Sample records for classification association rule

  1. A fuzzy hill-climbing algorithm for the development of a compact associative classifier

    NASA Astrophysics Data System (ADS)

    Mitra, Soumyaroop; Lam, Sarah S.

    2012-02-01

    Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.

  2. CARSVM: a class association rule-based classification framework and its application to gene expression data.

    PubMed

    Kianmehr, Keivan; Alhajj, Reda

    2008-09-01

    In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.

  3. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  4. Revealing Significant Relations between Chemical/Biological Features and Activity: Associative Classification Mining for Drug Discovery

    ERIC Educational Resources Information Center

    Yu, Pulan

    2012-01-01

    Classification, clustering and association mining are major tasks of data mining and have been widely used for knowledge discovery. Associative classification mining, the combination of both association rule mining and classification, has emerged as an indispensable way to support decision making and scientific research. In particular, it offers a…

  5. Effective Diagnosis of Alzheimer's Disease by Means of Association Rules

    NASA Astrophysics Data System (ADS)

    Chaves, R.; Ramírez, J.; Górriz, J. M.; López, M.; Salas-Gonzalez, D.; Illán, I.; Segovia, F.; Padilla, P.

    In this paper we present a novel classification method of SPECT images for the early diagnosis of the Alzheimer's disease (AD). The proposed method is based on Association Rules (ARs) aiming to discover interesting associations between attributes contained in the database. The system uses firstly voxel-as-features (VAF) and Activation Estimation (AE) to find tridimensional activated brain regions of interest (ROIs) for each patient. These ROIs act as inputs to secondly mining ARs between activated blocks for controls, with a specified minimum support and minimum confidence. ARs are mined in supervised mode, using information previously extracted from the most discriminant rules for centering interest in the relevant brain areas, reducing the computational requirement of the system. Finally classification process is performed depending on the number of previously mined rules verified by each subject, yielding an up to 95.87% classification accuracy, thus outperforming recent developed methods for AD diagnosis.

  6. Hierarchy-associated semantic-rule inference framework for classifying indoor scenes

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei

    2016-03-01

    Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.

  7. Promoter Sequences Prediction Using Relational Association Rule Mining

    PubMed Central

    Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely

    2012-01-01

    In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233

  8. Analysis of mesenchymal stem cell differentiation in vitro using classification association rule mining.

    PubMed

    Wang, Weiqi; Wang, Yanbo Justin; Bañares-Alcántara, René; Coenen, Frans; Cui, Zhanfeng

    2009-12-01

    In this paper, data mining is used to analyze the data on the differentiation of mammalian Mesenchymal Stem Cells (MSCs), aiming at discovering known and hidden rules governing MSC differentiation, following the establishment of a web-based public database containing experimental data on the MSC proliferation and differentiation. To this effect, a web-based public interactive database comprising the key parameters which influence the fate and destiny of mammalian MSCs has been constructed and analyzed using Classification Association Rule Mining (CARM) as a data-mining technique. The results show that the proposed approach is technically feasible and performs well with respect to the accuracy of (classification) prediction. Key rules mined from the constructed MSC database are consistent with experimental observations, indicating the validity of the method developed and the first step in the application of data mining to the study of MSCs.

  9. Applying Classification Trees to Hospital Administrative Data to Identify Patients with Lower Gastrointestinal Bleeding

    PubMed Central

    Siddique, Juned; Ruhnke, Gregory W.; Flores, Andrea; Prochaska, Micah T.; Paesch, Elizabeth; Meltzer, David O.; Whelan, Chad T.

    2015-01-01

    Background Lower gastrointestinal bleeding (LGIB) is a common cause of acute hospitalization. Currently, there is no accepted standard for identifying patients with LGIB in hospital administrative data. The objective of this study was to develop and validate a set of classification algorithms that use hospital administrative data to identify LGIB. Methods Our sample consists of patients admitted between July 1, 2001 and June 30, 2003 (derivation cohort) and July 1, 2003 and June 30, 2005 (validation cohort) to the general medicine inpatient service of the University of Chicago Hospital, a large urban academic medical center. Confirmed cases of LGIB in both cohorts were determined by reviewing the charts of those patients who had at least 1 of 36 principal or secondary International Classification of Diseases, Ninth revision, Clinical Modification (ICD-9-CM) diagnosis codes associated with LGIB. Classification trees were used on the data of the derivation cohort to develop a set of decision rules for identifying patients with LGIB. These rules were then applied to the validation cohort to assess their performance. Results Three classification algorithms were identified and validated: a high specificity rule with 80.1% sensitivity and 95.8% specificity, a rule that balances sensitivity and specificity (87.8% sensitivity, 90.9% specificity), and a high sensitivity rule with 100% sensitivity and 91.0% specificity. Conclusion These classification algorithms can be used in future studies to evaluate resource utilization and assess outcomes associated with LGIB without the use of chart review. PMID:26406318

  10. Rule-based land use/land cover classification in coastal areas using seasonal remote sensing imagery: a case study from Lianyungang City, China.

    PubMed

    Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian

    2015-07-01

    Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.

  11. Logical-rule models of classification response times: a synthesis of mental-architecture, random-walk, and decision-bound approaches.

