2009-04-01
To develop a computer-aided diagnostic (CAD) scheme for classifying focal liver lesions (FLLs) by use of physicians' subjective classification of echogenic patterns of FLLs on baseline and contrast-enhanced ultrasonography (US). A total of 137 hepatic lesions in 137 patients were evaluated with B-mode and NC100100 (Sonazoid)-enhanced pulse-inversion US; lesions included 74 hepatocellular carcinomas (HCCs) (23: well-differentiated, 36: moderately differentiated, 15: poorly differentiated HCCs), 33 liver metastases, and 30 liver hemangiomas. Three physicians evaluated single images at B-mode and arterial phases with a cine mode. Physicians were asked to classify each lesion into one of eight B-mode and one of eight enhancement patterns, but did not make a diagnosis. To classify five types of FLLs, we employed a decision tree model with four decision nodes and four artificial neural networks (ANNs). The results of the physicians' pattern classifications were used successively for four different ANNs in making decisions at each of the decision nodes in the decision tree model. The classification accuracies for the 137 FLLs were 84.8% for metastasis, 93.3% for hemangioma, and 98.6% for all HCCs. In addition, the classification accuracies for histological differentiation types of HCCs were 65.2% for well-differentiated HCC, 41.7% for moderately differentiated HCC, and 80.0% for poorly differentiated HCC. This CAD scheme has the potential to improve the diagnostic accuracy of liver lesions. However, the accuracy in the histologic differential diagnosis of HCC based on baseline and contrast-enhanced US is still limited.
Optical signal processing using photonic reservoir computing
NASA Astrophysics Data System (ADS)
Salehi, Mohammad Reza; Dehyadegari, Louiza
2014-10-01
As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.
ERIC Educational Resources Information Center
Wyse, Adam E.; Babcock, Ben
2016-01-01
A common suggestion made in the psychometric literature for fixed-length classification tests is that one should design tests so that they have maximum information at the cut score. Designing tests in this way is believed to maximize the classification accuracy and consistency of the assessment. This article uses simulated examples to illustrate…
Towards automated sleep classification in infants using symbolic and subsymbolic approaches.
Kubat, M; Flotzinger, D; Pfurtscheller, G
1993-04-01
The paper addresses the problem of automatic sleep classification. A special effort is made to find a method of extracting reasonable descriptions of the individual sleep stages from sample measurements of EGG, EMG, EOG, etc., and from a classification of these measurements provided by an expert. The method should satisfy three requirements: classification accuracy, interpretability of the results, and the ability to select the relevant and discard the irrelevant variables. The solution suggested in this paper consists of a combination of the subsymbolic algorithm LVQ with the symbolic decision tree generator ID3. Results demonstrating the feasibility and utility of our approach are also presented.
Rossini, Paolo M; Buscema, Massimo; Capriotti, Massimiliano; Grossi, Enzo; Rodriguez, Guido; Del Percio, Claudio; Babiloni, Claudio
2008-07-01
It has been shown that a new procedure (implicit function as squashing time, IFAST) based on artificial neural networks (ANNs) is able to compress eyes-closed resting electroencephalographic (EEG) data into spatial invariants of the instant voltage distributions for an automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects with classification accuracy of individual subjects higher than 92%. Here we tested the hypothesis that this is the case also for the classification of individual normal elderly (Nold) vs. MCI subjects, an important issue for the screening of large populations at high risk of AD. Eyes-closed resting EEG data (10-20 electrode montage) were recorded in 171 Nold and in 115 amnesic MCI subjects. The data inputs for the classification by IFAST were the weights of the connections within a nonlinear auto-associative ANN trained to generate the instant voltage distributions of 60-s artifact-free EEG data. The most relevant features were selected and coincidently the dataset was split into two halves for the final binary classification (training and testing) performed by a supervised ANN. The classification of the individual Nold and MCI subjects reached 95.87% of sensitivity and 91.06% of specificity (93.46% of accuracy). These results indicate that IFAST can reliably distinguish eyes-closed resting EEG in individual Nold and MCI subjects. IFAST may be used for large-scale periodic screening of large populations at risk of AD and personalized care.
NASA Astrophysics Data System (ADS)
Fusco, Terence; Bi, Yaxin; Nugent, Chris; Wu, Shengli
2016-08-01
We can see that the data imputation approach using the Regression CTA has performed more favourably when compared with the alternative methods on this dataset. We now have the evidence to show that this method is viable moving forward with further research in this area. The weighted distribution experiments have provided us with a more balanced and appropriate ratio for snail density classification purposes when using either the 3 or 5 category combination. The most desirable results are found when using 3 categories of SD with the weighted distribution of classes being 20-60-20. This information reflects the optimum classification accuracy across the data range and can be applied to any novel environment feature dataset pertaining to Schistosomiasis vector classification. ITSVM has provided us with a method of labelling SD data which we can use for classification with epidemic disease prediction research. The confidence level selection enables consistent labelling accuracy for bespoke requirements when classifying the data from each year. The SMOTE Equilibrium proposed method has yielded a slight increase with each multiple of synthetic instances that are compounded to the training dataset. The reduction of overfitting and increase of data instances has shown a gradual classification accuracy increase across the data for each year. We will now test to see what the optimum synthetic instance incremental increase is across our data and apply this to our experiments with this research.
ERIC Educational Resources Information Center
Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.
2010-01-01
Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Mutanga, Onisimo; Cho, Moses A.; Ismail, Riyad
2013-04-01
In this paper, a user-defined inter-band correlation filter function was used to resample hyperspectral data and thereby mitigate the problem of multicollinearity in classification analysis. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting threshold of inter-band correlation (WTC, Pearson's r) was calculated, whereby r = 1 at the band-centre. Various WTC (r = 0.99, r = 0.95 and r = 0.90) were assessed, and bands with coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in the random forest analysis to classify in situ C3 and C4 grass canopy reflectance. The respective WTC datasets yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results obtained from this study suggested that resampling of hyperspectral data should account for the spectral dependence information to improve overall classification accuracy as well as reducing the problem of multicollinearity.
NASA Astrophysics Data System (ADS)
Sah, Shagan
An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data. We concluded that this approach is capable of generating land cover maps of acceptable accuracy and rapid turnaround, which in turn can yield reliable estimates of crop acreage of a region. The final algorithm is part of an automated software tool, which can be used by emergency response personnel to generate a nuclear ingestion pathway information product within a few hours of data collection.
NASA Technical Reports Server (NTRS)
Butera, M. K. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.
Schmidt, Robert L; Walker, Brandon S; Cohen, Michael B
2015-03-01
Reliable estimates of accuracy are important for any diagnostic test. Diagnostic accuracy studies are subject to unique sources of bias. Verification bias and classification bias are 2 sources of bias that commonly occur in diagnostic accuracy studies. Statistical methods are available to estimate the impact of these sources of bias when they occur alone. The impact of interactions when these types of bias occur together has not been investigated. We developed mathematical relationships to show the combined effect of verification bias and classification bias. A wide range of case scenarios were generated to assess the impact of bias components and interactions on total bias. Interactions between verification bias and classification bias caused overestimation of sensitivity and underestimation of specificity. Interactions had more effect on sensitivity than specificity. Sensitivity was overestimated by at least 7% in approximately 6% of the tested scenarios. Specificity was underestimated by at least 7% in less than 0.1% of the scenarios. Interactions between verification bias and classification bias create distortions in accuracy estimates that are greater than would be predicted from each source of bias acting independently. © 2014 American Cancer Society.
Monti, S.; Cooper, G. F.
1998-01-01
We present a new Bayesian classifier for computer-aided diagnosis. The new classifier builds upon the naive-Bayes classifier, and models the dependencies among patient findings in an attempt to improve its performance, both in terms of classification accuracy and in terms of calibration of the estimated probabilities. This work finds motivation in the argument that highly calibrated probabilities are necessary for the clinician to be able to rely on the model's recommendations. Experimental results are presented, supporting the conclusion that modeling the dependencies among findings improves calibration. PMID:9929288
NASA Astrophysics Data System (ADS)
Brandl, Miriam B.; Beck, Dominik; Pham, Tuan D.
2011-06-01
The high dimensionality of image-based dataset can be a drawback for classification accuracy. In this study, we propose the application of fuzzy c-means clustering, cluster validity indices and the notation of a joint-feature-clustering matrix to find redundancies of image-features. The introduced matrix indicates how frequently features are grouped in a mutual cluster. The resulting information can be used to find data-derived feature prototypes with a common biological meaning, reduce data storage as well as computation times and improve the classification accuracy.
Development of a real time activity monitoring Android application utilizing SmartStep.
Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward
2016-08-01
Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.
Study on bayes discriminant analysis of EEG data.
Shi, Yuan; He, DanDan; Qin, Fang
2014-01-01
In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions. In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%. Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.
NASA Astrophysics Data System (ADS)
Samsudin, Sarah Hanim; Shafri, Helmi Z. M.; Hamedianfar, Alireza
2016-04-01
Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments.
Banzato, T; Cherubini, G B; Atzori, M; Zotti, A
2018-05-01
An established deep neural network (DNN) based on transfer learning and a newly designed DNN were tested to predict the grade of meningiomas from magnetic resonance (MR) images in dogs and to determine the accuracy of classification of using pre- and post-contrast T1-weighted (T1W), and T2-weighted (T2W) MR images. The images were randomly assigned to a training set, a validation set and a test set, comprising 60%, 10% and 30% of images, respectively. The combination of DNN and MR sequence displaying the highest discriminating accuracy was used to develop an image classifier to predict the grading of new cases. The algorithm based on transfer learning using the established DNN did not provide satisfactory results, whereas the newly designed DNN had high classification accuracy. On the basis of classification accuracy, an image classifier built on the newly designed DNN using post-contrast T1W images was developed. This image classifier correctly predicted the grading of 8 out of 10 images not included in the data set. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Majumder, S. K.; Krishna, H.; Sidramesh, M.; Chaturvedi, P.; Gupta, P. K.
2011-08-01
We report the results of a comparative evaluation of in vivo fluorescence and Raman spectroscopy for diagnosis of oral neoplasia. The study carried out at Tata Memorial Hospital, Mumbai, involved 26 healthy volunteers and 138 patients being screened for neoplasm of oral cavity. Spectral measurements were taken from multiple sites of abnormal as well as apparently uninvolved contra-lateral regions of the oral cavity in each patient. The different tissue sites investigated belonged to one of the four histopathology categories: 1) squamous cell carcinoma (SCC), 2) oral sub-mucous fibrosis (OSMF), 3) leukoplakia (LP) and 4) normal squamous tissue. A probability based multivariate statistical algorithm utilizing nonlinear Maximum Representation and Discrimination Feature for feature extraction and Sparse Multinomial Logistic Regression for classification was developed for direct multi-class classification in a leave-one-patient-out cross validation mode. The results reveal that the performance of Raman spectroscopy is considerably superior to that of fluorescence in stratifying the oral tissues into respective histopathologic categories. The best classification accuracy was observed to be 90%, 93%, 94%, and 89% for SCC, SMF, leukoplakia, and normal oral tissues, respectively, on the basis of leave-one-patient-out cross-validation, with an overall accuracy of 91%. However, when a binary classification was employed to distinguish spectra from all the SCC, SMF and leukoplakik tissue sites together from normal, fluorescence and Raman spectroscopy were seen to have almost comparable performances with Raman yielding marginally better classification accuracy of 98.5% as compared to 94% of fluorescence.
Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing
2017-12-28
Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.
Research on Optimization of GLCM Parameter in Cell Classification
NASA Astrophysics Data System (ADS)
Zhang, Xi-Kun; Hou, Jie; Hu, Xin-Hua
2016-05-01
Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.
Automated aural classification used for inter-species discrimination of cetaceans.
