Contributions to "k"-Means Clustering and Regression via Classification Algorithms
ERIC Educational Resources Information Center
Salman, Raied
2012-01-01
The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Classification algorithm of lung lobe for lung disease cases based on multislice CT images
NASA Astrophysics Data System (ADS)
Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.
2011-03-01
With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.
Towards a robust framework for catchment classification
NASA Astrophysics Data System (ADS)
Deshmukh, A.; Samal, A.; Singh, R.
2017-12-01
Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.
Image-classification-based global dimming algorithm for LED backlights in LCDs
NASA Astrophysics Data System (ADS)
Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv
2015-07-01
Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
NASA Astrophysics Data System (ADS)
Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron
2005-04-01
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Timothy; Steinmaus, Karen L.
2005-02-01
New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.
Performance of Activity Classification Algorithms in Free-living Older Adults
Sasaki, Jeffer Eidi; Hickey, Amanda; Staudenmayer, John; John, Dinesh; Kent, Jane A.; Freedson, Patty S.
2015-01-01
Purpose To compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Methods Thirty-five older adults (21F and 14M ; 70.8 ± 4.9 y) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (dominant hip, wrist, and ankle). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore the GT3X+ in free-living settings and were directly observed for 2-3 hours. Time- and frequency- domain features from acceleration signals of each monitor were used to train Random Forest (RF) and Support Vector Machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on lab data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20 s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Results Overall classification accuracy rates for the algorithms developed from lab data were between 49% (wrist) to 55% (ankle) for the SVMLab algorithms, and 49% (wrist) to 54% (ankle) for RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Conclusion Our algorithms developed on free-living accelerometer data were more accurate in classifying activity type in free-living older adults than our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine-learning algorithms in older adults. PMID:26673129
Performance of Activity Classification Algorithms in Free-Living Older Adults.
Sasaki, Jeffer Eidi; Hickey, Amanda M; Staudenmayer, John W; John, Dinesh; Kent, Jane A; Freedson, Patty S
2016-05-01
The objective of this study is to compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Thirty-five older adults (21 females and 14 males, 70.8 ± 4.9 yr) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (in the dominant hip, wrist, and ankle; ActiGraph, LLC, Pensacola, FL). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore GT3X+ in free-living settings and were directly observed for 2-3 h. Time- and frequency-domain features from acceleration signals of each monitor were used to train random forest (RF) and support vector machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on laboratory data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20-s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Overall classification accuracy rates for the algorithms developed from laboratory data were between 49% (wrist) and 55% (ankle) for the SVMLab algorithms and 49% (wrist) to 54% (ankle) for the RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Our algorithms developed on free-living accelerometer data were more accurate in classifying the activity type in free-living older adults than those on our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine learning algorithms in older adults.
Performance of resonant radar target identification algorithms using intra-class weighting functions
NASA Astrophysics Data System (ADS)
Mustafa, A.
The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.
Online clustering algorithms for radar emitter classification.
Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max
2005-08-01
Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.
NASA Astrophysics Data System (ADS)
García-Flores, Agustín.; Paz-Gallardo, Abel; Plaza, Antonio; Li, Jun
2016-10-01
This paper describes a new web platform dedicated to the classification of satellite images called Hypergim. The current implementation of this platform enables users to perform classification of satellite images from any part of the world thanks to the worldwide maps provided by Google Maps. To perform this classification, Hypergim uses unsupervised algorithms like Isodata and K-means. Here, we present an extension of the original platform in which we adapt Hypergim in order to use supervised algorithms to improve the classification results. This involves a significant modification of the user interface, providing the user with a way to obtain samples of classes present in the images to use in the training phase of the classification process. Another main goal of this development is to improve the runtime of the image classification process. To achieve this goal, we use a parallel implementation of the Random Forest classification algorithm. This implementation is a modification of the well-known CURFIL software package. The use of this type of algorithms to perform image classification is widespread today thanks to its precision and ease of training. The actual implementation of Random Forest was developed using CUDA platform, which enables us to exploit the potential of several models of NVIDIA graphics processing units using them to execute general purpose computing tasks as image classification algorithms. As well as CUDA, we use other parallel libraries as Intel Boost, taking advantage of the multithreading capabilities of modern CPUs. To ensure the best possible results, the platform is deployed in a cluster of commodity graphics processing units (GPUs), so that multiple users can use the tool in a concurrent way. The experimental results indicate that this new algorithm widely outperform the previous unsupervised algorithms implemented in Hypergim, both in runtime as well as precision of the actual classification of the images.
NASA Astrophysics Data System (ADS)
Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.
2016-02-01
Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
NASA Astrophysics Data System (ADS)
Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.
2018-05-01
This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.
A hybrid clustering and classification approach for predicting crash injury severity on rural roads.
Hasheminejad, Seyed Hessam-Allah; Zahedi, Mohsen; Hasheminejad, Seyed Mohammad Hossein
2018-03-01
As a threat for transportation system, traffic crashes have a wide range of social consequences for governments. Traffic crashes are increasing in developing countries and Iran as a developing country is not immune from this risk. There are several researches in the literature to predict traffic crash severity based on artificial neural networks (ANNs), support vector machines and decision trees. This paper attempts to investigate the crash injury severity of rural roads by using a hybrid clustering and classification approach to compare the performance of classification algorithms before and after applying the clustering. In this paper, a novel rule-based genetic algorithm (GA) is proposed to predict crash injury severity, which is evaluated by performance criteria in comparison with classification algorithms like ANN. The results obtained from analysis of 13,673 crashes (5600 property damage, 778 fatal crashes, 4690 slight injuries and 2605 severe injuries) on rural roads in Tehran Province of Iran during 2011-2013 revealed that the proposed GA method outperforms other classification algorithms based on classification metrics like precision (86%), recall (88%) and accuracy (87%). Moreover, the proposed GA method has the highest level of interpretation, is easy to understand and provides feedback to analysts.
Robust spike classification based on frequency domain neural waveform features.
Yang, Chenhui; Yuan, Yuan; Si, Jennie
2013-12-01
We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Handwritten digits recognition based on immune network
NASA Astrophysics Data System (ADS)
Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe
2011-11-01
With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.
A novel artificial immune clonal selection classification and rule mining with swarm learning model
NASA Astrophysics Data System (ADS)
Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.
2013-06-01
Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.
Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong
2018-05-24
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Computational approaches for the classification of seed storage proteins.
Radhika, V; Rao, V Sree Hari
2015-07-01
Seed storage proteins comprise a major part of the protein content of the seed and have an important role on the quality of the seed. These storage proteins are important because they determine the total protein content and have an effect on the nutritional quality and functional properties for food processing. Transgenic plants are being used to develop improved lines for incorporation into plant breeding programs and the nutrient composition of seeds is a major target of molecular breeding programs. Hence, classification of these proteins is crucial for the development of superior varieties with improved nutritional quality. In this study we have applied machine learning algorithms for classification of seed storage proteins. We have presented an algorithm based on nearest neighbor approach for classification of seed storage proteins and compared its performance with decision tree J48, multilayer perceptron neural (MLP) network and support vector machine (SVM) libSVM. The model based on our algorithm has been able to give higher classification accuracy in comparison to the other methods.
Development of advanced acreage estimation methods
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1980-01-01
The use of the AMOEBA clustering/classification algorithm was investigated as a basis for both a color display generation technique and maximum likelihood proportion estimation procedure. An approach to analyzing large data reduction systems was formulated and an exploratory empirical study of spatial correlation in LANDSAT data was also carried out. Topics addressed include: (1) development of multiimage color images; (2) spectral spatial classification algorithm development; (3) spatial correlation studies; and (4) evaluation of data systems.
MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS
Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...
NASA Technical Reports Server (NTRS)
Maslanik, J. A.; Key, J.
1992-01-01
An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
NASA Astrophysics Data System (ADS)
Abramovich, N. S.; Kovalev, A. A.; Plyuta, V. Y.
1986-02-01
A computer algorithm has been developed to classify the spectral bands of natural scenes on Earth according to their optical characteristics. The algorithm is written in FORTRAN-IV and can be used in spectral data processing programs requiring small data loads. The spectral classifications of some different types of green vegetable canopies are given in order to illustrate the effectiveness of the algorithm.
Prediction of customer behaviour analysis using classification algorithms
NASA Astrophysics Data System (ADS)
Raju, Siva Subramanian; Dhandayudam, Prabha
2018-04-01
Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.
An algorithm for the arithmetic classification of multilattices.
Indelicato, Giuliana
2013-01-01
A procedure for the construction and the classification of monoatomic multilattices in arbitrary dimension is developed. The algorithm allows one to determine the location of the points of all monoatomic multilattices with a given symmetry, or to determine whether two assigned multilattices are arithmetically equivalent. This approach is based on ideas from integral matrix theory, in particular the reduction to the Smith normal form, and can be coded to provide a classification software package.
NASA Astrophysics Data System (ADS)
Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.
2016-03-01
The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.
Research on Optimization of GLCM Parameter in Cell Classification
NASA Astrophysics Data System (ADS)
Zhang, Xi-Kun; Hou, Jie; Hu, Xin-Hua
2016-05-01
Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.
Multi-label literature classification based on the Gene Ontology graph.
Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua
2008-12-08
The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.
Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A
2013-08-01
In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.
Photometric Supernova Classification with Machine Learning
NASA Astrophysics Data System (ADS)
Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.
2016-08-01
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.
Crabtree, Nathaniel M; Moore, Jason H; Bowyer, John F; George, Nysia I
2017-01-01
A computational evolution system (CES) is a knowledge discovery engine that can identify subtle, synergistic relationships in large datasets. Pareto optimization allows CESs to balance accuracy with model complexity when evolving classifiers. Using Pareto optimization, a CES is able to identify a very small number of features while maintaining high classification accuracy. A CES can be designed for various types of data, and the user can exploit expert knowledge about the classification problem in order to improve discrimination between classes. These characteristics give CES an advantage over other classification and feature selection algorithms, particularly when the goal is to identify a small number of highly relevant, non-redundant biomarkers. Previously, CESs have been developed only for binary class datasets. In this study, we developed a multi-class CES. The multi-class CES was compared to three common feature selection and classification algorithms: support vector machine (SVM), random k-nearest neighbor (RKNN), and random forest (RF). The algorithms were evaluated on three distinct multi-class RNA sequencing datasets. The comparison criteria were run-time, classification accuracy, number of selected features, and stability of selected feature set (as measured by the Tanimoto distance). The performance of each algorithm was data-dependent. CES performed best on the dataset with the smallest sample size, indicating that CES has a unique advantage since the accuracy of most classification methods suffer when sample size is small. The multi-class extension of CES increases the appeal of its application to complex, multi-class datasets in order to identify important biomarkers and features.
Low complexity feature extraction for classification of harmonic signals
NASA Astrophysics Data System (ADS)
William, Peter E.
In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.
Vlsi implementation of flexible architecture for decision tree classification in data mining
NASA Astrophysics Data System (ADS)
Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak
2017-07-01
The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.
Benchmarking protein classification algorithms via supervised cross-validation.
Kertész-Farkas, Attila; Dhir, Somdutta; Sonego, Paolo; Pacurar, Mircea; Netoteia, Sergiu; Nijveen, Harm; Kuzniar, Arnold; Leunissen, Jack A M; Kocsor, András; Pongor, Sándor
2008-04-24
Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.
Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study
Guerra, Luis; McGarry, Laura M; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael
2011-01-01
In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical GABAergic interneurons, the problem to discern among different cell types is particularly difficult and better methods are needed to perform objective classifications. Here we explore the use of supervised classification algorithms to classify neurons based on their morphological features, using a database of 128 pyramidal cells and 199 interneurons from mouse neocortex. To evaluate the performance of different algorithms we used, as a “benchmark,” the test to automatically distinguish between pyramidal cells and interneurons, defining “ground truth” by the presence or absence of an apical dendrite. We compared hierarchical clustering with a battery of different supervised classification algorithms, finding that supervised classifications outperformed hierarchical clustering. In addition, the selection of subsets of distinguishing features enhanced the classification accuracy for both sets of algorithms. The analysis of selected variables indicates that dendritic features were most useful to distinguish pyramidal cells from interneurons when compared with somatic and axonal morphological variables. We conclude that supervised classification algorithms are better matched to the general problem of distinguishing neuronal cell types when some information on these cell groups, in our case being pyramidal or interneuron, is known a priori. As a spin-off of this methodological study, we provide several methods to automatically distinguish neocortical pyramidal cells from interneurons, based on their morphologies. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 71–82, 2011 PMID:21154911
Advances in algorithm fusion for automated sea mine detection and classification
NASA Astrophysics Data System (ADS)
Dobeck, Gerald J.; Cobb, J. Tory
2002-11-01
Along with other sensors, the Navy uses high-resolution sonar to detect and classify sea mines in mine-hunting operations. Scientists and engineers have devoted substantial effort to the development of automated detection and classification (D/C) algorithms for these high-resolution systems. Several factors spurred these efforts, including: (1) aids for operators to reduce work overload; (2) more optimal use of all available data; and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and manmade clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms (Algorithm Fusion) have been studied. To date, the results have been remarkable, including reliable robustness to new environments. In this paper a brief history of existing Algorithm Fusion technology and some techniques recently used to improve performance are presented. An exploration of new developments is presented in conclusion.
NASA Astrophysics Data System (ADS)
Wang, Qingjie; Xin, Jingmin; Wu, Jiayi; Zheng, Nanning
2017-03-01
Microaneurysms are the earliest clinic signs of diabetic retinopathy, and many algorithms were developed for the automatic classification of these specific pathology. However, the imbalanced class distribution of dataset usually causes the classification accuracy of true microaneurysms be low. Therefore, by combining the borderline synthetic minority over-sampling technique (BSMOTE) with the data cleaning techniques such as Tomek links and Wilson's edited nearest neighbor rule (ENN) to resample the imbalanced dataset, we propose two new support vector machine (SVM) classification algorithms for the microaneurysms. The proposed BSMOTE-Tomek and BSMOTE-ENN algorithms consist of: 1) the adaptive synthesis of the minority samples in the neighborhood of the borderline, and 2) the remove of redundant training samples for improving the efficiency of data utilization. Moreover, the modified SVM classifier with probabilistic outputs is used to divide the microaneurysm candidates into two groups: true microaneurysms and false microaneurysms. The experiments with a public microaneurysms database shows that the proposed algorithms have better classification performance including the receiver operating characteristic (ROC) curve and the free-response receiver operating characteristic (FROC) curve.
NASA Astrophysics Data System (ADS)
Niazmardi, S.; Safari, A.; Homayouni, S.
2017-09-01
Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.
EVALUATION OF REGISTRATION, COMPRESSION AND CLASSIFICATION ALGORITHMS
NASA Technical Reports Server (NTRS)
Jayroe, R. R.
1994-01-01
Several types of algorithms are generally used to process digital imagery such as Landsat data. The most commonly used algorithms perform the task of registration, compression, and classification. Because there are different techniques available for performing registration, compression, and classification, imagery data users need a rationale for selecting a particular approach to meet their particular needs. This collection of registration, compression, and classification algorithms was developed so that different approaches could be evaluated and the best approach for a particular application determined. Routines are included for six registration algorithms, six compression algorithms, and two classification algorithms. The package also includes routines for evaluating the effects of processing on the image data. This collection of routines should be useful to anyone using or developing image processing software. Registration of image data involves the geometrical alteration of the imagery. Registration routines available in the evaluation package include image magnification, mapping functions, partitioning, map overlay, and data interpolation. The compression of image data involves reducing the volume of data needed for a given image. Compression routines available in the package include adaptive differential pulse code modulation, two-dimensional transforms, clustering, vector reduction, and picture segmentation. Classification of image data involves analyzing the uncompressed or compressed image data to produce inventories and maps of areas of similar spectral properties within a scene. The classification routines available include a sequential linear technique and a maximum likelihood technique. The choice of the appropriate evaluation criteria is quite important in evaluating the image processing functions. The user is therefore given a choice of evaluation criteria with which to investigate the available image processing functions. All of the available evaluation criteria basically compare the observed results with the expected results. For the image reconstruction processes of registration and compression, the expected results are usually the original data or some selected characteristics of the original data. For classification processes the expected result is the ground truth of the scene. Thus, the comparison process consists of determining what changes occur in processing, where the changes occur, how much change occurs, and the amplitude of the change. The package includes evaluation routines for performing such comparisons as average uncertainty, average information transfer, chi-square statistics, multidimensional histograms, and computation of contingency matrices. This collection of routines is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 662K of 8 bit bytes. This collection of image processing and evaluation routines was developed in 1979.
PDF text classification to leverage information extraction from publication reports.
Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha
2016-06-01
Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.
Classification of voting algorithms for N-version software
NASA Astrophysics Data System (ADS)
Tsarev, R. Yu; Durmuş, M. S.; Üstoglu, I.; Morozov, V. A.
2018-05-01
A voting algorithm in N-version software is a crucial component that evaluates the execution of each of the N versions and determines the correct result. Obviously, the result of the voting algorithm determines the outcome of the N-version software in general. Thus, the choice of the voting algorithm is a vital issue. A lot of voting algorithms were already developed and they may be selected for implementation based on the specifics of the analysis of input data. However, the voting algorithms applied in N-version software are not classified. This article presents an overview of classic and recent voting algorithms used in N-version software and the authors' classification of the voting algorithms. Moreover, the steps of the voting algorithms are presented and the distinctive features of the voting algorithms in Nversion software are defined.
Balouchestani, Mohammadreza; Krishnan, Sridhar
2014-01-01
Long-term recording of Electrocardiogram (ECG) signals plays an important role in health care systems for diagnostic and treatment purposes of heart diseases. Clustering and classification of collecting data are essential parts for detecting concealed information of P-QRS-T waves in the long-term ECG recording. Currently used algorithms do have their share of drawbacks: 1) clustering and classification cannot be done in real time; 2) they suffer from huge energy consumption and load of sampling. These drawbacks motivated us in developing novel optimized clustering algorithm which could easily scan large ECG datasets for establishing low power long-term ECG recording. In this paper, we present an advanced K-means clustering algorithm based on Compressed Sensing (CS) theory as a random sampling procedure. Then, two dimensionality reduction methods: Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) followed by sorting the data using the K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers are applied to the proposed algorithm. We show our algorithm based on PCA features in combination with K-NN classifier shows better performance than other methods. The proposed algorithm outperforms existing algorithms by increasing 11% classification accuracy. In addition, the proposed algorithm illustrates classification accuracy for K-NN and PNN classifiers, and a Receiver Operating Characteristics (ROC) area of 99.98%, 99.83%, and 99.75% respectively.
Pet fur color and texture classification
NASA Astrophysics Data System (ADS)
Yen, Jonathan; Mukherjee, Debarghar; Lim, SukHwan; Tretter, Daniel
2007-01-01
Object segmentation is important in image analysis for imaging tasks such as image rendering and image retrieval. Pet owners have been known to be quite vocal about how important it is to render their pets perfectly. We present here an algorithm for pet (mammal) fur color classification and an algorithm for pet (animal) fur texture classification. Per fur color classification can be applied as a necessary condition for identifying the regions in an image that may contain pets much like the skin tone classification for human flesh detection. As a result of the evolution, fur coloration of all mammals is caused by a natural organic pigment called Melanin and Melanin has only very limited color ranges. We have conducted a statistical analysis and concluded that mammal fur colors can be only in levels of gray or in two colors after the proper color quantization. This pet fur color classification algorithm has been applied for peteye detection. We also present here an algorithm for animal fur texture classification using the recently developed multi-resolution directional sub-band Contourlet transform. The experimental results are very promising as these transforms can identify regions of an image that may contain fur of mammals, scale of reptiles and feather of birds, etc. Combining the color and texture classification, one can have a set of strong classifiers for identifying possible animals in an image.
Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang
2016-11-16
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics
NASA Technical Reports Server (NTRS)
Bankert, Richard L.; Mitrescu, Cristian; Miller, Steven D.; Wade, Robert H.
2009-01-01
Cloud-type classification based on multispectral satellite imagery data has been widely researched and demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research described here is a comparison of the classifier output from two very different algorithms applied to Geostationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm employs spectral channel thresholding and additional physically based tests. The second algorithm was developed through a supervised learning method with characteristic features of expertly labeled image samples used as training data for a 1-nearest-neighbor classification. The latter's ability to identify classes is also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean. Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other postprocessing system that combines the output from the two algorithms could provide the most reliable cloud-type classification.
Blob-level active-passive data fusion for Benthic classification
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady
2012-06-01
We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.
PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer
Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models tomore » curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.« less
Sinha, S K; Karray, F
2002-01-01
Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.
Unsupervised classification of variable stars
NASA Astrophysics Data System (ADS)
Valenzuela, Lucas; Pichara, Karim
2018-03-01
During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.
Hyperspectral feature mapping classification based on mathematical morphology
NASA Astrophysics Data System (ADS)
Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli
2016-03-01
This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.
A robust data scaling algorithm to improve classification accuracies in biomedical data.
Cao, Xi Hang; Stojkovic, Ivan; Obradovic, Zoran
2016-09-09
Machine learning models have been adapted in biomedical research and practice for knowledge discovery and decision support. While mainstream biomedical informatics research focuses on developing more accurate models, the importance of data preprocessing draws less attention. We propose the Generalized Logistic (GL) algorithm that scales data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative distribution function of the data. The GL algorithm is simple yet effective; it is intrinsically robust to outliers, so it is particularly suitable for diagnostic/classification models in clinical/medical applications where the number of samples is usually small; it scales the data in a nonlinear fashion, which leads to potential improvement in accuracy. To evaluate the effectiveness of the proposed algorithm, we conducted experiments on 16 binary classification tasks with different variable types and cover a wide range of applications. The resultant performance in terms of area under the receiver operation characteristic curve (AUROC) and percentage of correct classification showed that models learned using data scaled by the GL algorithm outperform the ones using data scaled by the Min-max and the Z-score algorithm, which are the most commonly used data scaling algorithms. The proposed GL algorithm is simple and effective. It is robust to outliers, so no additional denoising or outlier detection step is needed in data preprocessing. Empirical results also show models learned from data scaled by the GL algorithm have higher accuracy compared to the commonly used data scaling algorithms.
Current Status of Japan's Activity for GPM/DPR and Global Rainfall Map algorithm development
NASA Astrophysics Data System (ADS)
Kachi, M.; Kubota, T.; Yoshida, N.; Kida, S.; Oki, R.; Iguchi, T.; Nakamura, K.
2012-04-01
The Global Precipitation Measurement (GPM) mission is composed of two categories of satellites; 1) a Tropical Rainfall Measuring Mission (TRMM)-like non-sun-synchronous orbit satellite (GPM Core Observatory); and 2) constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). GPM Core Observatory will be launched in February 2014, and development of algorithms is underway. DPR Level 1 algorithm, which provides DPR L1B product including received power, will be developed by the JAXA. The first version was submitted in March 2011. Development of the second version of DPR L1B algorithm (Version 2) will complete in March 2012. Version 2 algorithm includes all basic functions, preliminary database, HDF5 I/F, and minimum error handling. Pre-launch code will be developed by the end of October 2012. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The first version of GPM/DPR Level-2 Algorithm Theoretical Basis Document was completed on November 2010. The second version, "Baseline code", was completed in January 2012. Baseline code includes main module, and eight basic sub-modules (Preparation module, Vertical Profile module, Classification module, SRT module, DSD module, Solver module, Input module, and Output module.) The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. It is important to develop algorithm applicable to both TRMM/PR and KuPR in order to produce long-term continuous data set. Pre-launch code will be developed by autumn 2012. Global Rainfall Map algorithm has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project between 2002 and 2007, and near-real-time version operating at JAXA since 2007. "Baseline code" used current operational GSMaP code (V5.222,) and development completed in January 2012. Pre-launch code will be developed by autumn 2012, including update of database for rain type classification and rain/no-rain classification, and introduction of rain-gauge correction.
Siuly; Li, Yan; Paul Wen, Peng
2014-03-01
Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Kacenelenbogen, Meloe; Livingston, John M.; Hasekamp, Otto P.; Burton, Sharon P.; Schuster, Gregory L.; Johnson, Matthew S.; Knobelspiesse, Kirk D.; Redemann, Jens; Ramachandran, S.;
2013-01-01
In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate.
Automated target classification in high resolution dual frequency sonar imagery
NASA Astrophysics Data System (ADS)
Aridgides, Tom; Fernández, Manuel
2007-04-01
An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.
NASA Astrophysics Data System (ADS)
Dobeck, Gerald J.; Cobb, J. Tory
2002-08-01
The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. The Quadratic Penalty Function Support Vector Machine (QPFSVM) algorithm to aid in the automated detection and classification of sea mines is introduced in this paper. The QPFSVM algorithm is easy to train, simple to implement, and robust to feature space dimension. Outputs of successive SVM algorithms are cascaded in stages (fused) to improve the Probability of Classification (Pc) and reduce the number of false alarms. Even though our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to fusion of any D/C problem (e.g., automated medical diagnosis or automatic target recognition for ballistic missile defense).
NASA Technical Reports Server (NTRS)
Kocurek, Michael J.
2005-01-01
The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.
Preprocessing and meta-classification for brain-computer interfaces.
Hammon, Paul S; de Sa, Virginia R
2007-03-01
A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.
Evolving land cover classification algorithms for multispectral and multitemporal imagery
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.
2002-01-01
The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.
Integrating human and machine intelligence in galaxy morphology classification tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl
2018-06-01
Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
A Spiking Neural Network in sEMG Feature Extraction.
Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor
2015-11-03
We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.
Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V
2018-05-15
Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
Martin, Bryan D.; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling
2017-01-01
We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy. PMID:28885550
Martin, Bryan D; Addona, Vittorio; Wolfson, Julian; Adomavicius, Gediminas; Fan, Yingling
2017-09-08
We propose and compare combinations of several methods for classifying transportation activity data from smartphone GPS and accelerometer sensors. We have two main objectives. First, we aim to classify our data as accurately as possible. Second, we aim to reduce the dimensionality of the data as much as possible in order to reduce the computational burden of the classification. We combine dimension reduction and classification algorithms and compare them with a metric that balances accuracy and dimensionality. In doing so, we develop a classification algorithm that accurately classifies five different modes of transportation (i.e., walking, biking, car, bus and rail) while being computationally simple enough to run on a typical smartphone. Further, we use data that required no behavioral changes from the smartphone users to collect. Our best classification model uses the random forest algorithm to achieve 96.8% accuracy.
Adaptive sleep-wake discrimination for wearable devices.
Karlen, Walter; Floreano, Dario
2011-04-01
Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.
Medical image classification based on multi-scale non-negative sparse coding.
Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar
2017-11-01
With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann
2010-01-01
Pancreatic adenocarcinoma is one of the leading causes of cancer death, in part because of the inability of current diagnostic methods to reliably detect early-stage disease. We present the first assessment of the diagnostic accuracy of algorithms developed for pancreatic tissue classification using data from fiber optic probe-based bimodal optical spectroscopy, a real-time approach that would be compatible with minimally invasive diagnostic procedures for early cancer detection in the pancreas. A total of 96 fluorescence and 96 reflectance spectra are considered from 50 freshly excised tissue sites-including human pancreatic adenocarcinoma, chronic pancreatitis (inflammation), and normal tissues-on nine patients. Classification algorithms using linear discriminant analysis are developed to distinguish among tissues, and leave-one-out cross-validation is employed to assess the classifiers' performance. The spectral areas and ratios classifier (SpARC) algorithm employs a combination of reflectance and fluorescence data and has the best performance, with sensitivity, specificity, negative predictive value, and positive predictive value for correctly identifying adenocarcinoma being 85, 89, 92, and 80%, respectively.
NASA Technical Reports Server (NTRS)
Brewin, Robert J.W.; Sathyendranath, Shubha; Muller, Dagmar; Brockmann, Carsten; Deschamps, Pierre-Yves; Devred, Emmanuel; Doerffer, Roland; Fomferra, Norman; Franz, Bryan; Grant, Mike;
2013-01-01
Satellite-derived remote-sensing reflectance (Rrs) can be used for mapping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scale for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative requirements. In this paper we develop an objective methodology designed to rank the quantitative performance of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Using in situ Rrs as input to the models, the performance of eleven semianalytical models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algorithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms perform better than semi-analytical models, in general. The performance of these empirical models reflects either their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also perform with similar accuracy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.
Automatic comparison of striation marks and automatic classification of shoe prints
NASA Astrophysics Data System (ADS)
Geradts, Zeno J.; Keijzer, Jan; Keereweer, Isaac
1995-09-01
A database for toolmarks (named TRAX) and a database for footwear outsole designs (named REBEZO) have been developed on a PC. The databases are filled with video-images and administrative data about the toolmarks and the footwear designs. An algorithm for the automatic comparison of the digitized striation patterns has been developed for TRAX. The algorithm appears to work well for deep and complete striation marks and will be implemented in TRAX. For REBEZO some efforts have been made to the automatic classification of outsole patterns. The algorithm first segments the shoeprofile. Fourier-features are selected for the separate elements and are classified with a neural network. In future developments information on invariant moments of the shape and rotation angle will be included in the neural network.
Analysis of data mining classification by comparison of C4.5 and ID algorithms
NASA Astrophysics Data System (ADS)
Sudrajat, R.; Irianingsih, I.; Krisnawan, D.
2017-01-01
The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.