    PubMed

    Fific, Mario; Little, Daniel R; Nosofsky, Robert M

    2010-04-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli along a set of component dimensions. Those independent decisions are then combined via logical rules to determine the overall categorization response. The time course of the independent decisions is modeled via random-walk processes operating along individual dimensions. Alternative mental architectures are used as mechanisms for combining the independent decisions to implement the logical rules. We derive fundamental qualitative contrasts for distinguishing among the predictions of the rule models and major alternative models of classification RT. We also use the models to predict detailed RT-distribution data associated with individual stimuli in tasks of speeded perceptual classification. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  12. Rule-guided human classification of Volunteered Geographic Information

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Loai; Falomir, Zoe; Schmid, Falko; Freksa, Christian

    2017-05-01

    During the last decade, web technologies and location sensing devices have evolved generating a form of crowdsourcing known as Volunteered Geographic Information (VGI). VGI acted as a platform of spatial data collection, in particular, when a group of public participants are involved in collaborative mapping activities: they work together to collect, share, and use information about geographic features. VGI exploits participants' local knowledge to produce rich data sources. However, the resulting data inherits problematic data classification. In VGI projects, the challenges of data classification are due to the following: (i) data is likely prone to subjective classification, (ii) remote contributions and flexible contribution mechanisms in most projects, and (iii) the uncertainty of spatial data and non-strict definitions of geographic features. These factors lead to various forms of problematic classification: inconsistent, incomplete, and imprecise data classification. This research addresses classification appropriateness. Whether the classification of an entity is appropriate or inappropriate is related to quantitative and/or qualitative observations. Small differences between observations may be not recognizable particularly for non-expert participants. Hence, in this paper, the problem is tackled by developing a rule-guided classification approach. This approach exploits data mining techniques of Association Classification (AC) to extract descriptive (qualitative) rules of specific geographic features. The rules are extracted based on the investigation of qualitative topological relations between target features and their context. Afterwards, the extracted rules are used to develop a recommendation system able to guide participants to the most appropriate classification. The approach proposes two scenarios to guide participants towards enhancing the quality of data classification. An empirical study is conducted to investigate the classification of grass-related features like forest, garden, park, and meadow. The findings of this study indicate the feasibility of the proposed approach.

  13. Rule Changes Passed at the NCAA Convention.

    ERIC Educational Resources Information Center

    Chronicle of Higher Education, 1987

    1987-01-01

    Recent changes in National Collegiate Athletic Association rules concerning academics, recruiting, amateurism, membership and classification, championships, playing and practice seasons, general policies, and eligibility are summarized. (MSE)

  14. Power System Transient Stability Based on Data Mining Theory

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde

    2018-01-01

    In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.

  15. Starmind: A Fuzzy Logic Knowledge-Based System for the Automated Classification of Stars in the MK System

    NASA Astrophysics Data System (ADS)

    Manteiga, M.; Carricajo, I.; Rodríguez, A.; Dafonte, C.; Arcay, B.

    2009-02-01

    Astrophysics is evolving toward a more rational use of costly observational data by intelligently exploiting the large terrestrial and spatial astronomical databases. In this paper, we present a study showing the suitability of an expert system to perform the classification of stellar spectra in the Morgan and Keenan (MK) system. Using the formalism of artificial intelligence for the development of such a system, we propose a rules' base that contains classification criteria and confidence grades, all integrated in an inference engine that emulates human reasoning by means of a hierarchical decision rules tree that also considers the uncertainty factors associated with rules. Our main objective is to illustrate the formulation and development of such a system for an astrophysical classification problem. An extensive spectral database of MK standard spectra has been collected and used as a reference to determine the spectral indexes that are suitable for classification in the MK system. It is shown that by considering 30 spectral indexes and associating them with uncertainty factors, we can find an accurate diagnose in MK types of a particular spectrum. The system was evaluated against the NOAO-INDO-US spectral catalog.

  16. HAMAP in 2013, new developments in the protein family classification and annotation system

    PubMed Central

    Pedruzzi, Ivo; Rivoire, Catherine; Auchincloss, Andrea H.; Coudert, Elisabeth; Keller, Guillaume; de Castro, Edouard; Baratin, Delphine; Cuche, Béatrice A.; Bougueleret, Lydie; Poux, Sylvain; Redaschi, Nicole; Xenarios, Ioannis; Bridge, Alan

    2013-01-01

    HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles. PMID:23193261

  17. Multiple-rule bias in the comparison of classification rules

    PubMed Central

    Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.

    2011-01-01

    Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390

  18. 49 CFR 1245.1 - Rules governing classification of employees, service, and compensation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Rules governing classification of employees..., RECORDS AND REPORTS CLASSIFICATION OF RAILROAD EMPLOYEES; REPORTS OF SERVICE AND COMPENSATION § 1245.1 Rules governing classification of employees, service, and compensation. The rules governing the...

  19. 49 CFR 1245.1 - Rules governing classification of employees, service, and compensation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Rules governing classification of employees..., RECORDS AND REPORTS CLASSIFICATION OF RAILROAD EMPLOYEES; REPORTS OF SERVICE AND COMPENSATION § 1245.1 Rules governing classification of employees, service, and compensation. The rules governing the...

  20. Granular support vector machines with association rules mining for protein homology prediction.

    PubMed

    Tang, Yuchun; Jin, Bo; Zhang, Yan-Qing

    2005-01-01

    Protein homology prediction between protein sequences is one of critical problems in computational biology. Such a complex classification problem is common in medical or biological information processing applications. How to build a model with superior generalization capability from training samples is an essential issue for mining knowledge to accurately predict/classify unseen new samples and to effectively support human experts to make correct decisions. A new learning model called granular support vector machines (GSVM) is proposed based on our previous work. GSVM systematically and formally combines the principles from statistical learning theory and granular computing theory and thus provides an interesting new mechanism to address complex classification problems. It works by building a sequence of information granules and then building support vector machines (SVM) in some of these information granules on demand. A good granulation method to find suitable granules is crucial for modeling a GSVM with good performance. In this paper, we also propose an association rules-based granulation method. For the granules induced by association rules with high enough confidence and significant support, we leave them as they are because of their high "purity" and significant effect on simplifying the classification task. For every other granule, a SVM is modeled to discriminate the corresponding data. In this way, a complex classification problem is divided into multiple smaller problems so that the learning task is simplified. The proposed algorithm, here named GSVM-AR, is compared with SVM by KDDCUP04 protein homology prediction data. The experimental results show that finding the splitting hyperplane is not a trivial task (we should be careful to select the association rules to avoid overfitting) and GSVM-AR does show significant improvement compared to building one single SVM in the whole feature space. Another advantage is that the utility of GSVM-AR is very good because it is easy to be implemented. More importantly and more interestingly, GSVM provides a new mechanism to address complex classification problems.