Binder, Carolyn M; Hines, Paul C
2014-04-01
Passive acoustic methods are in widespread use to detect and classify cetacean species; however, passive acoustic systems often suffer from large false detection rates resulting from numerous transient sources. To reduce the acoustic analyst workload, automatic recognition methods may be implemented in a two-stage process. First, a general automatic detector is implemented that produces many detections to ensure cetacean presence is noted. Then an automatic classifier is used to significantly reduce the number of false detections and classify the cetacean species. This process requires development of a robust classifier capable of performing inter-species classification. Because human analysts can aurally discriminate species, an automated aural classifier that uses perceptual signal features was tested on a cetacean data set. The classifier successfully discriminated between four species of cetaceans-bowhead, humpback, North Atlantic right, and sperm whales-with 85% accuracy. It also performed well (100% accuracy) for discriminating sperm whale clicks from right whale gunshots. An accuracy of 92% and area under the receiver operating characteristic curve of 0.97 were obtained for the relatively challenging bowhead and humpback recognition case. These results demonstrated that the perceptual features employed by the aural classifier provided powerful discrimination cues for inter-species classification of cetaceans.
Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces
Sellers, Eric W.; Wang, Xingyu
2013-01-01
Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331
Sidek, Khairul; Khali, Ibrahim
2012-01-01
In this paper, a person identification mechanism implemented with Cardioid based graph using electrocardiogram (ECG) is presented. Cardioid based graph has given a reasonably good classification accuracy in terms of differentiating between individuals. However, the current feature extraction method using Euclidean distance could be further improved by using Mahalanobis distance measurement producing extracted coefficients which takes into account the correlations of the data set. Identification is then done by applying these extracted features to Radial Basis Function Network. A total of 30 ECG data from MITBIH Normal Sinus Rhythm database (NSRDB) and MITBIH Arrhythmia database (MITDB) were used for development and evaluation purposes. Our experimentation results suggest that the proposed feature extraction method has significantly increased the classification performance of subjects in both databases with accuracy from 97.50% to 99.80% in NSRDB and 96.50% to 99.40% in MITDB. High sensitivity, specificity and positive predictive value of 99.17%, 99.91% and 99.23% for NSRDB and 99.30%, 99.90% and 99.40% for MITDB also validates the proposed method. This result also indicates that the right feature extraction technique plays a vital role in determining the persistency of the classification accuracy for Cardioid based person identification mechanism.
Tang, Yunwei; Jing, Linhai; Li, Hui; Liu, Qingjie; Yan, Qi; Li, Xiuxia
2016-11-22
This study explores the ability of WorldView-2 (WV-2) imagery for bamboo mapping in a mountainous region in Sichuan Province, China. A large area of this place is covered by shadows in the image, and only a few sampled points derived were useful. In order to identify bamboos based on sparse training data, the sample size was expanded according to the reflectance of multispectral bands selected using the principal component analysis (PCA). Then, class separability based on the training data was calculated using a feature space optimization method to select the features for classification. Four regular object-based classification methods were applied based on both sets of training data. The results show that the k -nearest neighbor ( k -NN) method produced the greatest accuracy. A geostatistically-weighted k -NN classifier, accounting for the spatial correlation between classes, was then applied to further increase the accuracy. It achieved 82.65% and 93.10% of the producer's and user's accuracies respectively for the bamboo class. The canopy densities were estimated to explain the result. This study demonstrates that the WV-2 image can be used to identify small patches of understory bamboos given limited known samples, and the resulting bamboo distribution facilitates the assessments of the habitats of giant pandas.
Tactile surface classification for limbed robots using a pressure sensitive robot skin.
Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan
2015-02-02
This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.
Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan
2016-02-01
Accuracy plays a vital role in the medical field as it concerns with the life of an individual. Extensive research has been conducted on disease classification and prediction using machine learning techniques. However, there is no agreement on which classifier produces the best results. A specific classifier may be better than others for a specific dataset, but another classifier could perform better for some other dataset. Ensemble of classifiers has been proved to be an effective way to improve classification accuracy. In this research we present an ensemble framework with multi-layer classification using enhanced bagging and optimized weighting. The proposed model called "HM-BagMoov" overcomes the limitations of conventional performance bottlenecks by utilizing an ensemble of seven heterogeneous classifiers. The framework is evaluated on five different heart disease datasets, four breast cancer datasets, two diabetes datasets, two liver disease datasets and one hepatitis dataset obtained from public repositories. The analysis of the results show that ensemble framework achieved the highest accuracy, sensitivity and F-Measure when compared with individual classifiers for all the diseases. In addition to this, the ensemble framework also achieved the highest accuracy when compared with the state of the art techniques. An application named "IntelliHealth" is also developed based on proposed model that may be used by hospitals/doctors for diagnostic advice. Copyright © 2015 Elsevier Inc. All rights reserved.
Classification accuracy for stratification with remotely sensed data
Raymond L. Czaplewski; Paul L. Patterson
2003-01-01
Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an âerror matrix,â which is...
Zbroch, Tomasz; Knapp, Paweł Grzegorz; Knapp, Piotr Andrzej
2007-09-01
Increasing knowledge concerning carcinogenesis within cervical epithelium has forced us to make continues modifications of cytology classification of the cervical smears. Eventually, new descriptions of the submicroscopic cytomorphological abnormalities have enabled the implementation of Bethesda System which was meant to take place of the former Papanicolaou classification although temporarily both are sometimes used simultaneously. The aim of this study was to compare results of these two classification systems in the aspect of diagnostic accuracy verified by further tests of the diagnostic algorithm for the cervical lesion evaluation. The study was conducted in the group of women selected from general population, the criteria being the place of living and cervical cancer age risk group, in the consecutive periods of mass screening in Podlaski region. The performed diagnostic tests have been based on the commonly used algorithm, as well as identical laboratory and methodological conditions. Performed assessment revealed comparable diagnostic accuracy of both analyzing classifications, verified by histological examination, although with marked higher specificity for dysplastic lesions with decreased number of HSIL results and increased diagnosis of LSILs. Higher number of performed colposcopies and biopsies were an additional consequence of TBS classification. Results based on Bethesda System made it possible to find the sources and reasons of abnormalities with much greater precision, which enabled causing agent treatment. Two evaluated cytology classification systems, although not much different, depicted higher potential of TBS and better, more effective communication between cytology laboratory and gynecologist, making reasonable implementation of The Bethesda System in the daily cytology screening work.
An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.
Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed
2018-01-01
The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.
Post-boosting of classification boundary for imbalanced data using geometric mean.
Du, Jie; Vong, Chi-Man; Pun, Chi-Man; Wong, Pak-Kin; Ip, Weng-Fai
2017-12-01
In this paper, a novel imbalance learning method for binary classes is proposed, named as Post-Boosting of classification boundary for Imbalanced data (PBI), which can significantly improve the performance of any trained neural networks (NN) classification boundary. The procedure of PBI simply consists of two steps: an (imbalanced) NN learning method is first applied to produce a classification boundary, which is then adjusted by PBI under the geometric mean (G-mean). For data imbalance, the geometric mean of the accuracies of both minority and majority classes is considered, that is statistically more suitable than the common metric accuracy. PBI also has the following advantages over traditional imbalance methods: (i) PBI can significantly improve the classification accuracy on minority class while improving or keeping that on majority class as well; (ii) PBI is suitable for large data even with high imbalance ratio (up to 0.001). For evaluation of (i), a new metric called Majority loss/Minority advance ratio (MMR) is proposed that evaluates the loss ratio of majority class to minority class. Experiments have been conducted for PBI and several imbalance learning methods over benchmark datasets of different sizes, different imbalance ratios, and different dimensionalities. By analyzing the experimental results, PBI is shown to outperform other imbalance learning methods on almost all datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delineation of marsh types of the Texas coast from Corpus Christi Bay to the Sabine River in 2010
Enwright, Nicholas M.; Hartley, Stephen B.; Brasher, Michael G.; Visser, Jenneke M.; Mitchell, Michael K.; Ballard, Bart M.; Parr, Mark W.; Couvillion, Brady R.; Wilson, Barry C.
2014-01-01
Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types for modeling habitat capacities and needs of marsh-reliant wildlife (such as waterfowl and alligator). Detailed information on the extent and distribution of marsh vegetation zones throughout the Texas coast has been historically unavailable. In response, the U.S. Geological Survey, in cooperation and collaboration with the U.S. Fish and Wildlife Service via the Gulf Coast Joint Venture, Texas A&M University-Kingsville, the University of Louisiana-Lafayette, and Ducks Unlimited, Inc., has produced a classification of marsh vegetation types along the middle and upper Texas coast from Corpus Christi Bay to the Sabine River. This study incorporates approximately 1,000 ground reference locations collected via helicopter surveys in coastal marsh areas and about 2,000 supplemental locations from fresh marsh, water, and “other” (that is, nonmarsh) areas. About two-thirds of these data were used for training, and about one-third were used for assessing accuracy. Decision-tree analyses using Rulequest See5 were used to classify emergent marsh vegetation types by using these data, multitemporal satellite-based multispectral imagery from 2009 to 2011, a bare-earth digital elevation model (DEM) based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables believed to be important for delineating the extent and distribution of marsh vegetation communities. Image objects were generated from segmentation of high-resolution airborne imagery acquired in 2010 and were used to refine the classification. The classification is dated 2010 because the year is both the midpoint of the multitemporal satellite-based imagery (2009–11) classified and the date of the high-resolution airborne imagery that was used to develop image objects. Overall accuracy corrected for bias (accuracy estimate incorporates true marginal proportions) was 91 percent (95 percent confidence interval [CI]: 89.2–92.8), with a kappa statistic of 0.79 (95 percent CI: 0.77–0.81). The classification performed best for saline marsh (user’s accuracy 81.5 percent; producer’s accuracy corrected for bias 62.9 percent) but showed a lesser ability to discriminate intermediate marsh (user’s accuracy 47.7 percent; producer’s accuracy corrected for bias 49.5 percent). Because of confusion in intermediate and brackish marsh classes, an alternative classification containing only three marsh types was created in which intermediate and brackish marshes were combined into a single class. Image objects were reattributed by using this alternative three-marsh-type classification. Overall accuracy, corrected for bias, of this more general classification was 92.4 percent (95 percent CI: 90.7–94.2), and the kappa statistic was 0.83 (95 percent CI: 0.81–0.85). Mean user’s accuracy for marshes within the four-marsh-type and three-marsh-type classifications was 65.4 percent and 75.6 percent, respectively, whereas mean producer’s accuracy was 56.7 percent and 65.1 percent, respectively. This study provides a more objective and repeatable method for classifying marsh types of the middle and upper Texas coast at an extent and greater level of detail than previously available for the study area. The seamless classification produced through this work is now available to help State agencies (such as the Texas Parks and Wildlife Department) and landscape-scale conservation partnerships (such as the Gulf Coast Prairie Landscape Conservation Cooperative and the Gulf Coast Joint Venture) to develop and (or) refine conservation plans targeting priority natural resources. Moreover, these data may improve projections of landscape change and serve as a baseline for monitoring future changes resulting from chronic and episodic stressors.
Metric learning for automatic sleep stage classification.
Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung
2013-01-01
We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.
Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska
Selkowitz, D.J.; Stehman, S.V.
2011-01-01
The National Land Cover Database (NLCD) 2001 Alaska land cover classification is the first 30-m resolution land cover product available covering the entire state of Alaska. The accuracy assessment of the NLCD 2001 Alaska land cover classification employed a geographically stratified three-stage sampling design to select the reference sample of pixels. Reference land cover class labels were determined via fixed wing aircraft, as the high resolution imagery used for determining the reference land cover classification in the conterminous U.S. was not available for most of Alaska. Overall thematic accuracy for the Alaska NLCD was 76.2% (s.e. 2.8%) at Level II (12 classes evaluated) and 83.9% (s.e. 2.1%) at Level I (6 classes evaluated) when agreement was defined as a match between the map class and either the primary or alternate reference class label. When agreement was defined as a match between the map class and primary reference label only, overall accuracy was 59.4% at Level II and 69.3% at Level I. The majority of classification errors occurred at Level I of the classification hierarchy (i.e., misclassifications were generally to a different Level I class, not to a Level II class within the same Level I class). Classification accuracy was higher for more abundant land cover classes and for pixels located in the interior of homogeneous land cover patches. ?? 2011.