A Confidence Paradigm for Classification Systems
2008-09-01
methodology to determine how much confi- dence one should have in a classifier output. This research proposes a framework to determine the level of...theoretical framework that attempts to unite the viewpoints of the classification system developer (or engineer) and the classification system user (or...operating point. An algorithm is developed that minimizes a “confidence” measure called Binned Error in the Posterior ( BEP ). Then, we prove that training a
Incorporating spatial context into statistical classification of multidimensional image data
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Tilton, J. C.; Swain, P. H.
1981-01-01
Compound decision theory is employed to develop a general statistical model for classifying image data using spatial context. The classification algorithm developed from this model exploits the tendency of certain ground-cover classes to occur more frequently in some spatial contexts than in others. A key input to this contextural classifier is a quantitative characterization of this tendency: the context function. Several methods for estimating the context function are explored, and two complementary methods are recommended. The contextural classifier is shown to produce substantial improvements in classification accuracy compared to the accuracy produced by a non-contextural uniform-priors maximum likelihood classifier when these methods of estimating the context function are used. An approximate algorithm, which cuts computational requirements by over one-half, is presented. The search for an optimal implementation is furthered by an exploration of the relative merits of using spectral classes or information classes for classification and/or context function estimation.
A review of classification algorithms for EEG-based brain-computer interfaces.
Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B
2007-06-01
In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
1998-06-26
METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is
Hoffman, Sarah R; Vines, Anissa I; Halladay, Jacqueline R; Pfaff, Emily; Schiff, Lauren; Westreich, Daniel; Sundaresan, Aditi; Johnson, La-Shell; Nicholson, Wanda K
2018-06-01
Women with symptomatic uterine fibroids can report a myriad of symptoms, including pain, bleeding, infertility, and psychosocial sequelae. Optimizing fibroid research requires the ability to enroll populations of women with image-confirmed symptomatic uterine fibroids. Our objective was to develop an electronic health record-based algorithm to identify women with symptomatic uterine fibroids for a comparative effectiveness study of medical or surgical treatments on quality-of-life measures. Using an iterative process and text-mining techniques, an effective computable phenotype algorithm, composed of demographics, and clinical and laboratory characteristics, was developed with reasonable performance. Such algorithms provide a feasible, efficient way to identify populations of women with symptomatic uterine fibroids for the conduct of large traditional or pragmatic trials and observational comparative effectiveness studies. Symptomatic uterine fibroids, due to menorrhagia, pelvic pain, bulk symptoms, or infertility, are a source of substantial morbidity for reproductive-age women. Comparing Treatment Options for Uterine Fibroids is a multisite registry study to compare the effectiveness of hormonal or surgical fibroid treatments on women's perceptions of their quality of life. Electronic health record-based algorithms are able to identify large numbers of women with fibroids, but additional work is needed to develop electronic health record algorithms that can identify women with symptomatic fibroids to optimize fibroid research. We sought to develop an efficient electronic health record-based algorithm that can identify women with symptomatic uterine fibroids in a large health care system for recruitment into large-scale observational and interventional research in fibroid management. We developed and assessed the accuracy of 3 algorithms to identify patients with symptomatic fibroids using an iterative approach. The data source was the Carolina Data Warehouse for Health, a repository for the health system's electronic health record data. In addition to International Classification of Diseases, Ninth Revision diagnosis and procedure codes and clinical characteristics, text data-mining software was used to derive information from imaging reports to confirm the presence of uterine fibroids. Results of each algorithm were compared with expert manual review to calculate the positive predictive values for each algorithm. Algorithm 1 was composed of the following criteria: (1) age 18-54 years; (2) either ≥1 International Classification of Diseases, Ninth Revision diagnosis codes for uterine fibroids or mention of fibroids using text-mined key words in imaging records or documents; and (3) no International Classification of Diseases, Ninth Revision or Current Procedural Terminology codes for hysterectomy and no reported history of hysterectomy. The positive predictive value was 47% (95% confidence interval 39-56%). Algorithm 2 required ≥2 International Classification of Diseases, Ninth Revision diagnosis codes for fibroids and positive text-mined key words and had a positive predictive value of 65% (95% confidence interval 50-79%). In algorithm 3, further refinements included ≥2 International Classification of Diseases, Ninth Revision diagnosis codes for fibroids on separate outpatient visit dates, the exclusion of women who had a positive pregnancy test within 3 months of their fibroid-related visit, and exclusion of incidentally detected fibroids during prenatal or emergency department visits. Algorithm 3 achieved a positive predictive value of 76% (95% confidence interval 71-81%). An electronic health record-based algorithm is capable of identifying cases of symptomatic uterine fibroids with moderate positive predictive value and may be an efficient approach for large-scale study recruitment. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo
2015-05-01
An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.
NASA Technical Reports Server (NTRS)
Arduini, R. F.; Aherron, R. M.; Samms, R. W.
1984-01-01
A computational model of the deterministic and stochastic processes involved in multispectral remote sensing was designed to evaluate the performance of sensor systems and data processing algorithms for spectral feature classification. Accuracy in distinguishing between categories of surfaces or between specific types is developed as a means to compare sensor systems and data processing algorithms. The model allows studies to be made of the effects of variability of the atmosphere and of surface reflectance, as well as the effects of channel selection and sensor noise. Examples of these effects are shown.
NASA Astrophysics Data System (ADS)
Khan, Asif; Ryoo, Chang-Kyung; Kim, Heung Soo
2017-04-01
This paper presents a comparative study of different classification algorithms for the classification of various types of inter-ply delaminations in smart composite laminates. Improved layerwise theory is used to model delamination at different interfaces along the thickness and longitudinal directions of the smart composite laminate. The input-output data obtained through surface bonded piezoelectric sensor and actuator is analyzed by the system identification algorithm to get the system parameters. The identified parameters for the healthy and delaminated structure are supplied as input data to the classification algorithms. The classification algorithms considered in this study are ZeroR, Classification via regression, Naïve Bayes, Multilayer Perceptron, Sequential Minimal Optimization, Multiclass-Classifier, and Decision tree (J48). The open source software of Waikato Environment for Knowledge Analysis (WEKA) is used to evaluate the classification performance of the classifiers mentioned above via 75-25 holdout and leave-one-sample-out cross-validation regarding classification accuracy, precision, recall, kappa statistic and ROC Area.
Selection of Norway spruce somatic embryos by computer vision
NASA Astrophysics Data System (ADS)
Hamalainen, Jari J.; Jokinen, Kari J.
1993-05-01
A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.
Holistic approach for automated background EEG assessment in asphyxiated full-term infants
NASA Astrophysics Data System (ADS)
Matic, Vladimir; Cherian, Perumpillichira J.; Koolen, Ninah; Naulaers, Gunnar; Swarte, Renate M.; Govaert, Paul; Van Huffel, Sabine; De Vos, Maarten
2014-12-01
Objective. To develop an automated algorithm to quantify background EEG abnormalities in full-term neonates with hypoxic ischemic encephalopathy. Approach. The algorithm classifies 1 h of continuous neonatal EEG (cEEG) into a mild, moderate or severe background abnormality grade. These classes are well established in the literature and a clinical neurophysiologist labeled 272 1 h cEEG epochs selected from 34 neonates. The algorithm is based on adaptive EEG segmentation and mapping of the segments into the so-called segments’ feature space. Three features are suggested and further processing is obtained using a discretized three-dimensional distribution of the segments’ features represented as a 3-way data tensor. Further classification has been achieved using recently developed tensor decomposition/classification methods that reduce the size of the model and extract a significant and discriminative set of features. Main results. Effective parameterization of cEEG data has been achieved resulting in high classification accuracy (89%) to grade background EEG abnormalities. Significance. For the first time, the algorithm for the background EEG assessment has been validated on an extensive dataset which contained major artifacts and epileptic seizures. The demonstrated high robustness, while processing real-case EEGs, suggests that the algorithm can be used as an assistive tool to monitor the severity of hypoxic insults in newborns.
Feature extraction and classification algorithms for high dimensional data
NASA Technical Reports Server (NTRS)
Lee, Chulhee; Landgrebe, David
1993-01-01
Feature extraction and classification algorithms for high dimensional data are investigated. Developments with regard to sensors for Earth observation are moving in the direction of providing much higher dimensional multispectral imagery than is now possible. In analyzing such high dimensional data, processing time becomes an important factor. With large increases in dimensionality and the number of classes, processing time will increase significantly. To address this problem, a multistage classification scheme is proposed which reduces the processing time substantially by eliminating unlikely classes from further consideration at each stage. Several truncation criteria are developed and the relationship between thresholds and the error caused by the truncation is investigated. Next an approach to feature extraction for classification is proposed based directly on the decision boundaries. It is shown that all the features needed for classification can be extracted from decision boundaries. A characteristic of the proposed method arises by noting that only a portion of the decision boundary is effective in discriminating between classes, and the concept of the effective decision boundary is introduced. The proposed feature extraction algorithm has several desirable properties: it predicts the minimum number of features necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; and it finds the necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of equal means or equal covariances as some previous algorithms do. In addition, the decision boundary feature extraction algorithm can be used both for parametric and non-parametric classifiers. Finally, some problems encountered in analyzing high dimensional data are studied and possible solutions are proposed. First, the increased importance of the second order statistics in analyzing high dimensional data is recognized. By investigating the characteristics of high dimensional data, the reason why the second order statistics must be taken into account in high dimensional data is suggested. Recognizing the importance of the second order statistics, there is a need to represent the second order statistics. A method to visualize statistics using a color code is proposed. By representing statistics using color coding, one can easily extract and compare the first and the second statistics.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
NASA Astrophysics Data System (ADS)
Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y.; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian
2016-09-01
We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.
A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
NASA Astrophysics Data System (ADS)
Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.
2018-06-01
Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S.; Cho, Hyunjeong; Cho, Byoung-Kwan
2015-01-01
Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce. PMID:26610510
Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan
2015-11-20
Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Logo detection and classification in a sport video: video indexing for sponsorship revenue control
NASA Astrophysics Data System (ADS)
Kovar, Bohumil; Hanjalic, Alan
2001-12-01
This paper presents a novel approach to detecting and classifying a trademark logo in frames of a sport video. In view of the fact that we attempt to detect and recognize a logo in a natural scene, the algorithm developed in this paper differs from traditional techniques for logo detection and classification that are applicable either to well-structured general text documents (e.g. invoices, memos, bank cheques) or to specialized trademark logo databases, where logos appear isolated on a clear background and where their detection and classification is not disturbed by the surrounding visual detail. Although the development of our algorithm is still in its starting phase, experimental results performed so far on a set of soccer TV broadcasts are very encouraging.
A hybrid approach to select features and classify diseases based on medical data
NASA Astrophysics Data System (ADS)
AbdelLatif, Hisham; Luo, Jiawei
2018-03-01
Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms
Comparison of artificial intelligence classifiers for SIP attack data
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Slachta, Jiri
2016-05-01
Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.
Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar
2013-12-01
To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.
Siddique, Juned; Ruhnke, Gregory W.; Flores, Andrea; Prochaska, Micah T.; Paesch, Elizabeth; Meltzer, David O.; Whelan, Chad T.
2015-01-01
Background Lower gastrointestinal bleeding (LGIB) is a common cause of acute hospitalization. Currently, there is no accepted standard for identifying patients with LGIB in hospital administrative data. The objective of this study was to develop and validate a set of classification algorithms that use hospital administrative data to identify LGIB. Methods Our sample consists of patients admitted between July 1, 2001 and June 30, 2003 (derivation cohort) and July 1, 2003 and June 30, 2005 (validation cohort) to the general medicine inpatient service of the University of Chicago Hospital, a large urban academic medical center. Confirmed cases of LGIB in both cohorts were determined by reviewing the charts of those patients who had at least 1 of 36 principal or secondary International Classification of Diseases, Ninth revision, Clinical Modification (ICD-9-CM) diagnosis codes associated with LGIB. Classification trees were used on the data of the derivation cohort to develop a set of decision rules for identifying patients with LGIB. These rules were then applied to the validation cohort to assess their performance. Results Three classification algorithms were identified and validated: a high specificity rule with 80.1% sensitivity and 95.8% specificity, a rule that balances sensitivity and specificity (87.8% sensitivity, 90.9% specificity), and a high sensitivity rule with 100% sensitivity and 91.0% specificity. Conclusion These classification algorithms can be used in future studies to evaluate resource utilization and assess outcomes associated with LGIB without the use of chart review. PMID:26406318
CP-CHARM: segmentation-free image classification made accessible.
Uhlmann, Virginie; Singh, Shantanu; Carpenter, Anne E
2016-01-27
Automated classification using machine learning often relies on features derived from segmenting individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm obtained encouraging results but requires considerable computational expertise to execute. Furthermore, some benchmark sets have been shown to be subject to confounding artifacts that overestimate classification accuracy. We developed CP-CHARM, a user-friendly image-based classification algorithm inspired by WND-CHARM in (i) its ability to capture a wide variety of morphological aspects of the image, and (ii) the absence of requirement for segmentation. In order to make such an image-based classification method easily accessible to the biological research community, CP-CHARM relies on the widely-used open-source image analysis software CellProfiler for feature extraction. To validate our method, we reproduced WND-CHARM's results and ensured that CP-CHARM obtained comparable performance. We then successfully applied our approach on cell-based assay data and on tissue images. We designed these new training and test sets to reduce the effect of batch-related artifacts. The proposed method preserves the strengths of WND-CHARM - it extracts a wide variety of morphological features directly on whole images thereby avoiding the need for cell segmentation, but additionally, it makes the methods easily accessible for researchers without computational expertise by implementing them as a CellProfiler pipeline. It has been demonstrated to perform well on a wide range of bioimage classification problems, including on new datasets that have been carefully selected and annotated to minimize batch effects. This provides for the first time a realistic and reliable assessment of the whole image classification strategy.
Comparative study of classification algorithms for immunosignaturing data
2012-01-01
Background High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one trains a classification system by gathering large amounts of probe-level data, selecting informative features, and classifies test samples using a small number of features. As new microarrays are invented, classification systems that worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent array types, have been used for years to help develop classification algorithms. Many biological assumptions are built into classifiers that were designed for these types of data. One of the more problematic is the assumption of independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus, algorithms that perform well for gene expression data may not be suitable when other technologies with different binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data. Results We characterized several classification algorithms to analyze immunosignaturing data. We selected several datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to its simplicity, robustness, speed and accuracy. Conclusions ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered immunosignaturing microarray data due to its fundamental mathematical properties. PMID:22720696
Information extraction and transmission techniques for spaceborne synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.
1984-01-01
Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.
[Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].
Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong
2016-10-01
Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.
Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations
Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.
2016-01-01
Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941
CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.
White, Clarence; Ismail, Hamid D; Saigo, Hiroto; Kc, Dukka B
2017-12-28
The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification.
Development of Parallel Architectures for Sensor Array Processing. Volume 1
1993-08-01
required for the DOA estimation [ 1-7]. The Multiple Signal Classification ( MUSIC ) [ 1] and the Estimation of Signal Parameters by Rotational...manifold and the estimated subspace. Although MUSIC is a high resolution algorithm, it has several drawbacks including the fact that complete knowledge of...thoroughly, MUSIC algorithm was selected to develop special purpose hardware for real time computation. Summary of the MUSIC algorithm is as follows
NASA Astrophysics Data System (ADS)
Janaki Sathya, D.; Geetha, K.
2017-12-01
Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.
Laser vibrometry exploitation for vehicle identification
NASA Astrophysics Data System (ADS)
Nolan, Adam; Lingg, Andrew; Goley, Steve; Sigmund, Kevin; Kangas, Scott
2014-06-01
Vibration signatures sensed from distant vehicles using laser vibrometry systems provide valuable information that may be used to help identify key vehicle features such as engine type, engine speed, and number of cylinders. Through the use of physics models of the vibration phenomenology, features are chosen to support classification algorithms. Various individual exploitation algorithms were developed using these models to classify vibration signatures into engine type (piston vs. turbine), engine configuration (Inline 4 vs. Inline 6 vs. V6 vs. V8 vs. V12) and vehicle type. The results of these algorithms will be presented for an 8 class problem. Finally, the benefits of using a factor graph representation to link these independent algorithms together will be presented which constructs a classification hierarchy for the vibration exploitation problem.
Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214
Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.
Study of phase clustering method for analyzing large volumes of meteorological observation data
NASA Astrophysics Data System (ADS)
Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms. PMID:24795876
The generalization ability of online SVM classification based on Markov sampling.
Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang
2015-03-01
In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.
Kesharaju, Manasa; Nagarajah, Romesh
2015-09-01
The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.
Voice based gender classification using machine learning
NASA Astrophysics Data System (ADS)
Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.
2017-11-01
Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.
Using Mathematics to Make Computing on Encrypted Data Secure and Practical
2015-12-01
LLL) lattice basis reduction algorithm, G-Lattice, Cryptography , Security, Gentry-Szydlo Algorithm, Ring-LWE 16. SECURITY CLASSIFICATION OF: 17...with symmetry be further developed, in order to quantify the security of lattice-based cryptography , including especially the security of homomorphic...the Gentry-Szydlo algorithm, and the ideas should be applicable to a range of questions in cryptography . The new algorithm of Lenstra and Silverberg
A semi-supervised classification algorithm using the TAD-derived background as training data
NASA Astrophysics Data System (ADS)
Fan, Lei; Ambeau, Brittany; Messinger, David W.
2013-05-01
In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.
Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi
2015-01-01
The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.
A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image
NASA Astrophysics Data System (ADS)
Su, Junying
2011-11-01
A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.
Mane, Vijay Mahadeo; Jadhav, D V
2017-05-24
Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.
An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.
Shabanzadeh, Parvaneh; Yusof, Rubiyah
2015-01-01
Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
Searching Information Sources in Networks
2017-06-14
SECURITY CLASSIFICATION OF: During the course of this project, we made significant progresses in multiple directions of the information detection...result on information source detection on non-tree networks; (2) The development of information source localization algorithms to detect multiple... information sources. The algorithms have provable performance guarantees and outperform existing algorithms in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND
NASA Astrophysics Data System (ADS)
Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene
2016-07-01
Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Comparison analysis for classification algorithm in data mining and the study of model use
NASA Astrophysics Data System (ADS)
Chen, Junde; Zhang, Defu
2018-04-01
As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.
NASA Astrophysics Data System (ADS)
Ciany, Charles M.; Zurawski, William; Kerfoot, Ian
2001-10-01
The performance of Computer Aided Detection/Computer Aided Classification (CAD/CAC) Fusion algorithms on side-scan sonar images was evaluated using data taken at the Navy's's Fleet Battle Exercise-Hotel held in Panama City, Florida, in August 2000. A 2-of-3 binary fusion algorithm is shown to provide robust performance. The algorithm accepts the classification decisions and associated contact locations form three different CAD/CAC algorithms, clusters the contacts based on Euclidian distance, and then declares a valid target when a clustered contact is declared by at least 2 of the 3 individual algorithms. This simple binary fusion provided a 96 percent probability of correct classification at a false alarm rate of 0.14 false alarms per image per side. The performance represented a 3.8:1 reduction in false alarms over the best performing single CAD/CAC algorithm, with no loss in probability of correct classification.
GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.
Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim
2016-08-01
In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.
Duraisamy, Baskar; Shanmugam, Jayanthi Venkatraman; Annamalai, Jayanthi
2018-02-19
An early intervention of Alzheimer's disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.
DMSP SSJ4 Data Restoration, Classification, and On-Line Data Access
NASA Technical Reports Server (NTRS)
Wing, Simon; Bredekamp, Joseph H. (Technical Monitor)
2000-01-01
Compress and clean raw data file for permanent storage We have identified various error conditions/types and developed algorithms to get rid of these errors/noises, including the more complicated noise in the newer data sets. (status = 100% complete). Internet access of compacted raw data. It is now possible to access the raw data via our web site, http://www.jhuapl.edu/Aurora/index.html. The software to read and plot the compacted raw data is also available from the same web site. The users can now download the raw data, read, plot, or manipulate the data as they wish on their own computer. The users are able to access the cleaned data sets. Internet access of the color spectrograms. This task has also been completed. It is now possible to access the spectrograms from the web site mentioned above. Improve the particle precipitation region classification. The algorithm for doing this task has been developed and implemented. As a result, the accuracies improved. Now the web site routinely distributes the results of applying the new algorithm to the cleaned data set. Mark the classification region on the spectrograms. The software to mark the classification region in the spectrograms has been completed. This is also available from our web site.
ERIC Educational Resources Information Center
Wang, Wen-Chung; Huang, Sheng-Yun
2011-01-01
The one-parameter logistic model with ability-based guessing (1PL-AG) has been recently developed to account for effect of ability on guessing behavior in multiple-choice items. In this study, the authors developed algorithms for computerized classification testing under the 1PL-AG and conducted a series of simulations to evaluate their…
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin
The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.
A classification model of Hyperion image base on SAM combined decision tree
NASA Astrophysics Data System (ADS)
Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin
2009-10-01
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.
Classification of earth terrain using polarimetric synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Lim, H. H.; Swartz, A. A.; Yueh, H. A.; Kong, J. A.; Shin, R. T.; Van Zyl, J. J.
1989-01-01
Supervised and unsupervised classification techniques are developed and used to classify the earth terrain components from SAR polarimetric images of San Francisco Bay and Traverse City, Michigan. The supervised techniques include the Bayes classifiers, normalized polarimetric classification, and simple feature classification using discriminates such as the absolute and normalized magnitude response of individual receiver channel returns and the phase difference between receiver channels. An algorithm is developed as an unsupervised technique which classifies terrain elements based on the relationship between the orientation angle and the handedness of the transmitting and receiving polariation states. It is found that supervised classification produces the best results when accurate classifier training data are used, while unsupervised classification may be applied when training data are not available.
Akbar, Shahid; Hayat, Maqsood; Iqbal, Muhammad; Jan, Mian Ahmad
2017-06-01
Cancer is a fatal disease, responsible for one-quarter of all deaths in developed countries. Traditional anticancer therapies such as, chemotherapy and radiation, are highly expensive, susceptible to errors and ineffective techniques. These conventional techniques induce severe side-effects on human cells. Due to perilous impact of cancer, the development of an accurate and highly efficient intelligent computational model is desirable for identification of anticancer peptides. In this paper, evolutionary intelligent genetic algorithm-based ensemble model, 'iACP-GAEnsC', is proposed for the identification of anticancer peptides. In this model, the protein sequences are formulated, using three different discrete feature representation methods, i.e., amphiphilic Pseudo amino acid composition, g-Gap dipeptide composition, and Reduce amino acid alphabet composition. The performance of the extracted feature spaces are investigated separately and then merged to exhibit the significance of hybridization. In addition, the predicted results of individual classifiers are combined together, using optimized genetic algorithm and simple majority technique in order to enhance the true classification rate. It is observed that genetic algorithm-based ensemble classification outperforms than individual classifiers as well as simple majority voting base ensemble. The performance of genetic algorithm-based ensemble classification is highly reported on hybrid feature space, with an accuracy of 96.45%. In comparison to the existing techniques, 'iACP-GAEnsC' model has achieved remarkable improvement in terms of various performance metrics. Based on the simulation results, it is observed that 'iACP-GAEnsC' model might be a leading tool in the field of drug design and proteomics for researchers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaur, Parneet; Singh, Sukhwinder; Garg, Sushil; Harmanpreet
2010-11-01
In this paper we study about classification algorithms for farm DSS. By applying classification algorithms i.e. Limited search, ID3, CHAID, C4.5, Improved C4.5 and One VS all Decision Tree on common data set of crop with specified class, results are obtained. The tool used to derive results is SPINA. The graphical results obtained from tool are compared to suggest best technique to develop farm Decision Support System. This analysis would help to researchers to design effective and fast DSS for farmer to take decision for enhancing their yield.
NASA Astrophysics Data System (ADS)
Walker, Joel W.
2014-08-01
The M T2, or "s-transverse mass", statistic was developed to associate a parent mass scale to a missing transverse energy signature, given that escaping particles are generally expected in pairs, while collider experiments are sensitive to just a single transverse momentum vector sum. This document focuses on the generalized extension of that statistic to asymmetric one- and two-step decay chains, with arbitrary child particle masses and upstream missing transverse momentum. It provides a unified theoretical formulation, complete solution classification, taxonomy of critical points, and technical algorithmic prescription for treatment of the event scale. An implementation of the described algorithm is available for download, and is also a deployable component of the author's selection cut software package AEAC uS (Algorithmic Event Arbiter and C ut Selector). appendices address combinatoric event assembly, algorithm validation, and a complete pseudocode.
Genome-Wide Comparative Gene Family Classification
Frech, Christian; Chen, Nansheng
2010-01-01
Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221
Gemovic, Branislava; Perovic, Vladimir; Glisic, Sanja; Veljkovic, Nevena
2013-01-01
There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside conserved functional domains (CFDs) and compared its classification efficacy with the most commonly used phylogeny-based tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM), a feature-based technique, and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%, respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid substitutions outside CFDs than phylogeny-based tools.
Noncontact Sleep Study by Multi-Modal Sensor Fusion.
Chung, Ku-Young; Song, Kwangsub; Shin, Kangsoo; Sohn, Jinho; Cho, Seok Hyun; Chang, Joon-Hyuk
2017-07-21
Polysomnography (PSG) is considered as the gold standard for determining sleep stages, but due to the obtrusiveness of its sensor attachments, sleep stage classification algorithms using noninvasive sensors have been developed throughout the years. However, the previous studies have not yet been proven reliable. In addition, most of the products are designed for healthy customers rather than for patients with sleep disorder. We present a novel approach to classify sleep stages via low cost and noncontact multi-modal sensor fusion, which extracts sleep-related vital signals from radar signals and a sound-based context-awareness technique. This work is uniquely designed based on the PSG data of sleep disorder patients, which were received and certified by professionals at Hanyang University Hospital. The proposed algorithm further incorporates medical/statistical knowledge to determine personal-adjusted thresholds and devise post-processing. The efficiency of the proposed algorithm is highlighted by contrasting sleep stage classification performance between single sensor and sensor-fusion algorithms. To validate the possibility of commercializing this work, the classification results of this algorithm were compared with the commercialized sleep monitoring device, ResMed S+. The proposed algorithm was investigated with random patients following PSG examination, and results show a promising novel approach for determining sleep stages in a low cost and unobtrusive manner.
Noncontact Sleep Study by Multi-Modal Sensor Fusion
Chung, Ku-young; Song, Kwangsub; Shin, Kangsoo; Sohn, Jinho; Cho, Seok Hyun; Chang, Joon-Hyuk
2017-01-01
Polysomnography (PSG) is considered as the gold standard for determining sleep stages, but due to the obtrusiveness of its sensor attachments, sleep stage classification algorithms using noninvasive sensors have been developed throughout the years. However, the previous studies have not yet been proven reliable. In addition, most of the products are designed for healthy customers rather than for patients with sleep disorder. We present a novel approach to classify sleep stages via low cost and noncontact multi-modal sensor fusion, which extracts sleep-related vital signals from radar signals and a sound-based context-awareness technique. This work is uniquely designed based on the PSG data of sleep disorder patients, which were received and certified by professionals at Hanyang University Hospital. The proposed algorithm further incorporates medical/statistical knowledge to determine personal-adjusted thresholds and devise post-processing. The efficiency of the proposed algorithm is highlighted by contrasting sleep stage classification performance between single sensor and sensor-fusion algorithms. To validate the possibility of commercializing this work, the classification results of this algorithm were compared with the commercialized sleep monitoring device, ResMed S+. The proposed algorithm was investigated with random patients following PSG examination, and results show a promising novel approach for determining sleep stages in a low cost and unobtrusive manner. PMID:28753994
Feature Selection and Effective Classifiers.
ERIC Educational Resources Information Center
Deogun, Jitender S.; Choubey, Suresh K.; Raghavan, Vijay V.; Sever, Hayri
1998-01-01
Develops and analyzes four algorithms for feature selection in the context of rough set methodology. Experimental results confirm the expected relationship between the time complexity of these algorithms and the classification accuracy of the resulting upper classifiers. When compared, results of upper classifiers perform better than lower…
An Imager Gaussian Process Machine Learning Methodology for Cloud Thermodynamic Phase classification
NASA Astrophysics Data System (ADS)
Marchant, B.; Platnick, S. E.; Meyer, K.
2017-12-01
The determination of cloud thermodynamic phase from MODIS and VIIRS instruments is an important first step in cloud optical retrievals, since ice and liquid clouds have different optical properties. To continue improving the cloud thermodynamic phase classification algorithm, a machine-learning approach, based on Gaussian processes, has been developed. The new proposed methodology provides cloud phase uncertainty quantification and improves the algorithm portability between MODIS and VIIRS. We will present new results, through comparisons between MODIS and CALIOP v4, and for VIIRS as well.
Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua
2013-01-01
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts. PMID:24236224
Neyman-Pearson classification algorithms and NP receiver operating characteristics
Tong, Xin; Feng, Yang; Li, Jingyi Jessica
2018-01-01
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies. PMID:29423442
NASA Astrophysics Data System (ADS)
Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua
2012-03-01
Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.
Neyman-Pearson classification algorithms and NP receiver operating characteristics.
Tong, Xin; Feng, Yang; Li, Jingyi Jessica
2018-02-01
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies.
Contextual classification of multispectral image data: Approximate algorithm
NASA Technical Reports Server (NTRS)
Tilton, J. C. (Principal Investigator)
1980-01-01
An approximation to a classification algorithm incorporating spatial context information in a general, statistical manner is presented which is computationally less intensive. Classifications that are nearly as accurate are produced.