  1. 19 CFR 102.20 - Specific rules by tariff classification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Specific rules by tariff classification. 102.20 Section 102.20 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY RULES OF ORIGIN Rules of Origin § 102.20 Specific rules by tariff classification. The following rules are the rules specified...

  2. 19 CFR 102.20 - Specific rules by tariff classification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Specific rules by tariff classification. 102.20 Section 102.20 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY RULES OF ORIGIN Rules of Origin § 102.20 Specific rules by tariff classification. The following rules are the rules specified...

  3. 19 CFR 102.20 - Specific rules by tariff classification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Specific rules by tariff classification. 102.20 Section 102.20 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY RULES OF ORIGIN Rules of Origin § 102.20 Specific rules by tariff classification. The following rules are the rules specified...

  4. 46 CFR 565.9 - Commission review, suspension and prohibition of rates, charges, classifications, rules or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., charges, classifications, rules or regulations. 565.9 Section 565.9 Shipping FEDERAL MARITIME COMMISSION... Commission review, suspension and prohibition of rates, charges, classifications, rules or regulations. (a)(1..., charges, classifications, rules or regulations) from the Commission, each controlled carrier shall file a...

  5. 46 CFR 565.9 - Commission review, suspension and prohibition of rates, charges, classifications, rules or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., charges, classifications, rules or regulations. 565.9 Section 565.9 Shipping FEDERAL MARITIME COMMISSION... Commission review, suspension and prohibition of rates, charges, classifications, rules or regulations. (a)(1..., charges, classifications, rules or regulations) from the Commission, each controlled carrier shall file a...

  6. Detecting borderline infection in an automated monitoring system for healthcare-associated infection using fuzzy logic.

    PubMed

    de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Blacky, Alexander; Koller, Walter

    2016-05-01

    Many electronic infection detection systems employ dichotomous classification methods, classifying patient data as pathological or normal with respect to one or several types of infection. An electronic monitoring and surveillance system for healthcare-associated infections (HAIs) known as Moni-ICU is being operated at the intensive care units (ICUs) of the Vienna General Hospital (VGH) in Austria. Instead of classifying patient data as pathological or normal, Moni-ICU introduces a third borderline class. Patient data classified as borderline with respect to an infection-related clinical concept or HAI surveillance definition signify that the data nearly or partly fulfill the definition for the respective concept or HAI, and are therefore neither fully pathological nor fully normal. Using fuzzy sets and propositional fuzzy rules, we calculated how frequently patient data are classified as normal, borderline, or pathological with respect to infection-related clinical concepts and HAI definitions. In dichotomous classification methods, borderline classification results would be confounded by normal. Therefore, we also assessed whether the constructed fuzzy sets and rules employed by Moni-ICU classified patient data too often or too infrequently as borderline instead of normal. Electronic surveillance data were collected from adult patients (aged 18 years or older) at ten ICUs of the VGH. All adult patients admitted to these ICUs over a two-year period were reviewed. In all 5099 patient stays (4120 patients) comprising 49,394 patient days were evaluated. For classification, a part of Moni-ICU's knowledge base comprising fuzzy sets and rules for ten infection-related clinical concepts and four top-level HAI definitions was employed. Fuzzy sets were used for the classification of concepts directly related to patient data; fuzzy rules were employed for the classification of more abstract clinical concepts, and for top-level HAI surveillance definitions. Data for each clinical concept and HAI definition were classified as either normal, borderline, or pathological. For the assessment of fuzzy sets and rules, we compared how often a borderline value for a fuzzy set or rule would result in a borderline value versus a normal value for its associated HAI definition(s). The statistical significance of these comparisons was expressed in p-values calculated with Fisher's exact test. The results showed that, for clinical concepts represented by fuzzy sets, 1-17% of the data were classified as borderline. The number was substantially higher (20-81%) for fuzzy rules representing more abstract clinical concepts. A small body of data were found to be in the borderline range for the four top-level HAI definitions (0.02-2.35%). Seven of ten fuzzy sets and rules were associated significantly more often with borderline values than with normal values for their respective HAI definition(s) (p<0.001). The study showed that Moni-ICU was effective in classifying patient data as borderline for infection-related concepts and top-level HAI surveillance definitions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  8. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, P.; Beaudet, P.

    1980-01-01

    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.

  9. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. 19 CFR 177.2 - Submission of ruling requests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... indicated, if known. Requests for tariff classification rulings should be addressed to the Director.... Customs and Border Protection, New York, New York, 10119, Attn: Classification Ruling Requests, New York... relevant customs and related laws. (ii) Tariff classification rulings. (A) If the transaction involves the...

  11. 19 CFR 177.2 - Submission of ruling requests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... indicated, if known. Requests for tariff classification rulings should be addressed to the Director.... Customs and Border Protection, New York, New York, 10119, Attn: Classification Ruling Requests, New York... relevant customs and related laws. (ii) Tariff classification rulings. (A) If the transaction involves the...

  12. 46 CFR 532.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... defined time frame. (c) “Rules tariff” means a tariff or the portion of a tariff, as defined by 46 CFR 520.2, containing the terms and conditions governing the charges, classifications, rules, regulations..., a shippers' association, or an ocean transportation intermediary, as defined in section 3(17)(B) of...

  13. Classification Based on Pruning and Double Covered Rule Sets for the Internet of Things Applications

    PubMed Central

    Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy. PMID:24511304

  14. Classification based on pruning and double covered rule sets for the internet of things applications.

    PubMed

    Li, Shasha; Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy.