The study of vehicle classification equipment with solutions to improve accuracy in Oklahoma.
DOT National Transportation Integrated Search
2014-12-01
The accuracy of vehicle counting and classification data is vital for appropriate future highway and road : design, including determining pavement characteristics, eliminating traffic jams, and improving safety. : Organizations relying on vehicle cla...
A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs
NASA Astrophysics Data System (ADS)
Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.
2016-12-01
Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds.
Sur, Maitreyi; Suffredini, Tony; Wessells, Stephen M; Bloom, Peter H; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data.
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds
Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data. PMID:28403159
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds
Sur, Maitreyi; Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael J.; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data.
Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
Liao, Shih-Cheng; Wu, Chien-Te; Huang, Hao-Chuan; Cheng, Wei-Teng; Liu, Yi-Hung
2017-06-14
Major depressive disorder (MDD) has become a leading contributor to the global burden of disease; however, there are currently no reliable biological markers or physiological measurements for efficiently and effectively dissecting the heterogeneity of MDD. Here we propose a novel method based on scalp electroencephalography (EEG) signals and a robust spectral-spatial EEG feature extractor called kernel eigen-filter-bank common spatial pattern (KEFB-CSP). The KEFB-CSP first filters the multi-channel raw EEG signals into a set of frequency sub-bands covering the range from theta to gamma bands, then spatially transforms the EEG signals of each sub-band from the original sensor space to a new space where the new signals (i.e., CSPs) are optimal for the classification between MDD and healthy controls, and finally applies the kernel principal component analysis (kernel PCA) to transform the vector containing the CSPs from all frequency sub-bands to a lower-dimensional feature vector called KEFB-CSP. Twelve patients with MDD and twelve healthy controls participated in this study, and from each participant we collected 54 resting-state EEGs of 6 s length (5 min and 24 s in total). Our results show that the proposed KEFB-CSP outperforms other EEG features including the powers of EEG frequency bands, and fractal dimension, which had been widely applied in previous EEG-based depression detection studies. The results also reveal that the 8 electrodes from the temporal areas gave higher accuracies than other scalp areas. The KEFB-CSP was able to achieve an average EEG classification accuracy of 81.23% in single-trial analysis when only the 8-electrode EEGs of the temporal area and a support vector machine (SVM) classifier were used. We also designed a voting-based leave-one-participant-out procedure to test the participant-independent individual classification accuracy. The voting-based results show that the mean classification accuracy of about 80% can be achieved by the KEFP-CSP feature and the SVM classifier with only several trials, and this level of accuracy seems to become stable as more trials (i.e., <7 trials) are used. These findings therefore suggest that the proposed method has a great potential for developing an efficient (required only a few 6-s EEG signals from the 8 electrodes over the temporal) and effective (~80% classification accuracy) EEG-based brain-computer interface (BCI) system which may, in the future, help psychiatrists provide individualized and effective treatments for MDD patients.
Byun, Wonwoo; Lee, Jung-Min; Kim, Youngwon; Brusseau, Timothy A
2018-03-26
This study examined the accuracy of the Fitbit activity tracker (FF) for quantifying sedentary behavior (SB) and varying intensities of physical activity (PA) in 3-5-year-old children. Twenty-eight healthy preschool-aged children (Girls: 46%, Mean age: 4.8 ± 1.0 years) wore the FF and were directly observed while performing a set of various unstructured and structured free-living activities from sedentary to vigorous intensity. The classification accuracy of the FF for measuring SB, light PA (LPA), moderate-to-vigorous PA (MVPA), and total PA (TPA) was examined calculating Pearson correlation coefficients (r), mean absolute percent error (MAPE), Cohen's kappa ( k ), sensitivity (Se), specificity (Sp), and area under the receiver operating curve (ROC-AUC). The classification accuracies of the FF (ROC-AUC) were 0.92, 0.63, 0.77 and 0.92 for SB, LPA, MVPA and TPA, respectively. Similarly, values of kappa, Se, Sp and percentage of correct classification were consistently high for SB and TPA, but low for LPA and MVPA. The FF demonstrated excellent classification accuracy for assessing SB and TPA, but lower accuracy for classifying LPA and MVPA. Our findings suggest that the FF should be considered as a valid instrument for assessing time spent sedentary and overall physical activity in preschool-aged children.
Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar
2014-01-01
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357
Protein classification using modified n-grams and skip-grams.
Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J
2018-05-01
Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.
The construction of support vector machine classifier using the firefly algorithm.
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511
An ant colony optimization based feature selection for web page classification.
Saraç, Esra; Özel, Selma Ayşe
2014-01-01
The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.
Classification Based on Pruning and Double Covered Rule Sets for the Internet of Things Applications
Zhou, Zhongmei; Wang, Weiping
2014-01-01
The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy. PMID:24511304
Li, Shasha; Zhou, Zhongmei; Wang, Weiping
2014-01-01
The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
NASA Astrophysics Data System (ADS)
Książek, Judyta
2015-10-01
At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.
NASA Astrophysics Data System (ADS)
Navratil, Peter; Wilps, Hans
2013-01-01
Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.
NASA Astrophysics Data System (ADS)
Zhu, Zhe; Gallant, Alisa L.; Woodcock, Curtis E.; Pengra, Bruce; Olofsson, Pontus; Loveland, Thomas R.; Jin, Suming; Dahal, Devendra; Yang, Limin; Auch, Roger F.
2016-12-01
The U.S. Geological Survey's Land Change Monitoring, Assessment, and Projection (LCMAP) initiative is a new end-to-end capability to continuously track and characterize changes in land cover, use, and condition to better support research and applications relevant to resource management and environmental change. Among the LCMAP product suite are annual land cover maps that will be available to the public. This paper describes an approach to optimize the selection of training and auxiliary data for deriving the thematic land cover maps based on all available clear observations from Landsats 4-8. Training data were selected from map products of the U.S. Geological Survey's Land Cover Trends project. The Random Forest classifier was applied for different classification scenarios based on the Continuous Change Detection and Classification (CCDC) algorithm. We found that extracting training data proportionally to the occurrence of land cover classes was superior to an equal distribution of training data per class, and suggest using a total of 20,000 training pixels to classify an area about the size of a Landsat scene. The problem of unbalanced training data was alleviated by extracting a minimum of 600 training pixels and a maximum of 8000 training pixels per class. We additionally explored removing outliers contained within the training data based on their spectral and spatial criteria, but observed no significant improvement in classification results. We also tested the importance of different types of auxiliary data that were available for the conterminous United States, including: (a) five variables used by the National Land Cover Database, (b) three variables from the cloud screening "Function of mask" (Fmask) statistics, and (c) two variables from the change detection results of CCDC. We found that auxiliary variables such as a Digital Elevation Model and its derivatives (aspect, position index, and slope), potential wetland index, water probability, snow probability, and cloud probability improved the accuracy of land cover classification. Compared to the original strategy of the CCDC algorithm (500 pixels per class), the use of the optimal strategy improved the classification accuracies substantially (15-percentage point increase in overall accuracy and 4-percentage point increase in minimum accuracy).
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
Ground Truth Sampling and LANDSAT Accuracy Assessment
NASA Technical Reports Server (NTRS)
Robinson, J. W.; Gunther, F. J.; Campbell, W. J.
1982-01-01
It is noted that the key factor in any accuracy assessment of remote sensing data is the method used for determining the ground truth, independent of the remote sensing data itself. The sampling and accuracy procedures developed for nuclear power plant siting study are described. The purpose of the sampling procedure was to provide data for developing supervised classifications for two study sites and for assessing the accuracy of that and the other procedures used. The purpose of the accuracy assessment was to allow the comparison of the cost and accuracy of various classification procedures as applied to various data types.
Automated structural classification of lipids by machine learning.
Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T
2015-03-01
Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kamal, Muhammad; Johansen, Kasper
2017-10-01
Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.
Atmospheric effects in multispectral remote sensor data
NASA Technical Reports Server (NTRS)
Turner, R. E.
1975-01-01
The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.
Multispectral LiDAR Data for Land Cover Classification of Urban Areas
Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed
2017-01-01
Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy. PMID:28445432
Multispectral LiDAR Data for Land Cover Classification of Urban Areas.
Morsy, Salem; Shaker, Ahmed; El-Rabbany, Ahmed
2017-04-26
Airborne Light Detection And Ranging (LiDAR) systems usually operate at a monochromatic wavelength measuring the range and the strength of the reflected energy (intensity) from objects. Recently, multispectral LiDAR sensors, which acquire data at different wavelengths, have emerged. This allows for recording of a diversity of spectral reflectance from objects. In this context, we aim to investigate the use of multispectral LiDAR data in land cover classification using two different techniques. The first is image-based classification, where intensity and height images are created from LiDAR points and then a maximum likelihood classifier is applied. The second is point-based classification, where ground filtering and Normalized Difference Vegetation Indices (NDVIs) computation are conducted. A dataset of an urban area located in Oshawa, Ontario, Canada, is classified into four classes: buildings, trees, roads and grass. An overall accuracy of up to 89.9% and 92.7% is achieved from image classification and 3D point classification, respectively. A radiometric correction model is also applied to the intensity data in order to remove the attenuation due to the system distortion and terrain height variation. The classification process is then repeated, and the results demonstrate that there are no significant improvements achieved in the overall accuracy.
NASA Astrophysics Data System (ADS)
Qu, Haicheng; Liang, Xuejian; Liang, Shichao; Liu, Wanjun
2018-01-01
Many methods of hyperspectral image classification have been proposed recently, and the convolutional neural network (CNN) achieves outstanding performance. However, spectral-spatial classification of CNN requires an excessively large model, tremendous computations, and complex network, and CNN is generally unable to use the noisy bands caused by water-vapor absorption. A dimensionality-varied CNN (DV-CNN) is proposed to address these issues. There are four stages in DV-CNN and the dimensionalities of spectral-spatial feature maps vary with the stages. DV-CNN can reduce the computation and simplify the structure of the network. All feature maps are processed by more kernels in higher stages to extract more precise features. DV-CNN also improves the classification accuracy and enhances the robustness to water-vapor absorption bands. The experiments are performed on data sets of Indian Pines and Pavia University scene. The classification performance of DV-CNN is compared with state-of-the-art methods, which contain the variations of CNN, traditional, and other deep learning methods. The experiment of performance analysis about DV-CNN itself is also carried out. The experimental results demonstrate that DV-CNN outperforms state-of-the-art methods for spectral-spatial classification and it is also robust to water-vapor absorption bands. Moreover, reasonable parameters selection is effective to improve classification accuracy.
Zmiri, Dror; Shahar, Yuval; Taieb-Maimon, Meirav
2012-04-01
To test the feasibility of classifying emergency department patients into severity grades using data mining methods. Emergency department records of 402 patients were classified into five severity grades by two expert physicians. The Naïve Bayes and C4.5 algorithms were applied to produce classifiers from patient data into severity grades. The classifiers' results over several subsets of the data were compared with the physicians' assessments, with a random classifier, and with a classifier that selects the maximal-prevalence class. Positive predictive value, multiple-class extensions of sensitivity and specificity combinations, and entropy change. The mean accuracy of the data mining classifiers was 52.94 ± 5.89%, significantly better (P < 0.05) than the mean accuracy of a random classifier (34.60 ± 2.40%). The entropy of the input data sets was reduced through classification by a mean of 10.1%. Allowing for classification deviations of one severity grade led to mean accuracy of 85.42 ± 1.42%. The classifiers' accuracy in that case was similar to the physicians' consensus rate. Learning from consensus records led to better performance. Reducing the number of severity grades improved results in certain cases. The performance of the Naïve Bayes and C4.5 algorithms was similar; in unbalanced data sets, Naïve Bayes performed better. It is possible to produce a computerized classification model for the severity grade of triage patients, using data mining methods. Learning from patient records regarding which there is a consensus of several physicians is preferable to learning from each physician's patients. Either Naïve Bayes or C4.5 can be used; Naïve Bayes is preferable for unbalanced data sets. An ambiguity in the intermediate severity grades seems to hamper both the physicians' agreement and the classifiers' accuracy. © 2010 Blackwell Publishing Ltd.
Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu
2018-01-01
Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
NASA Technical Reports Server (NTRS)
Rignot, Eric; Williams, Cynthia; Way, Jobea; Viereck, Leslie
1993-01-01
A maximum a posteriori Bayesian classifier for multifrequency polarimetric SAR data is used to perform a supervised classification of forest types in the floodplains of Alaska. The image classes include white spruce, balsam poplar, black spruce, alder, non-forests, and open water. The authors investigate the effect on classification accuracy of changing environmental conditions, and of frequency and polarization of the signal. The highest classification accuracy (86 percent correctly classified forest pixels, and 91 percent overall) is obtained combining L- and C-band frequencies fully polarimetric on a date where the forest is just recovering from flooding. The forest map compares favorably with a vegetation map assembled from digitized aerial photos which took five years for completion, and address the state of the forest in 1978, ignoring subsequent fires, changes in the course of the river, clear-cutting of trees, and tree growth. HV-polarization is the most useful polarization at L- and C-band for classification. C-band VV (ERS-1 mode) and L-band HH (J-ERS-1 mode) alone or combined yield unsatisfactory classification accuracies. Additional data acquired in the winter season during thawed and frozen days yield classification accuracies respectively 20 percent and 30 percent lower due to a greater confusion between conifers and deciduous trees. Data acquired at the peak of flooding in May 1991 also yield classification accuracies 10 percent lower because of dominant trunk-ground interactions which mask out finer differences in radar backscatter between tree species. Combination of several of these dates does not improve classification accuracy. For comparison, panchromatic optical data acquired by SPOT in the summer season of 1991 are used to classify the same area. The classification accuracy (78 percent for the forest types and 90 percent if open water is included) is lower than that obtained with AIRSAR although conifers and deciduous trees are better separated due to the presence of leaves on the deciduous trees. Optical data do not separate black spruce and white spruce as well as SAR data, cannot separate alder from balsam poplar, and are of course limited by the frequent cloud cover in the polar regions. Yet, combining SPOT and AIRSAR offers better chances to identify vegetation types independent of ground truth information using a combination of NDVI indexes from SPOT, biomass numbers from AIRSAR, and a segmentation map from either one.
Multi-class SVM model for fMRI-based classification and grading of liver fibrosis
NASA Astrophysics Data System (ADS)
Freiman, M.; Sela, Y.; Edrei, Y.; Pappo, O.; Joskowicz, L.; Abramovitch, R.
2010-03-01
We present a novel non-invasive automatic method for the classification and grading of liver fibrosis from fMRI maps based on hepatic hemodynamic changes. This method automatically creates a model for liver fibrosis grading based on training datasets. Our supervised learning method evaluates hepatic hemodynamics from an anatomical MRI image and three T2*-W fMRI signal intensity time-course scans acquired during the breathing of air, air-carbon dioxide, and carbogen. It constructs a statistical model of liver fibrosis from these fMRI scans using a binary-based one-against-all multi class Support Vector Machine (SVM) classifier. We evaluated the resulting classification model with the leave-one out technique and compared it to both full multi-class SVM and K-Nearest Neighbor (KNN) classifications. Our experimental study analyzed 57 slice sets from 13 mice, and yielded a 98.2% separation accuracy between healthy and low grade fibrotic subjects, and an overall accuracy of 84.2% for fibrosis grading. These results are better than the existing image-based methods which can only discriminate between healthy and high grade fibrosis subjects. With appropriate extensions, our method may be used for non-invasive classification and progression monitoring of liver fibrosis in human patients instead of more invasive approaches, such as biopsy or contrast-enhanced imaging.
Hotz, Christine S; Templeton, Steven J; Christopher, Mary M
2005-03-01
A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.
Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima
2017-01-01
To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.
Karan, Shivesh Kishore; Samadder, Sukha Ranjan
2016-08-01
One objective of the present study was to evaluate the performance of support vector machine (SVM)-based image classification technique with the maximum likelihood classification (MLC) technique for a rapidly changing landscape of an open-cast mine. The other objective was to assess the change in land use pattern due to coal mining from 2006 to 2016. Assessing the change in land use pattern accurately is important for the development and monitoring of coalfields in conjunction with sustainable development. For the present study, Landsat 5 Thematic Mapper (TM) data of 2006 and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data of 2016 of a part of Jharia Coalfield, Dhanbad, India, were used. The SVM classification technique provided greater overall classification accuracy when compared to the MLC technique in classifying heterogeneous landscape with limited training dataset. SVM exceeded MLC in handling a difficult challenge of classifying features having near similar reflectance on the mean signature plot, an improvement of over 11 % was observed in classification of built-up area, and an improvement of 24 % was observed in classification of surface water using SVM; similarly, the SVM technique improved the overall land use classification accuracy by almost 6 and 3 % for Landsat 5 and Landsat 8 images, respectively. Results indicated that land degradation increased significantly from 2006 to 2016 in the study area. This study will help in quantifying the changes and can also serve as a basis for further decision support system studies aiding a variety of purposes such as planning and management of mines and environmental impact assessment.
An assessment of the effectiveness of a random forest classifier for land-cover classification
NASA Astrophysics Data System (ADS)
Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.
2012-01-01
Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.
NASA Astrophysics Data System (ADS)
Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.
2016-03-01
The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.
Cloud field classification based on textural features
NASA Technical Reports Server (NTRS)
Sengupta, Sailes Kumar
1989-01-01
An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.
Classification Accuracy Increase Using Multisensor Data Fusion
NASA Astrophysics Data System (ADS)
Makarau, A.; Palubinskas, G.; Reinartz, P.
2011-09-01
The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.
EEG channels reduction using PCA to increase XGBoost's accuracy for stroke detection
NASA Astrophysics Data System (ADS)
Fitriah, N.; Wijaya, S. K.; Fanany, M. I.; Badri, C.; Rezal, M.
2017-07-01
In Indonesia, based on the result of Basic Health Research 2013, the number of stroke patients had increased from 8.3 ‰ (2007) to 12.1 ‰ (2013). These days, some researchers are using electroencephalography (EEG) result as another option to detect the stroke disease besides CT Scan image as the gold standard. A previous study on the data of stroke and healthy patients in National Brain Center Hospital (RS PON) used Brain Symmetry Index (BSI), Delta-Alpha Ratio (DAR), and Delta-Theta-Alpha-Beta Ratio (DTABR) as the features for classification by an Extreme Learning Machine (ELM). The study got 85% accuracy with sensitivity above 86 % for acute ischemic stroke detection. Using EEG data means dealing with many data dimensions, and it can reduce the accuracy of classifier (the curse of dimensionality). Principal Component Analysis (PCA) could reduce dimensionality and computation cost without decreasing classification accuracy. XGBoost, as the scalable tree boosting classifier, can solve real-world scale problems (Higgs Boson and Allstate dataset) with using a minimal amount of resources. This paper reuses the same data from RS PON and features from previous research, preprocessed with PCA and classified with XGBoost, to increase the accuracy with fewer electrodes. The specific fewer electrodes improved the accuracy of stroke detection. Our future work will examine the other algorithm besides PCA to get higher accuracy with less number of channels.
Tse, Samson; Davidson, Larry; Chung, Ka-Fai; Yu, Chong Ho; Ng, King Lam; Tsoi, Emily
2015-02-01
More mental health services are adopting the recovery paradigm. This study adds to prior research by (a) using measures of stages of recovery and elements of recovery that were designed and validated in a non-Western, Chinese culture and (b) testing which demographic factors predict advanced recovery and whether placing importance on certain elements predicts advanced recovery. We examined recovery and factors associated with recovery among 75 Hong Kong adults who were diagnosed with schizophrenia and assessed to be in clinical remission. Data were collected on socio-demographic factors, recovery stages and elements associated with recovery. Logistic regression analysis was used to identify variables that could best predict stages of recovery. Receiver operating characteristic curves were used to detect the classification accuracy of the model (i.e. rates of correct classification of stages of recovery). Logistic regression results indicated that stages of recovery could be distinguished with reasonable accuracy for Stage 3 ('living with disability', classification accuracy = 75.45%) and Stage 4 ('living beyond disability', classification accuracy = 75.50%). However, there was no sufficient information to predict Combined Stages 1 and 2 ('overwhelmed by disability' and 'struggling with disability'). It was found that having a meaningful role and age were the most important differentiators of recovery stage. Preliminary findings suggest that adopting salient life roles personally is important to recovery and that this component should be incorporated into mental health services. © The Author(s) 2014.
Hartling, Lisa; Bond, Kenneth; Santaguida, P Lina; Viswanathan, Meera; Dryden, Donna M
2011-08-01
To develop and test a study design classification tool. We contacted relevant organizations and individuals to identify tools used to classify study designs and ranked these using predefined criteria. The highest ranked tool was a design algorithm developed, but no longer advocated, by the Cochrane Non-Randomized Studies Methods Group; this was modified to include additional study designs and decision points. We developed a reference classification for 30 studies; 6 testers applied the tool to these studies. Interrater reliability (Fleiss' κ) and accuracy against the reference classification were assessed. The tool was further revised and retested. Initial reliability was fair among the testers (κ=0.26) and the reference standard raters κ=0.33). Testing after revisions showed improved reliability (κ=0.45, moderate agreement) with improved, but still low, accuracy. The most common disagreements were whether the study design was experimental (5 of 15 studies), and whether there was a comparison of any kind (4 of 15 studies). Agreement was higher among testers who had completed graduate level training versus those who had not. The moderate reliability and low accuracy may be because of lack of clarity and comprehensiveness of the tool, inadequate reporting of the studies, and variability in tester characteristics. The results may not be generalizable to all published studies, as the test studies were selected because they had posed challenges for previous reviewers with respect to their design classification. Application of such a tool should be accompanied by training, pilot testing, and context-specific decision rules. Copyright © 2011 Elsevier Inc. All rights reserved.
Empirical evaluation of data normalization methods for molecular classification
Huang, Huei-Chung
2018-01-01
Background Data artifacts due to variations in experimental handling are ubiquitous in microarray studies, and they can lead to biased and irreproducible findings. A popular approach to correct for such artifacts is through post hoc data adjustment such as data normalization. Statistical methods for data normalization have been developed and evaluated primarily for the discovery of individual molecular biomarkers. Their performance has rarely been studied for the development of multi-marker molecular classifiers—an increasingly important application of microarrays in the era of personalized medicine. Methods In this study, we set out to evaluate the performance of three commonly used methods for data normalization in the context of molecular classification, using extensive simulations based on re-sampling from a unique pair of microRNA microarray datasets for the same set of samples. The data and code for our simulations are freely available as R packages at GitHub. Results In the presence of confounding handling effects, all three normalization methods tended to improve the accuracy of the classifier when evaluated in an independent test data. The level of improvement and the relative performance among the normalization methods depended on the relative level of molecular signal, the distributional pattern of handling effects (e.g., location shift vs scale change), and the statistical method used for building the classifier. In addition, cross-validation was associated with biased estimation of classification accuracy in the over-optimistic direction for all three normalization methods. Conclusion Normalization may improve the accuracy of molecular classification for data with confounding handling effects; however, it cannot circumvent the over-optimistic findings associated with cross-validation for assessing classification accuracy. PMID:29666754
NASA Astrophysics Data System (ADS)
Amit, Guy; Ben-Ari, Rami; Hadad, Omer; Monovich, Einat; Granot, Noa; Hashoul, Sharbell
2017-03-01
Diagnostic interpretation of breast MRI studies requires meticulous work and a high level of expertise. Computerized algorithms can assist radiologists by automatically characterizing the detected lesions. Deep learning approaches have shown promising results in natural image classification, but their applicability to medical imaging is limited by the shortage of large annotated training sets. In this work, we address automatic classification of breast MRI lesions using two different deep learning approaches. We propose a novel image representation for dynamic contrast enhanced (DCE) breast MRI lesions, which combines the morphological and kinetics information in a single multi-channel image. We compare two classification approaches for discriminating between benign and malignant lesions: training a designated convolutional neural network and using a pre-trained deep network to extract features for a shallow classifier. The domain-specific trained network provided higher classification accuracy, compared to the pre-trained model, with an area under the ROC curve of 0.91 versus 0.81, and an accuracy of 0.83 versus 0.71. Similar accuracy was achieved in classifying benign lesions, malignant lesions, and normal tissue images. The trained network was able to improve accuracy by using the multi-channel image representation, and was more robust to reductions in the size of the training set. A small-size convolutional neural network can learn to accurately classify findings in medical images using only a few hundred images from a few dozen patients. With sufficient data augmentation, such a network can be trained to outperform a pre-trained out-of-domain classifier. Developing domain-specific deep-learning models for medical imaging can facilitate technological advancements in computer-aided diagnosis.