NASA Astrophysics Data System (ADS)
Wang, Tao; He, Bin
2004-03-01
The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.
NASA Astrophysics Data System (ADS)
Ye, Su; Chen, Dongmei; Yu, Jie
2016-04-01
In remote sensing, conventional supervised change-detection methods usually require effective training data for multiple change types. This paper introduces a more flexible and efficient procedure that seeks to identify only the changes that users are interested in, here after referred to as "targeted change detection". Based on a one-class classifier "Support Vector Domain Description (SVDD)", a novel algorithm named "Three-layer SVDD Fusion (TLSF)" is developed specially for targeted change detection. The proposed algorithm combines one-class classification generated from change vector maps, as well as before- and after-change images in order to get a more reliable detecting result. In addition, this paper introduces a detailed workflow for implementing this algorithm. This workflow has been applied to two case studies with different practical monitoring objectives: urban expansion and forest fire assessment. The experiment results of these two case studies show that the overall accuracy of our proposed algorithm is superior (Kappa statistics are 86.3% and 87.8% for Case 1 and 2, respectively), compared to applying SVDD to change vector analysis and post-classification comparison.
Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images
NASA Astrophysics Data System (ADS)
Zakhvatkina, Natalia; Korosov, Anton; Muckenhuber, Stefan; Sandven, Stein; Babiker, Mohamed
2017-01-01
Synthetic Aperture Radar (SAR) data from RADARSAT-2 (RS2) in dual-polarization mode provide additional information for discriminating sea ice and open water compared to single-polarization data. We have developed an automatic algorithm based on dual-polarized RS2 SAR images to distinguish open water (rough and calm) and sea ice. Several technical issues inherent in RS2 data were solved in the pre-processing stage, including thermal noise reduction in HV polarization and correction of angular backscatter dependency in HH polarization. Texture features were explored and used in addition to supervised image classification based on the support vector machines (SVM) approach. The study was conducted in the ice-covered area between Greenland and Franz Josef Land. The algorithm has been trained using 24 RS2 scenes acquired in winter months in 2011 and 2012, and the results were validated against manually derived ice charts of the Norwegian Meteorological Institute. The algorithm was applied on a total of 2705 RS2 scenes obtained from 2013 to 2015, and the validation results showed that the average classification accuracy was 91 ± 4 %.
Implementation of several mathematical algorithms to breast tissue density classification
NASA Astrophysics Data System (ADS)
Quintana, C.; Redondo, M.; Tirao, G.
2014-02-01
The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.
Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A
2015-06-01
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-Temporal Classification and Change Detection Using Uav Images
NASA Astrophysics Data System (ADS)
Makuti, S.; Nex, F.; Yang, M. Y.
2018-05-01
In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.
NASA Astrophysics Data System (ADS)
Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.
2018-03-01
A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.
A Locality-Constrained and Label Embedding Dictionary Learning Algorithm for Image Classification.
Zhengming Li; Zhihui Lai; Yong Xu; Jian Yang; Zhang, David
2017-02-01
Locality and label information of training samples play an important role in image classification. However, previous dictionary learning algorithms do not take the locality and label information of atoms into account together in the learning process, and thus their performance is limited. In this paper, a discriminative dictionary learning algorithm, called the locality-constrained and label embedding dictionary learning (LCLE-DL) algorithm, was proposed for image classification. First, the locality information was preserved using the graph Laplacian matrix of the learned dictionary instead of the conventional one derived from the training samples. Then, the label embedding term was constructed using the label information of atoms instead of the classification error term, which contained discriminating information of the learned dictionary. The optimal coding coefficients derived by the locality-based and label-based reconstruction were effective for image classification. Experimental results demonstrated that the LCLE-DL algorithm can achieve better performance than some state-of-the-art algorithms.
Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei
2018-02-01
Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.
Correlation signatures of wet soils and snows. [algorithm development and computer programming
NASA Technical Reports Server (NTRS)
Phillips, M. R.
1972-01-01
Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.
Biometric Authentication for Gender Classification Techniques: A Review
NASA Astrophysics Data System (ADS)
Mathivanan, P.; Poornima, K.
2017-12-01
One of the challenging biometric authentication applications is gender identification and age classification, which captures gait from far distance and analyze physical information of the subject such as gender, race and emotional state of the subject. It is found that most of the gender identification techniques have focused only with frontal pose of different human subject, image size and type of database used in the process. The study also classifies different feature extraction process such as, Principal Component Analysis (PCA) and Local Directional Pattern (LDP) that are used to extract the authentication features of a person. This paper aims to analyze different gender classification techniques that help in evaluating strength and weakness of existing gender identification algorithm. Therefore, it helps in developing a novel gender classification algorithm with less computation cost and more accuracy. In this paper, an overview and classification of different gender identification techniques are first presented and it is compared with other existing human identification system by means of their performance.
A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method.
Liu, Xiao; Wang, Xiaoli; Su, Qiang; Zhang, Mo; Zhu, Yanhong; Wang, Qiugen; Wang, Qian
2017-01-01
Heart disease is one of the most common diseases in the world. The objective of this study is to aid the diagnosis of heart disease using a hybrid classification system based on the ReliefF and Rough Set (RFRS) method. The proposed system contains two subsystems: the RFRS feature selection system and a classification system with an ensemble classifier. The first system includes three stages: (i) data discretization, (ii) feature extraction using the ReliefF algorithm, and (iii) feature reduction using the heuristic Rough Set reduction algorithm that we developed. In the second system, an ensemble classifier is proposed based on the C4.5 classifier. The Statlog (Heart) dataset, obtained from the UCI database, was used for experiments. A maximum classification accuracy of 92.59% was achieved according to a jackknife cross-validation scheme. The results demonstrate that the performance of the proposed system is superior to the performances of previously reported classification techniques.
Pascual-García, Alberto; Abia, David; Ortiz, Angel R; Bastolla, Ugo
2009-03-01
Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively, average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.cbm.uam.es/research/ProtNet.php.
Efficient Fingercode Classification
NASA Astrophysics Data System (ADS)
Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang
In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor);
1998-01-01
Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.
An ordinal classification approach for CTG categorization.
Georgoulas, George; Karvelis, Petros; Gavrilis, Dimitris; Stylios, Chrysostomos D; Nikolakopoulos, George
2017-07-01
Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.
NASA Technical Reports Server (NTRS)
Huck, F. O.; Davis, R. E.; Fales, C. L.; Aherron, R. M.
1982-01-01
A computational model of the deterministic and stochastic processes involved in remote sensing is used to study spectral feature identification techniques for real-time onboard processing of data acquired with advanced earth-resources sensors. Preliminary results indicate that: Narrow spectral responses are advantageous; signal normalization improves mean-square distance (MSD) classification accuracy but tends to degrade maximum-likelihood (MLH) classification accuracy; and MSD classification of normalized signals performs better than the computationally more complex MLH classification when imaging conditions change appreciably from those conditions during which reference data were acquired. The results also indicate that autonomous categorization of TM signals into vegetation, bare land, water, snow and clouds can be accomplished with adequate reliability for many applications over a reasonably wide range of imaging conditions. However, further analysis is required to develop computationally efficient boundary approximation algorithms for such categorization.
Kianmehr, Keivan; Alhajj, Reda
2008-09-01
In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.
Umut, İlhan; Çentik, Güven
2016-01-01
The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present. PMID:27213008
Umut, İlhan; Çentik, Güven
2016-01-01
The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present.
Significance of perceptually relevant image decolorization for scene classification
NASA Astrophysics Data System (ADS)
Viswanathan, Sowmya; Divakaran, Govind; Soman, Kutti Padanyl
2017-11-01
Color images contain luminance and chrominance components representing the intensity and color information, respectively. The objective of this paper is to show the significance of incorporating chrominance information to the task of scene classification. An improved color-to-grayscale image conversion algorithm that effectively incorporates chrominance information is proposed using the color-to-gray structure similarity index and singular value decomposition to improve the perceptual quality of the converted grayscale images. The experimental results based on an image quality assessment for image decolorization and its success rate (using the Cadik and COLOR250 datasets) show that the proposed image decolorization technique performs better than eight existing benchmark algorithms for image decolorization. In the second part of the paper, the effectiveness of incorporating the chrominance component for scene classification tasks is demonstrated using a deep belief network-based image classification system developed using dense scale-invariant feature transforms. The amount of chrominance information incorporated into the proposed image decolorization technique is confirmed with the improvement to the overall scene classification accuracy. Moreover, the overall scene classification performance improved by combining the models obtained using the proposed method and conventional decolorization methods.
Spectral band selection for classification of soil organic matter content
NASA Technical Reports Server (NTRS)
Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.
1989-01-01
This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.
Statistical Signal Models and Algorithms for Image Analysis
1984-10-25
In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction
Heterogeneous Vision Data Fusion for Independently Moving Cameras
2010-03-01
target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY
Identification and classification of similar looking food grains
NASA Astrophysics Data System (ADS)
Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.
2013-01-01
This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.
Zhang, Yiyan; Xin, Yi; Li, Qin; Ma, Jianshe; Li, Shuai; Lv, Xiaodan; Lv, Weiqi
2017-11-02
Various kinds of data mining algorithms are continuously raised with the development of related disciplines. The applicable scopes and their performances of these algorithms are different. Hence, finding a suitable algorithm for a dataset is becoming an important emphasis for biomedical researchers to solve practical problems promptly. In this paper, seven kinds of sophisticated active algorithms, namely, C4.5, support vector machine, AdaBoost, k-nearest neighbor, naïve Bayes, random forest, and logistic regression, were selected as the research objects. The seven algorithms were applied to the 12 top-click UCI public datasets with the task of classification, and their performances were compared through induction and analysis. The sample size, number of attributes, number of missing values, and the sample size of each class, correlation coefficients between variables, class entropy of task variable, and the ratio of the sample size of the largest class to the least class were calculated to character the 12 research datasets. The two ensemble algorithms reach high accuracy of classification on most datasets. Moreover, random forest performs better than AdaBoost on the unbalanced dataset of the multi-class task. Simple algorithms, such as the naïve Bayes and logistic regression model are suitable for a small dataset with high correlation between the task and other non-task attribute variables. K-nearest neighbor and C4.5 decision tree algorithms perform well on binary- and multi-class task datasets. Support vector machine is more adept on the balanced small dataset of the binary-class task. No algorithm can maintain the best performance in all datasets. The applicability of the seven data mining algorithms on the datasets with different characteristics was summarized to provide a reference for biomedical researchers or beginners in different fields.
Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael
2014-10-01
This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.
2013-01-01
Background The information of electromyographic signals can be used by Myoelectric Control Systems (MCSs) to actuate prostheses. These devices allow the performing of movements that cannot be carried out by persons with amputated limbs. The state of the art in the development of MCSs is based on the use of individual principal component analysis (iPCA) as a stage of pre-processing of the classifiers. The iPCA pre-processing implies an optimization stage which has not yet been deeply explored. Methods The present study considers two factors in the iPCA stage: namely A (the fitness function), and B (the search algorithm). The A factor comprises two levels, namely A1 (the classification error) and A2 (the correlation factor). Otherwise, the B factor has four levels, specifically B1 (the Sequential Forward Selection, SFS), B2 (the Sequential Floating Forward Selection, SFFS), B3 (Artificial Bee Colony, ABC), and B4 (Particle Swarm Optimization, PSO). This work evaluates the incidence of each one of the eight possible combinations between A and B factors over the classification error of the MCS. Results A two factor ANOVA was performed on the computed classification errors and determined that: (1) the interactive effects over the classification error are not significative (F0.01,3,72 = 4.0659 > f AB = 0.09), (2) the levels of factor A have significative effects on the classification error (F0.02,1,72 = 5.0162 < f A = 6.56), and (3) the levels of factor B over the classification error are not significative (F0.01,3,72 = 4.0659 > f B = 0.08). Conclusions Considering the classification performance we found a superiority of using the factor A2 in combination with any of the levels of factor B. With respect to the time performance the analysis suggests that the PSO algorithm is at least 14 percent better than its best competitor. The latter behavior has been observed for a particular configuration set of parameters in the search algorithms. Future works will investigate the effect of these parameters in the classification performance, such as length of the reduced size vector, number of particles and bees used during optimal search, the cognitive parameters in the PSO algorithm as well as the limit of cycles to improve a solution in the ABC algorithm. PMID:24369728
Land use/cover classification in the Brazilian Amazon using satellite images.
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira
2012-09-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Land use/cover classification in the Brazilian Amazon using satellite images
Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira
2013-01-01
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353
Weakly supervised classification in high energy physics
Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco; ...
2017-05-01
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less
Weakly supervised classification in high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dery, Lucio Mwinmaarong; Nachman, Benjamin; Rubbo, Francesco
As machine learning algorithms become increasingly sophisticated to exploit subtle features of the data, they often become more dependent on simulations. Here, this paper presents a new approach called weakly supervised classification in which class proportions are the only input into the machine learning algorithm. Using one of the most challenging binary classification tasks in high energy physics $-$ quark versus gluon tagging $-$ we show that weakly supervised classification can match the performance of fully supervised algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling of discriminating features in the data by the simulation. Weakly supervisedmore » classification is a general procedure that can be applied to a wide variety of learning problems to boost performance and robustness when detailed simulations are not reliable or not available.« less
Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks
NASA Astrophysics Data System (ADS)
Beck, Melanie Renee
The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.
Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib
2008-10-01
Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.
Determination of colonoscopy indication from administrative claims data.
Ko, Cynthia W; Dominitz, Jason A; Neradilek, Moni; Polissar, Nayak; Green, Pam; Kreuter, William; Baldwin, Laura-Mae
2014-04-01
Colonoscopy outcomes, such as polyp detection or complication rates, may differ by procedure indication. To develop methods to classify colonoscopy indications from administrative data, facilitating study of colonoscopy quality and outcomes. We linked 14,844 colonoscopy reports from the Clinical Outcomes Research Initiative, a national repository of endoscopic reports, to the corresponding Medicare Carrier and Outpatient File claims. Colonoscopy indication was determined from the procedure reports. We developed algorithms using classification and regression trees and linear discriminant analysis (LDA) to classify colonoscopy indication. Predictor variables included ICD-9CM and CPT/HCPCS codes present on the colonoscopy claim or in the 12 months prior, patient demographics, and site of colonoscopy service. Algorithms were developed on a training set of 7515 procedures, then validated using a test set of 7329 procedures. Sensitivity was lowest for identifying average-risk screening colonoscopies, varying between 55% and 86% for the different algorithms, but specificity for this indication was consistently over 95%. Sensitivity for diagnostic colonoscopy varied between 77% and 89%, with specificity between 55% and 87%. Algorithms with classification and regression trees with 7 variables or LDA with 10 variables had similar overall accuracy, and generally lower accuracy than the algorithm using LDA with 30 variables. Algorithms using Medicare claims data have moderate sensitivity and specificity for colonoscopy indication, and will be useful for studying colonoscopy quality in this population. Further validation may be needed before use in alternative populations.
SLO blind data set inversion and classification using physically complete models
NASA Astrophysics Data System (ADS)
Shamatava, I.; Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.; Grzegorczyk, T. M.; Bijamov, A.
2010-04-01
Discrimination studies carried out on TEMTADS and Metal Mapper blind data sets collected at the San Luis Obispo UXO site are presented. The data sets included four types of targets of interest: 2.36" rockets, 60-mm mortar shells, 81-mm projectiles, and 4.2" mortar items. The total parameterized normalized magnetic source (NSMS) amplitudes were used to discriminate TOI from metallic clutter and among the different hazardous UXO. First, in object's frame coordinate, the total NSMS were determined for each TOI along three orthogonal axes from the training data provided by the Strategic Environmental Research and Development Program (SERDP) along with the referred blind data sets. Then the inverted total NSMS were used to extract the time-decay classification features. Once our inversion and classification algorithms were tested on the calibration data sets then we applied the same procedure to all blind data sets. The combined NSMS and differential evolution algorithm is utilized for determine the NSMS strengths for each cell. The obtained total NSMS time-decay curves were used to extract the discrimination features and perform classification using the training data as reference. In addition, for cross validation, the inverted locations and orientations from NSMS-DE algorithm were compared against the inverted data that obtained via the magnetic field, vector and scalar potentials (HAP) method and the combined dipole and Gauss-Newton approach technique. We examined the entire time decay history of the total NSMS case-by-case for classification purposes. Also, we use different multi-class statistical classification algorithms for separating the dangerous objects from non hazardous items. The inverted targets were ranked by target ID and submitted to SERDP for independent scoring. The independent scoring results are presented.
WND-CHARM: Multi-purpose image classification using compound image transforms
Orlov, Nikita; Shamir, Lior; Macura, Tomasz; Johnston, Josiah; Eckley, D. Mark; Goldberg, Ilya G.
2008-01-01
We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from openmicroscopy.org. PMID:18958301
Real-time, resource-constrained object classification on a micro-air vehicle
NASA Astrophysics Data System (ADS)
Buck, Louis; Ray, Laura
2013-12-01
A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.
Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin
2016-01-01
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.
The LSST Data Mining Research Agenda
NASA Astrophysics Data System (ADS)
Borne, K.; Becla, J.; Davidson, I.; Szalay, A.; Tyson, J. A.
2008-12-01
We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night) multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.
Reduction from cost-sensitive ordinal ranking to weighted binary classification.
Lin, Hsuan-Tien; Li, Ling
2012-05-01
We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows not only the design of good ordinal ranking algorithms based on well-tuned binary classification approaches, but also the derivation of new generalization bounds for ordinal ranking from known bounds for binary classification. In addition, our framework unifies many existing ordinal ranking algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms. In addition, the newly designed algorithms lead to better cost-sensitive ordinal ranking performance, as well as improved listwise ranking performance.
Simple-random-sampling-based multiclass text classification algorithm.
Liu, Wuying; Wang, Lin; Yi, Mianzhu
2014-01-01
Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
A Novel Anti-classification Approach for Knowledge Protection.
Lin, Chen-Yi; Chen, Tung-Shou; Tsai, Hui-Fang; Lee, Wei-Bin; Hsu, Tien-Yu; Kao, Yuan-Hung
2015-10-01
Classification is the problem of identifying a set of categories where new data belong, on the basis of a set of training data whose category membership is known. Its application is wide-spread, such as the medical science domain. The issue of the classification knowledge protection has been paid attention increasingly in recent years because of the popularity of cloud environments. In the paper, we propose a Shaking Sorted-Sampling (triple-S) algorithm for protecting the classification knowledge of a dataset. The triple-S algorithm sorts the data of an original dataset according to the projection results of the principal components analysis so that the features of the adjacent data are similar. Then, we generate noise data with incorrect classes and add those data to the original dataset. In addition, we develop an effective positioning strategy, determining the added positions of noise data in the original dataset, to ensure the restoration of the original dataset after removing those noise data. The experimental results show that the disturbance effect of the triple-S algorithm on the CLC, MySVM, and LibSVM classifiers increases when the noise data ratio increases. In addition, compared with existing methods, the disturbance effect of the triple-S algorithm is more significant on MySVM and LibSVM when a certain amount of the noise data added to the original dataset is reached.
A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.
Singh, Narinder; Singh, S B
2017-01-01
A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam
2017-12-01
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
Esteban, Santiago; Rodríguez Tablado, Manuel; Peper, Francisco; Mahumud, Yamila S; Ricci, Ricardo I; Kopitowski, Karin; Terrasa, Sergio
2017-01-01
Precision medicine requires extremely large samples. Electronic health records (EHR) are thought to be a cost-effective source of data for that purpose. Phenotyping algorithms help reduce classification errors, making EHR a more reliable source of information for research. Four algorithm development strategies for classifying patients according to their diabetes status (diabetics; non-diabetics; inconclusive) were tested (one codes-only algorithm; one boolean algorithm, four statistical learning algorithms and six stacked generalization meta-learners). The best performing algorithms within each strategy were tested on the validation set. The stacked generalization algorithm yielded the highest Kappa coefficient value in the validation set (0.95 95% CI 0.91, 0.98). The implementation of these algorithms allows for the exploitation of data from thousands of patients accurately, greatly reducing the costs of constructing retrospective cohorts for research.
Scalable High-order Methods for Multi-Scale Problems: Analysis, Algorithms and Application
2016-02-26
Karniadakis, “Resilient algorithms for reconstructing and simulating gappy flow fields in CFD ”, Fluid Dynamic Research, vol. 47, 051402, 2015. 2. Y. Yu, H...simulation, domain decomposition, CFD , gappy data, estimation theory, and gap-tooth algorithm. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...objective of this project was to develop a general CFD framework for multifidelity simula- tions to target multiscale problems but also resilience in
Griffiths, Jason I.; Fronhofer, Emanuel A.; Garnier, Aurélie; Seymour, Mathew; Altermatt, Florian; Petchey, Owen L.
2017-01-01
The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology. PMID:28472193
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel
2011-05-09
Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data
2011-01-01
Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689
Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica
2016-02-01
Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC International Classification of Diseases, 9th Revision (ICD-9) codes, and evaluated whether natural language processing by the Automated Retrieval Console (ARC) for document classification improves HCC identification. We identified a cohort of patients with ICD-9 codes for HCC during 2005-2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared with manual classification. PPV, sensitivity, and specificity of ARC were calculated. A total of 1138 patients with HCC were identified by ICD-9 codes. On the basis of manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. A combined approach of ICD-9 codes and natural language processing of pathology and radiology reports improves HCC case identification in automated data.
A fingerprint classification algorithm based on combination of local and global information
NASA Astrophysics Data System (ADS)
Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu
2011-12-01
Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.
Exercise recognition for Kinect-based telerehabilitation.
Antón, D; Goñi, A; Illarramendi, A
2015-01-01
An aging population and people's higher survival to diseases and traumas that leave physical consequences are challenging aspects in the context of an efficient health management. This is why telerehabilitation systems are being developed, to allow monitoring and support of physiotherapy sessions at home, which could reduce healthcare costs while also improving the quality of life of the users. Our goal is the development of a Kinect-based algorithm that provides a very accurate real-time monitoring of physical rehabilitation exercises and that also provides a friendly interface oriented both to users and physiotherapists. The two main constituents of our algorithm are the posture classification method and the exercises recognition method. The exercises consist of series of movements. Each movement is composed of an initial posture, a final posture and the angular trajectories of the limbs involved in the movement. The algorithm was designed and tested with datasets of real movements performed by volunteers. We also explain in the paper how we obtained the optimal values for the trade-off values for posture and trajectory recognition. Two relevant aspects of the algorithm were evaluated in our tests, classification accuracy and real-time data processing. We achieved 91.9% accuracy in posture classification and 93.75% accuracy in trajectory recognition. We also checked whether the algorithm was able to process the data in real-time. We found that our algorithm could process more than 20,000 postures per second and all the required trajectory data-series in real-time, which in practice guarantees no perceptible delays. Later on, we carried out two clinical trials with real patients that suffered shoulder disorders. We obtained an exercise monitoring accuracy of 95.16%. We present an exercise recognition algorithm that handles the data provided by Kinect efficiently. The algorithm has been validated in a real scenario where we have verified its suitability. Moreover, we have received a positive feedback from both users and the physiotherapists who took part in the tests.
USDA-ARS?s Scientific Manuscript database
An algorithm has been developed to identify spots generated in hyperspectral images of mangoes infested with fruit fly larvae. The algorithm incorporates background removal, application of a Gaussian blur, thresholding, and particle count analysis to identify locations of infestations. Each of the f...
Optimal Methods for Classification of Digitally Modulated Signals
2013-03-01
of using a ratio of likelihood functions, the proposed approach uses the Kullback - Leibler (KL) divergence. KL...58 List of Acronyms ALRT Average LRT BPSK Binary Shift Keying BPSK-SS BPSK Spread Spectrum or CDMA DKL Kullback - Leibler Information Divergence...blind demodulation for develop classification algorithms for wider set of signals types. Two methodologies were used : Likelihood Ratio Test
Performance-scalable volumetric data classification for online industrial inspection
NASA Astrophysics Data System (ADS)
Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.
2002-03-01
Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.
NASA Astrophysics Data System (ADS)
Tao, Bangyi; Mao, Zhihua; Lei, Hui; Pan, Delu; Bai, Yan; Zhu, Qiankun; Zhang, Zhenglong
2017-03-01
A new bio-optical algorithm based on the green and red bands of the Medium Resolution Imaging Spectrometer (MERIS) is developed to differentiate the harmful algal blooms of Prorocentrum donghaiense Lu (P. donghaiense) from diatom blooms in the East China Sea (ECS). Specifically, a novel green-red index (GRI), actually an indicator for a(510) of bloom waters, is retrieved from a semianalytical bio-optical model based on the green and red bands of phytoplankton-absorption and backscattering spectra. In addition, a MERIS-based diatom index (DIMERIS) is derived by adjusting a Moderate Resolution Imaging Spectroradiometer (MODIS) diatom index algorithm to the MERIS bands. Finally, bloom types are effectively differentiated in the feature spaces of the green-red index and DIMERIS. Compared with three previous MERIS-based quasi-analytical algorithm (QAA) algorithms and three existing classification methods, the proposed GRI and classification method have the best discrimination performance when using the MERIS data. Further validations of the algorithm by using several MERIS image series and near-concurrent in situ observations indicate that our algorithm yields the best classification accuracy and thus can be used to reliably detect and classify P. donghaiense and diatom blooms in the ECS. This is the first time that the MERIS data have been used to identify bloom types in the ECS. Our algorithm can also be used for the successor of the MERIS, the Ocean and Land Color Instrument, which will aid the long-term observation of species succession in the ECS.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
Machine learning algorithms for mode-of-action classification in toxicity assessment.
Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can
2016-01-01
Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.
NASA Astrophysics Data System (ADS)
Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Cortesi, Marco
2018-02-01
The three-dimensional reconstruction of particle tracks in a time projection chamber is a challenging task that requires advanced classification and fitting algorithms. In this work, we have developed and implemented a novel algorithm based on the Random Sample Consensus Model (RANSAC). The RANSAC is used to classify tracks including pile-up, to remove uncorrelated noise hits, as well as to reconstruct the vertex of the reaction. The algorithm, developed within the Active Target Time Projection Chamber (AT-TPC) framework, was tested and validated by analyzing the 4He+4He reaction. Results, performance and quality of the proposed algorithm are presented and discussed in detail.
Research on Remote Sensing Image Classification Based on Feature Level Fusion
NASA Astrophysics Data System (ADS)
Yuan, L.; Zhu, G.
2018-04-01
Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.
Research on aviation unsafe incidents classification with improved TF-IDF algorithm
NASA Astrophysics Data System (ADS)
Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang
2016-05-01
The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.
Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance
NASA Astrophysics Data System (ADS)
Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi
2017-11-01
K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).
Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring
NASA Astrophysics Data System (ADS)
Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo
2013-12-01
During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST software, with new detection, filtering and classification algorithms. Particularly, dedicated filtering algorithm development based on Wavelet filtering was exploited for the improvement of oil spill detection and classification. In this work we present the functionalities of the developed software and the main results in support of the developed algorithm validity.
Chen, C L; Kaber, D B; Dempsey, P G
2000-06-01
A new and improved method to feedforward neural network (FNN) development for application to data classification problems, such as the prediction of levels of low-back disorder (LBD) risk associated with industrial jobs, is presented. Background on FNN development for data classification is provided along with discussions of previous research and neighborhood (local) solution search methods for hard combinatorial problems. An analytical study is presented which compared prediction accuracy of a FNN based on an error-back propagation (EBP) algorithm with the accuracy of a FNN developed by considering results of local solution search (simulated annealing) for classifying industrial jobs as posing low or high risk for LBDs. The comparison demonstrated superior performance of the FNN generated using the new method. The architecture of this FNN included fewer input (predictor) variables and hidden neurons than the FNN developed based on the EBP algorithm. Independent variable selection methods and the phenomenon of 'overfitting' in FNN (and statistical model) generation for data classification are discussed. The results are supportive of the use of the new approach to FNN development for applications to musculoskeletal disorders and risk forecasting in other domains.
EXhype: A tool for mineral classification using hyperspectral data
NASA Astrophysics Data System (ADS)
Adep, Ramesh Nityanand; shetty, Amba; Ramesh, H.
2017-02-01
Various supervised classification algorithms have been developed to classify earth surface features using hyperspectral data. Each algorithm is modelled based on different human expertises. However, the performance of conventional algorithms is not satisfactory to map especially the minerals in view of their typical spectral responses. This study introduces a new expert system named 'EXhype (Expert system for hyperspectral data classification)' to map minerals. The system incorporates human expertise at several stages of it's implementation: (i) to deal with intra-class variation; (ii) to identify absorption features; (iii) to discriminate spectra by considering absorption features, non-absorption features and by full spectra comparison; and (iv) finally takes a decision based on learning and by emphasizing most important features. It is developed using a knowledge base consisting of an Optimal Spectral Library, Segmented Upper Hull method, Spectral Angle Mapper (SAM) and Artificial Neural Network. The performance of the EXhype is compared with a traditional, most commonly used SAM algorithm using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired over Cuprite, Nevada, USA. A virtual verification method is used to collect samples information for accuracy assessment. Further, a modified accuracy assessment method is used to get a real users accuracies in cases where only limited or desired classes are considered for classification. With the modified accuracy assessment method, SAM and EXhype yields an overall accuracy of 60.35% and 90.75% and the kappa coefficient of 0.51 and 0.89 respectively. It was also found that the virtual verification method allows to use most desired stratified random sampling method and eliminates all the difficulties associated with it. The experimental results show that EXhype is not only producing better accuracy compared to traditional SAM but, can also rightly classify the minerals. It is proficient in avoiding misclassification between target classes when applied on minerals.