  15. An integrated method for cancer classification and rule extraction from microarray data

    PubMed Central

    Huang, Liang-Tsung

    2009-01-01

    Different microarray techniques recently have been successfully used to investigate useful information for cancer diagnosis at the gene expression level due to their ability to measure thousands of gene expression levels in a massively parallel way. One important issue is to improve classification performance of microarray data. However, it would be ideal that influential genes and even interpretable rules can be explored at the same time to offer biological insight. Introducing the concepts of system design in software engineering, this paper has presented an integrated and effective method (named X-AI) for accurate cancer classification and the acquisition of knowledge from DNA microarray data. This method included a feature selector to systematically extract the relative important genes so as to reduce the dimension and retain as much as possible of the class discriminatory information. Next, diagonal quadratic discriminant analysis (DQDA) was combined to classify tumors, and generalized rule induction (GRI) was integrated to establish association rules which can give an understanding of the relationships between cancer classes and related genes. Two non-redundant datasets of acute leukemia were used to validate the proposed X-AI, showing significantly high accuracy for discriminating different classes. On the other hand, I have presented the abilities of X-AI to extract relevant genes, as well as to develop interpretable rules. Further, a web server has been established for cancer classification and it is freely available at . PMID:19272192

  16. Application of a hybrid association rules/decision tree model for drought monitoring

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Molajou, Amir

    2017-12-01

    The previous researches have shown that the incorporation of the oceanic-atmospheric climate phenomena such as Sea Surface Temperature (SST) into hydro-climatic models could provide important predictive information about hydro-climatic variability. In this paper, the hybrid application of two data mining techniques (decision tree and association rules) was offered to discover affiliation between drought of Tabriz and Kermanshah synoptic stations (located in Iran) and de-trend SSTs of the Black, Mediterranean and Red Seas. Two major steps of the proposed model were the classification of de-trend SST data and selecting the most effective groups and extracting hidden information involved in the data. The techniques of decision tree which can identify the good traits from a data set for the classification purpose were used for classification and selecting the most effective groups and association rules were employed to extract the hidden predictive information from the large observed data. To examine the accuracy of the rules, confidence and Heidke Skill Score (HSS) measures were calculated and compared for different considering lag times. The computed measures confirm reliable performance of the proposed hybrid data mining method to forecast drought and the results show a relative correlation between the Mediterranean, Black and Red Sea de-trend SSTs and drought of Tabriz and Kermanshah synoptic stations so that the confidence between the monthly Standardized Precipitation Index (SPI) values and the de-trend SST of seas is higher than 70 and 80% respectively for Tabriz and Kermanshah synoptic stations.

  17. Performance of Case-Based Reasoning Retrieval Using Classification Based on Associations versus Jcolibri and FreeCBR: A Further Validation Study

    NASA Astrophysics Data System (ADS)

    Aljuboori, Ahmed S.; Coenen, Frans; Nsaif, Mohammed; Parsons, David J.

    2018-05-01

    Case-Based Reasoning (CBR) plays a major role in expert system research. However, a critical problem can be met when a CBR system retrieves incorrect cases. Class Association Rules (CARs) have been utilized to offer a potential solution in a previous work. The aim of this paper was to perform further validation of Case-Based Reasoning using a Classification based on Association Rules (CBRAR) to enhance the performance of Similarity Based Retrieval (SBR). The CBRAR strategy uses a classed frequent pattern tree algorithm (FP-CAR) in order to disambiguate wrongly retrieved cases in CBR. The research reported in this paper makes contributions to both fields of CBR and Association Rules Mining (ARM) in that full target cases can be extracted from the FP-CAR algorithm without invoking P-trees and union operations. The dataset used in this paper provided more efficient results when the SBR retrieves unrelated answers. The accuracy of the proposed CBRAR system outperforms the results obtained by existing CBR tools such as Jcolibri and FreeCBR.

  18. Association algorithm to mine the rules that govern enzyme definition and to classify protein sequences.

    PubMed

    Chiu, Shih-Hau; Chen, Chien-Chi; Yuan, Gwo-Fang; Lin, Thy-Hou

    2006-06-15

    The number of sequences compiled in many genome projects is growing exponentially, but most of them have not been characterized experimentally. An automatic annotation scheme must be in an urgent need to reduce the gap between the amount of new sequences produced and reliable functional annotation. This work proposes rules for automatically classifying the fungus genes. The approach involves elucidating the enzyme classifying rule that is hidden in UniProt protein knowledgebase and then applying it for classification. The association algorithm, Apriori, is utilized to mine the relationship between the enzyme class and significant InterPro entries. The candidate rules are evaluated for their classificatory capacity. There were five datasets collected from the Swiss-Prot for establishing the annotation rules. These were treated as the training sets. The TrEMBL entries were treated as the testing set. A correct enzyme classification rate of 70% was obtained for the prokaryote datasets and a similar rate of about 80% was obtained for the eukaryote datasets. The fungus training dataset which lacks an enzyme class description was also used to evaluate the fungus candidate rules. A total of 88 out of 5085 test entries were matched with the fungus rule set. These were otherwise poorly annotated using their functional descriptions. The feasibility of using the method presented here to classify enzyme classes based on the enzyme domain rules is evident. The rules may be also employed by the protein annotators in manual annotation or implemented in an automatic annotation flowchart.

  19. 19 CFR 102.20 - Specific rules by tariff classification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; DEPARTMENT OF THE TREASURY RULES OF ORIGIN Rules of Origin § 102.20 Specific rules by tariff classification. The following rules are the rules specified in § 102.11(a)(3) and other sections of this part. Where a rule under this section permits a change to a subheading from another subheading of the same heading...