Valderrama-Landeros, L; Flores-de-Santiago, F; Kovacs, J M; Flores-Verdugo, F
2017-12-14
Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.
Schizophrenia classification using functional network features
NASA Astrophysics Data System (ADS)
Rish, Irina; Cecchi, Guillermo A.; Heuton, Kyle
2012-03-01
This paper focuses on discovering statistical biomarkers (features) that are predictive of schizophrenia, with a particular focus on topological properties of fMRI functional networks. We consider several network properties, such as node (voxel) strength, clustering coefficients, local efficiency, as well as just a subset of pairwise correlations. While all types of features demonstrate highly significant statistical differences in several brain areas, and close to 80% classification accuracy, the most remarkable results of 93% accuracy are achieved by using a small subset of only a dozen of most-informative (lowest p-value) correlation features. Our results suggest that voxel-level correlations and functional network features derived from them are highly informative about schizophrenia and can be used as statistical biomarkers for the disease.
NASA Astrophysics Data System (ADS)
Mahvash Mohammadi, Neda; Hezarkhani, Ardeshir
2018-07-01
Classification of mineralised zones is an important factor for the analysis of economic deposits. In this paper, the support vector machine (SVM), a supervised learning algorithm, based on subsurface data is proposed for classification of mineralised zones in the Takht-e-Gonbad porphyry Cu-deposit (SE Iran). The effects of the input features are evaluated via calculating the accuracy rates on the SVM performance. Ultimately, the SVM model, is developed based on input features namely lithology, alteration, mineralisation, the level and, radial basis function (RBF) as a kernel function. Moreover, the optimal amount of parameters λ and C, using n-fold cross-validation method, are calculated at level 0.001 and 0.01 respectively. The accuracy of this model is 0.931 for classification of mineralised zones in the Takht-e-Gonbad porphyry deposit. The results of the study confirm the efficiency of SVM method for classification the mineralised zones.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Active relearning for robust supervised classification of pulmonary emphysema
NASA Astrophysics Data System (ADS)
Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.
2012-03-01
Radiologists are adept at recognizing the appearance of lung parenchymal abnormalities in CT scans. However, the inconsistent differential diagnosis, due to subjective aggregation, mandates supervised classification. Towards optimizing Emphysema classification, we introduce a physician-in-the-loop feedback approach in order to minimize uncertainty in the selected training samples. Using multi-view inductive learning with the training samples, an ensemble of Support Vector Machine (SVM) models, each based on a specific pair-wise dissimilarity metric, was constructed in less than six seconds. In the active relearning phase, the ensemble-expert label conflicts were resolved by an expert. This just-in-time feedback with unoptimized SVMs yielded 15% increase in classification accuracy and 25% reduction in the number of support vectors. The generality of relearning was assessed in the optimized parameter space of six different classifiers across seven dissimilarity metrics. The resultant average accuracy improved to 21%. The co-operative feedback method proposed here could enhance both diagnostic and staging throughput efficiency in chest radiology practice.
Energy-aware embedded classifier design for real-time emotion analysis.
Padmanabhan, Manoj; Murali, Srinivasan; Rincon, Francisco; Atienza, David
2015-01-01
Detection and classification of human emotions from multiple bio-signals has a wide variety of applications. Though electronic devices are available in the market today that acquire multiple body signals, the classification of human emotions in real-time, adapted to the tight energy budgets of wearable embedded systems is a big challenge. In this paper we present an embedded classifier for real-time emotion classification. We propose a system that operates at different energy budgeted modes, depending on the available energy, where each mode is constrained by an operating energy bound. The classifier has an offline training phase where feature selection is performed for each operating mode, with an energy-budget aware algorithm that we propose. Across the different operating modes, the classification accuracy ranges from 95% - 75% and 89% - 70% for arousal and valence respectively. The accuracy is traded off for less power consumption, which results in an increased battery life of up to 7.7 times (from 146.1 to 1126.9 hours).
Protein classification based on text document classification techniques.
Cheng, Betty Yee Man; Carbonell, Jaime G; Klein-Seetharaman, Judith
2005-03-01
The need for accurate, automated protein classification methods continues to increase as advances in biotechnology uncover new proteins. G-protein coupled receptors (GPCRs) are a particularly difficult superfamily of proteins to classify due to extreme diversity among its members. Previous comparisons of BLAST, k-nearest neighbor (k-NN), hidden markov model (HMM) and support vector machine (SVM) using alignment-based features have suggested that classifiers at the complexity of SVM are needed to attain high accuracy. Here, analogous to document classification, we applied Decision Tree and Naive Bayes classifiers with chi-square feature selection on counts of n-grams (i.e. short peptide sequences of length n) to this classification task. Using the GPCR dataset and evaluation protocol from the previous study, the Naive Bayes classifier attained an accuracy of 93.0 and 92.4% in level I and level II subfamily classification respectively, while SVM has a reported accuracy of 88.4 and 86.3%. This is a 39.7 and 44.5% reduction in residual error for level I and level II subfamily classification, respectively. The Decision Tree, while inferior to SVM, outperforms HMM in both level I and level II subfamily classification. For those GPCR families whose profiles are stored in the Protein FAMilies database of alignments and HMMs (PFAM), our method performs comparably to a search against those profiles. Finally, our method can be generalized to other protein families by applying it to the superfamily of nuclear receptors with 94.5, 97.8 and 93.6% accuracy in family, level I and level II subfamily classification respectively. Copyright 2005 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Hall-Brown, Mary
The heterogeneity of Arctic vegetation can make land cover classification vey difficult when using medium to small resolution imagery (Schneider et al., 2009; Muller et al., 1999). Using high radiometric and spatial resolution imagery, such as the SPOT 5 and IKONOS satellites, have helped arctic land cover classification accuracies rise into the 80 and 90 percentiles (Allard, 2003; Stine et al., 2010; Muller et al., 1999). However, those increases usually come at a high price. High resolution imagery is very expensive and can often add tens of thousands of dollars onto the cost of the research. The EO-1 satellite launched in 2002 carries two sensors that have high specral and/or high spatial resolutions and can be an acceptable compromise between the resolution versus cost issues. The Hyperion is a hyperspectral sensor with the capability of collecting 242 spectral bands of information. The Advanced Land Imager (ALI) is an advanced multispectral sensor whose spatial resolution can be sharpened to 10 meters. This dissertation compares the accuracies of arctic land cover classifications produced by the Hyperion and ALI sensors to the classification accuracies produced by the Systeme Pour l' Observation de le Terre (SPOT), the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper Plus (ETM+) sensors. Hyperion and ALI images from August 2004 were collected over the Upper Kuparuk River Basin, Alaska. Image processing included the stepwise discriminant analysis of pixels that were positively classified from coinciding ground control points, geometric and radiometric correction, and principle component analysis. Finally, stratified random sampling was used to perform accuracy assessments on satellite derived land cover classifications. Accuracy was estimated from an error matrix (confusion matrix) that provided the overall, producer's and user's accuracies. This research found that while the Hyperion sensor produced classfication accuracies that were equivalent to the TM and ETM+ sensor (approximately 78%), the Hyperion could not obtain the accuracy of the SPOT 5 HRV sensor. However, the land cover classifications derived from the ALI sensor exceeded most classification accuracies derived from the TM and ETM+ senors and were even comparable to most SPOT 5 HRV classifications (87%). With the deactivation of the Landsat series satellites, the monitoring of remote locations such as in the Arctic on an uninterupted basis thoughout the world is in jeopardy. The utilization of the Hyperion and ALI sensors are a way to keep that endeavor operational. By keeping the ALI sensor active at all times, uninterupted observation of the entire Earth can be accomplished. Keeping the Hyperion sensor as a "tasked" sensor can provide scientists with additional imagery and options for their studies without overburdening storage issues.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks.
Totah, Deema; Ojeda, Lauro; Johnson, Daniel D; Gates, Deanna; Mower Provost, Emily; Barton, Kira
2018-01-01
Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69-92%. These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user.
Shishir, Sharmin; Tsuyuzaki, Shiro
2018-05-11
Detecting fine-scale spatiotemporal land use changes is a prerequisite for understanding and predicting the effects of urbanization and its related human impacts on the ecosystem. Land use changes are frequently examined using vegetation indices (VIs), although the validation of these indices has not been conducted at a high resolution. Therefore, a hierarchical classification was constructed to obtain accurate land use types at a fine scale. The characteristics of four popular VIs were investigated prior to examining the hierarchical classification by using Purbachal New Town, Bangladesh, which exhibits ongoing urbanization. These four VIs are the normalized difference VI (NDVI), green-red VI (GRVI), enhanced VI (EVI), and two-band EVI (EVI2). The reflectance data were obtained by the IKONOS (0.8-m resolution) and WorldView-2 sensor (0.5-m resolution) in 2001 and 2015, respectively. The hierarchical classification of land use types was constructed using a decision tree (DT) utilizing all four of the examined VIs. The accuracy of the classification was evaluated using ground truth data with multiple comparisons and kappa (κ) coefficients. The DT showed overall accuracies of 96.1 and 97.8% in 2001 and 2015, respectively, while the accuracies of the VIs were less than 91.2%. These results indicate that each VI exhibits unique advantages. In addition, the DT was the best classifier of land use types, particularly for native ecosystems represented by Shorea forests and homestead vegetation, at the fine scale. Since the conservation of these native ecosystems is of prime importance, DTs based on hierarchical classifications should be used more widely.
NASA Astrophysics Data System (ADS)
Liu, F.; Chen, T.; He, J.; Wen, Q.; Yu, F.; Gu, X.; Wang, Z.
2018-04-01
In recent years, the quick upgrading and improvement of SAR sensors provide beneficial complements for the traditional optical remote sensing in the aspects of theory, technology and data. In this paper, Sentinel-1A SAR data and GF-1 optical data were selected for image fusion, and more emphases were put on the dryland crop classification under a complex crop planting structure, regarding corn and cotton as the research objects. Considering the differences among various data fusion methods, the principal component analysis (PCA), Gram-Schmidt (GS), Brovey and wavelet transform (WT) methods were compared with each other, and the GS and Brovey methods were proved to be more applicable in the study area. Then, the classification was conducted based on the object-oriented technique process. And for the GS, Brovey fusion images and GF-1 optical image, the nearest neighbour algorithm was adopted to realize the supervised classification with the same training samples. Based on the sample plots in the study area, the accuracy assessment was conducted subsequently. The values of overall accuracy and kappa coefficient of fusion images were all higher than those of GF-1 optical image, and GS method performed better than Brovey method. In particular, the overall accuracy of GS fusion image was 79.8 %, and the Kappa coefficient was 0.644. Thus, the results showed that GS and Brovey fusion images were superior to optical images for dryland crop classification. This study suggests that the fusion of SAR and optical images is reliable for dryland crop classification under a complex crop planting structure.
Automated detection and recognition of wildlife using thermal cameras.