Rambaud-Althaus, Clotilde; Shao, Amani Flexson; Kahama-Maro, Judith; Genton, Blaise; d'Acremont, Valérie
2015-01-01
To review the available knowledge on epidemiology and diagnoses of acute infections in children aged 2 to 59 months in primary care setting and develop an electronic algorithm for the Integrated Management of Childhood Illness to reach optimal clinical outcome and rational use of medicines. A structured literature review in Medline, Embase and the Cochrane Database of Systematic Review (CDRS) looked for available estimations of diseases prevalence in outpatients aged 2-59 months, and for available evidence on i) accuracy of clinical predictors, and ii) performance of point-of-care tests for targeted diseases. A new algorithm for the management of childhood illness (ALMANACH) was designed based on evidence retrieved and results of a study on etiologies of fever in Tanzanian children outpatients. The major changes in ALMANACH compared to IMCI (2008 version) are the following: i) assessment of 10 danger signs, ii) classification of non-severe children into febrile and non-febrile illness, the latter receiving no antibiotics, iii) classification of pneumonia based on a respiratory rate threshold of 50 assessed twice for febrile children 12-59 months; iv) malaria rapid diagnostic test performed for all febrile children. In the absence of identified source of fever at the end of the assessment, v) urine dipstick performed for febrile children <2 years to consider urinary tract infection, vi) classification of 'possible typhoid' for febrile children >2 years with abdominal tenderness; and lastly vii) classification of 'likely viral infection' in case of negative results. This smartphone-run algorithm based on new evidence and two point-of-care tests should improve the quality of care of <5 year children and lead to more rational use of antimicrobials.
Rambaud-Althaus, Clotilde; Shao, Amani Flexson; Genton, Blaise; d’Acremont, Valérie
2015-01-01
Objective To review the available knowledge on epidemiology and diagnoses of acute infections in children aged 2 to 59 months in primary care setting and develop an electronic algorithm for the Integrated Management of Childhood Illness to reach optimal clinical outcome and rational use of medicines. Methods A structured literature review in Medline, Embase and the Cochrane Database of Systematic Review (CDRS) looked for available estimations of diseases prevalence in outpatients aged 2-59 months, and for available evidence on i) accuracy of clinical predictors, and ii) performance of point-of-care tests for targeted diseases. A new algorithm for the management of childhood illness (ALMANACH) was designed based on evidence retrieved and results of a study on etiologies of fever in Tanzanian children outpatients. Findings The major changes in ALMANACH compared to IMCI (2008 version) are the following: i) assessment of 10 danger signs, ii) classification of non-severe children into febrile and non-febrile illness, the latter receiving no antibiotics, iii) classification of pneumonia based on a respiratory rate threshold of 50 assessed twice for febrile children 12-59 months; iv) malaria rapid diagnostic test performed for all febrile children. In the absence of identified source of fever at the end of the assessment, v) urine dipstick performed for febrile children <2years to consider urinary tract infection, vi) classification of ‘possible typhoid’ for febrile children >2 years with abdominal tenderness; and lastly vii) classification of ‘likely viral infection’ in case of negative results. Conclusion This smartphone-run algorithm based on new evidence and two point-of-care tests should improve the quality of care of <5 year children and lead to more rational use of antimicrobials. PMID:26161753
Li, Yanfei; Tian, Yun
2018-01-01
The development of network technology and the popularization of image capturing devices have led to a rapid increase in the number of digital images available, and it is becoming increasingly difficult to identify a desired image from among the massive number of possible images. Images usually contain rich semantic information, and people usually understand images at a high semantic level. Therefore, achieving the ability to use advanced technology to identify the emotional semantics contained in images to enable emotional semantic image classification remains an urgent issue in various industries. To this end, this study proposes an improved OCC emotion model that integrates personality and mood factors for emotional modelling to describe the emotional semantic information contained in an image. The proposed classification system integrates the k-Nearest Neighbour (KNN) algorithm with the Support Vector Machine (SVM) algorithm. The MapReduce parallel programming model was used to adapt the KNN-SVM algorithm for parallel implementation in the Hadoop cluster environment, thereby achieving emotional semantic understanding for the classification of a massive collection of images. For training and testing, 70,000 scene images were randomly selected from the SUN Database. The experimental results indicate that users with different personalities show overall consistency in their emotional understanding of the same image. For a training sample size of 50,000, the classification accuracies for different emotional categories targeted at users with different personalities were approximately 95%, and the training time was only 1/5 of that required for the corresponding algorithm with a single-node architecture. Furthermore, the speedup of the system also showed a linearly increasing tendency. Thus, the experiments achieved a good classification effect and can lay a foundation for classification in terms of additional types of emotional image semantics, thereby demonstrating the practical significance of the proposed model. PMID:29320579
Cao, Jianfang; Li, Yanfei; Tian, Yun
2018-01-01
The development of network technology and the popularization of image capturing devices have led to a rapid increase in the number of digital images available, and it is becoming increasingly difficult to identify a desired image from among the massive number of possible images. Images usually contain rich semantic information, and people usually understand images at a high semantic level. Therefore, achieving the ability to use advanced technology to identify the emotional semantics contained in images to enable emotional semantic image classification remains an urgent issue in various industries. To this end, this study proposes an improved OCC emotion model that integrates personality and mood factors for emotional modelling to describe the emotional semantic information contained in an image. The proposed classification system integrates the k-Nearest Neighbour (KNN) algorithm with the Support Vector Machine (SVM) algorithm. The MapReduce parallel programming model was used to adapt the KNN-SVM algorithm for parallel implementation in the Hadoop cluster environment, thereby achieving emotional semantic understanding for the classification of a massive collection of images. For training and testing, 70,000 scene images were randomly selected from the SUN Database. The experimental results indicate that users with different personalities show overall consistency in their emotional understanding of the same image. For a training sample size of 50,000, the classification accuracies for different emotional categories targeted at users with different personalities were approximately 95%, and the training time was only 1/5 of that required for the corresponding algorithm with a single-node architecture. Furthermore, the speedup of the system also showed a linearly increasing tendency. Thus, the experiments achieved a good classification effect and can lay a foundation for classification in terms of additional types of emotional image semantics, thereby demonstrating the practical significance of the proposed model.
Development of a thresholding algorithm for calcium classification at multiple CT energies
NASA Astrophysics Data System (ADS)
Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.
2017-05-01
The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.
CNN universal machine as classificaton platform: an art-like clustering algorithm.
Bálya, David
2003-12-01
Fast and robust classification of feature vectors is a crucial task in a number of real-time systems. A cellular neural/nonlinear network universal machine (CNN-UM) can be very efficient as a feature detector. The next step is to post-process the results for object recognition. This paper shows how a robust classification scheme based on adaptive resonance theory (ART) can be mapped to the CNN-UM. Moreover, this mapping is general enough to include different types of feed-forward neural networks. The designed analogic CNN algorithm is capable of classifying the extracted feature vectors keeping the advantages of the ART networks, such as robust, plastic and fault-tolerant behaviors. An analogic algorithm is presented for unsupervised classification with tunable sensitivity and automatic new class creation. The algorithm is extended for supervised classification. The presented binary feature vector classification is implemented on the existing standard CNN-UM chips for fast classification. The experimental evaluation shows promising performance after 100% accuracy on the training set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhien
2010-06-29
The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processesmore » is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.« less
NASA Astrophysics Data System (ADS)
Li, Ruixiao; Li, Kun; Zhao, Changming
2018-01-01
Coherent dual-frequency Lidar (CDFL) is a new development of Lidar which dramatically enhances the ability to decrease the influence of atmospheric interference by using dual-frequency laser to measure the range and velocity with high precision. Based on the nature of CDFL signals, we propose to apply the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) to estimate the phase differences in dual-frequency Lidar. In the presence of Gaussian white noise, the simulation results show that the signal peaks are more evident when using MUSIC algorithm instead of FFT in condition of low signal-noise-ratio (SNR), which helps to improve the precision of detection on range and velocity, especially for the long distance measurement systems.
Objected-oriented remote sensing image classification method based on geographic ontology model
NASA Astrophysics Data System (ADS)
Chu, Z.; Liu, Z. J.; Gu, H. Y.
2016-11-01
Nowadays, with the development of high resolution remote sensing image and the wide application of laser point cloud data, proceeding objected-oriented remote sensing classification based on the characteristic knowledge of multi-source spatial data has been an important trend on the field of remote sensing image classification, which gradually replaced the traditional method through improving algorithm to optimize image classification results. For this purpose, the paper puts forward a remote sensing image classification method that uses the he characteristic knowledge of multi-source spatial data to build the geographic ontology semantic network model, and carries out the objected-oriented classification experiment to implement urban features classification, the experiment uses protégé software which is developed by Stanford University in the United States, and intelligent image analysis software—eCognition software as the experiment platform, uses hyperspectral image and Lidar data that is obtained through flight in DaFeng City of JiangSu as the main data source, first of all, the experiment uses hyperspectral image to obtain feature knowledge of remote sensing image and related special index, the second, the experiment uses Lidar data to generate nDSM(Normalized DSM, Normalized Digital Surface Model),obtaining elevation information, the last, the experiment bases image feature knowledge, special index and elevation information to build the geographic ontology semantic network model that implement urban features classification, the experiment results show that, this method is significantly higher than the traditional classification algorithm on classification accuracy, especially it performs more evidently on the respect of building classification. The method not only considers the advantage of multi-source spatial data, for example, remote sensing image, Lidar data and so on, but also realizes multi-source spatial data knowledge integration and application of the knowledge to the field of remote sensing image classification, which provides an effective way for objected-oriented remote sensing image classification in the future.
A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
NASA Astrophysics Data System (ADS)
Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina
The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
A Survey on Sentiment Classification in Face Recognition
NASA Astrophysics Data System (ADS)
Qian, Jingyu
2018-01-01
Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.
Design and development of a prototype platform for gait analysis
NASA Astrophysics Data System (ADS)
Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.
2017-04-01
The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.
Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery
LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311
Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures
Natsoulis, Georges; El Ghaoui, Laurent; Lanckriet, Gert R.G.; Tolley, Alexander M.; Leroy, Fabrice; Dunlea, Shane; Eynon, Barrett P.; Pearson, Cecelia I.; Tugendreich, Stuart; Jarnagin, Kurt
2005-01-01
A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as “rewards” for the class-of-interest) while others have a negative contribution (act as “penalties”) to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class. PMID:15867433
Iselin, Greg; Le Brocque, Robyne; Kenardy, Justin; Anderson, Vicki; McKinlay, Lynne
2010-10-01
Controversy surrounds the classification of posttraumatic stress disorder (PTSD), particularly in children and adolescents with traumatic brain injury (TBI). In these populations, it is difficult to differentiate TBI-related organic memory loss from dissociative amnesia. Several alternative PTSD classification algorithms have been proposed for use with children. This paper investigates DSM-IV-TR and alternative PTSD classification algorithms, including and excluding the dissociative amnesia item, in terms of their ability to predict psychosocial function following pediatric TBI. A sample of 184 children aged 6-14 years were recruited following emergency department presentation and/or hospital admission for TBI. PTSD was assessed via semi-structured clinical interview (CAPS-CA) with the child at 3 months post-injury. Psychosocial function was assessed using the parent report CHQ-PF50. Two alternative classification algorithms, the PTSD-AA and 2 of 3 algorithms, reached statistical significance. While the inclusion of the dissociative amnesia item increased prevalence rates across algorithms, it generally resulted in weaker associations with psychosocial function. The PTSD-AA algorithm appears to have the strongest association with psychosocial function following TBI in children and adolescents. Removing the dissociative amnesia item from the diagnostic algorithm generally results in improved validity. Copyright 2010 Elsevier Ltd. All rights reserved.
Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W
2013-11-07
Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.
Using Gaussian mixture models to detect and classify dolphin whistles and pulses.
Peso Parada, Pablo; Cardenal-López, Antonio
2014-06-01
In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.
Angular Superresolution for a Scanning Antenna with Simulated Complex Scatterer-Type Targets
2002-05-01
Approved for public release; distribution unlimited. The Scan- MUSIC (MUltiple SIgnal Classification), or SMUSIC, algorithm was developed by the Millimeter...with the use of a single rotatable sensor scanning in an angular region of interest. This algorithm has been adapted and extended from the MUSIC ...simulation. Abstract ii iii Contents 1. Introduction 1 2. Extension of the MUSIC Algorithm for Scanning Antenna 2 2.1 Subvector Averaging Method
Maximum Margin Clustering of Hyperspectral Data
NASA Astrophysics Data System (ADS)
Niazmardi, S.; Safari, A.; Homayouni, S.
2013-09-01
In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
NASA Astrophysics Data System (ADS)
Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing
2018-02-01
For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.
A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.
Baur, Brittany; Bozdag, Serdar
2016-01-01
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variablemore » objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.« less
Clustering-based Feature Learning on Variable Stars
NASA Astrophysics Data System (ADS)
Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos
2016-04-01
The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.
Acoustic transient classification with a template correlation processor.
Edwards, R T
1999-10-01
I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.
A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification
NASA Astrophysics Data System (ADS)
He, Hui; Yu, Xianchuan
2005-10-01
In this paper a performance comparison of a variety of data preprocessing algorithms in remote sensing image classification is presented. These selected algorithms are principal component analysis (PCA) and three different independent component analyses, ICA (Fast-ICA (Aapo Hyvarinen, 1999), Kernel-ICA (KCCA and KGV (Bach & Jordan, 2002), EFFICA (Aiyou Chen & Peter Bickel, 2003). These algorithms were applied to a remote sensing imagery (1600×1197), obtained from Shunyi, Beijing. For classification, a MLC method is used for the raw and preprocessed data. The results show that classification with the preprocessed data have more confident results than that with raw data and among the preprocessing algorithms, ICA algorithms improve on PCA and EFFICA performs better than the others. The convergence of these ICA algorithms (for data points more than a million) are also studied, the result shows EFFICA converges much faster than the others. Furthermore, because EFFICA is a one-step maximum likelihood estimate (MLE) which reaches asymptotic Fisher efficiency (EFFICA), it computers quite small so that its demand of memory come down greatly, which settled the "out of memory" problem occurred in the other algorithms.
A fuzzy hill-climbing algorithm for the development of a compact associative classifier
NASA Astrophysics Data System (ADS)
Mitra, Soumyaroop; Lam, Sarah S.
2012-02-01
Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.
Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.
ERIC Educational Resources Information Center
Mostafa, J.; Lam, W.
2000-01-01
Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…
Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines.
Jaworek-Korjakowska, Joanna
2016-01-01
Background. One of the fatal disorders causing death is malignant melanoma, the deadliest form of skin cancer. The aim of the modern dermatology is the early detection of skin cancer, which usually results in reducing the mortality rate and less extensive treatment. This paper presents a study on classification of melanoma in the early stage of development using SVMs as a useful technique for data classification. Method. In this paper an automatic algorithm for the classification of melanomas in their early stage, with a diameter under 5 mm, has been presented. The system contains the following steps: image enhancement, lesion segmentation, feature calculation and selection, and classification stage using SVMs. Results. The algorithm has been tested on 200 images including 70 melanomas and 130 benign lesions. The SVM classifier achieved sensitivity of 90% and specificity of 96%. The results indicate that the proposed approach captured most of the malignant cases and could provide reliable information for effective skin mole examination. Conclusions. Micro-melanomas due to the small size and low advancement of development create enormous difficulties during the diagnosis even for experts. The use of advanced equipment and sophisticated computer systems can help in the early diagnosis of skin lesions.
USDA-ARS?s Scientific Manuscript database
A computer algorithm was created to inspect scanned images from DNA microarray slides developed to rapidly detect and genotype E. Coli O157 virulent strains. The algorithm computes centroid locations for signal and background pixels in RGB space and defines a plane perpendicular to the line connect...
Improving Environmental Model Calibration and Prediction
2011-01-18
REPORT Final Report - Improving Environmental Model Calibration and Prediction 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: First, we have continued to...develop tools for efficient global optimization of environmental models. Our algorithms are hybrid algorithms that combine evolutionary strategies...toward practical hybrid optimization tools for environmental models. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 18-01-2011 13
An evaluation of computer assisted clinical classification algorithms.
Chute, C G; Yang, Y; Buntrock, J
1994-01-01
The Mayo Clinic has a long tradition of indexing patient records in high resolution and volume. Several algorithms have been developed which promise to help human coders in the classification process. We evaluate variations on code browsers and free text indexing systems with respect to their speed and error rates in our production environment. The more sophisticated indexing systems save measurable time in the coding process, but suffer from incompleteness which requires a back-up system or human verification. Expert Network does the best job of rank ordering clinical text, potentially enabling the creation of thresholds for the pass through of computer coded data without human review.
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Parametric classification of handvein patterns based on texture features
NASA Astrophysics Data System (ADS)
Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.
2018-04-01
In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.
Besio, Walter G; Cao, Hongbao; Zhou, Peng
2008-04-01
For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].
Zhou, Jinzhi; Tang, Xiaofang
2015-08-01
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
Classifier fusion for VoIP attacks classification
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Rezac, Filip
2017-05-01
SIP is one of the most successful protocols in the field of IP telephony communication. It establishes and manages VoIP calls. As the number of SIP implementation rises, we can expect a higher number of attacks on the communication system in the near future. This work aims at malicious SIP traffic classification. A number of various machine learning algorithms have been developed for attack classification. The paper presents a comparison of current research and the use of classifier fusion method leading to a potential decrease in classification error rate. Use of classifier combination makes a more robust solution without difficulties that may affect single algorithms. Different voting schemes, combination rules, and classifiers are discussed to improve the overall performance. All classifiers have been trained on real malicious traffic. The concept of traffic monitoring depends on the network of honeypot nodes. These honeypots run in several networks spread in different locations. Separation of honeypots allows us to gain an independent and trustworthy attack information.
LDA boost classification: boosting by topics
NASA Astrophysics Data System (ADS)
Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li
2012-12-01
AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.
The design and performance characteristics of a cellular logic 3-D image classification processor
NASA Astrophysics Data System (ADS)
Ankeney, L. A.
1981-04-01
The introduction of high resolution scanning laser radar systems which are capable of collecting range and reflectivity images, is predicted to significantly influence the development of processors capable of performing autonomous target classification tasks. Actively sensed range images are shown to be superior to passively collected infrared images in both image stability and information content. An illustrated tutorial introduces cellular logic (neighborhood) transformations and two and three dimensional erosion and dilation operations which are used for noise filters and geometric shape measurement. A unique 'cookbook' approach to selecting a sequence of neighborhood transformations suitable for object measurement is developed and related to false alarm rate and algorithm effectiveness measures. The cookbook design approach is used to develop an algorithm to classify objects based upon their 3-D geometrical features. A Monte Carlo performance analysis is used to demonstrate the utility of the design approach by characterizing the ability of the algorithm to classify randomly positioned three dimensional objects in the presence of additive noise, scale variations, and other forms of image distortion.
James, Conrad D.; Aimone, James B.; Miner, Nadine E.; ...
2017-01-04
In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Aimone, James B.; Miner, Nadine E.
In this study, biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here in this research, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classesmore » such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. Additionally, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.« less
Na, X D; Zang, S Y; Wu, C S; Li, W L
2015-11-01
Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.
An Image Analysis Algorithm for Malaria Parasite Stage Classification and Viability Quantification
Moon, Seunghyun; Lee, Sukjun; Kim, Heechang; Freitas-Junior, Lucio H.; Kang, Myungjoo; Ayong, Lawrence; Hansen, Michael A. E.
2013-01-01
With more than 40% of the world’s population at risk, 200–300 million infections each year, and an estimated 1.2 million deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of artemisinin-based drugs in Southeast Asia, there is an urgent need for new antimalarial compounds with novel mechanisms of action to be developed against multidrug resistant malaria. We present here a novel image analysis algorithm for the quantitative detection and classification of Plasmodium lifecycle stages in culture as well as discriminating between viable and dead parasites in drug-treated samples. This new algorithm reliably estimates the number of red blood cells (isolated or clustered) per fluorescence image field, and accurately identifies parasitized erythrocytes on the basis of high intensity DAPI-stained parasite nuclei spots and Mitotracker-stained mitochondrial in viable parasites. We validated the performance of the algorithm by manual counting of the infected and non-infected red blood cells in multiple image fields, and the quantitative analyses of the different parasite stages (early rings, rings, trophozoites, schizonts) at various time-point post-merozoite invasion, in tightly synchronized cultures. Additionally, the developed algorithm provided parasitological effective concentration 50 (EC50) values for both chloroquine and artemisinin, that were similar to known growth inhibitory EC50 values for these compounds as determined using conventional SYBR Green I and lactate dehydrogenase-based assays. PMID:23626733
Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science
NASA Astrophysics Data System (ADS)
Riedel, Morris; Ramachandran, Rahul; Baumann, Peter
2014-05-01
The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.
Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science
NASA Technical Reports Server (NTRS)
Riedel, Morris; Ramachandran, Rahul; Baumann, Peter
2014-01-01
The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy
Wagenaar, Joost; Abbot, Drew; Adkins, Phillip; Bosshard, Simone C.; Chen, Min; Tieng, Quang M.; He, Jialune; Muñoz-Almaraz, F. J.; Botella-Rocamora, Paloma; Pardo, Juan; Zamora-Martinez, Francisco; Hills, Michael; Wu, Wei; Korshunova, Iryna; Cukierski, Will; Vite, Charles; Patterson, Edward E.; Litt, Brian; Worrell, Gregory A.
2016-01-01
See Mormann and Andrzejak (doi:10.1093/brain/aww091) for a scientific commentary on this article. Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy. PMID:27034258
CIFAR10-DVS: An Event-Stream Dataset for Object Classification
Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping
2017-01-01
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification. PMID:28611582
CIFAR10-DVS: An Event-Stream Dataset for Object Classification.
Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping
2017-01-01
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as "CIFAR10-DVS." The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification.
A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks
Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang
2014-01-01
This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668
Xia, Jiaqi; Peng, Zhenling; Qi, Dawei; Mu, Hongbo; Yang, Jianyi
2017-03-15
Protein fold classification is a critical step in protein structure prediction. There are two possible ways to classify protein folds. One is through template-based fold assignment and the other is ab-initio prediction using machine learning algorithms. Combination of both solutions to improve the prediction accuracy was never explored before. We developed two algorithms, HH-fold and SVM-fold for protein fold classification. HH-fold is a template-based fold assignment algorithm using the HHsearch program. SVM-fold is a support vector machine-based ab-initio classification algorithm, in which a comprehensive set of features are extracted from three complementary sequence profiles. These two algorithms are then combined, resulting to the ensemble approach TA-fold. We performed a comprehensive assessment for the proposed methods by comparing with ab-initio methods and template-based threading methods on six benchmark datasets. An accuracy of 0.799 was achieved by TA-fold on the DD dataset that consists of proteins from 27 folds. This represents improvement of 5.4-11.7% over ab-initio methods. After updating this dataset to include more proteins in the same folds, the accuracy increased to 0.971. In addition, TA-fold achieved >0.9 accuracy on a large dataset consisting of 6451 proteins from 184 folds. Experiments on the LE dataset show that TA-fold consistently outperforms other threading methods at the family, superfamily and fold levels. The success of TA-fold is attributed to the combination of template-based fold assignment and ab-initio classification using features from complementary sequence profiles that contain rich evolution information. http://yanglab.nankai.edu.cn/TA-fold/. yangjy@nankai.edu.cn or mhb-506@163.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Derivation of an artificial gene to improve classification accuracy upon gene selection.
Seo, Minseok; Oh, Sejong
2012-02-01
Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.
NASA Astrophysics Data System (ADS)
Ruske, S. T.; Topping, D. O.; Foot, V. E.; Kaye, P. H.; Stanley, W. R.; Morse, A. P.; Crawford, I.; Gallagher, M. W.
2016-12-01
Characterisation of bio-aerosols has important implications within Environment and Public Health sectors. Recent developments in Ultra-Violet Light Induced Fluorescence (UV-LIF) detectors such as the Wideband Integrated bio-aerosol Spectrometer (WIBS) and the newly introduced Multiparameter bio-aerosol Spectrometer (MBS) has allowed for the real time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal Spores and pollen. This new generation of instruments has enabled ever-larger data sets to be compiled with the aim of studying more complex environments, yet the algorithms used for specie classification remain largely invalidated. It is therefore imperative that we validate the performance of different algorithms that can be used for the task of classification, which is the focus of this study. For unsupervised learning we test Hierarchical Agglomerative Clustering with various different linkages. For supervised learning, ten methods were tested; including decision trees, ensemble methods: Random Forests, Gradient Boosting and AdaBoost; two implementations for support vector machines: libsvm and liblinear; Gaussian methods: Gaussian naïve Bayesian, quadratic and linear discriminant analysis and finally the k-nearest neighbours algorithm. The methods were applied to two different data sets measured using a new Multiparameter bio-aerosol Spectrometer. We find that clustering, in general, performs slightly worse than the supervised learning methods correctly classifying, at best, only 72.7 and 91.1 percent for the two data sets. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 88.1 and 97.8 percent of the testing data respectively across the two data sets. We discuss the wider relevance of these results with regards to challenging existing classification in real-world environments.
Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data
NASA Astrophysics Data System (ADS)
Zhu, Z.; Woodcock, C. E.
2012-12-01
A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.
Aircraft target detection algorithm based on high resolution spaceborne SAR imagery
NASA Astrophysics Data System (ADS)
Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing
2018-03-01
In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986
Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong
2017-01-01
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
NASA Astrophysics Data System (ADS)
Ross, Z. E.; Meier, M. A.; Hauksson, E.
2017-12-01
Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.
Spectral unmixing of urban land cover using a generic library approach
NASA Astrophysics Data System (ADS)
Degerickx, Jeroen; Lordache, Marian-Daniel; Okujeni, Akpona; Hermy, Martin; van der Linden, Sebastian; Somers, Ben
2016-10-01
Remote sensing based land cover classification in urban areas generally requires the use of subpixel classification algorithms to take into account the high spatial heterogeneity. These spectral unmixing techniques often rely on spectral libraries, i.e. collections of pure material spectra (endmembers, EM), which ideally cover the large EM variability typically present in urban scenes. Despite the advent of several (semi-) automated EM detection algorithms, the collection of such image-specific libraries remains a tedious and time-consuming task. As an alternative, we suggest the use of a generic urban EM library, containing material spectra under varying conditions, acquired from different locations and sensors. This approach requires an efficient EM selection technique, capable of only selecting those spectra relevant for a specific image. In this paper, we evaluate and compare the potential of different existing library pruning algorithms (Iterative Endmember Selection and MUSIC) using simulated hyperspectral (APEX) data of the Brussels metropolitan area. In addition, we develop a new hybrid EM selection method which is shown to be highly efficient in dealing with both imagespecific and generic libraries, subsequently yielding more robust land cover classification results compared to existing methods. Future research will include further optimization of the proposed algorithm and additional tests on both simulated and real hyperspectral data.
Forkan, Abdur Rahim Mohammad; Khalil, Ibrahim
2017-02-01
In home-based context-aware monitoring patient's real-time data of multiple vital signs (e.g. heart rate, blood pressure) are continuously generated from wearable sensors. The changes in such vital parameters are highly correlated. They are also patient-centric and can be either recurrent or can fluctuate. The objective of this study is to develop an intelligent method for personalized monitoring and clinical decision support through early estimation of patient-specific vital sign values, and prediction of anomalies using the interrelation among multiple vital signs. In this paper, multi-label classification algorithms are applied in classifier design to forecast these values and related abnormalities. We proposed a completely new approach of patient-specific vital sign prediction system using their correlations. The developed technique can guide healthcare professionals to make accurate clinical decisions. Moreover, our model can support many patients with various clinical conditions concurrently by utilizing the power of cloud computing technology. The developed method also reduces the rate of false predictions in remote monitoring centres. In the experimental settings, the statistical features and correlations of six vital signs are formulated as multi-label classification problem. Eight multi-label classification algorithms along with three fundamental machine learning algorithms are used and tested on a public dataset of 85 patients. Different multi-label classification evaluation measures such as Hamming score, F1-micro average, and accuracy are used for interpreting the prediction performance of patient-specific situation classifications. We achieved 90-95% Hamming score values across 24 classifier combinations for 85 different patients used in our experiment. The results are compared with single-label classifiers and without considering the correlations among the vitals. The comparisons show that multi-label method is the best technique for this problem domain. The evaluation results reveal that multi-label classification techniques using the correlations among multiple vitals are effective ways for early estimation of future values of those vitals. In context-aware remote monitoring this process can greatly help the doctors in quick diagnostic decision making. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sensor fusion approaches for EMI and GPR-based subsurface threat identification
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.