  20. A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-1–Human Protein Interactions

    PubMed Central

    Mukhopadhyay, Anirban; Maulik, Ujjwal; Bandyopadhyay, Sanghamitra

    2012-01-01

    Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions. Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of human proteins has been published. The problem of predicting new interactions based on this database is usually posed as a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human interactions have been predicted based on the discovered association rules and tested for biological significance. For validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These studies show that the human proteins which are predicted to interact with a particular viral protein share many common biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions that are already validated experimentally but not present in the database. Comparison with other prediction methods is also discussed. PMID:22539940

  1. Efficient mining of association rules for the early diagnosis of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Chaves, R.; Górriz, J. M.; Ramírez, J.; Illán, I. A.; Salas-Gonzalez, D.; Gómez-Río, M.

    2011-09-01

    In this paper, a novel technique based on association rules (ARs) is presented in order to find relations among activated brain areas in single photon emission computed tomography (SPECT) imaging. In this sense, the aim of this work is to discover associations among attributes which characterize the perfusion patterns of normal subjects and to make use of them for the early diagnosis of Alzheimer's disease (AD). Firstly, voxel-as-feature-based activation estimation methods are used to find the tridimensional activated brain regions of interest (ROIs) for each patient. These ROIs serve as input to secondly mine ARs with a minimum support and confidence among activation blocks by using a set of controls. In this context, support and confidence measures are related to the proportion of functional areas which are singularly and mutually activated across the brain. Finally, we perform image classification by comparing the number of ARs verified by each subject under test to a given threshold that depends on the number of previously mined rules. Several classification experiments were carried out in order to evaluate the proposed methods using a SPECT database that consists of 41 controls (NOR) and 56 AD patients labeled by trained physicians. The proposed methods were validated by means of the leave-one-out cross validation strategy, yielding up to 94.87% classification accuracy, thus outperforming recent developed methods for computer aided diagnosis of AD.

  2. Association algorithm to mine the rules that govern enzyme definition and to classify protein sequences

    PubMed Central

    Chiu, Shih-Hau; Chen, Chien-Chi; Yuan, Gwo-Fang; Lin, Thy-Hou

    2006-01-01

    Background The number of sequences compiled in many genome projects is growing exponentially, but most of them have not been characterized experimentally. An automatic annotation scheme must be in an urgent need to reduce the gap between the amount of new sequences produced and reliable functional annotation. This work proposes rules for automatically classifying the fungus genes. The approach involves elucidating the enzyme classifying rule that is hidden in UniProt protein knowledgebase and then applying it for classification. The association algorithm, Apriori, is utilized to mine the relationship between the enzyme class and significant InterPro entries. The candidate rules are evaluated for their classificatory capacity. Results There were five datasets collected from the Swiss-Prot for establishing the annotation rules. These were treated as the training sets. The TrEMBL entries were treated as the testing set. A correct enzyme classification rate of 70% was obtained for the prokaryote datasets and a similar rate of about 80% was obtained for the eukaryote datasets. The fungus training dataset which lacks an enzyme class description was also used to evaluate the fungus candidate rules. A total of 88 out of 5085 test entries were matched with the fungus rule set. These were otherwise poorly annotated using their functional descriptions. Conclusion The feasibility of using the method presented here to classify enzyme classes based on the enzyme domain rules is evident. The rules may be also employed by the protein annotators in manual annotation or implemented in an automatic annotation flowchart. PMID:16776838

  3. 46 CFR 31.01-3 - Alternate compliance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... classification societies, including information for ordering copies of approved classification society rules and...; telephone (202) 372-1372; or fax (202) 372-1925. Approved classification society rules and supplements are...

  4. 46 CFR 31.01-3 - Alternate compliance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... classification societies, including information for ordering copies of approved classification society rules and...; telephone (202) 372-1372; or fax (202) 372-1925. Approved classification society rules and supplements are...

  5. 19 CFR 177.8 - Issuance of rulings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Any person engaging in a Customs transaction with respect to which a binding tariff classification ruling letter (including pre-entry classification decisions) has been issued under this part shall... tariff classification of merchandise shall set forth such classification in the documents or information...

  6. 19 CFR 177.8 - Issuance of rulings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Any person engaging in a Customs transaction with respect to which a binding tariff classification ruling letter (including pre-entry classification decisions) has been issued under this part shall... tariff classification of merchandise shall set forth such classification in the documents or information...

  7. 19 CFR 177.8 - Issuance of rulings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Any person engaging in a Customs transaction with respect to which a binding tariff classification ruling letter (including pre-entry classification decisions) has been issued under this part shall... tariff classification of merchandise shall set forth such classification in the documents or information...

  8. 19 CFR 177.8 - Issuance of rulings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Any person engaging in a Customs transaction with respect to which a binding tariff classification ruling letter (including pre-entry classification decisions) has been issued under this part shall... tariff classification of merchandise shall set forth such classification in the documents or information...

  9. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  10. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2000-12-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  11. 76 FR 69119 - Commonwealth of the Northern Mariana Islands Transitional Worker Classification: Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ...] RIN 1615-AB76 Commonwealth of the Northern Mariana Islands Transitional Worker Classification... Transitional Worker Classification. In that rule, we had sought to modify the title of a paragraph, but... the final rule Commonwealth of the Northern Mariana Islands Transitional Worker Classification...

  12. Prediction of cancer class with majority voting genetic programming classifier using gene expression data.

    PubMed

    Paul, Topon Kumar; Iba, Hitoshi

    2009-01-01

    In order to get a better understanding of different types of cancers and to find the possible biomarkers for diseases, recently, many researchers are analyzing the gene expression data using various machine learning techniques. However, due to a very small number of training samples compared to the huge number of genes and class imbalance, most of these methods suffer from overfitting. In this paper, we present a majority voting genetic programming classifier (MVGPC) for the classification of microarray data. Instead of a single rule or a single set of rules, we evolve multiple rules with genetic programming (GP) and then apply those rules to test samples to determine their labels with majority voting technique. By performing experiments on four different public cancer data sets, including multiclass data sets, we have found that the test accuracies of MVGPC are better than those of other methods, including AdaBoost with GP. Moreover, some of the more frequently occurring genes in the classification rules are known to be associated with the types of cancers being studied in this paper.