Christiansen, Peter; Steen, Kim Arild; Jørgensen, Rasmus Nyholm; Karstoft, Henrik
2014-07-30
In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper contributes to the automated detection and classification of animals in thermal imaging. The methods and results are based on top-view images taken manually from a lift to motivate work towards unmanned aerial vehicle-based detection and recognition. Hot objects are detected based on a threshold dynamically adjusted to each frame. For the classification of animals, we propose a novel thermal feature extraction algorithm. For each detected object, a thermal signature is calculated using morphological operations. The thermal signature describes heat characteristics of objects and is partly invariant to translation, rotation, scale and posture. The discrete cosine transform (DCT) is used to parameterize the thermal signature and, thereby, calculate a feature vector, which is used for subsequent classification. Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals with a balanced classification accuracy of 84.7% in an altitude range of 3-10 m and an accuracy of 75.2% for an altitude range of 10-20 m. To incorporate temporal information in the classification, a tracking algorithm is proposed. Using temporal information improves the balanced classification accuracy to 93.3% in an altitude range 3-10 of meters and 77.7% in an altitude range of 10-20 m.
Porter, Teresita M.; Golding, G. Brian
2012-01-01
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215
Graph pyramids for protein function prediction
2015-01-01
Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522
NASA Astrophysics Data System (ADS)
Legara, Erika Fille; Monterola, Christopher; Abundo, Cheryl
2011-01-01
We demonstrate an accurate procedure based on linear discriminant analysis that allows automatic authorship classification of opinion column articles. First, we extract the following stylometric features of 157 column articles from four authors: statistics on high frequency words, number of words per sentence, and number of sentences per paragraph. Then, by systematically ranking these features based on an effect size criterion, we show that we can achieve an average classification accuracy of 93% for the test set. In comparison, frequency size based ranking has an average accuracy of 80%. The highest possible average classification accuracy of our data merely relying on chance is ∼31%. By carrying out sensitivity analysis, we show that the effect size criterion is superior than frequency ranking because there exist low frequency words that significantly contribute to successful author discrimination. Consistent results are seen when the procedure is applied in classifying the undisputed Federalist papers of Alexander Hamilton and James Madison. To the best of our knowledge, the work is the first attempt in classifying opinion column articles, that by virtue of being shorter in length (as compared to novels or short stories), are more prone to over-fitting issues. The near perfect classification for the longer papers supports this claim. Our results provide an important insight on authorship attribution that has been overlooked in previous studies: that ranking discriminant variables based on word frequency counts is not necessarily an optimal procedure.
A robust data scaling algorithm to improve classification accuracies in biomedical data.
Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran
2016-09-09
Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.
Liu, Ming; Zhao, Jing; Lu, XiaoZuo; Li, Gang; Wu, Taixia; Zhang, LiFu
2018-05-10
With spectral methods, noninvasive determination of blood hyperviscosity in vivo is very potential and meaningful in clinical diagnosis. In this study, 67 male subjects (41 health, and 26 hyperviscosity according to blood sample analysis results) participate. Reflectance spectra of subjects' tongue tips is measured, and a classification method bases on principal component analysis combined with artificial neural network model is built to identify hyperviscosity. Hold-out and Leave-one-out methods are used to avoid significant bias and lessen overfitting problem, which are widely accepted in the model validation. To measure the performance of the classification, sensitivity, specificity, accuracy and F-measure are calculated, respectively. The accuracies with 100 times Hold-out method and 67 times Leave-one-out method are 88.05% and 97.01%, respectively. Experimental results indicate that the built classification model has certain practical value and proves the feasibility of using spectroscopy to identify hyperviscosity by noninvasive determination.
Rajasekaran, S; Bhushan, Manindra; Aiyer, Siddharth; Kanna, Rishi; Shetty, Ajoy Prasad
2018-01-09
To develop a classification based on the technical complexity encountered during pedicle screw insertion and to evaluate the performance of AIRO ® CT navigation system based on this classification, in the clinical scenario of complex spinal deformity. 31 complex spinal deformity correction surgeries were prospectively analyzed for performance of AIRO ® mobile CT-based navigation system. Pedicles were classified according to complexity of insertion into five types. Analysis was performed to estimate the accuracy of screw placement and time for screw insertion. Breach greater than 2 mm was considered for analysis. 452 pedicle screws were inserted (T1-T6: 116; T7-T12: 171; L1-S1: 165). The average Cobb angle was 68.3° (range 60°-104°). We had 242 grade 2 pedicles, 133 grade 3, and 77 grade 4, and 44 pedicles were unfit for pedicle screw insertion. We noted 27 pedicle screw breach (medial: 10; lateral: 16; anterior: 1). Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Average screw insertion time was 1.76 ± 0.89 min. After accounting for planned breach, the effective breach rate was 3.8% resulting in 96.2% accuracy for pedicle screw placement. This classification helps compare the accuracy of screw insertion in range of conditions by considering the complexity of screw insertion. Considering the clinical scenario of complex pedicle anatomy in spinal deformity AIRO ® navigation showed an excellent accuracy rate of 96.2%.
NASA Astrophysics Data System (ADS)
Snavely, Rachel A.
Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.
Guiberson, Mark; Rodríguez, Barbara L; Dale, Philip S
2011-10-01
The purpose of the current study was to examine the concurrent validity and classification accuracy of 3 parent report measures of language development in Spanish-speaking toddlers. Forty-five Spanish-speaking parents and their 2-year-old children participated. Twenty-three children had expressive language delays (ELDs) as determined through multiple sources of information, and 22 had typical language development (TD). Parents completed the Spanish version of the Ages and Stages Questionnaire (Spanish ASQ; Squires, Potter, & Bricker, 1999) and the short-form of the Inventarios del Desarrollo de Habilidades Comunicativas Palabras y Enunciados (INV-II; Jackson-Maldonado, Bates, & Thal, 1992; Jackson-Maldonado et al., 2003), which is the Spanish version of the MacArthur-Bates Communicative Development Inventories Words and Sentences form, and reported children's 3 longest utterances (M3L-W). Children were administered the Preschool Language Scale, Fourth Edition, Spanish Edition (SPLS-4; Zimmerman, Steiner, & Pond, 2002) at early childhood centers. All 3 parent report measures were significantly correlated with the SPLS-4, establishing their concurrent validity. Children with ELDs scored significantly lower than TD children on all 3 parent report measures. The Spanish ASQ demonstrated less than desirable levels of sensitivity and specificity; both the short-form INV-II and M3L-W measures demonstrated favorable sensitivity and specificity. Of these measures, M3L-W demonstrated the strongest classification accuracy qualities, including sensitivity, negative predictive value, and area under the receiver operating characteristics curve. The short-form INV-II and M3L-W demonstrated highly satisfactory classification accuracy of ELDs, but M3L-W demonstrated slightly stronger accuracy. These results indicate that these measures may be useful in screening for ELDs in Spanish-speaking toddlers.
Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin
2018-04-04
The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.
Exploration of Force Myography and surface Electromyography in hand gesture classification.
Jiang, Xianta; Merhi, Lukas-Karim; Xiao, Zhen Gang; Menon, Carlo
2017-03-01
Whereas pressure sensors increasingly have received attention as a non-invasive interface for hand gesture recognition, their performance has not been comprehensively evaluated. This work examined the performance of hand gesture classification using Force Myography (FMG) and surface Electromyography (sEMG) technologies by performing 3 sets of 48 hand gestures using a prototyped FMG band and an array of commercial sEMG sensors worn both on the wrist and forearm simultaneously. The results show that the FMG band achieved classification accuracies as good as the high quality, commercially available, sEMG system on both wrist and forearm positions; specifically, by only using 8 Force Sensitive Resisters (FSRs), the FMG band achieved accuracies of 91.2% and 83.5% in classifying the 48 hand gestures in cross-validation and cross-trial evaluations, which were higher than those of sEMG (84.6% and 79.1%). By using all 16 FSRs on the band, our device achieved high accuracies of 96.7% and 89.4% in cross-validation and cross-trial evaluations. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks.
Dvornek, Nicha C; Ventola, Pamela; Pelphrey, Kevin A; Duncan, James S
2017-09-01
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD.
A bench-top hyperspectral imaging system to classify beef from Nellore cattle based on tenderness
NASA Astrophysics Data System (ADS)
Nubiato, Keni Eduardo Zanoni; Mazon, Madeline Rezende; Antonelo, Daniel Silva; Calkins, Chris R.; Naganathan, Govindarajan Konda; Subbiah, Jeyamkondan; da Luz e Silva, Saulo
2018-03-01
The aim of this study was to evaluate the accuracy of classification of Nellore beef aged for 0, 7, 14, or 21 days and classification based on tenderness and aging period using a bench-top hyperspectral imaging system. A hyperspectral imaging system (λ = 928-2524 nm) was used to collect hyperspectral images of the Longissimus thoracis et lumborum (aging n = 376 and tenderness n = 345) of Nellore cattle. The image processing steps included selection of region of interest, extraction of spectra, and indentification and evalution of selected wavelengths for classification. Six linear discriminant models were developed to classify samples based on tenderness and aging period. The model using the first derivative of partial absorbance spectra (give wavelength range spectra) was able to classify steaks based on the tenderness with an overall accuracy of 89.8%. The model using the first derivative of full absorbance spectra was able to classify steaks based on aging period with an overall accuracy of 84.8%. The results demonstrate that the HIS may be a viable technology for classifying beef based on tenderness and aging period.
Validation assessment of shoreline extraction on medium resolution satellite image
NASA Astrophysics Data System (ADS)
Manaf, Syaifulnizam Abd; Mustapha, Norwati; Sulaiman, Md Nasir; Husin, Nor Azura; Shafri, Helmi Zulhaidi Mohd
2017-10-01
Monitoring coastal zones helps provide information about the conditions of the coastal zones, such as erosion or accretion. Moreover, monitoring the shorelines can help measure the severity of such conditions. Such measurement can be performed accurately by using Earth observation satellite images rather than by using traditional ground survey. To date, shorelines can be extracted from satellite images with a high degree of accuracy by using satellite image classification techniques based on machine learning to identify the land and water classes of the shorelines. In this study, the researchers validated the results of extracted shorelines of 11 classifiers using a reference shoreline provided by the local authority. Specifically, the validation assessment was performed to examine the difference between the extracted shorelines and the reference shorelines. The research findings showed that the SVM Linear was the most effective image classification technique, as evidenced from the lowest mean distance between the extracted shoreline and the reference shoreline. Furthermore, the findings showed that the accuracy of the extracted shoreline was not directly proportional to the accuracy of the image classification.
Shermeyer, Jacob S.; Haack, Barry N.
2015-01-01
Two forestry-change detection methods are described, compared, and contrasted for estimating deforestation and growth in threatened forests in southern Peru from 2000 to 2010. The methods used in this study rely on freely available data, including atmospherically corrected Landsat 5 Thematic Mapper and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous fields (VCF). The two methods include a conventional supervised signature extraction method and a unique self-calibrating method called MODIS VCF guided forest/nonforest (FNF) masking. The process chain for each of these methods includes a threshold classification of MODIS VCF, training data or signature extraction, signature evaluation, k-nearest neighbor classification, analyst-guided reclassification, and postclassification image differencing to generate forest change maps. Comparisons of all methods were based on an accuracy assessment using 500 validation pixels. Results of this accuracy assessment indicate that FNF masking had a 5% higher overall accuracy and was superior to conventional supervised classification when estimating forest change. Both methods succeeded in classifying persistently forested and nonforested areas, and both had limitations when classifying forest change.
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks
Dvornek, Nicha C.; Ventola, Pamela; Pelphrey, Kevin A.; Duncan, James S.
2017-01-01
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD. PMID:29104967
Tartar, A; Akan, A; Kilic, N
2014-01-01
Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.