Privacy Preserving Nearest Neighbor Search
NASA Astrophysics Data System (ADS)
Shaneck, Mark; Kim, Yongdae; Kumar, Vipin
Data mining is frequently obstructed by privacy concerns. In many cases data is distributed, and bringing the data together in one place for analysis is not possible due to privacy laws (e.g. HIPAA) or policies. Privacy preserving data mining techniques have been developed to address this issue by providing mechanisms to mine the data while giving certain privacy guarantees. In this chapter we address the issue of privacy preserving nearest neighbor search, which forms the kernel of many data mining applications. To this end, we present a novel algorithm based on secure multiparty computation primitives to compute the nearest neighbors of records in horizontally distributed data. We show how this algorithm can be used in three important data mining algorithms, namely LOF outlier detection, SNN clustering, and kNN classification. We prove the security of these algorithms under the semi-honest adversarial model, and describe methods that can be used to optimize their performance. Keywords: Privacy Preserving Data Mining, Nearest Neighbor Search, Outlier Detection, Clustering, Classification, Secure Multiparty Computation
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
The software application and classification algorithms for welds radiograms analysis
NASA Astrophysics Data System (ADS)
Sikora, R.; Chady, T.; Baniukiewicz, P.; Grzywacz, B.; Lopato, P.; Misztal, L.; Napierała, L.; Piekarczyk, B.; Pietrusewicz, T.; Psuj, G.
2013-01-01
The paper presents a software implementation of an Intelligent System for Radiogram Analysis (ISAR). The system has to support radiologists in welds quality inspection. The image processing part of software with a graphical user interface and a welds classification part are described with selected classification results. Classification was based on a few algorithms: an artificial neural network, a k-means clustering, a simplified k-means and a rough sets theory.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
Pattern Classifications Using Grover's and Ventura's Algorithms in a Two-qubits System
NASA Astrophysics Data System (ADS)
Singh, Manu Pratap; Radhey, Kishori; Rajput, B. S.
2018-03-01
Carrying out the classification of patterns in a two-qubit system by separately using Grover's and Ventura's algorithms on different possible superposition, it has been shown that the exclusion superposition and the phase-invariance superposition are the most suitable search states obtained from two-pattern start-states and one-pattern start-states, respectively, for the simultaneous classifications of patterns. The higher effectiveness of Grover's algorithm for large search states has been verified but the higher effectiveness of Ventura's algorithm for smaller data base has been contradicted in two-qubit systems and it has been demonstrated that the unknown patterns (not present in the concerned data-base) are classified more efficiently than the known ones (present in the data-base) in both the algorithms. It has also been demonstrated that different states of Singh-Rajput MES obtained from the corresponding self-single- pattern start states are the most suitable search states for the classification of patterns |00>,|01 >, |10> and |11> respectively on the second iteration of Grover's method or the first operation of Ventura's algorithm.
NASA Astrophysics Data System (ADS)
Huang, Ding-jiang; Ivanova, Nataliya M.
2016-02-01
In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.
Validation of a new classification for periprosthetic shoulder fractures.
Kirchhoff, Chlodwig; Beirer, Marc; Brunner, Ulrich; Buchholz, Arne; Biberthaler, Peter; Crönlein, Moritz
2018-06-01
Successful treatment of periprosthetic shoulder fractures depends on the right strategy, starting with a well-structured classification of the fracture. Unfortunately, clinically relevant factors for treatment planning are missing in the pre-existing classifications. Therefore, the aim of the present study was to describe a new specific classification system for periprosthetic shoulder fractures including a structured treatment algorithm for this important fragility fracture issue. The classification was established, focussing on five relevant items, naming the prosthesis type, the fracture localisation, the rotator cuff status, the anatomical fracture region and the stability of the implant. After considering each single item, the individual treatment concept can be assessed in one last step. To evaluate the introduced classification, a retrospective analysis of pre- and post-operative data of patients, treated with periprosthetic shoulder fractures, was conducted by two board certified trauma surgery consultants. The data of 19 patients (8 male, 11 female) with a mean age of 74 ± five years have been analysed in our study. The suggested treatment algorithm was proven to be reliable, detected by good clinical outcome in 15 of 16 (94%) cases, where the suggested treatment was maintained. Only one case resulted in poor outcome due to post-operative wound infection and had to be revised. The newly developed six-step classification is easy to utilise and extends the pre-existing classification systems in terms of clinically-relevant information. This classification should serve as a simple tool for the surgeon to consider the optimal treatment for his patients.
NASA Astrophysics Data System (ADS)
Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.
2016-02-01
Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Good, Andrew C; Hermsmeier, Mark A
2007-01-01
Research into the advancement of computer-aided molecular design (CAMD) has a tendency to focus on the discipline of algorithm development. Such efforts are often wrought to the detriment of the data set selection and analysis used in said algorithm validation. Here we highlight the potential problems this can cause in the context of druglikeness classification. More rigorous efforts are applied to the selection of decoy (nondruglike) molecules from the ACD. Comparisons are made between model performance using the standard technique of random test set creation with test sets derived from explicit ontological separation by drug class. The dangers of viewing druglike space as sufficiently coherent to permit simple classification are highlighted. In addition the issues inherent in applying unfiltered data and random test set selection to (Q)SAR models utilizing large and supposedly heterogeneous databases are discussed.
Investigation of correlation classification techniques
NASA Technical Reports Server (NTRS)
Haskell, R. E.
1975-01-01
A two-step classification algorithm for processing multispectral scanner data was developed and tested. The first step is a single pass clustering algorithm that assigns each pixel, based on its spectral signature, to a particular cluster. The output of that step is a cluster tape in which a single integer is associated with each pixel. The cluster tape is used as the input to the second step, where ground truth information is used to classify each cluster using an iterative method of potentials. Once the clusters have been assigned to classes the cluster tape is read pixel-by-pixel and an output tape is produced in which each pixel is assigned to its proper class. In addition to the digital classification programs, a method of using correlation clustering to process multispectral scanner data in real time by means of an interactive color video display is also described.
Convolutional neural networks with balanced batches for facial expressions recognition
NASA Astrophysics Data System (ADS)
Battini Sönmez, Elena; Cangelosi, Angelo
2017-03-01
This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.
Visible Light Image-Based Method for Sugar Content Classification of Citrus
Wang, Xuefeng; Wu, Chunyan; Hirafuji, Masayuki
2016-01-01
Visible light imaging of citrus fruit from Mie Prefecture of Japan was performed to determine whether an algorithm could be developed to predict the sugar content. This nondestructive classification showed that the accurate segmentation of different images can be realized by a correlation analysis based on the threshold value of the coefficient of determination. There is an obvious correlation between the sugar content of citrus fruit and certain parameters of the color images. The selected image parameters were connected by addition algorithm. The sugar content of citrus fruit can be predicted by the dummy variable method. The results showed that the small but orange citrus fruits often have a high sugar content. The study shows that it is possible to predict the sugar content of citrus fruit and to perform a classification of the sugar content using light in the visible spectrum and without the need for an additional light source. PMID:26811935
Joshuva, A; Sugumaran, V
2017-03-01
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Classification of Odours for Mobile Robots Using an Ensemble of Linear Classifiers
NASA Astrophysics Data System (ADS)
Trincavelli, Marco; Coradeschi, Silvia; Loutfi, Amy
2009-05-01
This paper investigates the classification of odours using an electronic nose mounted on a mobile robot. The samples are collected as the robot explores the environment. Under such conditions, the sensor response differs from typical three phase sampling processes. In this paper, we focus particularly on the classification problem and how it is influenced by the movement of the robot. To cope with these influences, an algorithm consisting of an ensemble of classifiers is presented. Experimental results show that this algorithm increases classification performance compared to other traditional classification methods.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
An assessment of support vector machines for land cover classification
Huang, C.; Davis, L.S.; Townshend, J.R.G.
2002-01-01
The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.
A Mixtures-of-Trees Framework for Multi-Label Classification
Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos
2015-01-01
We propose a new probabilistic approach for multi-label classification that aims to represent the class posterior distribution P(Y|X). Our approach uses a mixture of tree-structured Bayesian networks, which can leverage the computational advantages of conditional tree-structured models and the abilities of mixtures to compensate for tree-structured restrictions. We develop algorithms for learning the model from data and for performing multi-label predictions using the learned model. Experiments on multiple datasets demonstrate that our approach outperforms several state-of-the-art multi-label classification methods. PMID:25927011
Matthews, R; Turner, P J; McDonald, N J; Ermolaev, K; Manus, T; Shelby, R A; Steindorf, M
2008-01-01
This paper describes a compact, lightweight and ultra-low power ambulatory wireless EEG system based upon QUASAR's innovative noninvasive bioelectric sensor technologies. The sensors operate through hair without skin preparation or conductive gels. Mechanical isolation built into the harness permits the recording of high quality EEG data during ambulation. Advanced algorithms developed for this system permit real time classification of workload during subject motion. Measurements made using the EEG system during ambulation are presented, including results for real time classification of subject workload.
Lossless Compression of Classification-Map Data
NASA Technical Reports Server (NTRS)
Hua, Xie; Klimesh, Matthew
2009-01-01
A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.
Ozcift, Akin; Gulten, Arif
2011-12-01
Improving accuracies of machine learning algorithms is vital in designing high performance computer-aided diagnosis (CADx) systems. Researches have shown that a base classifier performance might be enhanced by ensemble classification strategies. In this study, we construct rotation forest (RF) ensemble classifiers of 30 machine learning algorithms to evaluate their classification performances using Parkinson's, diabetes and heart diseases from literature. While making experiments, first the feature dimension of three datasets is reduced using correlation based feature selection (CFS) algorithm. Second, classification performances of 30 machine learning algorithms are calculated for three datasets. Third, 30 classifier ensembles are constructed based on RF algorithm to assess performances of respective classifiers with the same disease data. All the experiments are carried out with leave-one-out validation strategy and the performances of the 60 algorithms are evaluated using three metrics; classification accuracy (ACC), kappa error (KE) and area under the receiver operating characteristic (ROC) curve (AUC). Base classifiers succeeded 72.15%, 77.52% and 84.43% average accuracies for diabetes, heart and Parkinson's datasets, respectively. As for RF classifier ensembles, they produced average accuracies of 74.47%, 80.49% and 87.13% for respective diseases. RF, a newly proposed classifier ensemble algorithm, might be used to improve accuracy of miscellaneous machine learning algorithms to design advanced CADx systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Physical activity classification using the GENEA wrist-worn accelerometer.
Zhang, Shaoyan; Rowlands, Alex V; Murray, Peter; Hurst, Tina L
2012-04-01
Most accelerometer-based activity monitors are worn on the waist or lower back for assessment of habitual physical activity. Output is in arbitrary counts that can be classified by activity intensity according to published thresholds. The purpose of this study was to develop methods to classify physical activities into walking, running, household, or sedentary activities based on raw acceleration data from the GENEA (Gravity Estimator of Normal Everyday Activity) and compare classification accuracy from a wrist-worn GENEA with a waist-worn GENEA. Sixty participants (age = 49.4 ± 6.5 yr, body mass index = 24.6 ± 3.4 kg·m⁻²) completed an ordered series of 10-12 semistructured activities in the laboratory and outdoor environment. Throughout, three GENEA accelerometers were worn: one at the waist, one on the left wrist, and one on the right wrist. Acceleration data were collected at 80 Hz. Features obtained from both fast Fourier transform and wavelet decomposition were extracted, and machine learning algorithms were used to classify four types of daily activities including sedentary, household, walking, and running activities. The computational results demonstrated that the algorithm we developed can accurately classify certain types of daily activities, with high overall classification accuracy for both waist-worn GENEA (0.99) and wrist-worn GENEA (right wrist = 0.97, left wrist = 0.96). We have successfully developed algorithms suitable for use with wrist-worn accelerometers for detecting certain types of physical activities; the performance is comparable to waist-worn accelerometers for assessment of physical activity.
A Generalized Mixture Framework for Multi-label Classification
Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos
2015-01-01
We develop a novel probabilistic ensemble framework for multi-label classification that is based on the mixtures-of-experts architecture. In this framework, we combine multi-label classification models in the classifier chains family that decompose the class posterior distribution P(Y1, …, Yd|X) using a product of posterior distributions over components of the output space. Our approach captures different input–output and output–output relations that tend to change across data. As a result, we can recover a rich set of dependency relations among inputs and outputs that a single multi-label classification model cannot capture due to its modeling simplifications. We develop and present algorithms for learning the mixtures-of-experts models from data and for performing multi-label predictions on unseen data instances. Experiments on multiple benchmark datasets demonstrate that our approach achieves highly competitive results and outperforms the existing state-of-the-art multi-label classification methods. PMID:26613069
Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm
NASA Astrophysics Data System (ADS)
Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.
2017-01-01
This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.
Developing a radiomics framework for classifying non-small cell lung carcinoma subtypes
NASA Astrophysics Data System (ADS)
Yu, Dongdong; Zang, Yali; Dong, Di; Zhou, Mu; Gevaert, Olivier; Fang, Mengjie; Shi, Jingyun; Tian, Jie
2017-03-01
Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features) to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs patients with CT image scans. Classification of these features is performed with four different machine-learning classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest (RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers' performance, optimal feature subset is selected from the original feature set by using an iterative forward inclusion and backward eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).
NASA Astrophysics Data System (ADS)
Kotelnikov, E. V.; Milov, V. R.
2018-05-01
Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.
NASA Astrophysics Data System (ADS)
Liu, Yansong; Monteiro, Sildomar T.; Saber, Eli
2015-10-01
Changes in vegetation cover, building construction, road network and traffic conditions caused by urban expansion affect the human habitat as well as the natural environment in rapidly developing cities. It is crucial to assess these changes and respond accordingly by identifying man-made and natural structures with accurate classification algorithms. With the increase in use of multi-sensor remote sensing systems, researchers are able to obtain a more complete description of the scene of interest. By utilizing multi-sensor data, the accuracy of classification algorithms can be improved. In this paper, we propose a method for combining 3D LiDAR point clouds and high-resolution color images to classify urban areas using Gaussian processes (GP). GP classification is a powerful non-parametric classification method that yields probabilistic classification results. It makes predictions in a way that addresses the uncertainty of real world. In this paper, we attempt to identify man-made and natural objects in urban areas including buildings, roads, trees, grass, water and vehicles. LiDAR features are derived from the 3D point clouds and the spatial and color features are extracted from RGB images. For classification, we use the Laplacian approximation for GP binary classification on the new combined feature space. The multiclass classification has been implemented by using one-vs-all binary classification strategy. The result of applying support vector machines (SVMs) and logistic regression (LR) classifier is also provided for comparison. Our experiments show a clear improvement of classification results by using the two sensors combined instead of each sensor separately. Also we found the advantage of applying GP approach to handle the uncertainty in classification result without compromising accuracy compared to SVM, which is considered as the state-of-the-art classification method.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
A comparison of autonomous techniques for multispectral image analysis and classification
NASA Astrophysics Data System (ADS)
Valdiviezo-N., Juan C.; Urcid, Gonzalo; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso
2012-10-01
Multispectral imaging has given place to important applications related to classification and identification of objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose has been to perform the correct classification of the objects in the scene. The present study introduces a brief review of some classical as well as a novel technique that have been used for such purposes. The use of principal component analysis and K-means clustering techniques as important classification algorithms is here discussed. Moreover, a recent method based on the min-W and max-M lattice auto-associative memories, that was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method. Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The classification results state that the first components computed from principal component analysis can be used to highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories provides good results for materials classification even in the cases where some spectral similarities appears in their spectral responses.
Duchrow, Timo; Shtatland, Timur; Guettler, Daniel; Pivovarov, Misha; Kramer, Stefan; Weissleder, Ralph
2009-01-01
Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at . PMID:19799796
Online hyperspectral imaging system for evaluating quality of agricultural products
NASA Astrophysics Data System (ADS)
Mo, Changyeun; Kim, Giyoung; Lim, Jongguk
2017-06-01
The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.
Parallel Implementation of the Wideband DOA Algorithm on the IBM Cell BE Processor
2010-05-01
Abstract—The Multiple Signal Classification ( MUSIC ) algorithm is a powerful technique for determining the Direction of Arrival (DOA) of signals...Broadband Engine Processor (Cell BE). The process of adapting the serial based MUSIC algorithm to the Cell BE will be analyzed in terms of parallelism and...using Multiple Signal Classification MUSIC algorithm [4] • Computation of Focus matrix • Computation of number of sources • Separation of Signal
Automated detection of tuberculosis on sputum smeared slides using stepwise classification
NASA Astrophysics Data System (ADS)
Divekar, Ajay; Pangilinan, Corina; Coetzee, Gerrit; Sondh, Tarlochan; Lure, Fleming Y. M.; Kennedy, Sean
2012-03-01
Routine visual slide screening for identification of tuberculosis (TB) bacilli in stained sputum slides under microscope system is a tedious labor-intensive task and can miss up to 50% of TB. Based on the Shannon cofactor expansion on Boolean function for classification, a stepwise classification (SWC) algorithm is developed to remove different types of false positives, one type at a time, and to increase the detection of TB bacilli at different concentrations. Both bacilli and non-bacilli objects are first analyzed and classified into several different categories including scanty positive, high concentration positive, and several non-bacilli categories: small bright objects, beaded, dim elongated objects, etc. The morphological and contrast features are extracted based on aprior clinical knowledge. The SWC is composed of several individual classifiers. Individual classifier to increase the bacilli counts utilizes an adaptive algorithm based on a microbiologist's statistical heuristic decision process. Individual classifier to reduce false positive is developed through minimization from a binary decision tree to classify different types of true and false positive based on feature vectors. Finally, the detection algorithm is was tested on 102 independent confirmed negative and 74 positive cases. A multi-class task analysis shows high accordance rate for negative, scanty, and high-concentration as 88.24%, 56.00%, and 97.96%, respectively. A binary-class task analysis using a receiver operating characteristics method with the area under the curve (Az) is also utilized to analyze the performance of this detection algorithm, showing the superior detection performance on the high-concentration cases (Az=0.913) and cases mixed with high-concentration and scanty cases (Az=0.878).
Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor
NASA Astrophysics Data System (ADS)
Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi
2017-12-01
The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.
Analysis methods for Thematic Mapper data of urban regions
NASA Technical Reports Server (NTRS)
Wang, S. C.
1984-01-01
Studies have indicated the difficulty in deriving a detailed land-use/land-cover classification for heterogeneous metropolitan areas with Landsat MSS and TM data. The major methodological issues of digital analysis which possibly have effected the results of classification are examined. In response to these methodological issues, a multichannel hierarchical clustering algorithm has been developed and tested for a more complete analysis of the data for urban areas.
Multivariate spline methods in surface fitting
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator); Schumaker, L. L.
1984-01-01
The use of spline functions in the development of classification algorithms is examined. In particular, a method is formulated for producing spline approximations to bivariate density functions where the density function is decribed by a histogram of measurements. The resulting approximations are then incorporated into a Bayesiaan classification procedure for which the Bayes decision regions and the probability of misclassification is readily computed. Some preliminary numerical results are presented to illustrate the method.
Evaluating data mining algorithms using molecular dynamics trajectories.
Tatsis, Vasileios A; Tjortjis, Christos; Tzirakis, Panagiotis
2013-01-01
Molecular dynamics simulations provide a sample of a molecule's conformational space. Experiments on the mus time scale, resulting in large amounts of data, are nowadays routine. Data mining techniques such as classification provide a way to analyse such data. In this work, we evaluate and compare several classification algorithms using three data sets which resulted from computer simulations, of a potential enzyme mimetic biomolecule. We evaluated 65 classifiers available in the well-known data mining toolkit Weka, using 'classification' errors to assess algorithmic performance. Results suggest that: (i) 'meta' classifiers perform better than the other groups, when applied to molecular dynamics data sets; (ii) Random Forest and Rotation Forest are the best classifiers for all three data sets; and (iii) classification via clustering yields the highest classification error. Our findings are consistent with bibliographic evidence, suggesting a 'roadmap' for dealing with such data.
Modified Mahalanobis Taguchi System for Imbalance Data Classification
2017-01-01
The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating Characteristics (ROC) curve and the theoretical optimal point named Modified Mahalanobis Taguchi System (MMTS). To validate the MMTS classification efficacy, it has been benchmarked with Support Vector Machines (SVMs), Naive Bayes (NB), Probabilistic Mahalanobis Taguchi Systems (PTM), Synthetic Minority Oversampling Technique (SMOTE), Adaptive Conformal Transformation (ACT), Kernel Boundary Alignment (KBA), Hidden Naive Bayes (HNB), and other improved Naive Bayes algorithms. MMTS outperforms the benchmarked algorithms especially when the imbalance ratio is greater than 400. A real life case study on manufacturing sector is used to demonstrate the applicability of the proposed model and to compare its performance with Mahalanobis Genetic Algorithm (MGA). PMID:28811820
Automated detection and classification of dice
NASA Astrophysics Data System (ADS)
Correia, Bento A. B.; Silva, Jeronimo A.; Carvalho, Fernando D.; Guilherme, Rui; Rodrigues, Fernando C.; de Silva Ferreira, Antonio M.
1995-03-01
This paper describes a typical machine vision system in an unusual application, the automated visual inspection of a Casino's playing tables. The SORTE computer vision system was developed at INETI under a contract with the Portuguese Gaming Inspection Authorities IGJ. It aims to automate the tasks of detection and classification of the dice's scores on the playing tables of the game `Banca Francesa' (which means French Banking) in Casinos. The system is based on the on-line analysis of the images captured by a monochrome CCD camera placed over the playing tables, in order to extract relevant information concerning the score indicated by the dice. Image processing algorithms for real time automatic throwing detection and dice classification were developed and implemented.
Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey
Malikopoulos, Andreas
2014-03-31
The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability.
Stuart, S; Hunt, D; Nell, J; Godfrey, A; Hausdorff, J M; Rochester, L; Alcock, L
2018-02-01
Mobile eye-trackers are currently used during real-world tasks (e.g. gait) to monitor visual and cognitive processes, particularly in ageing and Parkinson's disease (PD). However, contextual analysis involving fixation locations during such tasks is rarely performed due to its complexity. This study adapted a validated algorithm and developed a classification method to semi-automate contextual analysis of mobile eye-tracking data. We further assessed inter-rater reliability of the proposed classification method. A mobile eye-tracker recorded eye-movements during walking in five healthy older adult controls (HC) and five people with PD. Fixations were identified using a previously validated algorithm, which was adapted to provide still images of fixation locations (n = 116). The fixation location was manually identified by two raters (DH, JN), who classified the locations. Cohen's kappa correlation coefficients determined the inter-rater reliability. The algorithm successfully provided still images for each fixation, allowing manual contextual analysis to be performed. The inter-rater reliability for classifying the fixation location was high for both PD (kappa = 0.80, 95% agreement) and HC groups (kappa = 0.80, 91% agreement), which indicated a reliable classification method. This study developed a reliable semi-automated contextual analysis method for gait studies in HC and PD. Future studies could adapt this methodology for various gait-related eye-tracking studies.
GENIE: a hybrid genetic algorithm for feature classification in multispectral images
NASA Astrophysics Data System (ADS)
Perkins, Simon J.; Theiler, James P.; Brumby, Steven P.; Harvey, Neal R.; Porter, Reid B.; Szymanski, John J.; Bloch, Jeffrey J.
2000-10-01
We consider the problem of pixel-by-pixel classification of a multi- spectral image using supervised learning. Conventional spuervised classification techniques such as maximum likelihood classification and less conventional ones s uch as neural networks, typically base such classifications solely on the spectral components of each pixel. It is easy to see why: the color of a pixel provides a nice, bounded, fixed dimensional space in which these classifiers work well. It is often the case however, that spectral information alone is not sufficient to correctly classify a pixel. Maybe spatial neighborhood information is required as well. Or maybe the raw spectral components do not themselves make for easy classification, but some arithmetic combination of them would. In either of these cases we have the problem of selecting suitable spatial, spectral or spatio-spectral features that allow the classifier to do its job well. The number of all possible such features is extremely large. How can we select a suitable subset? We have developed GENIE, a hybrid learning system that combines a genetic algorithm that searches a space of image processing operations for a set that can produce suitable feature planes, and a more conventional classifier which uses those feature planes to output a final classification. In this paper we show that the use of a hybrid GA provides significant advantages over using either a GA alone or more conventional classification methods alone. We present results using high-resolution IKONOS data, looking for regions of burned forest and for roads.
Tixier, Eliott; Raphel, Fabien; Lombardi, Damiano; Gerbeau, Jean-Frédéric
2017-01-01
The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology measurements that are less labor-intensive than patch-clamp based techniques. Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it represents a new and promising paradigm for automated and accurate in vitro drug safety evaluation. In this article, the following question is addressed: which features of the MEA signals should be measured to better classify the effects of drugs? A framework for the classification of drugs using MEA measurements is proposed. The classification is based on the ion channels blockades induced by the drugs. It relies on an in silico electrophysiology model of the MEA, a feature selection algorithm and automatic classification tools. An in silico model of the MEA is developed and is used to generate synthetic measurements. An algorithm that extracts MEA measurements features designed to perform well in a classification context is described. These features are called composite biomarkers. A state-of-the-art machine learning program is used to carry out the classification of drugs using experimental MEA measurements. The experiments are carried out using five different drugs: mexiletine, flecainide, diltiazem, moxifloxacin, and dofetilide. We show that the composite biomarkers outperform the classical ones in different classification scenarios. We show that using both synthetic and experimental MEA measurements improves the robustness of the composite biomarkers and that the classification scores are increased.
The research on medical image classification algorithm based on PLSA-BOW model.
Cao, C H; Cao, H L
2016-04-29
With the rapid development of modern medical imaging technology, medical image classification has become more important for medical diagnosis and treatment. To solve the existence of polysemous words and synonyms problem, this study combines the word bag model with PLSA (Probabilistic Latent Semantic Analysis) and proposes the PLSA-BOW (Probabilistic Latent Semantic Analysis-Bag of Words) model. In this paper we introduce the bag of words model in text field to image field, and build the model of visual bag of words model. The method enables the word bag model-based classification method to be further improved in accuracy. The experimental results show that the PLSA-BOW model for medical image classification can lead to a more accurate classification.
Objective automated quantification of fluorescence signal in histological sections of rat lens.
Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina
2017-08-01
Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Aksungur, N; Korkut, E
2018-05-24
We read Atamanalp classification, treatment algorithm and prognosis-estimating systems for sigmoid volvulus (SV) and ileosigmoid knotting (ISK) in Colorectal Disease [1,2]. Our comments relate to necessity and utility of these new classification systems. Classification or staging systems are generally used in malignant or premalignant pathologies such as colorectal cancers [3] or polyps [4]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
On-Board Cryospheric Change Detection By The Autonomous Sciencecraft Experiment
NASA Astrophysics Data System (ADS)
Doggett, T.; Greeley, R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Baker, V.; Dohm, J.; Ip, F.
2004-12-01
The Autonomous Sciencecraft Experiment (ASE) is operating on-board Earth Observing - 1 (EO-1) with the Hyperion hyper-spectral visible/near-IR spectrometer. ASE science activities include autonomous monitoring of cryopsheric changes, triggering the collection of additional data when change is detected and filtering of null data such as no change or cloud cover. This would have application to the study of cryospheres on Earth, Mars and the icy moons of the outer solar system. A cryosphere classification algorithm, in combination with a previously developed cloud algorithm [1] has been tested on-board ten times from March through August 2004. The cloud algorithm correctly screened out three scenes with total cloud cover, while the cryosphere algorithm detected alpine snow cover in the Rocky Mountains, lake thaw near Madison, Wisconsin, and the presence and subsequent break-up of sea ice in the Barrow Strait of the Canadian Arctic. Hyperion has 220 bands ranging from 400 to 2400 nm, with a spatial resolution of 30 m/pixel and a spectral resolution of 10 nm. Limited on-board memory and processing speed imposed the constraint that only partially processed Level 0.5 data with dark image subtraction and gain factors applied, but not full radiometric calibration. In addition, a maximum of 12 bands could be used for any stacked sequence of algorithms run for a scene on-board. The cryosphere algorithm was developed to classify snow, water, ice and land, using six Hyperion bands at 427, 559, 661, 864, 1245 and 1649 nm. Of these, only 427 nm does overlap with the cloud algorithm. The cloud algorithm was developed with Level 1 data, which introduces complications because of the incomplete calibration of SWIR in Level 0.5 data, including a high level of noise in the 1377 nm band used by the cloud algorithm. Development of a more robust cryosphere classifier, including cloud classification specifically adapted to Level 0.5, is in progress for deployment on EO-1 as part of continued ASE operations. [1] Griffin, M.K. et al., Cloud Cover Detection Algorithm For EO-1 Hyperion Imagery, SPIE 17, 2003.
Korkmaz, Selcuk; Zararsiz, Gokmen; Goksuluk, Dincer
2015-01-01
Virtual screening is an important step in early-phase of drug discovery process. Since there are thousands of compounds, this step should be both fast and effective in order to distinguish drug-like and nondrug-like molecules. Statistical machine learning methods are widely used in drug discovery studies for classification purpose. Here, we aim to develop a new tool, which can classify molecules as drug-like and nondrug-like based on various machine learning methods, including discriminant, tree-based, kernel-based, ensemble and other algorithms. To construct this tool, first, performances of twenty-three different machine learning algorithms are compared by ten different measures, then, ten best performing algorithms have been selected based on principal component and hierarchical cluster analysis results. Besides classification, this application has also ability to create heat map and dendrogram for visual inspection of the molecules through hierarchical cluster analysis. Moreover, users can connect the PubChem database to download molecular information and to create two-dimensional structures of compounds. This application is freely available through www.biosoft.hacettepe.edu.tr/MLViS/. PMID:25928885
Visco, Carlo; Li, Yan; Xu-Monette, Zijun Y.; Miranda, Roberto N.; Green, Tina M.; Li, Yong; Tzankov, Alexander; Wen, Wei; Liu, Wei-min; Kahl, Brad S.; d’Amore, Emanuele S. G.; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Tam, Wayne; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Winter, Jane N.; Wang, Huan-You; O’Neill, Stacey; Dunphy, Cherie H.; Hsi, Eric D.; Zhao, X. Frank; Go, Ronald S.; Choi, William W. L.; Zhou, Fan; Czader, Magdalena; Tong, Jiefeng; Zhao, Xiaoying; van Krieken, J. Han; Huang, Qing; Ai, Weiyun; Etzell, Joan; Ponzoni, Maurilio; Ferreri, Andres J. M.; Piris, Miguel A.; Møller, Michael B.; Bueso-Ramos, Carlos E.; Medeiros, L. Jeffrey; Wu, Lin; Young, Ken H.