  13. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    PubMed

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  14. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the... and geographical coverage to carry out all plan review and vessel survey activities associated with...

  15. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the... and geographical coverage to carry out all plan review and vessel survey activities associated with...

  16. 46 CFR 8.430 - U.S. Supplement to class rules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authorization to participate in the ACP, a recognized classification society must prepare, and receive Commandant (CG-521) approval of, a U.S. Supplement to the recognized classification society's class rules... of that classification society or applicable international regulations. ...

  17. 46 CFR 8.430 - U.S. Supplement to class rules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authorization to participate in the ACP, a recognized classification society must prepare, and receive Commandant (CG-521) approval of, a U.S. Supplement to the recognized classification society's class rules... of that classification society or applicable international regulations. ...

  18. 76 FR 27753 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... collection requirements related to Simplification of Entity Classification Rules. DATES: Written comments....gov . SUPPLEMENTARY INFORMATION: Title: Simplification of Entity Classification Rules. OMB Number... partnerships for federal tax purposes. The election is made by filing Form 8832, Entity Classification Election...

  19. 46 CFR 126.235 - Alternate compliance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... purposes of this section, a list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-5212.... Approved classification society rules and supplements are incorporated by reference into 46 CFR 8.110(b...

  20. 46 CFR 126.235 - Alternate compliance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... purposes of this section, a list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-5212.... Approved classification society rules and supplements are incorporated by reference into 46 CFR 8.110(b...

  1. 46 CFR 91.15-5 - Alternate compliance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this section, a list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-521), 2100.... Approved classification society rules and supplements are incorporated by reference into 46 CFR 8.110(b...

  2. 46 CFR 91.15-5 - Alternate compliance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this section, a list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-521), 2100.... Approved classification society rules and supplements are incorporated by reference into 46 CFR 8.110(b...

  3. Verification, refinement, and applicability of long-term pavement performance vehicle classification rules.

    DOT National Transportation Integrated Search

    2014-11-01

    The Long-Term Pavement Performance (LTPP) project has developed and deployed a set of rules for converting axle spacing and weight data into estimates of a vehicles classification. These rules are being used at Transportation Pooled Fund Study (TP...

  4. Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls

    NASA Technical Reports Server (NTRS)

    Anastasiadis, Stergios

    1991-01-01

    Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.

  5. High Dimensional Classification Using Features Annealed Independence Rules.

    PubMed

    Fan, Jianqing; Fan, Yingying

    2008-01-01

    Classification using high-dimensional features arises frequently in many contemporary statistical studies such as tumor classification using microarray or other high-throughput data. The impact of dimensionality on classifications is largely poorly understood. In a seminal paper, Bickel and Levina (2004) show that the Fisher discriminant performs poorly due to diverging spectra and they propose to use the independence rule to overcome the problem. We first demonstrate that even for the independence classification rule, classification using all the features can be as bad as the random guessing due to noise accumulation in estimating population centroids in high-dimensional feature space. In fact, we demonstrate further that almost all linear discriminants can perform as bad as the random guessing. Thus, it is paramountly important to select a subset of important features for high-dimensional classification, resulting in Features Annealed Independence Rules (FAIR). The conditions under which all the important features can be selected by the two-sample t-statistic are established. The choice of the optimal number of features, or equivalently, the threshold value of the test statistics are proposed based on an upper bound of the classification error. Simulation studies and real data analysis support our theoretical results and demonstrate convincingly the advantage of our new classification procedure.

  6. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  7. 78 FR 66813 - Visas: Regulatory Exception to Permit Compliance With the United Nations Headquarters Agreement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Visa Classifications; Final Rule #0;#0;Federal Register / Vol. 78, No. 215 / Wednesday, November 6... Family'' for Certain Nonimmigrant Visa Classifications AGENCY: Department of State. ACTION: Final rule... classifications and also applies to foreign government officials who may be admitted in immediate and continuous...

  8. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  9. Method and system for analyzing and classifying electronic information

    DOEpatents

    McGaffey, Robert W.; Bell, Michael Allen; Kortman, Peter J.; Wilson, Charles H.

    2003-04-29

    A data analysis and classification system that reads the electronic information, analyzes the electronic information according to a user-defined set of logical rules, and returns a classification result. The data analysis and classification system may accept any form of computer-readable electronic information. The system creates a hash table wherein each entry of the hash table contains a concept corresponding to a word or phrase which the system has previously encountered. The system creates an object model based on the user-defined logical associations, used for reviewing each concept contained in the electronic information in order to determine whether the electronic information is classified. The data analysis and classification system extracts each concept in turn from the electronic information, locates it in the hash table, and propagates it through the object model. In the event that the system can not find the electronic information token in the hash table, that token is added to a missing terms list. If any rule is satisfied during propagation of the concept through the object model, the electronic information is classified.

  10. Can SLE classification rules be effectively applied to diagnose unclear SLE cases?

    PubMed Central

    Mesa, Annia; Fernandez, Mitch; Wu, Wensong; Narasimhan, Giri; Greidinger, Eric L.; Mills, DeEtta K.