NASA Astrophysics Data System (ADS)
Mafanya, Madodomzi; Tsele, Philemon; Botai, Joel; Manyama, Phetole; Swart, Barend; Monate, Thabang
2017-07-01
Invasive alien plants (IAPs) not only pose a serious threat to biodiversity and water resources but also have impacts on human and animal wellbeing. To support decision making in IAPs monitoring, semi-automated image classifiers which are capable of extracting valuable information in remotely sensed data are vital. This study evaluated the mapping accuracies of supervised and unsupervised image classifiers for mapping Harrisia pomanensis (a cactus plant commonly known as the Midnight Lady) using two interlinked evaluation strategies i.e. point and area based accuracy assessment. Results of the point-based accuracy assessment show that with reference to 219 ground control points, the supervised image classifiers (i.e. Maxver and Bhattacharya) mapped H. pomanensis better than the unsupervised image classifiers (i.e. K-mediuns, Euclidian Length and Isoseg). In this regard, user and producer accuracies were 82.4% and 84% respectively for the Maxver classifier. The user and producer accuracies for the Bhattacharya classifier were 90% and 95.7%, respectively. Though the Maxver produced a higher overall accuracy and Kappa estimate than the Bhattacharya classifier, the Maxver Kappa estimate of 0.8305 is not significantly (statistically) greater than the Bhattacharya Kappa estimate of 0.8088 at a 95% confidence interval. The area based accuracy assessment results show that the Bhattacharya classifier estimated the spatial extent of H. pomanensis with an average mapping accuracy of 86.1% whereas the Maxver classifier only gave an average mapping accuracy of 65.2%. Based on these results, the Bhattacharya classifier is therefore recommended for mapping H. pomanensis. These findings will aid in the algorithm choice making for the development of a semi-automated image classification system for mapping IAPs.
Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng
2017-05-10
Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .
EEG Classification with a Sequential Decision-Making Method in Motor Imagery BCI.
Liu, Rong; Wang, Yongxuan; Newman, Geoffrey I; Thakor, Nitish V; Ying, Sarah
2017-12-01
To develop subject-specific classifier to recognize mental states fast and reliably is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this paper, a sequential decision-making strategy is explored in conjunction with an optimal wavelet analysis for EEG classification. The subject-specific wavelet parameters based on a grid-search method were first developed to determine evidence accumulative curve for the sequential classifier. Then we proposed a new method to set the two constrained thresholds in the sequential probability ratio test (SPRT) based on the cumulative curve and a desired expected stopping time. As a result, it balanced the decision time of each class, and we term it balanced threshold SPRT (BTSPRT). The properties of the method were illustrated on 14 subjects' recordings from offline and online tests. Results showed the average maximum accuracy of the proposed method to be 83.4% and the average decision time of 2.77[Formula: see text]s, when compared with 79.2% accuracy and a decision time of 3.01[Formula: see text]s for the sequential Bayesian (SB) method. The BTSPRT method not only improves the classification accuracy and decision speed comparing with the other nonsequential or SB methods, but also provides an explicit relationship between stopping time, thresholds and error, which is important for balancing the speed-accuracy tradeoff. These results suggest that BTSPRT would be useful in explicitly adjusting the tradeoff between rapid decision-making and error-free device control.
A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Mrachacz-Kersting, Natalie; Zhu, Xiangyang; Farina, Dario
2017-09-01
Distinctive EEG signals from the motor and somatosensory cortex are generated during mental tasks of motor imagery (MI) and somatosensory attentional orientation (SAO). In this paper, we hypothesize that a combination of these two signal modalities provides improvements in a brain-computer interface (BCI) performance with respect to using the two methods separately, and generate novel types of multi-class BCI systems. Thirty two subjects were randomly divided into a Control-Group and a Hybrid-Group. In the Control-Group, the subjects performed left and right hand motor imagery (i.e., L-MI and R-MI). In the Hybrid-Group, the subjects performed the four mental tasks (i.e., L-MI, R-MI, L-SAO, and R-SAO). The results indicate that combining two of the tasks in a hybrid manner (such as L-SAO and R-MI) resulted in a significantly greater classification accuracy than when using two MI tasks. The hybrid modality reached 86.1% classification accuracy on average, with a 7.70% increase with respect to MI ( ), and 7.21% to SAO ( ) alone. Moreover, all 16 subjects in the hybrid modality reached at least 70% accuracy, which is considered the threshold for BCI illiteracy. In addition to the two-class results, the classification accuracy was 68.1% and 54.1% for the three-class and four-class hybrid BCI. Combining the induced brain signals from motor and somatosensory cortex, the proposed stimulus-independent hybrid BCI has shown improved performance with respect to individual modalities, reducing the portion of BCI-illiterate subjects, and provided novel types of multi-class BCIs.
Slip, David J.; Hocking, David P.; Harcourt, Robert G.
2016-01-01
Constructing activity budgets for marine animals when they are at sea and cannot be directly observed is challenging, but recent advances in bio-logging technology offer solutions to this problem. Accelerometers can potentially identify a wide range of behaviours for animals based on unique patterns of acceleration. However, when analysing data derived from accelerometers, there are many statistical techniques available which when applied to different data sets produce different classification accuracies. We investigated a selection of supervised machine learning methods for interpreting behavioural data from captive otariids (fur seals and sea lions). We conducted controlled experiments with 12 seals, where their behaviours were filmed while they were wearing 3-axis accelerometers. From video we identified 26 behaviours that could be grouped into one of four categories (foraging, resting, travelling and grooming) representing key behaviour states for wild seals. We used data from 10 seals to train four predictive classification models: stochastic gradient boosting (GBM), random forests, support vector machine using four different kernels and a baseline model: penalised logistic regression. We then took the best parameters from each model and cross-validated the results on the two seals unseen so far. We also investigated the influence of feature statistics (describing some characteristic of the seal), testing the models both with and without these. Cross-validation accuracies were lower than training accuracy, but the SVM with a polynomial kernel was still able to classify seal behaviour with high accuracy (>70%). Adding feature statistics improved accuracies across all models tested. Most categories of behaviour -resting, grooming and feeding—were all predicted with reasonable accuracy (52–81%) by the SVM while travelling was poorly categorised (31–41%). These results show that model selection is important when classifying behaviour and that by using animal characteristics we can strengthen the overall accuracy. PMID:28002450
Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.
Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens
2016-01-01
MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.
Comparing ecoregional classifications for natural areas management in the Klamath Region, USA
Sarr, Daniel A.; Duff, Andrew; Dinger, Eric C.; Shafer, Sarah L.; Wing, Michael; Seavy, Nathaniel E.; Alexander, John D.
2015-01-01
We compared three existing ecoregional classification schemes (Bailey, Omernik, and World Wildlife Fund) with two derived schemes (Omernik Revised and Climate Zones) to explore their effectiveness in explaining species distributions and to better understand natural resource geography in the Klamath Region, USA. We analyzed presence/absence data derived from digital distribution maps for trees, amphibians, large mammals, small mammals, migrant birds, and resident birds using three statistical analyses of classification accuracy (Analysis of Similarity, Canonical Analysis of Principal Coordinates, and Classification Strength). The classifications were roughly comparable in classification accuracy, with Omernik Revised showing the best overall performance. Trees showed the strongest fidelity to the classifications, and large mammals showed the weakest fidelity. We discuss the implications for regional biogeography and describe how intermediate resolution ecoregional classifications may be appropriate for use as natural areas management domains.
Typicality effects in artificial categories: is there a hemisphere difference?
Richards, L G; Chiarello, C
1990-07-01
In category classification tasks, typicality effects are usually found: accuracy and reaction time depend upon distance from a prototype. In this study, subjects learned either verbal or nonverbal dot pattern categories, followed by a lateralized classification task. Comparable typicality effects were found in both reaction time and accuracy across visual fields for both verbal and nonverbal categories. Both hemispheres appeared to use a similarity-to-prototype matching strategy in classification. This indicates that merely having a verbal label does not differentiate classification in the two hemispheres.
Improved fibrosis staging by elastometry and blood test in chronic hepatitis C.
Calès, Paul; Boursier, Jérôme; Ducancelle, Alexandra; Oberti, Frédéric; Hubert, Isabelle; Hunault, Gilles; de Lédinghen, Victor; Zarski, Jean-Pierre; Salmon, Dominique; Lunel, Françoise
2014-07-01
Our main objective was to improve non-invasive fibrosis staging accuracy by resolving the limits of previous methods via new test combinations. Our secondary objectives were to improve staging precision, by developing a detailed fibrosis classification, and reliability (personalized accuracy) determination. All patients (729) included in the derivation population had chronic hepatitis C, liver biopsy, 6 blood tests and Fibroscan. Validation populations included 1584 patients. The most accurate combination was provided by using most markers of FibroMeter and Fibroscan results targeted for significant fibrosis, i.e. 'E-FibroMeter'. Its classification accuracy (91.7%) and precision (assessed by F difference with Metavir: 0.62 ± 0.57) were better than those of FibroMeter (84.1%, P < 0.001; 0.72 ± 0.57, P < 0.001), Fibroscan (88.2%, P = 0.011; 0.68 ± 0.57, P = 0.020), and a previous CSF-SF classification of FibroMeter + Fibroscan (86.7%, P < 0.001; 0.65 ± 0.57, P = 0.044). The accuracy for fibrosis absence (F0) was increased, e.g. from 16.0% with Fibroscan to 75.0% with E-FibroMeter (P < 0.001). Cirrhosis sensitivity was improved, e.g. E-FibroMeter: 92.7% vs. Fibroscan: 83.3%, P = 0.004. The combination improved reliability by deleting unreliable results (accuracy <50%) observed with a single test (1.2% of patients) and increasing optimal reliability (accuracy ≥85%) from 80.4% of patients with Fibroscan (accuracy: 90.9%) to 94.2% of patients with E-FibroMeter (accuracy: 92.9%), P < 0.001. The patient rate with 100% predictive values for cirrhosis by the best combination was twice (36.2%) that of the best single test (FibroMeter: 16.2%, P < 0.001). The new test combination increased: accuracy, globally and especially in patients without fibrosis, staging precision, cirrhosis prediction, and even reliability, thus offering improved fibrosis staging. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Clemans, Katherine H.; Musci, Rashelle J.; Leoutsakos, Jeannie-Marie S.; Ialongo, Nicholas S.
2014-01-01
Objective This study compared the ability of teacher, parent, and peer reports of aggressive behavior in early childhood to accurately classify cases of maladaptive outcomes in late adolescence and early adulthood. Method Weighted kappa analyses determined optimal cut points and relative classification accuracy among teacher, parent, and peer reports of aggression assessed for 691 students (54% male; 84% African American, 13% White) in the fall of first grade. Outcomes included antisocial personality, substance use, incarceration history, risky sexual behavior, and failure to graduate from high school on time. Results Peer reports were the most accurate classifier of all outcomes in the full sample. For most outcomes, the addition of teacher or parent reports did not improve overall classification accuracy once peer reports were accounted for. Additional gender-specific and adjusted kappa analyses supported the superior classification utility of the peer report measure. Conclusion The results suggest that peer reports provided the most useful classification information of the three aggression measures. Implications for targeted intervention efforts which use screening measures to identify at-risk children are discussed. PMID:24512126
Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin
2016-01-01
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.
Detecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques.
Teimouri, Mehdi; Farzadfar, Farshad; Soudi Alamdari, Mahsa; Hashemi-Meshkini, Amir; Adibi Alamdari, Parisa; Rezaei-Darzi, Ehsan; Varmaghani, Mehdi; Zeynalabedini, Aysan
2016-01-01
Data about the prevalence of communicable and non-communicable diseases, as one of the most important categories of epidemiological data, is used for interpreting health status of communities. This study aims to calculate the prevalence of outpatient diseases through the characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions for various types of diseases from which we have focused on the identification of ten diseases. In this study, data mining tools are used to identify diseases for which prescriptions are written. In order to evaluate the performances of these methods, we compare the results with Naïve method. Then, combining methods are used to improve the results. Results showed that Support Vector Machine, with an accuracy of 95.32%, shows better performance than the other methods. The result of Naive method, with an accuracy of 67.71%, is 20% worse than Nearest Neighbor method which has the lowest level of accuracy among the other classification algorithms. The results indicate that the implementation of data mining algorithms resulted in a good performance in characterization of outpatient diseases. These results can help to choose appropriate methods for the classification of prescriptions in larger scales.
Computer-aided diagnosis system: a Bayesian hybrid classification method.
Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J
2013-10-01
A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Study design requirements for RNA sequencing-based breast cancer diagnostics.
Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias
2016-02-01
Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic.
NASA Astrophysics Data System (ADS)
Salvaris, Mathew; Sepulveda, Francisco
2010-10-01
Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).