2013-01-01
Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development - namely germinal center B-cell-like and activated B-cell-like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1, and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B-cells. Cutoffs for each marker were obtained using receiver operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1, and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy. PMID:22437443
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds.
Sur, Maitreyi; Suffredini, Tony; Wessells, Stephen M; Bloom, Peter H; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data.
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds
Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data. PMID:28403159
Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds
Sur, Maitreyi; Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael J.; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd
2017-01-01
Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data.
Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi
2016-01-01
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers.
A review of channel selection algorithms for EEG signal processing
NASA Astrophysics Data System (ADS)
Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq
2015-12-01
Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.
Zare Hosseini, Zeinab; Mohammadzadeh, Mahdi
2016-01-01
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer demographic and transactions information. Data mining techniques can be used to analyze this data and discover hidden knowledge of customers. This research develops an extended RFM model, namely RFML (added parameter: Length) based on health care services for a public sector hospital in Iran with the idea that there is contrast between patient and customer loyalty, to estimate customer life time value (CLV) for each patient. We used Two-step and K-means algorithms as clustering methods and Decision tree (CHAID) as classification technique to segment the patients to find out target, potential and loyal customers in order to implement strengthen CRM. Two approaches are used for classification: first, the result of clustering is considered as Decision attribute in classification process and second, the result of segmentation based on CLV value of patients (estimated by RFML) is considered as Decision attribute. Finally the results of CHAID algorithm show the significant hidden rules and identify existing patterns of hospital consumers. PMID:27610177
The Pixon Method for Data Compression Image Classification, and Image Reconstruction
NASA Technical Reports Server (NTRS)
Puetter, Richard; Yahil, Amos
2002-01-01
As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.
A study of metaheuristic algorithms for high dimensional feature selection on microarray data
NASA Astrophysics Data System (ADS)
Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna
2017-11-01
Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Mass detection with digitized screening mammograms by using Gabor features
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Agyepong, Kwabena
2007-03-01
Breast cancer is the leading cancer among American women. The current lifetime risk of developing breast cancer is 13.4% (one in seven). Mammography is the most effective technology presently available for breast cancer screening. With digital mammograms computer-aided detection (CAD) has proven to be a useful tool for radiologists. In this paper, we focus on mass detection that is a common category of breast cancers relative to calcification and architecture distortion. We propose a new mass detection algorithm utilizing Gabor filters, termed as "Gabor Mass Detection" (GMD). There are three steps in the GMD algorithm, (1) preprocessing, (2) generating alarms and (3) classification (reducing false alarms). Down-sampling, quantization, denoising and enhancement are done in the preprocessing step. Then a total of 30 Gabor filtered images (along 6 bands by 5 orientations) are produced. Alarm segments are generated by thresholding four Gabor images of full orientations (Stage-I classification) with image-dependent thresholds computed via histogram analysis. Next a set of edge histogram descriptors (EHD) are extracted from 24 Gabor images (6 by 4) that will be used for Stage-II classification. After clustering EHD features with fuzzy C-means clustering method, a k-nearest neighbor classifier is used to reduce the number of false alarms. We initially analyzed 431 digitized mammograms (159 normal images vs. 272 cancerous images, from the DDSM project, University of South Florida) with the proposed GMD algorithm. And a ten-fold cross validation was used for testing the GMD algorithm upon the available data. The GMD performance is as follows: sensitivity (true positive rate) = 0.88 at false positives per image (FPI) = 1.25, and the area under the ROC curve = 0.83. The overall performance of the GMD algorithm is satisfactory and the accuracy of locating masses (highlighting the boundaries of suspicious areas) is relatively high. Furthermore, the GMD algorithm can successfully detect early-stage (with small values of Assessment & low Subtlety) malignant masses. In addition, Gabor filtered images are used in both stages of classifications, which greatly simplifies the GMD algorithm.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence
Jaworek-Korjakowska, Joanna; Kłeczek, Paweł
2016-01-01
Background. Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. Method. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. Results. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. Conclusions. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision. PMID:26885520
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.
Jaworek-Korjakowska, Joanna; Kłeczek, Paweł
2016-01-01
Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.
NASA Astrophysics Data System (ADS)
Tewari, Jagdish C.; Dixit, Vivechana; Cho, Byoung-Kwan; Malik, Kamal A.
2008-12-01
The capacity to confirm the variety or origin and the estimation of sucrose, glucose, fructose of the citrus fruits are major interests of citrus juice industry. A rapid classification and quantification technique was developed and validated for simultaneous and nondestructive quantifying the sugar constituent's concentrations and the origin of citrus fruits using Fourier Transform Near-Infrared (FT-NIR) spectroscopy in conjunction with Artificial Neural Network (ANN) using genetic algorithm, Chemometrics and Correspondences Analysis (CA). To acquire good classification accuracy and to present a wide range of concentration of sucrose, glucose and fructose, we have collected 22 different varieties of citrus fruits from the market during the entire season of citruses. FT-NIR spectra were recorded in the NIR region from 1100 to 2500 nm using the fiber optic probe and three types of data analysis were performed. Chemometrics analysis using Partial Least Squares (PLS) was performed in order to determine the concentration of individual sugars. Artificial Neural Network analysis was performed for classification, origin or variety identification of citrus fruits using genetic algorithm. Correspondence analysis was performed in order to visualize the relationship between the citrus fruits. To compute a PLS model based upon the reference values and to validate the developed method, high performance liquid chromatography (HPLC) was performed. Spectral range and the number of PLS factors were optimized for the lowest standard error of calibration (SEC), prediction (SEP) and correlation coefficient ( R2). The calibration model developed was able to assess the sucrose, glucose and fructose contents in unknown citrus fruit up to an R2 value of 0.996-0.998. Numbers of factors from F1 to F10 were optimized for correspondence analysis for relationship visualization of citrus fruits based on the output values of genetic algorithm. ANN and CA analysis showed excellent classification of citrus according to the variety to which they belong and well-classified citrus according to their origin. The technique has potential in rapid determination of sugars content and to identify different varieties and origins of citrus in citrus juice industry.
Tewari, Jagdish C; Dixit, Vivechana; Cho, Byoung-Kwan; Malik, Kamal A
2008-12-01
The capacity to confirm the variety or origin and the estimation of sucrose, glucose, fructose of the citrus fruits are major interests of citrus juice industry. A rapid classification and quantification technique was developed and validated for simultaneous and nondestructive quantifying the sugar constituent's concentrations and the origin of citrus fruits using Fourier Transform Near-Infrared (FT-NIR) spectroscopy in conjunction with Artificial Neural Network (ANN) using genetic algorithm, Chemometrics and Correspondences Analysis (CA). To acquire good classification accuracy and to present a wide range of concentration of sucrose, glucose and fructose, we have collected 22 different varieties of citrus fruits from the market during the entire season of citruses. FT-NIR spectra were recorded in the NIR region from 1,100 to 2,500 nm using the fiber optic probe and three types of data analysis were performed. Chemometrics analysis using Partial Least Squares (PLS) was performed in order to determine the concentration of individual sugars. Artificial Neural Network analysis was performed for classification, origin or variety identification of citrus fruits using genetic algorithm. Correspondence analysis was performed in order to visualize the relationship between the citrus fruits. To compute a PLS model based upon the reference values and to validate the developed method, high performance liquid chromatography (HPLC) was performed. Spectral range and the number of PLS factors were optimized for the lowest standard error of calibration (SEC), prediction (SEP) and correlation coefficient (R(2)). The calibration model developed was able to assess the sucrose, glucose and fructose contents in unknown citrus fruit up to an R(2) value of 0.996-0.998. Numbers of factors from F1 to F10 were optimized for correspondence analysis for relationship visualization of citrus fruits based on the output values of genetic algorithm. ANN and CA analysis showed excellent classification of citrus according to the variety to which they belong and well-classified citrus according to their origin. The technique has potential in rapid determination of sugars content and to identify different varieties and origins of citrus in citrus juice industry.
Ice/water Classification of Sentinel-1 Images
NASA Astrophysics Data System (ADS)
Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan
2015-04-01
Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification were revealed; * the best set of parameters including the window size, number of levels of quantization of sigma0 values and co-occurence distance was found; * a support vector machine (SVM) was trained on results of visual classification of 30 Sentinel-1 images. Despite the general high accuracy of the neural network (95% of true positive classification) problems with classification of young newly formed ice and rough water arise due to the similar average backscatter and texture. Other methods of smoothing and computation of texture characteristics (e.g. computation of GLCM from a variable size window) is assessed. The developed scheme will be utilized in NRT processing of Sentinel-1 data at NERSC within the MyOcean2 project.
Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.
Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J
2016-03-01
The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multi-label spacecraft electrical signal classification method based on DBN and random forest
Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng
2017-01-01
In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479
Multi-label spacecraft electrical signal classification method based on DBN and random forest.
Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng
2017-01-01
In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.
NASA Astrophysics Data System (ADS)
Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé
2017-04-01
The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.
Attention Recognition in EEG-Based Affective Learning Research Using CFS+KNN Algorithm.
Hu, Bin; Li, Xiaowei; Sun, Shuting; Ratcliffe, Martyn
2018-01-01
The research detailed in this paper focuses on the processing of Electroencephalography (EEG) data to identify attention during the learning process. The identification of affect using our procedures is integrated into a simulated distance learning system that provides feedback to the user with respect to attention and concentration. The authors propose a classification procedure that combines correlation-based feature selection (CFS) and a k-nearest-neighbor (KNN) data mining algorithm. To evaluate the CFS+KNN algorithm, it was test against CFS+C4.5 algorithm and other classification algorithms. The classification performance was measured 10 times with different 3-fold cross validation data. The data was derived from 10 subjects while they were attempting to learn material in a simulated distance learning environment. A self-assessment model of self-report was used with a single valence to evaluate attention on 3 levels (high, neutral, low). It was found that CFS+KNN had a much better performance, giving the highest correct classification rate (CCR) of % for the valence dimension divided into three classes.
nRC: non-coding RNA Classifier based on structural features.
Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso
2017-01-01
Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.
Raouafi, Sana; Achiche, Sofiane; Begon, Mickael; Sarcher, Aurélie; Raison, Maxime
2018-01-01
Treatment for cerebral palsy depends upon the severity of the child's condition and requires knowledge about upper limb disability. The aim of this study was to develop a systematic quantitative classification method of the upper limb disability levels for children with spastic unilateral cerebral palsy based on upper limb movements and muscle activation. Thirteen children with spastic unilateral cerebral palsy and six typically developing children participated in this study. Patients were matched on age and manual ability classification system levels I to III. Twenty-three kinematic and electromyographic variables were collected from two tasks. Discriminative analysis and K-means clustering algorithm were applied using 23 kinematic and EMG variables of each participant. Among the 23 kinematic and electromyographic variables, only two variables containing the most relevant information for the prediction of the four levels of severity of spastic unilateral cerebral palsy, which are fixed by manual ability classification system, were identified by discriminant analysis: (1) the Falconer index (CAI E ) which represents the ratio of biceps to triceps brachii activity during extension and (2) the maximal angle extension (θ Extension,max ). A good correlation (Kendall Rank correlation coefficient = -0.53, p = 0.01) was found between levels fixed by manual ability classification system and the obtained classes. These findings suggest that the cost and effort needed to assess and characterize the disability level of a child can be further reduced.
NASA Astrophysics Data System (ADS)
Brodic, D.
2011-01-01
Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.
Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes
2018-02-01
Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.
Detecting asphalt pavement raveling using emerging 3D laser technology and macrotexture analysis.
DOT National Transportation Integrated Search
2015-08-01
This research project comprehensively tested and validated the automatic raveling detection, classification, : and measurement algorithms using 3D laser technology that were developed through a project sponsored by : the National Cooperative Highway ...
Automatic sleep stage classification using two facial electrodes.
Virkkala, Jussi; Velin, Riitta; Himanen, Sari-Leena; Värri, Alpo; Müller, Kiti; Hasan, Joel
2008-01-01
Standard sleep stage classification is based on visual analysis of central EEG, EOG and EMG signals. Automatic analysis with a reduced number of sensors has been studied as an easy alternative to the standard. In this study, a single-channel electro-oculography (EOG) algorithm was developed for separation of wakefulness, SREM, light sleep (S1, S2) and slow wave sleep (S3, S4). The algorithm was developed and tested with 296 subjects. Additional validation was performed on 16 subjects using a low weight single-channel Alive Monitor. In the validation study, subjects attached the disposable EOG electrodes themselves at home. In separating the four stages total agreement (and Cohen's Kappa) in the training data set was 74% (0.59), in the testing data set 73% (0.59) and in the validation data set 74% (0.59). Self-applicable electro-oculography with only two facial electrodes was found to provide reasonable sleep stage information.
New Framework for Cross-Domain Document Classification
2011-03-01
classification. The following paragraphs will introduce these related works in more detail. Wang et al . attempted to improve the accuracy of text document...of using Wikipedia to develop a thesaurus [20]. Gabrilovich et al . had an approach that is more elaborate in its use of Wikipedia text [21]. The...did show a modest improvement when it is performed using the Wikipedia information. Wang et al . improved on the results of co-clustering algorithm [24
NASA Astrophysics Data System (ADS)
Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.
2002-05-01
In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.
Electro-Optic Identification (EOID) Research Program
2002-09-30
The goal of this research is to provide computer-assisted identification of underwater mines in electro - optic imagery. Identification algorithms will...greatly reduce the time and risk to reacquire mine-like-objects for positive classification and identification. The objectives are to collect electro ... optic data under a wide range of operating and environmental conditions and develop precise algorithms that can provide accurate target recognition on this data for all possible conditions.
Color image analysis technique for measuring of fat in meat: an application for the meat industry
NASA Astrophysics Data System (ADS)
Ballerini, Lucia; Hogberg, Anders; Lundstrom, Kerstin; Borgefors, Gunilla
2001-04-01
Intramuscular fat content in meat influences some important meat quality characteristics. The aim of the present study was to develop and apply image processing techniques to quantify intramuscular fat content in beefs together with the visual appearance of fat in meat (marbling). Color images of M. longissimus dorsi meat samples with a variability of intramuscular fat content and marbling were captured. Image analysis software was specially developed for the interpretation of these images. In particular, a segmentation algorithm (i.e. classification of different substances: fat, muscle and connective tissue) was optimized in order to obtain a proper classification and perform subsequent analysis. Segmentation of muscle from fat was achieved based on their characteristics in the 3D color space, and on the intrinsic fuzzy nature of these structures. The method is fully automatic and it combines a fuzzy clustering algorithm, the Fuzzy c-Means Algorithm, with a Genetic Algorithm. The percentages of various colors (i.e. substances) within the sample are then determined; the number, size distribution, and spatial distributions of the extracted fat flecks are measured. Measurements are correlated with chemical and sensory properties. Results so far show that advanced image analysis is useful for quantify the visual appearance of meat.
A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage
NASA Astrophysics Data System (ADS)
Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent
2012-02-01
Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.
Filho, Mercedes; Ma, Zhen; Tavares, João Manuel R S
2015-11-01
In recent years, the incidence of skin cancer cases has risen, worldwide, mainly due to the prolonged exposure to harmful ultraviolet radiation. Concurrently, the computer-assisted medical diagnosis of skin cancer has undergone major advances, through an improvement in the instrument and detection technology, and the development of algorithms to process the information. Moreover, because there has been an increased need to store medical data, for monitoring, comparative and assisted-learning purposes, algorithms for data processing and storage have also become more efficient in handling the increase of data. In addition, the potential use of common mobile devices to register high-resolution images of skin lesions has also fueled the need to create real-time processing algorithms that may provide a likelihood for the development of malignancy. This last possibility allows even non-specialists to monitor and follow-up suspected skin cancer cases. In this review, we present the major steps in the pre-processing, processing and post-processing of skin lesion images, with a particular emphasis on the quantification and classification of pigmented skin lesions. We further review and outline the future challenges for the creation of minimum-feature, automated and real-time algorithms for the detection of skin cancer from images acquired via common mobile devices.
Phan, Philippe; Mezghani, Neila; Aubin, Carl-Éric; de Guise, Jacques A; Labelle, Hubert
2011-07-01
Adolescent idiopathic scoliosis (AIS) is a complex spinal deformity whose assessment and treatment present many challenges. Computer applications have been developed to assist clinicians. A literature review on computer applications used in AIS evaluation and treatment has been undertaken. The algorithms used, their accuracy and clinical usability were analyzed. Computer applications have been used to create new classifications for AIS based on 2D and 3D features, assess scoliosis severity or risk of progression and assist bracing and surgical treatment. It was found that classification accuracy could be improved using computer algorithms that AIS patient follow-up and screening could be done using surface topography thereby limiting radiation and that bracing and surgical treatment could be optimized using simulations. Yet few computer applications are routinely used in clinics. With the development of 3D imaging and databases, huge amounts of clinical and geometrical data need to be taken into consideration when researching and managing AIS. Computer applications based on advanced algorithms will be able to handle tasks that could otherwise not be done which can possibly improve AIS patients' management. Clinically oriented applications and evidence that they can improve current care will be required for their integration in the clinical setting.
Machine Learning for Biological Trajectory Classification Applications
NASA Technical Reports Server (NTRS)
Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros
2002-01-01
Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.
Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C
2016-08-31
Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).
Data-driven advice for applying machine learning to bioinformatics problems
Olson, Randal S.; La Cava, William; Mustahsan, Zairah; Varik, Akshay; Moore, Jason H.
2017-01-01
As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems. PMID:29218881
NASA Astrophysics Data System (ADS)
Dimov, D.; Kuhn, J.; Conrad, C.
2016-06-01
In the transitioning agricultural societies of the world, food security is an essential element of livelihood and economic development with the agricultural sector very often being the major employment factor and income source. Rapid population growth, urbanization, pollution, desertification, soil degradation and climate change pose a variety of threats to a sustainable agricultural development and can be expressed as agricultural vulnerability components. Diverse cropping patterns may help to adapt the agricultural systems to those hazards in terms of increasing the potential yield and resilience to water scarcity. Thus, the quantification of crop diversity using indices like the Simpson Index of Diversity (SID) e.g. through freely available remote sensing data becomes a very important issue. This however requires accurate land use classifications. In this study, the focus is set on the cropping system diversity of garden plots, summer crop fields and orchard plots which are the prevalent agricultural systems in the test area of the Fergana Valley in Uzbekistan. In order to improve the accuracy of land use classification algorithms with low or medium resolution data, a novel processing chain through the hitherto unique fusion of optical and SAR data from the Landsat 8 and Sentinel-1 platforms is proposed. The combination of both sensors is intended to enhance the object's textural and spectral signature rather than just to enhance the spatial context through pansharpening. It could be concluded that the Ehlers fusion algorithm gave the most suitable results. Based on the derived image fusion different object-based image classification algorithms such as SVM, Naïve Bayesian and Random Forest were evaluated whereby the latter one achieved the highest classification accuracy. Subsequently, the SID was applied to measure the diversification of the three main cropping systems.
NASA Astrophysics Data System (ADS)
Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad
2016-01-01
In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.
Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica
2013-01-01
Background Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC ICD-9 codes, and evaluated whether natural language processing (NLP) by the Automated Retrieval Console (ARC) for document classification improves HCC identification. Methods We identified a cohort of patients with ICD-9 codes for HCC during 2005–2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared to manual classification. PPV, sensitivity, and specificity of ARC were calculated. Results 1138 patients with HCC were identified by ICD-9 codes. Based on manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. Conclusion A combined approach of ICD-9 codes and NLP of pathology and radiology reports improves HCC case identification in automated data. PMID:23929403
pySPACE—a signal processing and classification environment in Python
Krell, Mario M.; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H.; Kirchner, Elsa A.; Kirchner, Frank
2013-01-01
In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries. PMID:24399965
pySPACE-a signal processing and classification environment in Python.
Krell, Mario M; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H; Kirchner, Elsa A; Kirchner, Frank
2013-01-01
In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.
Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Garshasbi, Masoud
2018-01-01
Background: Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost and complexity of the classifier and improves its reliability for prediction of a new class of samples. Methods: The present study used hybrid particle swarm optimization and genetic algorithms for gene selection and a fuzzy support vector machine (SVM) as the classifier. Fuzzy logic is used to infer the importance of each sample in the training phase and decrease the outlier sensitivity of the system to increase the ability to generalize the classifier. A decision-tree algorithm was applied to the most frequent genes to develop a set of rules for each type of cancer. This improved the abilities of the algorithm by finding the best parameters for the classifier during the training phase without the need for trial-and-error by the user. The proposed approach was tested on four benchmark gene expression profiles. Results: Good results have been demonstrated for the proposed algorithm. The classification accuracy for leukemia data is 100%, for colon cancer is 96.67% and for breast cancer is 98%. The results show that the best kernel used in training the SVM classifier is the radial basis function. Conclusions: The experimental results show that the proposed algorithm can decrease the dimensionality of the dataset, determine the most informative gene subset, and improve classification accuracy using the optimal parameters of the classifier with no user interface. PMID:29535919
Comparison of different classification algorithms for underwater target discrimination.
Li, Donghui; Azimi-Sadjadi, Mahmood R; Robinson, Marc
2004-01-01
Classification of underwater targets from the acoustic backscattered signals is considered here. Several different classification algorithms are tested and benchmarked not only for their performance but also to gain insight to the properties of the feature space. Results on a wideband 80-kHz acoustic backscattered data set collected for six different objects are presented in terms of the receiver operating characteristic (ROC) and robustness of the classifiers wrt reverberation.
Analysis of miRNA expression profile based on SVM algorithm
NASA Astrophysics Data System (ADS)
Ting-ting, Dai; Chang-ji, Shan; Yan-shou, Dong; Yi-duo, Bian
2018-05-01
Based on mirna expression spectrum data set, a new data mining algorithm - tSVM - KNN (t statistic with support vector machine - k nearest neighbor) is proposed. the idea of the algorithm is: firstly, the feature selection of the data set is carried out by the unified measurement method; Secondly, SVM - KNN algorithm, which combines support vector machine (SVM) and k - nearest neighbor (k - nearest neighbor) is used as classifier. Simulation results show that SVM - KNN algorithm has better classification ability than SVM and KNN alone. Tsvm - KNN algorithm only needs 5 mirnas to obtain 96.08 % classification accuracy in terms of the number of mirna " tags" and recognition accuracy. compared with similar algorithms, tsvm - KNN algorithm has obvious advantages.
NASA Astrophysics Data System (ADS)
Vaganova, E. V.; Syryamkin, M. V.
2015-11-01
The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.
Elyasigomari, V; Lee, D A; Screen, H R C; Shaheed, M H
2017-03-01
For each cancer type, only a few genes are informative. Due to the so-called 'curse of dimensionality' problem, the gene selection task remains a challenge. To overcome this problem, we propose a two-stage gene selection method called MRMR-COA-HS. In the first stage, the minimum redundancy and maximum relevance (MRMR) feature selection is used to select a subset of relevant genes. The selected genes are then fed into a wrapper setup that combines a new algorithm, COA-HS, using the support vector machine as a classifier. The method was applied to four microarray datasets, and the performance was assessed by the leave one out cross-validation method. Comparative performance assessment of the proposed method with other evolutionary algorithms suggested that the proposed algorithm significantly outperforms other methods in selecting a fewer number of genes while maintaining the highest classification accuracy. The functions of the selected genes were further investigated, and it was confirmed that the selected genes are biologically relevant to each cancer type. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lipton, A.; Moncet, J. L.; Payne, V.; Lynch, R.; Polonsky, I. N.
2017-12-01
We will present recent results from an algorithm for producing climate-quality atmospheric profiling earth system data records (ESDRs) for application to data from hyperspectral sounding instruments, including the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua and the Cross-track Infrared Sounder (CrIS) on Suomi-NPP, along with their companion microwave sounders, AMSU and ATMS, respectively. The ESDR algorithm uses an optimal estimation approach and the implementation has a flexible, modular software structure to support experimentation and collaboration. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. Developments to be presented include the impact of a radiance-based pre-classification method for the atmospheric background. In addition to improving retrieval performance, pre-classification has the potential to reduce the sensitivity of the retrievals to the climatological data from which the background estimate and its error covariance are derived. We will also discuss evaluation of a method for mitigating the effect of clouds on the radiances, and enhancements of the radiative transfer forward model.
Machine learning for a Toolkit for Image Mining
NASA Technical Reports Server (NTRS)
Delanoy, Richard L.
1995-01-01
A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.
Signal and image processing algorithm performance in a virtual and elastic computing environment
NASA Astrophysics Data System (ADS)
Bennett, Kelly W.; Robertson, James
2013-05-01
The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.
Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data
Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J.
2016-01-01
Abstract Background: The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. Methods: We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women’s Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms—one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV—using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this “triangulation.” Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. Results: The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Conclusions: Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. PMID:26582243
Carroll, Kristen L; Murray, Kathleen A; MacLeod, Lynne M; Hennessey, Theresa A; Woiczik, Marcella R; Roach, James W
2011-06-01
Numerous studies underscore the poor intraobserver and interobserver reliability of both the center edge angle (CEA) and the Severin classification using plain film measurements. In this study, experienced observers applied a computer-assisted measurement program to determine the CEA in digital pelvic radiographs of adults who had been previously treated for dysplasia of the hip (DDH). Using a teaching aid/algorithm of the Severin classification, the observers then assigned a Severin rating to these hips. Intraobserver and interobserver errors were then calculated on both the CEA measurements and the Severin classifications. Four pediatric orthopaedic surgeons and 1 pediatric radiologist calculated the CEAs using the OrthoView TM planning system and then determined the Severin classification on 41 blinded digital pelvic radiographs. The radiographs were evaluated by each examiner twice, with evaluations separated by 2 months. All examiners reviewed a Severin classification algorithm before making their Severin assignments. The intraobserver and interobserver reliability for both the CEA and the Severin classification were calculated using the interclass correlation coefficients and Cohen and Fleiss κ scores, respectively. The intraobserver and interobserver reliability for CEA measurement was moderate to almost perfect. When we separated the Severin classification into 3 clinically relevant groups of good (Severin I and II), dysplastic (Severin III), and poor (Severin IV and above), our interobserver reliability neared almost perfect. The Severin classification is an extremely useful and oft-used radiographic measure for the success of DDH treatment. Our research found digital radiography, computer-aided measurement tools, the use of a Severin algorithm, and separating the Severin classification into 3 clinically relevant groups significantly increased the intraobserver and interobserver reliability of both the CEA and Severin classification. This finding will assist future studies using the CEA and Severin classification in the radiographic assessment of DDH treatment outcomes.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
NASA Astrophysics Data System (ADS)
Zamora Ramos, Ernesto
Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures, multilayer percepterons and convolutional neural networks. Our research with neural networks has encountered a great deal of difficulties regarding hyperparameter estimation for good training convergence rate and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable parameters (or weights) initialization, and so on, are chosen via a trial and error process with some educated guesses. However, we developed the first quantitative method to compare weight initialization strategies, a critical hyperparameter choice during training, to estimate among a group of candidate strategies which would make the network converge to the highest classification accuracy faster with high probability. Our method provides a quick, objective measure to compare initialization strategies to select the best possible among them beforehand without having to complete multiple training sessions for each candidate strategy to compare final results.
NASA Astrophysics Data System (ADS)
Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd
2016-04-01
This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.
Assessment of the Hong Kong Liver Cancer Staging System in Europe.
Kolly, Philippe; Reeves, Helen; Sangro, Bruno; Knöpfli, Marina; Candinas, Daniel; Dufour, Jean-François
2016-06-01
European and American guidelines have endorsed the Barcelona Clinic Liver Cancer (BCLC) staging system. The aim of this study was to assess the performance of the recently developed Hong Kong Liver Cancer (HKLC) classification as a staging system for hepatocellular carcinoma (HCC) in Europe. We used a pooled set of 1693 HCC patients combining three prospective European cohorts. Discrimination ability between the nine substages and five stages of the HKLC classification system was assessed. To evaluate the predictive power of the HKLC and BCLC staging systems on overall survival, Nagelkerke pseudo R2, Bayesian Information Criterion and Harrell's concordance index were calculated. The number of patients who would benefit from a curative therapy was assessed for both staging systems. The HKLC classification in nine substages shows suboptimal discrimination between the staging groups. The classification in five stages shows better discrimination between groups. However, the BCLC classification performs better than the HKLC classification in the ability to predict overall survival (OS). The HKLC treatment algorithm tags significantly more patients to curative therapy than the BCLC. The BCLC staging system performs better for European patients than the HKLC staging system in predicting OS. Twice more patients are eligible for a curative therapy with the HKLC algorithm; whether this translates in survival benefit remains to be investigated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Handling Imbalanced Data Sets in Multistage Classification
NASA Astrophysics Data System (ADS)
López, M.