    2016-01-01

    Summary Objective Develop a novel classification criteria to distinguish between unclear SLE and MCTD cases. Methods A total of 205 variables from 111 SLE and 55 MCTD patients were evaluated to uncover unique molecular and clinical markers for each disease. Binomial logistic regressions (BLR) were performed on currently used SLE and MCTD classification criteria sets to obtain six reduced models with power to discriminate between unclear SLE and MCTD patients which were confirmed by Receiving Operating Characteristic (ROC) curve. Decision trees were employed to delineate novel classification rules to discriminate between unclear SLE and MCTD patients. Results SLE and MCTD patients exhibited contrasting molecular markers and clinical manifestations. Furthermore, reduced models highlighted SLE patients exhibit prevalence of skin rashes and renal disease while MCTD cases show dominance of myositis and muscle weakness. Additionally decision trees analyses revealed a novel classification rule tailored to differentiate unclear SLE and MCTD patients (Lu-vs-M) with an overall accuracy of 88%. Conclusions Validation of our novel proposed classification rule (Lu-vs-M) includes novel contrasting characteristics (calcinosis, CPK elevated and anti-IgM reactivity for U1-70K, U1A and U1C) between SLE and MCTD patients and showed a 33% improvement in distinguishing these disorders when compare to currently used classification criteria sets. Pending additional validation, our novel classification rule is a promising method to distinguish between patients with unclear SLE and MCTD diagnosis. PMID:27353506

  11. Nearest Neighbor Classification of Stationary Time Series: An Application to Anesthesia Level Classification by EEG Analysis.

    DTIC Science & Technology

    1980-12-05

    classification procedures that are common in speech processing. The anesthesia level classification by EEG time series population screening problem example is in...formance. The use of the KL number type metric in NN rule classification, in a delete-one subj ect ’s EE-at-a-time KL-NN and KL- kNN classification of the...17 individual labeled EEG sample population using KL-NN and KL- kNN rules. The results obtained are shown in Table 1. The entries in the table indicate

  12. Building a common pipeline for rule-based document classification.

    PubMed

    Patterson, Olga V; Ginter, Thomas; DuVall, Scott L

    2013-01-01

    Instance-based classification of clinical text is a widely used natural language processing task employed as a step for patient classification, document retrieval, or information extraction. Rule-based approaches rely on concept identification and context analysis in order to determine the appropriate class. We propose a five-step process that enables even small research teams to develop simple but powerful rule-based NLP systems by taking advantage of a common UIMA AS based pipeline for classification. Our proposed methodology coupled with the general-purpose solution provides researchers with access to the data locked in clinical text in cases of limited human resources and compact timelines.

  13. Technical support for creating an artificial intelligence system for feature extraction and experimental design

    NASA Technical Reports Server (NTRS)

    Glick, B. J.

    1985-01-01

    Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.

  14. 77 FR 73334 - Adding International Energy Efficiency (IEE) Certificate to List of Certificates a Recognized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Classification Society May Issue AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is...) Certificate to the list of certificates that a recognized classification society may issue on behalf of the... January 1, 2013. This rule will enable recognized classification societies to apply to the Coast Guard to...

  15. Transfer Learning of Classification Rules for Biomarker Discovery and Verification from Molecular Profiling Studies

    PubMed Central

    Ganchev, Philip; Malehorn, David; Bigbee, William L.; Gopalakrishnan, Vanathi

    2013-01-01

    We present a novel framework for integrative biomarker discovery from related but separate data sets created in biomarker profiling studies. The framework takes prior knowledge in the form of interpretable, modular rules, and uses them during the learning of rules on a new data set. The framework consists of two methods of transfer of knowledge from source to target data: transfer of whole rules and transfer of rule structures. We evaluated the methods on three pairs of data sets: one genomic and two proteomic. We used standard measures of classification performance and three novel measures of amount of transfer. Preliminary evaluation shows that whole-rule transfer improves classification performance over using the target data alone, especially when there is more source data than target data. It also improves performance over using the union of the data sets. PMID:21571094

  16. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the English language; (9) Have adequate resources, including research, technical, and managerial staff, to...

  17. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the English language; (9) Have adequate resources, including research, technical, and managerial staff, to...

  18. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the English language; (9) Have adequate resources, including research, technical, and managerial staff, to...

  19. Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data

    NASA Astrophysics Data System (ADS)

    Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd

    2016-04-01

    This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.

  20. Knowledge discovery with classification rules in a cardiovascular dataset.

    PubMed

    Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan

    2005-12-01

    In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.

  1. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  2. On Interestingness Measures for Mining Statistically Significant and Novel Clinical Associations from EMRs

    PubMed Central

    Abar, Orhan; Charnigo, Richard J.; Rayapati, Abner

    2017-01-01

    Association rule mining has received significant attention from both the data mining and machine learning communities. While data mining researchers focus more on designing efficient algorithms to mine rules from large datasets, the learning community has explored applications of rule mining to classification. A major problem with rule mining algorithms is the explosion of rules even for moderate sized datasets making it very difficult for end users to identify both statistically significant and potentially novel rules that could lead to interesting new insights and hypotheses. Researchers have proposed many domain independent interestingness measures using which, one can rank the rules and potentially glean useful rules from the top ranked ones. However, these measures have not been fully explored for rule mining in clinical datasets owing to the relatively large sizes of the datasets often encountered in healthcare and also due to limited access to domain experts for review/analysis. In this paper, using an electronic medical record (EMR) dataset of diagnoses and medications from over three million patient visits to the University of Kentucky medical center and affiliated clinics, we conduct a thorough evaluation of dozens of interestingness measures proposed in data mining literature, including some new composite measures. Using cumulative relevance metrics from information retrieval, we compare these interestingness measures against human judgments obtained from a practicing psychiatrist for association rules involving the depressive disorders class as the consequent. Our results not only surface new interesting associations for depressive disorders but also indicate classes of interestingness measures that weight rule novelty and statistical strength in contrasting ways, offering new insights for end users in identifying interesting rules. PMID:28736771

  3. Parsing the roles of the frontal lobes and basal ganglia in task control using multivoxel pattern analysis

    PubMed Central

    Kehagia, Angie A.; Ye, Rong; Joyce, Dan W.; Doyle, Orla M.; Rowe, James B.; Robbins, Trevor W.