Salvaris, Mathew; Sepulveda, Francisco
2010-10-01
Brain-computer interfaces (BCIs) rely on various electroencephalography methodologies that allow the user to convey their desired control to the machine. Common approaches include the use of event-related potentials (ERPs) such as the P300 and modulation of the beta and mu rhythms. All of these methods have their benefits and drawbacks. In this paper, three different selective attention tasks were tested in conjunction with a P300-based protocol (i.e. the standard counting of target stimuli as well as the conduction of real and imaginary movements in sync with the target stimuli). The three tasks were performed by a total of 10 participants, with the majority (7 out of 10) of the participants having never before participated in imaginary movement BCI experiments. Channels and methods used were optimized for the P300 ERP and no sensory-motor rhythms were explicitly used. The classifier used was a simple Fisher's linear discriminant. Results were encouraging, showing that on average the imaginary movement achieved a P300 versus No-P300 classification accuracy of 84.53%. In comparison, mental counting, the standard selective attention task used in previous studies, achieved 78.9% and real movement 90.3%. Furthermore, multiple trial classification results were recorded and compared, with real movement reaching 99.5% accuracy after four trials (12.8 s), imaginary movement reaching 99.5% accuracy after five trials (16 s) and counting reaching 98.2% accuracy after ten trials (32 s).
Walton, Emily; Casey, Christy; Mitsch, Jurgen; Vázquez-Diosdado, Jorge A; Yan, Juan; Dottorini, Tania; Ellis, Keith A; Winterlich, Anthony; Kaler, Jasmeet
2018-02-01
Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F -score 91%-97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%-93% and F -score 88%-95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs.
Walton, Emily; Casey, Christy; Mitsch, Jurgen; Vázquez-Diosdado, Jorge A.; Yan, Juan; Dottorini, Tania; Ellis, Keith A.; Winterlich, Anthony
2018-01-01
Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F-score 91%–97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%–93% and F-score 88%–95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs. PMID:29515862
NASA Astrophysics Data System (ADS)
Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang
2018-03-01
To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.
Brain-Computer Interface Based on Generation of Visual Images
Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander
2011-01-01
This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206
NASA Technical Reports Server (NTRS)
Mulligan, P. J.; Gervin, J. C.; Lu, Y. C.
1985-01-01
An area bordering the Eastern Shore of the Chesapeake Bay was selected for study and classified using unsupervised techniques applied to LANDSAT-2 MSS data and several band combinations of LANDSAT-4 TM data. The accuracies of these Level I land cover classifications were verified using the Taylor's Island USGS 7.5 minute topographic map which was photointerpreted, digitized and rasterized. The the Taylor's Island map, comparing the MSS and TM three band (2 3 4) classifications, the increased resolution of TM produced a small improvement in overall accuracy of 1% correct due primarily to a small improvement, and 1% and 3%, in areas such as water and woodland. This was expected as the MSS data typically produce high accuracies for categories which cover large contiguous areas. However, in the categories covering smaller areas within the map there was generally an improvement of at least 10%. Classification of the important residential category improved 12%, and wetlands were mapped with 11% greater accuracy.
The influence of multispectral scanner spatial resolution on forest feature classification
NASA Technical Reports Server (NTRS)
Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.
1977-01-01
Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.
Application of artificial neural networks to thermal detection of disbonds
NASA Technical Reports Server (NTRS)
Prabhu, D. R.; Howell, P. A.; Syed, H. I.; Winfree, W. P.
1992-01-01
A novel technique for processing thermal data is presented and applied to simulation as well as experimental data. Using a neural network of thermal data classification, good classification accuracies are obtained, and the resulting images exhibit very good contrast between bonded and disbonded locations. In order to minimize the preprocessing required before using the network of classification, the temperature values were directly employed to train a network using data from an on-site testing run of a commercial aircraft. Training was extremely fast, and the resulting classification also agreed reasonably well with an ultrasonic characterization of the panel. The results obtained using one sample show the partially disbonded vertical doubler. The vertical lines along the doubler correspond to the original extent of the doubler obtained using blueprints of the aircraft.
Efficient alignment-free DNA barcode analytics.
Kuksa, Pavel; Pavlovic, Vladimir
2009-11-10
In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.
Tang, Yunwei; Jing, Linhai; Li, Hui; Liu, Qingjie; Yan, Qi; Li, Xiuxia
2016-01-01
This study explores the ability of WorldView-2 (WV-2) imagery for bamboo mapping in a mountainous region in Sichuan Province, China. A large area of this place is covered by shadows in the image, and only a few sampled points derived were useful. In order to identify bamboos based on sparse training data, the sample size was expanded according to the reflectance of multispectral bands selected using the principal component analysis (PCA). Then, class separability based on the training data was calculated using a feature space optimization method to select the features for classification. Four regular object-based classification methods were applied based on both sets of training data. The results show that the k-nearest neighbor (k-NN) method produced the greatest accuracy. A geostatistically-weighted k-NN classifier, accounting for the spatial correlation between classes, was then applied to further increase the accuracy. It achieved 82.65% and 93.10% of the producer’s and user’s accuracies respectively for the bamboo class. The canopy densities were estimated to explain the result. This study demonstrates that the WV-2 image can be used to identify small patches of understory bamboos given limited known samples, and the resulting bamboo distribution facilitates the assessments of the habitats of giant pandas. PMID:27879661
Training set extension for SVM ensemble in P300-speller with familiar face paradigm.
Li, Qi; Shi, Kaiyang; Gao, Ning; Li, Jian; Bai, Ou
2018-03-27
P300-spellers are brain-computer interface (BCI)-based character input systems. Support vector machine (SVM) ensembles are trained with large-scale training sets and used as classifiers in these systems. However, the required large-scale training data necessitate a prolonged collection time for each subject, which results in data collected toward the end of the period being contaminated by the subject's fatigue. This study aimed to develop a method for acquiring more training data based on a collected small training set. A new method was developed in which two corresponding training datasets in two sequences are superposed and averaged to extend the training set. The proposed method was tested offline on a P300-speller with the familiar face paradigm. The SVM ensemble with extended training set achieved 85% classification accuracy for the averaged results of four sequences, and 100% for 11 sequences in the P300-speller. In contrast, the conventional SVM ensemble with non-extended training set achieved only 65% accuracy for four sequences, and 92% for 11 sequences. The SVM ensemble with extended training set achieves higher classification accuracies than the conventional SVM ensemble, which verifies that the proposed method effectively improves the classification performance of BCI P300-spellers, thus enhancing their practicality.
NASA Astrophysics Data System (ADS)
Park, Eunsu; Moon, Yong-Jae
2017-08-01
A Convolutional Neural Network(CNN) is one of the well-known deep-learning methods in image processing and computer vision area. In this study, we apply CNN to two kinds of flare forecasting models: flare classification and occurrence. For this, we consider several pre-trained models (e.g., AlexNet, GoogLeNet, and ResNet) and customize them by changing several options such as the number of layers, activation function, and optimizer. Our inputs are the same number of SOHO)/MDI images for each flare class (None, C, M and X) at 00:00 UT from Jan 1996 to Dec 2010 (total 1600 images). Outputs are the results of daily flare forecasting for flare class and occurrence. We build, train, and test the models on TensorFlow, which is well-known machine learning software library developed by Google. Our major results from this study are as follows. First, most of the models have accuracies more than 0.7. Second, ResNet developed by Microsoft has the best accuracies : 0.86 for flare classification and 0.84 for flare occurrence. Third, the accuracies of these models vary greatly with changing parameters. We discuss several possibilities to improve the models.
Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong
2016-01-01
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently. PMID:27824089
Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong
2016-11-08
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification. PMID:24086666
A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance
2013-01-01
Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928
A neuro-fuzzy approach in the classification of students' academic performance.
Do, Quang Hung; Chen, Jeng-Fung
2013-01-01
Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.
Cisler, Josh M.; Bush, Keith; James, G. Andrew; Smitherman, Sonet; Kilts, Clinton D.
2015-01-01
Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD. PMID:26241958
Cisler, Josh M; Bush, Keith; James, G Andrew; Smitherman, Sonet; Kilts, Clinton D
2015-01-01
Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD.
Noise tolerant dendritic lattice associative memories
NASA Astrophysics Data System (ADS)
Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc
2011-09-01
Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.
Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification
NASA Astrophysics Data System (ADS)
Wang, X. P.; Hu, Y.; Chen, J.
2018-04-01
Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.
Efficiency of the spectral-spatial classification of hyperspectral imaging data
NASA Astrophysics Data System (ADS)
Borzov, S. M.; Potaturkin, O. I.
2017-01-01
The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.
Koutsouleris, Nikolaos; Meisenzahl, Eva M.; Davatzikos, Christos; Bottlender, Ronald; Frodl, Thomas; Scheuerecker, Johanna; Schmitt, Gisela; Zetzsche, Thomas; Decker, Petra; Reiser, Maximilian; Möller, Hans-Jürgen; Gaser, Christian
2014-01-01
Context Identification of individuals at high risk of developing psychosis has relied on prodromal symptomatology. Recently, machine learning algorithms have been successfully used for magnetic resonance imaging–based diagnostic classification of neuropsychiatric patient populations. Objective To determine whether multivariate neuroanatomical pattern classification facilitates identification of individuals in different at-risk mental states (ARMS) of psychosis and enables the prediction of disease transition at the individual level. Design Multivariate neuroanatomical pattern classification was performed on the structural magnetic resonance imaging data of individuals in early or late ARMS vs healthy controls (HCs). The predictive power of the method was then evaluated by categorizing the baseline imaging data of individuals with transition to psychosis vs those without transition vs HCs after 4 years of clinical follow-up. Classification generalizability was estimated by cross-validation and by categorizing an independent cohort of 45 new HCs. Setting Departments of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany. Participants The first classification analysis included 20 early and 25 late at-risk individuals and 25 matched HCs. The second analysis consisted of 15 individuals with transition, 18 without transition, and 17 matched HCs. Main Outcome Measures Specificity, sensitivity, and accuracy of classification. Results The 3-group, cross-validated classification accuracies of the first analysis were 86% (HCs vs the rest), 91% (early at-risk individuals vs the rest), and 86% (late at-risk individuals vs the rest). The accuracies in the second analysis were 90% (HCs vs the rest), 88% (individuals with transition vs the rest), and 86% (individuals without transition vs the rest). Independent HCs were correctly classified in 96% (first analysis) and 93% (second analysis) of cases. Conclusions Different ARMSs and their clinical outcomes may be reliably identified on an individual basis by assessing patterns of whole-brain neuroanatomical abnormalities. These patterns may serve as valuable biomarkers for the clinician to guide early detection in the prodromal phase of psychosis. PMID:19581561
Nelson, G.; Ramsey, Elijah W.; Rangoonwala, A.
2005-01-01
Landsat Thematic Mapper images and collateral data sources were used to classify the land cover of the Mermentau River Basin within the chenier coastal plain and the adjacent uplands of Louisiana, USA. Landcover classes followed that of the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; however, classification methods needed to be developed to meet these national standards. Our first classification was limited to the Mermentau River Basin (MRB) in southcentral Louisiana, and the years of 1990, 1993, and 1996. To overcome problems due to class spectral inseparable, spatial and spectra continuums, mixed landcovers, and abnormal transitions, we separated the coastal area into regions of commonality and applying masks to specific land mixtures. Over the three years and 14 landcover classes (aggregating the cultivated land and grassland, and water and floating vegetation classes), overall accuracies ranged from 82% to 90%. To enhance landcover change interpretation, three indicators were introduced as Location Stability, Residence stability, and Turnover. Implementing methods substantiated in the multiple date MRB classification, we spatially extended the classification to the entire Louisiana coast and temporally extended the original 1990, 1993, 1996 classifications to 1999 (Figure 1). We also advanced the operational functionality of the classification and increased the credibility of change detection results. Increased operational functionality that resulted in diminished user input was for the most part gained by implementing a classification logic based on forbidden transitions. The logic detected and corrected misclassifications and mostly alleviated the necessity of subregion separation prior to the classification. The new methods provided an improved ability for more timely detection and response to landcover impact. ?? 2005 IEEE.