Multistage classification is a logical approach, based on a divide-and-conquer solution, for dealing with problems with a high number of classes. The classification problem is divided into several sequential steps, each one associated to a single classifier that works with subgroups of the original classes. In each level, the current set of classes is split into smaller subgroups of classes until they (the subgroups) are composed of only one class. The resulting chain of classifiers can be represented as a tree, which (1) simplifies the classification process by using fewer categories in each classifier and (2) makes it possible to combine several algorithms or use different attributes in each stage. Most of the classification algorithms can be biased in the sense of selecting the most populated class in overlapping areas of the input space. This can degrade a multistage classifier performance if the training set sample frequencies do not reflect the real prevalence in the population. Several techniques such as applying prior probabilities, assigning weights to the classes, or replicating instances have been developed to overcome this handicap. Most of them are designed for two-class (accept-reject) problems. In this article, we evaluate several of these techniques as applied to multistage classification and analyze how they can be useful for astronomy. We compare the results obtained by classifying a data set based on Hipparcos with and without these methods.
Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui
2017-02-06
A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.
A Novel Segment-Based Approach for Improving Classification Performance of Transport Mode Detection.
Guvensan, M Amac; Dusun, Burak; Can, Baris; Turkmen, H Irem
2017-12-30
Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people's daily activities including transportation types and duration by taking advantage of individual's smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.
Applying FastSLAM to Articulated Rovers
NASA Astrophysics Data System (ADS)
Hewitt, Robert Alexander
This thesis presents the navigation algorithms designed for use on Kapvik, a 30 kg planetary micro-rover built for the Canadian Space Agency; the simulations used to test the algorithm; and novel techniques for terrain classification using Kapvik's LIDAR (Light Detection And Ranging) sensor. Kapvik implements a six-wheeled, skid-steered, rocker-bogie mobility system. This warrants a more complicated kinematic model for navigation than a typical 4-wheel differential drive system. The design of a 3D navigation algorithm is presented that includes nonlinear Kalman filtering and Simultaneous Localization and Mapping (SLAM). A neural network for terrain classification is used to improve navigation performance. Simulation is used to train the neural network and validate the navigation algorithms. Real world tests of the terrain classification algorithm validate the use of simulation for training and the improvement to SLAM through the reduction of extraneous LIDAR measurements in each scan.
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy.
Brinkmann, Benjamin H; Wagenaar, Joost; Abbot, Drew; Adkins, Phillip; Bosshard, Simone C; Chen, Min; Tieng, Quang M; He, Jialune; Muñoz-Almaraz, F J; Botella-Rocamora, Paloma; Pardo, Juan; Zamora-Martinez, Francisco; Hills, Michael; Wu, Wei; Korshunova, Iryna; Cukierski, Will; Vite, Charles; Patterson, Edward E; Litt, Brian; Worrell, Gregory A
2016-06-01
SEE MORMANN AND ANDRZEJAK DOI101093/BRAIN/AWW091 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : Accurate forecasting of epileptic seizures has the potential to transform clinical epilepsy care. However, progress toward reliable seizure forecasting has been hampered by lack of open access to long duration recordings with an adequate number of seizures for investigators to rigorously compare algorithms and results. A seizure forecasting competition was conducted on kaggle.com using open access chronic ambulatory intracranial electroencephalography from five canines with naturally occurring epilepsy and two humans undergoing prolonged wide bandwidth intracranial electroencephalographic monitoring. Data were provided to participants as 10-min interictal and preictal clips, with approximately half of the 60 GB data bundle labelled (interictal/preictal) for algorithm training and half unlabelled for evaluation. The contestants developed custom algorithms and uploaded their classifications (interictal/preictal) for the unknown testing data, and a randomly selected 40% of data segments were scored and results broadcasted on a public leader board. The contest ran from August to November 2014, and 654 participants submitted 17 856 classifications of the unlabelled test data. The top performing entry scored 0.84 area under the classification curve. Following the contest, additional held-out unlabelled data clips were provided to the top 10 participants and they submitted classifications for the new unseen data. The resulting area under the classification curves were well above chance forecasting, but did show a mean 6.54 ± 2.45% (min, max: 0.30, 20.2) decline in performance. The kaggle.com model using open access data and algorithms generated reproducible research that advanced seizure forecasting. The overall performance from multiple contestants on unseen data was better than a random predictor, and demonstrates the feasibility of seizure forecasting in canine and human epilepsy.media-1vid110.1093/brain/aww045_video_abstractaww045_video_abstract. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
JPSS Cryosphere Algorithms: Integration and Testing in Algorithm Development Library (ADL)
NASA Astrophysics Data System (ADS)
Tsidulko, M.; Mahoney, R. L.; Meade, P.; Baldwin, D.; Tschudi, M. A.; Das, B.; Mikles, V. J.; Chen, W.; Tang, Y.; Sprietzer, K.; Zhao, Y.; Wolf, W.; Key, J.
2014-12-01
JPSS is a next generation satellite system that is planned to be launched in 2017. The satellites will carry a suite of sensors that are already on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. The NOAA/NESDIS/STAR Algorithm Integration Team (AIT) works within the Algorithm Development Library (ADL) framework which mimics the operational JPSS Interface Data Processing Segment (IDPS). The AIT contributes in development, integration and testing of scientific algorithms employed in the IDPS. This presentation discusses cryosphere related activities performed in ADL. The addition of a new ancillary data set - NOAA Global Multisensor Automated Snow/Ice data (GMASI) - with ADL code modifications is described. Preliminary GMASI impact on the gridded Snow/Ice product is estimated. Several modifications to the Ice Age algorithm that demonstrates mis-classification of ice type for certain areas/time periods are tested in the ADL. Sensitivity runs for day time, night time and terminator zone are performed and presented. Comparisons between the original and modified versions of the Ice Age algorithm are also presented.
Evaluation of registration, compression and classification algorithms. Volume 1: Results
NASA Technical Reports Server (NTRS)
Jayroe, R.; Atkinson, R.; Callas, L.; Hodges, J.; Gaggini, B.; Peterson, J.
1979-01-01
The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery.
A combined reconstruction-classification method for diffuse optical tomography.
Hiltunen, P; Prince, S J D; Arridge, S
2009-11-07
We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.
Case-Mix for Performance Management: A Risk Algorithm Based on ICD-10-CM.
Gao, Jian; Moran, Eileen; Almenoff, Peter L
2018-06-01
Accurate risk adjustment is the key to a reliable comparison of cost and quality performance among providers and hospitals. However, the existing case-mix algorithms based on age, sex, and diagnoses can only explain up to 50% of the cost variation. More accurate risk adjustment is desired for provider performance assessment and improvement. To develop a case-mix algorithm that hospitals and payers can use to measure and compare cost and quality performance of their providers. All 6,048,895 patients with valid diagnoses and cost recorded in the US Veterans health care system in fiscal year 2016 were included in this study. The dependent variable was total cost at the patient level, and the explanatory variables were age, sex, and comorbidities represented by 762 clinically homogeneous groups, which were created by expanding the 283 categories from Clinical Classifications Software based on ICD-10-CM codes. The split-sample method was used to assess model overfitting and coefficient stability. The predictive power of the algorithms was ascertained by comparing the R, mean absolute percentage error, root mean square error, predictive ratios, and c-statistics. The expansion of the Clinical Classifications Software categories resulted in higher predictive power. The R reached 0.72 and 0.52 for the transformed and raw scale cost, respectively. The case-mix algorithm we developed based on age, sex, and diagnoses outperformed the existing case-mix models reported in the literature. The method developed in this study can be used by other health systems to produce tailored risk models for their specific purpose.
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
False alarm reduction by the And-ing of multiple multivariate Gaussian classifiers
NASA Astrophysics Data System (ADS)
Dobeck, Gerald J.; Cobb, J. Tory
2003-09-01
The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. This paper describes a method for training several multivariate Gaussian classifiers such that their And-ing dramatically reduces false alarms while maintaining a high probability of classification. This training approach is referred to as the Focused- Training method. This work extends our 2001-2002 work where the Focused-Training method was used with three other types of classifiers: the Attractor-based K-Nearest Neighbor Neural Network (a type of radial-basis, probabilistic neural network), the Optimal Discrimination Filter Classifier (based linear discrimination theory), and the Quadratic Penalty Function Support Vector Machine (QPFSVM). Although our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to a wide range of pattern recognition and automatic target recognition (ATR) problems.
Lee, Minyoung; Lee, Sang Heon; Kim, TaeYeong; Yoo, Hyun-Joon; Kim, Sung Hoon; Suh, Dong-Won; Son, Jaebum; Yoon, BumChul
2017-01-01
To explore the feasibility of a newly developed smartphone-based exercise program with an embedded self-classification algorithm for office workers with neck pain, by examining its effect on the pain intensity, functional disability, quality of life, fear avoidance, and cervical range of motion (ROM). Single-group, repeated-measures design. The laboratory and participants' home and work environments. Offices workers with neck pain (N=23; mean age ± SD, 28.13±2.97y; 13 men). Participants were classified as having 1 of 4 types of neck pain through a self-classification algorithm implemented as a smartphone application, and conducted corresponding exercise programs for 10 to 12min/d, 3d/wk, for 8 weeks. The visual analog scale (VAS), Neck Disability Index (NDI), Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), Fear-Avoidance Beliefs Questionnaire (FABQ), and cervical ROM were measured at baseline and postintervention. The VAS (P<.001) and NDI score (P<.001) indicated significant improvements in pain intensity and functional disability. Quality of life showed significant improvements in the physical functioning (P=.007), bodily pain (P=.018), general health (P=.022), vitality (P=.046), and physical component scores (P=.002) of the SF-36. The FABQ, cervical ROM, and mental component score of the SF-36 showed no significant improvements. The smartphone-based exercise program with an embedded self-classification algorithm improves the pain intensity and perceived physical health of office workers with neck pain, although not enough to affect their mental and emotional states. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Zemp, Roland; Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B; Taylor, William R; Lorenzetti, Silvio
2016-01-01
Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.
NASA Astrophysics Data System (ADS)
Geessink, Oscar G. F.; Baidoshvili, Alexi; Freling, Gerard; Klaase, Joost M.; Slump, Cornelis H.; van der Heijden, Ferdinand
2015-03-01
Visual estimation of tumor and stroma proportions in microscopy images yields a strong, Tumor-(lymph)Node- Metastasis (TNM) classification-independent predictor for patient survival in colorectal cancer. Therefore, it is also a potent (contra)indicator for adjuvant chemotherapy. However, quantification of tumor and stroma through visual estimation is highly subject to intra- and inter-observer variability. The aim of this study is to develop and clinically validate a method for objective quantification of tumor and stroma in standard hematoxylin and eosin (H and E) stained microscopy slides of rectal carcinomas. A tissue segmentation algorithm, based on supervised machine learning and pixel classification, was developed, trained and validated using histological slides that were prepared from surgically excised rectal carcinomas in patients who had not received neoadjuvant chemotherapy and/or radiotherapy. Whole-slide scanning was performed at 20× magnification. A total of 40 images (4 million pixels each) were extracted from 20 whole-slide images at sites showing various relative proportions of tumor and stroma. Experienced pathologists provided detailed annotations for every extracted image. The performance of the algorithm was evaluated using cross-validation by testing on 1 image at a time while using the other 39 images for training. The total classification error of the algorithm was 9.4% (SD = 3.2%). Compared to visual estimation by pathologists, the algorithm was 7.3 times (P = 0.033) more accurate in quantifying tissues, also showing 60% less variability. Automatic tissue quantification was shown to be both reliable and practicable. We ultimately intend to facilitate refined prognostic stratification of (colo)rectal cancer patients and enable better personalized treatment.
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
Progressive Classification Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Kocurek, Michael
2009-01-01
An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.
A System for Heart Sounds Classification
Redlarski, Grzegorz; Gradolewski, Dawid; Palkowski, Aleksander
2014-01-01
The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability. PMID:25393113
A comprehensive simulation study on classification of RNA-Seq data.
Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet
2017-01-01
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
Contextual classification on a CDC Flexible Processor system. [for photomapped remote sensing data
NASA Technical Reports Server (NTRS)
Smith, B. W.; Siegel, H. J.; Swain, P. H.
1981-01-01
A potential hardware organization for the Flexible Processor Array is presented. An algorithm that implements a contextual classifier for remote sensing data analysis is given, along with uniprocessor classification algorithms. The Flexible Processor algorithm is provided, as are simulated timings for contextual classifiers run on the Flexible Processor Array and another system. The timings are analyzed for context neighborhoods of sizes three and nine.
Alves, Julio Cesar L; Henriques, Claudete B; Poppi, Ronei J
2014-01-03
The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams. Copyright © 2013 Elsevier B.V. All rights reserved.
Support Vector Machine algorithm for regression and classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chenggang; Zavaljevski, Nela
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less
Singha, Suman; Vespe, Michele; Trieschmann, Olaf
2013-08-15
Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Coopersmith, Evan Joseph
The techniques and information employed for decision-making vary with the spatial and temporal scope of the assessment required. In modern agriculture, the farm owner or manager makes decisions on a day-to-day or even hour-to-hour basis for dozens of fields scattered over as much as a fifty-mile radius from some central location. Following precipitation events, land begins to dry. Land-owners and managers often trace serpentine paths of 150+ miles every morning to inspect the conditions of their various parcels. His or her objective lies in appropriate resource usage -- is a given tract of land dry enough to be workable at this moment or would he or she be better served waiting patiently? Longer-term, these owners and managers decide upon which seeds will grow most effectively and which crops will make their operations profitable. At even longer temporal scales, decisions are made regarding which fields must be acquired and sold and what types of equipment will be necessary in future operations. This work develops and validates algorithms for these shorter-term decisions, along with models of national climate patterns and climate changes to enable longer-term operational planning. A test site at the University of Illinois South Farms (Urbana, IL, USA) served as the primary location to validate machine learning algorithms, employing public sources of precipitation and potential evapotranspiration to model the wetting/drying process. In expanding such local decision support tools to locations on a national scale, one must recognize the heterogeneity of hydroclimatic and soil characteristics throughout the United States. Machine learning algorithms modeling the wetting/drying process must address this variability, and yet it is wholly impractical to construct a separate algorithm for every conceivable location. For this reason, a national hydrological classification system is presented, allowing clusters of hydroclimatic similarity to emerge naturally from annual regime curve data and facilitate the development of cluster-specific algorithms. Given the desire to enable intelligent decision-making at any location, this classification system is developed in a manner that will allow for classification anywhere in the U.S., even in an ungauged basin. Daily time series data from 428 catchments in the MOPEX database are analyzed to produce an empirical classification tree, partitioning the United States into regions of hydroclimatic similarity. In constructing a classification tree based upon 55 years of data, it is important to recognize the non-stationary nature of climate data. The shifts in climatic regimes will cause certain locations to shift their ultimate position within the classification tree, requiring decision-makers to alter land usage, farming practices, and equipment needs, and algorithms to adjust accordingly. This work adapts the classification model to address the issue of regime shifts over larger temporal scales and suggests how land-usage and farming protocol may vary from hydroclimatic shifts in decades to come. Finally, the generalizability of the hydroclimatic classification system is tested with a physically-based soil moisture model calibrated at several locations throughout the continental United States. The soil moisture model is calibrated at a given site and then applied with the same parameters at other sites within and outside the same hydroclimatic class. The model's performance deteriorates minimally if the calibration and validation location are within the same hydroclimatic class, but deteriorates significantly if the calibration and validates sites are located in different hydroclimatic classes. These soil moisture estimates at the field scale are then further refined by the introduction of LiDAR elevation data, distinguishing faster-drying peaks and ridges from slower-drying valleys. The inclusion of LiDAR enabled multiple locations within the same field to be predicted accurately despite non-identical topography. This cross-application of parametric calibrations and LiDAR-driven disaggregation facilitates decision-support at locations without proximally-located soil moisture sensors.
A Semi-supervised Heat Kernel Pagerank MBO Algorithm for Data Classification
2016-07-01
financial predictions, etc. and is finding growing use in text mining studies. In this paper, we present an efficient algorithm for classification of high...video data, set of images, hyperspectral data, medical data, text data, etc. Moreover, the framework provides a way to analyze data whose different...also be incorporated. For text classification, one can use tfidf (term frequency inverse document frequency) to form feature vectors for each document
Parallel processing implementations of a contextual classifier for multispectral remote sensing data
NASA Technical Reports Server (NTRS)
Siegel, H. J.; Swain, P. H.; Smith, B. W.
1980-01-01
Contextual classifiers are being developed as a method to exploit the spatial/spectral context of a pixel to achieve accurate classification. Classification algorithms such as the contextual classifier typically require large amounts of computation time. One way to reduce the execution time of these tasks is through the use of parallelism. The applicability of the CDC flexible processor system and of a proposed multimicroprocessor system (PASM) for implementing contextual classifiers is examined.
A hybrid method for classifying cognitive states from fMRI data.
Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R
2015-09-01
Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
Brain-Inspired Constructive Learning Algorithms with Evolutionally Additive Nonlinear Neurons
NASA Astrophysics Data System (ADS)
Fang, Le-Heng; Lin, Wei; Luo, Qiang
In this article, inspired partially by the physiological evidence of brain’s growth and development, we developed a new type of constructive learning algorithm with evolutionally additive nonlinear neurons. The new algorithms have remarkable ability in effective regression and accurate classification. In particular, the algorithms are able to sustain a certain reduction of the loss function when the dynamics of the trained network are bogged down in the vicinity of the local minima. The algorithm augments the neural network by adding only a few connections as well as neurons whose activation functions are nonlinear, nonmonotonic, and self-adapted to the dynamics of the loss functions. Indeed, we analytically demonstrate the reduction dynamics of the algorithm for different problems, and further modify the algorithms so as to obtain an improved generalization capability for the augmented neural networks. Finally, through comparing with the classical algorithm and architecture for neural network construction, we show that our constructive learning algorithms as well as their modified versions have better performances, such as faster training speed and smaller network size, on several representative benchmark datasets including the MNIST dataset for handwriting digits.
Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann
2012-09-24
Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.
Learning classification with auxiliary probabilistic information
Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos
2012-01-01
Finding ways of incorporating auxiliary information or auxiliary data into the learning process has been the topic of active data mining and machine learning research in recent years. In this work we study and develop a new framework for classification learning problem in which, in addition to class labels, the learner is provided with an auxiliary (probabilistic) information that reflects how strong the expert feels about the class label. This approach can be extremely useful for many practical classification tasks that rely on subjective label assessment and where the cost of acquiring additional auxiliary information is negligible when compared to the cost of the example analysis and labelling. We develop classification algorithms capable of using the auxiliary information to make the learning process more efficient in terms of the sample complexity. We demonstrate the benefit of the approach on a number of synthetic and real world data sets by comparing it to the learning with class labels only. PMID:25309141
Spectral-spatial classification of hyperspectral imagery with cooperative game
NASA Astrophysics Data System (ADS)
Zhao, Ji; Zhong, Yanfei; Jia, Tianyi; Wang, Xinyu; Xu, Yao; Shu, Hong; Zhang, Liangpei
2018-01-01
Spectral-spatial classification is known to be an effective way to improve classification performance by integrating spectral information and spatial cues for hyperspectral imagery. In this paper, a game-theoretic spectral-spatial classification algorithm (GTA) using a conditional random field (CRF) model is presented, in which CRF is used to model the image considering the spatial contextual information, and a cooperative game is designed to obtain the labels. The algorithm establishes a one-to-one correspondence between image classification and game theory. The pixels of the image are considered as the players, and the labels are considered as the strategies in a game. Similar to the idea of soft classification, the uncertainty is considered to build the expected energy model in the first step. The local expected energy can be quickly calculated, based on a mixed strategy for the pixels, to establish the foundation for a cooperative game. Coalitions can then be formed by the designed merge rule based on the local expected energy, so that a majority game can be performed to make a coalition decision to obtain the label of each pixel. The experimental results on three hyperspectral data sets demonstrate the effectiveness of the proposed classification algorithm.
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert
2016-05-01
Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.
Code-based Diagnostic Algorithms for Idiopathic Pulmonary Fibrosis. Case Validation and Improvement.
Ley, Brett; Urbania, Thomas; Husson, Gail; Vittinghoff, Eric; Brush, David R; Eisner, Mark D; Iribarren, Carlos; Collard, Harold R
2017-06-01
Population-based studies of idiopathic pulmonary fibrosis (IPF) in the United States have been limited by reliance on diagnostic code-based algorithms that lack clinical validation. To validate a well-accepted International Classification of Diseases, Ninth Revision, code-based algorithm for IPF using patient-level information and to develop a modified algorithm for IPF with enhanced predictive value. The traditional IPF algorithm was used to identify potential cases of IPF in the Kaiser Permanente Northern California adult population from 2000 to 2014. Incidence and prevalence were determined overall and by age, sex, and race/ethnicity. A validation subset of cases (n = 150) underwent expert medical record and chest computed tomography review. A modified IPF algorithm was then derived and validated to optimize positive predictive value. From 2000 to 2014, the traditional IPF algorithm identified 2,608 cases among 5,389,627 at-risk adults in the Kaiser Permanente Northern California population. Annual incidence was 6.8/100,000 person-years (95% confidence interval [CI], 6.1-7.7) and was higher in patients with older age, male sex, and white race. The positive predictive value of the IPF algorithm was only 42.2% (95% CI, 30.6 to 54.6%); sensitivity was 55.6% (95% CI, 21.2 to 86.3%). The corrected incidence was estimated at 5.6/100,000 person-years (95% CI, 2.6-10.3). A modified IPF algorithm had improved positive predictive value but reduced sensitivity compared with the traditional algorithm. A well-accepted International Classification of Diseases, Ninth Revision, code-based IPF algorithm performs poorly, falsely classifying many non-IPF cases as IPF and missing a substantial proportion of IPF cases. A modification of the IPF algorithm may be useful for future population-based studies of IPF.
Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes.
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms.
Zwartjes, Ardjan; Havinga, Paul J M; Smit, Gerard J M; Hurink, Johann L
2016-10-01
In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution.
Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan
2014-07-01
Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.
Evaluation of an Algorithm to Predict Menstrual-Cycle Phase at the Time of Injury.
Tourville, Timothy W; Shultz, Sandra J; Vacek, Pamela M; Knudsen, Emily J; Bernstein, Ira M; Tourville, Kelly J; Hardy, Daniel M; Johnson, Robert J; Slauterbeck, James R; Beynnon, Bruce D
2016-01-01
Women are 2 to 8 times more likely to sustain an anterior cruciate ligament (ACL) injury than men, and previous studies indicated an increased risk for injury during the preovulatory phase of the menstrual cycle (MC). However, investigations of risk rely on retrospective classification of MC phase, and no tools for this have been validated. To evaluate the accuracy of an algorithm for retrospectively classifying MC phase at the time of a mock injury based on MC history and salivary progesterone (P4) concentration. Descriptive laboratory study. Research laboratory. Thirty-one healthy female collegiate athletes (age range, 18-24 years) provided serum or saliva (or both) samples at 8 visits over 1 complete MC. Self-reported MC information was obtained on a randomized date (1-45 days) after mock injury, which is the typical timeframe in which researchers have access to ACL-injured study participants. The MC phase was classified using the algorithm as applied in a stand-alone computational fashion and also by 4 clinical experts using the algorithm and additional subjective hormonal history information to help inform their decision. To assess algorithm accuracy, phase classifications were compared with the actual MC phase at the time of mock injury (ascertained using urinary luteinizing hormone tests and serial serum P4 samples). Clinical expert and computed classifications were compared using κ statistics. Fourteen participants (45%) experienced anovulatory cycles. The algorithm correctly classified MC phase for 23 participants (74%): 22 (76%) of 29 who were preovulatory/anovulatory and 1 (50%) of 2 who were postovulatory. Agreement between expert and algorithm classifications ranged from 80.6% (κ = 0.50) to 93% (κ = 0.83). Classifications based on same-day saliva sample and optimal P4 threshold were the same as those based on MC history alone (87.1% correct). Algorithm accuracy varied during the MC but at no time were both sensitivity and specificity levels acceptable. These findings raise concerns about the accuracy of previous retrospective MC-phase classification systems, particularly in a population with a high occurrence of anovulatory cycles.
Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...
A strategy for recovering continuous behavioral telemetry data from Pacific walruses
Fischbach, Anthony S.; Jay, Chadwick V.
2016-01-01
Tracking animal behavior and movement with telemetry sensors can offer substantial insights required for conservation. Yet, the value of data collected by animal-borne telemetry systems is limited by bandwidth constraints. To understand the response of Pacific walruses (Odobenus rosmarus divergens) to rapid changes in sea ice availability, we required continuous geospatial chronologies of foraging behavior. Satellite telemetry offered the only practical means to systematically collect such data; however, data transmission constraints of satellite data-collection systems limited the data volume that could be acquired. Although algorithms exist for reducing sensor data volumes for efficient transmission, none could meet our requirements. Consequently, we developed an algorithm for classifying hourly foraging behavior status aboard a tag with limited processing power. We found a 98% correspondence of our algorithm's classification with a test classification based on time–depth data recovered and characterized through multivariate analysis in a separate study. We then applied our algorithm within a telemetry system that relied on remotely deployed satellite tags. Data collected by these tags from Pacific walruses across their range during 2007–2015 demonstrated the consistency of foraging behavior collected by this strategy with data collected by data logging tags; and demonstrated the ability to collect geospatial behavioral chronologies with minimal missing data where recovery of data logging tags is precluded. Our strategy for developing a telemetry system may be applicable to any study requiring intelligent algorithms to continuously monitor behavior, and then compress those data into meaningful information that can be efficiently transmitted.
Applications of color machine vision in the agricultural and food industries
NASA Astrophysics Data System (ADS)
Zhang, Min; Ludas, Laszlo I.; Morgan, Mark T.; Krutz, Gary W.; Precetti, Cyrille J.
1999-01-01
Color is an important factor in Agricultural and the Food Industry. Agricultural or prepared food products are often grade by producers and consumers using color parameters. Color is used to estimate maturity, sort produce for defects, but also perform genetic screenings or make an aesthetic judgement. The task of sorting produce following a color scale is very complex, requires special illumination and training. Also, this task cannot be performed for long durations without fatigue and loss of accuracy. This paper describes a machine vision system designed to perform color classification in real-time. Applications for sorting a variety of agricultural products are included: e.g. seeds, meat, baked goods, plant and wood.FIrst the theory of color classification of agricultural and biological materials is introduced. Then, some tools for classifier development are presented. Finally, the implementation of the algorithm on real-time image processing hardware and example applications for industry is described. This paper also presented an image analysis algorithm and a prototype machine vision system which was developed for industry. This system will automatically locate the surface of some plants using digital camera and predict information such as size, potential value and type of this plant. The algorithm developed will be feasible for real-time identification in an industrial environment.
2013-05-28
those of the support vector machine and relevance vector machine, and the model runs more quickly than the other algorithms . When one class occurs...incremental support vector machine algorithm for online learning when fewer than 50 data points are available. (a) Papers published in peer-reviewed journals...learning environments, where data processing occurs one observation at a time and the classification algorithm improves over time with new
Adaptive phase k-means algorithm for waveform classification
NASA Astrophysics Data System (ADS)
Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin
2018-01-01
Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.
Automatic detection of sleep macrostructure based on a sensorized T-shirt.
Bianchi, Anna M; Mendez, Martin O
2010-01-01
In the present work we apply a fully automatic procedure to the analysis of signal coming from a sensorized T-shit, worn during the night, for sleep evaluation. The goodness and reliability of the signals recorded trough the T-shirt was previously tested, while the employed algorithms for feature extraction and sleep classification were previously developed on standard ECG recordings and the obtained classification was compared to the standard clinical practice based on polysomnography (PSG). In the present work we combined T-shirt recordings and automatic classification and could obtain reliable sleep profiles, i.e. the sleep classification in WAKE, REM (rapid eye movement) and NREM stages, based on heart rate variability (HRV), respiration and movement signals.
2015-01-01
Background TNM staging plays a critical role in the evaluation and management of a range of different types of cancers. The conventional combinatorial approach to the determination of an anatomic stage relies on the identification of distinct tumor (T), node (N), and metastasis (M) classifications to generate a TNM grouping. This process is inherently inefficient due to the need for scrupulous review of the criteria specified for each classification to ensure accurate assignment. An exclusionary approach to TNM staging based on sequential constraint of options may serve to minimize the number of classifications that need to be reviewed to accurately determine an anatomic stage. Objective Our aim was to evaluate the usability and utility of a Web-based app configured to demonstrate an exclusionary approach to TNM staging. Methods Internal medicine residents, surgery residents, and oncology fellows engaged in clinical training were asked to evaluate a Web-based app developed as an instructional aid incorporating (1) an exclusionary algorithm that polls tabulated classifications and sorts them into ranked order based on frequency counts, (2) reconfiguration of classification criteria to generate disambiguated yes/no questions that function as selection and exclusion prompts, and (3) a selectable grid of TNM groupings that provides dynamic graphic demonstration of the effects of sequentially selecting or excluding specific classifications. Subjects were asked to evaluate the performance of this app after completing exercises simulating the staging of different types of cancers encountered during training. Results Survey responses indicated high levels of agreement with statements supporting the usability and utility of this app. Subjects reported that its user interface provided a clear display with intuitive controls and that the exclusionary approach to TNM staging it demonstrated represented an efficient process of assignment that helped to clarify distinctions between tumor, node, and metastasis classifications. High overall usefulness ratings were bolstered by supplementary comments suggesting that this app might be readily adopted for use in clinical practice. Conclusions A Web-based app that utilizes an exclusionary algorithm to prompt the assignment of tumor, node, and metastasis classifications may serve as an effective instructional aid demonstrating an efficient and informative approach to TNM staging. PMID:28410163
Classifying Structures in the ISM with Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Beaumont, Christopher; Goodman, A. A.; Williams, J. P.
2011-01-01
The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.
Fabelo, Himar; Ortega, Samuel; Ravi, Daniele; Kiran, B Ravi; Sosa, Coralia; Bulters, Diederik; Callicó, Gustavo M; Bulstrode, Harry; Szolna, Adam; Piñeiro, Juan F; Kabwama, Silvester; Madroñal, Daniel; Lazcano, Raquel; J-O'Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Báez, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Salvador, Rubén; Juárez, Eduardo; Sarmiento, Roberto
2018-01-01
Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area.
Heart rate variability (HRV): an indicator of stress
NASA Astrophysics Data System (ADS)
Kaur, Balvinder; Durek, Joseph J.; O'Kane, Barbara L.; Tran, Nhien; Moses, Sophia; Luthra, Megha; Ikonomidou, Vasiliki N.
2014-05-01
Heart rate variability (HRV) can be an important indicator of several conditions that affect the autonomic nervous system, including traumatic brain injury, post-traumatic stress disorder and peripheral neuropathy [3], [4], [10] & [11]. Recent work has shown that some of the HRV features can potentially be used for distinguishing a subject's normal mental state from a stressed one [4], [13] & [14]. In all of these past works, although processing is done in both frequency and time domains, few classification algorithms have been explored for classifying normal from stressed RRintervals. In this paper we used 30 s intervals from the Electrocardiogram (ECG) time series collected during normal and stressed conditions, produced by means of a modified version of the Trier social stress test, to compute HRV-driven features and subsequently applied a set of classification algorithms to distinguish stressed from normal conditions. To classify RR-intervals, we explored classification algorithms that are commonly used for medical applications, namely 1) logistic regression (LR) [16] and 2) linear discriminant analysis (LDA) [6]. Classification performance for various levels of stress over the entire test was quantified using precision, accuracy, sensitivity and specificity measures. Results from both classifiers were then compared to find an optimal classifier and HRV features for stress detection. This work, performed under an IRB-approved protocol, not only provides a method for developing models and classifiers based on human data, but also provides a foundation for a stress indicator tool based on HRV. Further, these classification tools will not only benefit many civilian applications for detecting stress, but also security and military applications for screening such as: border patrol, stress detection for deception [3],[17], and wounded-warrior triage [12].
Kabwama, Silvester; Madroñal, Daniel; Lazcano, Raquel; J-O’Shanahan, Aruma; Bisshopp, Sara; Hernández, María; Báez, Abelardo; Yang, Guang-Zhong; Stanciulescu, Bogdan; Salvador, Rubén; Juárez, Eduardo; Sarmiento, Roberto
2018-01-01
Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area. PMID:29554126
On the use of harmony search algorithm in the training of wavelet neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems
Li, Xiguang; Zhao, Liang; Gong, Changqing; Liu, Xiaojing
2017-01-01
Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA), is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM) for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent. PMID:29085425
Strength in Numbers: Using Big Data to Simplify Sentiment Classification.
Filippas, Apostolos; Lappas, Theodoros
2017-09-01
Sentiment classification, the task of assigning a positive or negative label to a text segment, is a key component of mainstream applications such as reputation monitoring, sentiment summarization, and item recommendation. Even though the performance of sentiment classification methods has steadily improved over time, their ever-increasing complexity renders them comprehensible by only a shrinking minority of expert practitioners. For all others, such highly complex methods are black-box predictors that are hard to tune and even harder to justify to decision makers. Motivated by these shortcomings, we introduce BigCounter: a new algorithm for sentiment classification that substitutes algorithmic complexity with Big Data. Our algorithm combines standard data structures with statistical testing to deliver accurate and interpretable predictions. It is also parameter free and suitable for use virtually "out of the box," which makes it appealing for organizations wanting to leverage their troves of unstructured data without incurring the significant expense of creating in-house teams of data scientists. Finally, BigCounter's efficient and parallelizable design makes it applicable to very large data sets. We apply our method on such data sets toward a study on the limits of Big Data for sentiment classification. Our study finds that, after a certain point, predictive performance tends to converge and additional data have little benefit. Our algorithmic design and findings provide the foundations for future research on the data-over-computation paradigm for classification problems.
System and method for resolving gamma-ray spectra
Gentile, Charles A.; Perry, Jason; Langish, Stephen W.; Silber, Kenneth; Davis, William M.; Mastrovito, Dana
2010-05-04
A system for identifying radionuclide emissions is described. The system includes at least one processor for processing output signals from a radionuclide detecting device, at least one training algorithm run by the at least one processor for analyzing data derived from at least one set of known sample data from the output signals, at least one classification algorithm derived from the training algorithm for classifying unknown sample data, wherein the at least one training algorithm analyzes the at least one sample data set to derive at least one rule used by said classification algorithm for identifying at least one radionuclide emission detected by the detecting device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soner Yorgun, M.; Rood, Richard B.
An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less
Soner Yorgun, M.; Rood, Richard B.
2016-11-11
An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less
Sharma, Manuj; Petersen, Irene; Nazareth, Irwin; Coton, Sonia J
2016-01-01
Background Research into diabetes mellitus (DM) often requires a reproducible method for identifying and distinguishing individuals with type 1 DM (T1DM) and type 2 DM (T2DM). Objectives To develop a method to identify individuals with T1DM and T2DM using UK primary care electronic health records. Methods Using data from The Health Improvement Network primary care database, we developed a two-step algorithm. The first algorithm step identified individuals with potential T1DM or T2DM based on diagnostic records, treatment, and clinical test results. We excluded individuals with records for rarer DM subtypes only. For individuals to be considered diabetic, they needed to have at least two records indicative of DM; one of which was required to be a diagnostic record. We then classified individuals with T1DM and T2DM using the second algorithm step. A combination of diagnostic codes, medication prescribed, age at diagnosis, and whether the case was incident or prevalent were used in this process. We internally validated this classification algorithm through comparison against an independent clinical examination of The Health Improvement Network electronic health records for a random sample of 500 DM individuals. Results Out of 9,161,866 individuals aged 0–99 years from 2000 to 2014, we classified 37,693 individuals with T1DM and 418,433 with T2DM, while 1,792 individuals remained unclassified. A small proportion were classified with some uncertainty (1,155 [3.1%] of all individuals with T1DM and 6,139 [1.5%] with T2DM) due to unclear health records. During validation, manual assignment of DM type based on clinical assessment of the entire electronic record and algorithmic assignment led to equivalent classification in all instances. Conclusion The majority of individuals with T1DM and T2DM can be readily identified from UK primary care electronic health records. Our approach can be adapted for use in other health care settings. PMID:27785102
Sharma, Manuj; Petersen, Irene; Nazareth, Irwin; Coton, Sonia J
2016-01-01
Research into diabetes mellitus (DM) often requires a reproducible method for identifying and distinguishing individuals with type 1 DM (T1DM) and type 2 DM (T2DM). To develop a method to identify individuals with T1DM and T2DM using UK primary care electronic health records. Using data from The Health Improvement Network primary care database, we developed a two-step algorithm. The first algorithm step identified individuals with potential T1DM or T2DM based on diagnostic records, treatment, and clinical test results. We excluded individuals with records for rarer DM subtypes only. For individuals to be considered diabetic, they needed to have at least two records indicative of DM; one of which was required to be a diagnostic record. We then classified individuals with T1DM and T2DM using the second algorithm step. A combination of diagnostic codes, medication prescribed, age at diagnosis, and whether the case was incident or prevalent were used in this process. We internally validated this classification algorithm through comparison against an independent clinical examination of The Health Improvement Network electronic health records for a random sample of 500 DM individuals. Out of 9,161,866 individuals aged 0-99 years from 2000 to 2014, we classified 37,693 individuals with T1DM and 418,433 with T2DM, while 1,792 individuals remained unclassified. A small proportion were classified with some uncertainty (1,155 [3.1%] of all individuals with T1DM and 6,139 [1.5%] with T2DM) due to unclear health records. During validation, manual assignment of DM type based on clinical assessment of the entire electronic record and algorithmic assignment led to equivalent classification in all instances. The majority of individuals with T1DM and T2DM can be readily identified from UK primary care electronic health records. Our approach can be adapted for use in other health care settings.
Particle analysis using laser ablation mass spectroscopy
Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.
2003-09-09
The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.
A Theoretical Analysis of Why Hybrid Ensembles Work.
Hsu, Kuo-Wei
2017-01-01
Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.
Ordóñez, Celestino; Cabo, Carlos; Sanz-Ablanedo, Enoc
2017-01-01
Mobile laser scanning (MLS) is a modern and powerful technology capable of obtaining massive point clouds of objects in a short period of time. Although this technology is nowadays being widely applied in urban cartography and 3D city modelling, it has some drawbacks that need to be avoided in order to strengthen it. One of the most important shortcomings of MLS data is concerned with the fact that it provides an unstructured dataset whose processing is very time-consuming. Consequently, there is a growing interest in developing algorithms for the automatic extraction of useful information from MLS point clouds. This work is focused on establishing a methodology and developing an algorithm to detect pole-like objects and classify them into several categories using MLS datasets. The developed procedure starts with the discretization of the point cloud by means of a voxelization, in order to simplify and reduce the processing time in the segmentation process. In turn, a heuristic segmentation algorithm was developed to detect pole-like objects in the MLS point cloud. Finally, two supervised classification algorithms, linear discriminant analysis and support vector machines, were used to distinguish between the different types of poles in the point cloud. The predictors are the principal component eigenvalues obtained from the Cartesian coordinates of the laser points, the range of the Z coordinate, and some shape-related indexes. The performance of the method was tested in an urban area with 123 poles of different categories. Very encouraging results were obtained, since the accuracy rate was over 90%. PMID:28640189
Classification of product inspection items using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, H.-W.
1998-03-01
Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.
Active learning for clinical text classification: is it better than random sampling?
Figueroa, Rosa L; Zeng-Treitler, Qing; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P
2012-01-01
This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty.
Active learning for clinical text classification: is it better than random sampling?
Figueroa, Rosa L; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P
2012-01-01
Objective This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Design Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Measurements Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. Results The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. Conclusion For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty. PMID:22707743
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Li, Long; Meng, Peng
2015-10-01
Remote sensing technology has been broadly recognized for its convenience and efficiency in mapping vegetation, particularly in high-altitude and inaccessible areas where there are lack of in-situ observations. In this study, Landsat Thematic Mapper (TM) images and Chinese environmental mitigation satellite CCD sensor (HJ-1 CCD) images, both of which are at 30m spatial resolution were employed for identifying and monitoring of vegetation types in a area of Western China——Qinghai Lake Watershed(QHLW). A decision classification tree (DCT) algorithm using multi-characteristic including seasonal TM/HJ-1 CCD time series data combined with digital elevation models (DEMs) dataset, and a supervised maximum likelihood classification (MLC) algorithm with single-data TM image were applied vegetation classification. Accuracy of the two algorithms was assessed using field observation data. Based on produced vegetation classification maps, it was found that the DCT using multi-season data and geomorphologic parameters was superior to the MLC algorithm using single-data image, improving the overall accuracy by 11.86% at second class level and significantly reducing the "salt and pepper" noise. The DCT algorithm applied to TM /HJ-1 CCD time series data geomorphologic parameters appeared as a valuable and reliable tool for monitoring vegetation at first class level (5 vegetation classes) and second class level(8 vegetation subclasses). The DCT algorithm using multi-characteristic might provide a theoretical basis and general approach to automatic extraction of vegetation types from remote sensing imagery over plateau areas.
NASA Astrophysics Data System (ADS)
Bera, Debajyoti
2015-06-01
One of the early achievements of quantum computing was demonstrated by Deutsch and Jozsa (Proc R Soc Lond A Math Phys Sci 439(1907):553, 1992) regarding classification of a particular type of Boolean functions. Their solution demonstrated an exponential speedup compared to classical approaches to the same problem; however, their solution was the only known quantum algorithm for that specific problem so far. This paper demonstrates another quantum algorithm for the same problem, with the same exponential advantage compared to classical algorithms. The novelty of this algorithm is the use of quantum amplitude amplification, a technique that is the key component of another celebrated quantum algorithm developed by Grover (Proceedings of the twenty-eighth annual ACM symposium on theory of computing, ACM Press, New York, 1996). A lower bound for randomized (classical) algorithms is also presented which establishes a sound gap between the effectiveness of our quantum algorithm and that of any randomized algorithm with similar efficiency.
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Rotor Smoothing and Vibration Monitoring Results for the US Army VMEP
2009-06-01
individual component CI detection thresholds, and development of models for diagnostics, prognostics , and anomaly detection . Figure 16 VMEP Server...and prognostics are of current interest. Development of those systems requires large amounts of data (collection, monitoring , manipulation) to capture...development of automated systems and for continuous updating of algorithms to improve detection , classification, and prognostic performance. A test
Text Extraction from Scene Images by Character Appearance and Structure Modeling
Yi, Chucai; Tian, Yingli
2012-01-01
In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification. PMID:23316111
Introcaso, Camille E; Gruber, DeAnn; Bradley, Heather; Peterman, Thomas A; Ewell, Joy; Wendell, Debbie; Foxhood, Joseph; Su, John R; Weinstock, Hillard S; Markowitz, Lauri E
2013-09-01
Congenital syphilis is a serious, preventable, and nationally notifiable disease. Despite the existence of a surveillance case definition, congenital syphilis is sometimes classified differently using an algorithm on the Centers for Disease Control and Prevention's case reporting form. We reviewed Louisiana's congenital syphilis electronic reporting system for investigations of infants born from January 2010 to October 2011, abstracted data required for classification, and applied the surveillance definition and the algorithm. We calculated the sensitivities and specificities of the algorithm and Louisiana's classification using the surveillance definition as the surveillance gold standard. Among 349 congenital syphilis investigations, the surveillance definition identified 62 cases. The algorithm had a sensitivity of 91.9% and a specificity of 64.1%. Louisiana's classification had a sensitivity of 50% and a specificity of 91.3% compared with the surveillance definition. The differences between the algorithm and the surveillance definition led to misclassification of congenital syphilis cases. The algorithm should match the surveillance definition. Other state and local health departments should assure that their reported cases meet the surveillance definition.
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Kassomenos, P.; Philipp, A.
2011-08-01
In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights are derived and tested similarly. All results exploit a physical interpretation by adapting the environment-to-circulation approach, providing more detailed information on specific synoptic conditions prevailing on days with high surface ozone concentrations. This research does not intend to bring forward a favourite classification methodology or construct a statistical ozone forecasting tool but should be seen as an introduction to the possibilities of the cost733class software. It this respect, the results presented here can provide a basic user support for the cost733class software and the development of a more user- or application-specific CTC approach.
The impact of database quality on keystroke dynamics authentication
NASA Astrophysics Data System (ADS)
Panasiuk, Piotr; Rybnik, Mariusz; Saeed, Khalid; Rogowski, Marcin
2016-06-01
This paper concerns keystroke dynamics, also partially in the context of touchscreen devices. The authors concentrate on the impact of database quality and propose their algorithm to test database quality issues. The algorithm is used on their own
Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches.
Çelik, Ufuk; Yurtay, Nilüfer; Koç, Emine Rabia; Tepe, Nermin; Güllüoğlu, Halil; Ertaş, Mustafa
2015-01-01
The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS) were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.
NASA Astrophysics Data System (ADS)
Wu, Chong; Liu, Liping; Wei, Ming; Xi, Baozhu; Yu, Minghui
2018-03-01
A modified hydrometeor classification algorithm (HCA) is developed in this study for Chinese polarimetric radars. This algorithm is based on the U.S. operational HCA. Meanwhile, the methodology of statistics-based optimization is proposed including calibration checking, datasets selection, membership functions modification, computation thresholds modification, and effect verification. Zhuhai radar, the first operational polarimetric radar in South China, applies these procedures. The systematic bias of calibration is corrected, the reliability of radar measurements deteriorates when the signal-to-noise ratio is low, and correlation coefficient within the melting layer is usually lower than that of the U.S. WSR-88D radar. Through modification based on statistical analysis of polarimetric variables, the localized HCA especially for Zhuhai is obtained, and it performs well over a one-month test through comparison with sounding and surface observations. The algorithm is then utilized for analysis of a squall line process on 11 May 2014 and is found to provide reasonable details with respect to horizontal and vertical structures, and the HCA results—especially in the mixed rain-hail region—can reflect the life cycle of the squall line. In addition, the kinematic and microphysical processes of cloud evolution and the differences between radar-detected hail and surface observations are also analyzed. The results of this study provide evidence for the improvement of this HCA developed specifically for China.
Chen, Zhiru; Hong, Wenxue
2016-02-01
Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.
Constrained Metric Learning by Permutation Inducing Isometries.
Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle
2016-01-01
The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.
Automatic detection and classification of artifacts in single-channel EEG.
Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W; Sorensen, Helge B D
2014-01-01
Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated. The detection algorithm yield an average sensitivity and specificity above 95% for both the subject-specific and generic models. The classification algorithm show a mean accuracy of 78 and 64% for the subject-specific and generic model, respectively. The classification model was additionally validated on a reference dataset with similar results.
A Survey on the Feasibility of Sound Classification on Wireless Sensor Nodes
Salomons, Etto L.; Havinga, Paul J. M.
2015-01-01
Wireless sensor networks are suitable to gain context awareness for indoor environments. As sound waves form a rich source of context information, equipping the nodes with microphones can be of great benefit. The algorithms to extract features from sound waves are often highly computationally intensive. This can be problematic as wireless nodes are usually restricted in resources. In order to be able to make a proper decision about which features to use, we survey how sound is used in the literature for global sound classification, age and gender classification, emotion recognition, person verification and identification and indoor and outdoor environmental sound classification. The results of the surveyed algorithms are compared with respect to accuracy and computational load. The accuracies are taken from the surveyed papers; the computational loads are determined by benchmarking the algorithms on an actual sensor node. We conclude that for indoor context awareness, the low-cost algorithms for feature extraction perform equally well as the more computationally-intensive variants. As the feature extraction still requires a large amount of processing time, we present four possible strategies to deal with this problem. PMID:25822142
Applying Active Learning to Assertion Classification of Concepts in Clinical Text
Chen, Yukun; Mani, Subramani; Xu, Hua
2012-01-01
Supervised machine learning methods for clinical natural language processing (NLP) research require a large number of annotated samples, which are very expensive to build because of the involvement of physicians. Active learning, an approach that actively samples from a large pool, provides an alternative solution. Its major goal in classification is to reduce the annotation effort while maintaining the quality of the predictive model. However, few studies have investigated its uses in clinical NLP. This paper reports an application of active learning to a clinical text classification task: to determine the assertion status of clinical concepts. The annotated corpus for the assertion classification task in the 2010 i2b2/VA Clinical NLP Challenge was used in this study. We implemented several existing and newly developed active learning algorithms and assessed their uses. The outcome is reported in the global ALC score, based on the Area under the average Learning Curve of the AUC (Area Under the Curve) score. Results showed that when the same number of annotated samples was used, active learning strategies could generate better classification models (best ALC – 0.7715) than the passive learning method (random sampling) (ALC – 0.7411). Moreover, to achieve the same classification performance, active learning strategies required fewer samples than the random sampling method. For example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our best active learning algorithm required only 12 samples, a reduction of 62.5% in manual annotation effort. PMID:22127105
K-Nearest Neighbor Algorithm Optimization in Text Categorization
NASA Astrophysics Data System (ADS)
Chen, Shufeng
2018-01-01
K-Nearest Neighbor (KNN) classification algorithm is one of the simplest methods of data mining. It has been widely used in classification, regression and pattern recognition. The traditional KNN method has some shortcomings such as large amount of sample computation and strong dependence on the sample library capacity. In this paper, a method of representative sample optimization based on CURE algorithm is proposed. On the basis of this, presenting a quick algorithm QKNN (Quick k-nearest neighbor) to find the nearest k neighbor samples, which greatly reduces the similarity calculation. The experimental results show that this algorithm can effectively reduce the number of samples and speed up the search for the k nearest neighbor samples to improve the performance of the algorithm.
Contour classification in thermographic images for detection of breast cancer
NASA Astrophysics Data System (ADS)
Okuniewski, Rafał; Nowak, Robert M.; Cichosz, Paweł; Jagodziński, Dariusz; Matysiewicz, Mateusz; Neumann, Łukasz; Oleszkiewicz, Witold
2016-09-01
Thermographic images of breast taken by the Braster device are uploaded into web application which uses different classification algorithms to automatically decide whether a patient should be more thoroughly examined. This article presents the approach to the task of classifying contours visible on thermographic images of breast taken by the Braster device in order to make the decision about the existence of cancerous tumors in breast. It presents the results of the researches conducted on the different classification algorithms.
Space Object Classification Using Fused Features of Time Series Data
NASA Astrophysics Data System (ADS)
Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.
In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.
I-CAN: the classification and prediction of support needs.
Arnold, Samuel R C; Riches, Vivienne C; Stancliffe, Roger J
2014-03-01
Since 1992, the diagnosis and classification of intellectual disability has been dependent upon three constructs: intelligence, adaptive behaviour and support needs (Luckasson et al. 1992. Mental Retardation: Definition, Classification and Systems of Support. American Association on Intellectual and Developmental Disability, Washington, DC). While the methods and instruments to measure intelligence and adaptive behaviour are well established and generally accepted, the measurement and classification of support needs is still in its infancy. This article explores the measurement and classification of support needs. A study is presented comparing scores on the ICF (WHO, 2001) based I-CAN v4.2 support needs assessment and planning tool with expert clinical judgment using a proposed classification of support needs. A logical classification algorithm was developed and validated on a separate sample. Good internal consistency (range 0.73-0.91, N = 186) and criterion validity (κ = 0.94, n = 49) were found. Further advances in our understanding and measurement of support needs could change the way we assess, describe and classify disability. © 2013 John Wiley & Sons Ltd.
A Novel Modulation Classification Approach Using Gabor Filter Network
Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed
2014-01-01
A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603
NASA Astrophysics Data System (ADS)
Tian, Ye; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng; Li, Hua; Yu, Jialu; Bernard, Jérôme; Chen, Li; Martin, Serge; Delepine-Gilon, Nicole; Bocková, Jana; Veis, Pavel; Chen, Yanping; Yu, Jin
2017-09-01
Laser-induced breakdown spectroscopy (LIBS) has been applied to classify French wines according to their production regions. The use of the surface-assisted (or surface-enhanced) sample preparation method enabled a sub-ppm limit of detection (LOD), which led to the detection and identification of at least 22 metal and nonmetal elements in a typical wine sample including majors, minors and traces. An ensemble of 29 bottles of French wines, either red or white wines, from five production regions, Alsace, Bourgogne, Beaujolais, Bordeaux and Languedoc, was analyzed together with a wine from California, considered as an outlier. A non-supervised classification model based on principal component analysis (PCA) was first developed for the classification. The results showed a limited separation power of the model, which however allowed, in a step by step approach, to understand the physical reasons behind each step of sample separation and especially to observe the influence of the matrix effect in the sample classification. A supervised classification model was then developed based on random forest (RF), which is in addition a nonlinear algorithm. The obtained classification results were satisfactory with, when the parameters of the model were optimized, a classification accuracy of 100% for the tested samples. We especially discuss in the paper, the effect of spectrum normalization with an internal reference, the choice of input variables for the classification models and the optimization of parameters for the developed classification models.
NASA Astrophysics Data System (ADS)
Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo
1997-04-01
There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
Gene selection for cancer classification with the help of bees.
Moosa, Johra Muhammad; Shakur, Rameen; Kaykobad, Mohammad; Rahman, Mohammad Sohel
2016-08-10
Development of biologically relevant models from gene expression data notably, microarray data has become a topic of great interest in the field of bioinformatics and clinical genetics and oncology. Only a small number of gene expression data compared to the total number of genes explored possess a significant correlation with a certain phenotype. Gene selection enables researchers to obtain substantial insight into the genetic nature of the disease and the mechanisms responsible for it. Besides improvement of the performance of cancer classification, it can also cut down the time and cost of medical diagnoses. This study presents a modified Artificial Bee Colony Algorithm (ABC) to select minimum number of genes that are deemed to be significant for cancer along with improvement of predictive accuracy. The search equation of ABC is believed to be good at exploration but poor at exploitation. To overcome this limitation we have modified the ABC algorithm by incorporating the concept of pheromones which is one of the major components of Ant Colony Optimization (ACO) algorithm and a new operation in which successive bees communicate to share their findings. The proposed algorithm is evaluated using a suite of ten publicly available datasets after the parameters are tuned scientifically with one of the datasets. Obtained results are compared to other works that used the same datasets. The performance of the proposed method is proved to be superior. The method presented in this paper can provide subset of genes leading to more accurate classification results while the number of selected genes is smaller. Additionally, the proposed modified Artificial Bee Colony Algorithm could conceivably be applied to problems in other areas as well.
Assessment of various supervised learning algorithms using different performance metrics
NASA Astrophysics Data System (ADS)
Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.
2017-11-01
Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.
NASA Astrophysics Data System (ADS)
Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.
2017-10-01
Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.
Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set
NASA Technical Reports Server (NTRS)
Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping
1997-01-01
A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm.
Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.
NASA Astrophysics Data System (ADS)
Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.
2018-03-01
We apply four statistical learning methods to a sample of 7941 galaxies (z < 0.06) from the Galaxy And Mass Assembly survey to test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.
Hybrid analysis for indicating patients with breast cancer using temperature time series.
Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura
2016-07-01
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.
Kim, Jinkwon; Min, Se Dong; Lee, Myoungho
2011-06-27
Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects
2011-01-01
Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians. PMID:21707989
NASA Astrophysics Data System (ADS)
Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.
2014-11-01
This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.
Apeldoorn, Adri T.; van Helvoirt, Hans; Ostelo, Raymond W.; Meihuizen, Hanneke; Kamper, Steven J.; van Tulder, Maurits W.; de Vet, Henrica C. W.
2016-01-01
Study design Observational inter-rater reliability study. Objectives To examine: (1) the inter-rater reliability of a modified version of Delitto et al.’s classification-based algorithm for patients with low back pain; (2) the influence of different levels of familiarity with the system; and (3) the inter-rater reliability of algorithm decisions in patients who clearly fit into a subgroup (clear classifications) and those who do not (unclear classifications). Methods Patients were examined twice on the same day by two of three participating physical therapists with different levels of familiarity with the system. Patients were classified into one of four classification groups. Raters were blind to the others’ classification decision. In order to quantify the inter-rater reliability, percentages of agreement and Cohen’s Kappa were calculated. Results A total of 36 patients were included (clear classification n = 23; unclear classification n = 13). The overall rate of agreement was 53% and the Kappa value was 0·34 [95% confidence interval (CI): 0·11–0·57], which indicated only fair inter-rater reliability. Inter-rater reliability for patients with a clear classification (agreement 52%, Kappa value 0·29) was not higher than for patients with an unclear classification (agreement 54%, Kappa value 0·33). Familiarity with the system (i.e. trained with written instructions and previous research experience with the algorithm) did not improve the inter-rater reliability. Conclusion Our pilot study challenges the inter-rater reliability of the classification procedure in clinical practice. Therefore, more knowledge is needed about factors that affect the inter-rater reliability, in order to improve the clinical applicability of the classification scheme. PMID:27559279
NASA Technical Reports Server (NTRS)
Buntine, Wray
1993-01-01
This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.
Teh, Seng Khoon; Zheng, Wei; Lau, David P; Huang, Zhiwei
2009-06-01
In this work, we evaluated the diagnostic ability of near-infrared (NIR) Raman spectroscopy associated with the ensemble recursive partitioning algorithm based on random forests for identifying cancer from normal tissue in the larynx. A rapid-acquisition NIR Raman system was utilized for tissue Raman measurements at 785 nm excitation, and 50 human laryngeal tissue specimens (20 normal; 30 malignant tumors) were used for NIR Raman studies. The random forests method was introduced to develop effective diagnostic algorithms for classification of Raman spectra of different laryngeal tissues. High-quality Raman spectra in the range of 800-1800 cm(-1) can be acquired from laryngeal tissue within 5 seconds. Raman spectra differed significantly between normal and malignant laryngeal tissues. Classification results obtained from the random forests algorithm on tissue Raman spectra yielded a diagnostic sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy identification. The random forests technique also provided variables importance that facilitates correlation of significant Raman spectral features with cancer transformation. This study shows that NIR Raman spectroscopy in conjunction with random forests algorithm has a great potential for the rapid diagnosis and detection of malignant tumors in the larynx.
Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data
Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.
2016-04-06
An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less
Extraction and classification of 3D objects from volumetric CT data
NASA Astrophysics Data System (ADS)
Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.
2016-05-01
We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.
Spectral-Based Volume Sensor Prototype, Post-VS4 Test Series Algorithm Development
2009-04-30
Computer Pcorr Probabilty / Percentage of Correct Classification (# Correct / # Total) PD PhotoDiode Pd Probabilty / Percentage of Detection (# Correct...Detections / Total of Sources) Pfa Probabilty / Percentage of False Alarm (# FAs / Total # of Sources) SBVS Spectral-Based Volume Sensor SFA Smoke and
cisTEM, user-friendly software for single-particle image processing.
Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus
2018-03-07
We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.