    2017-01-01

    Cognitive control has traditionally been associated with the prefrontal cortex, based on observations of deficits in patients with frontal lesions. However, evidence from patients with Parkinson’s disease (PD) indicates that subcortical regions also contribute to control under certain conditions. We scanned 17 healthy volunteers while they performed a task switching paradigm that previously dissociated performance deficits arising from frontal lesions in comparison with PD, as a function of the abstraction of the rules that are switched. From a multivoxel pattern analysis by Gaussian Process Classification (GPC), we then estimated the forward (generative) model to infer regional patterns of activity that predict Switch / Repeat behaviour between rule conditions. At 1000 permutations, Switch / Repeat classification accuracy for concrete rules was significant in the basal ganglia, but at chance in the frontal lobe. The inverse pattern was obtained for abstract rules, whereby the conditions were successfully discriminated in the frontal lobe but not in the basal ganglia. This double dissociation highlights the difference between cortical and subcortical contributions to cognitive control and demonstrates the utility of multivariate approaches in investigations of functions that rely on distributed and overlapping neural substrates. PMID:28387585

  4. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery.

    PubMed

    Belgiu, Mariana; Dr Guţ, Lucian; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  5. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    PubMed Central

    Belgiu, Mariana; Drǎguţ, Lucian; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules. PMID:24623959

  6. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  7. A New Data Mining Scheme Using Artificial Neural Networks

    PubMed Central

    Kamruzzaman, S. M.; Jehad Sarkar, A. M.

    2011-01-01

    Classification is one of the data mining problems receiving enormous attention in the database community. Although artificial neural networks (ANNs) have been successfully applied in a wide range of machine learning applications, they are however often regarded as black boxes, i.e., their predictions cannot be explained. To enhance the explanation of ANNs, a novel algorithm to extract symbolic rules from ANNs has been proposed in this paper. ANN methods have not been effectively utilized for data mining tasks because how the classifications were made is not explicitly stated as symbolic rules that are suitable for verification or interpretation by human experts. With the proposed approach, concise symbolic rules with high accuracy, that are easily explainable, can be extracted from the trained ANNs. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and the accuracy. The effectiveness of the proposed approach is clearly demonstrated by the experimental results on a set of benchmark data mining classification problems. PMID:22163866

  8. CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules.

    PubMed

    Cestarelli, Valerio; Fiscon, Giulia; Felici, Giovanni; Bertolazzi, Paola; Weitschek, Emanuel

    2016-03-01

    Nowadays, knowledge extraction methods from Next Generation Sequencing data are highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on case-control studies with rule-based supervised classification algorithms that build a model able to discriminate cases from controls. State of the art algorithms compute a single classification model that contains few features (genes). On the contrary, our goal is to elicit a higher amount of knowledge by computing many classification models, and therefore to identify most of the genes related to the predicted class. We propose CAMUR, a new method that extracts multiple and equivalent classification models. CAMUR iteratively computes a rule-based classification model, calculates the power set of the genes present in the rules, iteratively eliminates those combinations from the data set, and performs again the classification procedure until a stopping criterion is verified. CAMUR includes an ad-hoc knowledge repository (database) and a querying tool.We analyze three different types of RNA-seq data sets (Breast, Head and Neck, and Stomach Cancer) from The Cancer Genome Atlas (TCGA) and we validate CAMUR and its models also on non-TCGA data. Our experimental results show the efficacy of CAMUR: we obtain several reliable equivalent classification models, from which the most frequent genes, their relationships, and the relation with a particular cancer are deduced. dmb.iasi.cnr.it/camur.php emanuel@iasi.cnr.it Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  9. On implementing clinical decision support: achieving scalability and maintainability by combining business rules and ontologies.

    PubMed

    Kashyap, Vipul; Morales, Alfredo; Hongsermeier, Tonya

    2006-01-01

    We present an approach and architecture for implementing scalable and maintainable clinical decision support at the Partners HealthCare System. The architecture integrates a business rules engine that executes declarative if-then rules stored in a rule-base referencing objects and methods in a business object model. The rules engine executes object methods by invoking services implemented on the clinical data repository. Specialized inferences that support classification of data and instances into classes are identified and an approach to implement these inferences using an OWL based ontology engine is presented. Alternative representations of these specialized inferences as if-then rules or OWL axioms are explored and their impact on the scalability and maintenance of the system is presented. Architectural alternatives for integration of clinical decision support functionality with the invoking application and the underlying clinical data repository; and their associated trade-offs are discussed and presented.

  10. 7 CFR 1001.43 - General classification rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true General classification rules. 1001.43 Section 1001.43 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order Regulating...

  11. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  12. International Standards for Neurological Classification of Spinal Cord Injury: cases with classification challenges.

    PubMed

    Kirshblum, S C; Biering-Sorensen, F; Betz, R; Burns, S; Donovan, W; Graves, D E; Johansen, M; Jones, L; Mulcahey, M J; Rodriguez, G M; Schmidt-Read, M; Steeves, J D; Tansey, K; Waring, W

    2014-03-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Association regarding the classification. The committee felt that disseminating some of the challenging questions posed, as well as the responses, would be of benefit for professionals utilizing the ISNCSCI. Case scenarios that were submitted to the committee are presented with the responses as well as the thought processes considered by the committee members. The importance of this documentation is to clarify some points as well as update the SCI community regarding possible revisions that will be needed in the future based upon some rules that require clarification.

  13. 76 FR 66184 - Post Office Organization and Administration: Establishment, Classification, and Discontinuance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Service published a proposed rule in the Federal Register (76 FR 17794) to improve the process for... POSTAL SERVICE 39 CFR Part 241 Post Office Organization and Administration: Establishment, Classification, and Discontinuance AGENCY: Postal Service. ACTION: Final rule. SUMMARY: The Postal Service is...

  14. Strength Analysis on Ship Ladder Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.

    2018-01-01

    In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.

  15. Classifying environmental pollutants: Part 3. External validation of the classification system.

    PubMed

    Verhaar, H J; Solbé, J; Speksnijder, J; van Leeuwen, C J; Hermens, J L

    2000-04-01

    In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.

  16. 37 CFR 2.85 - Classification schedules.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Classification schedules. 2..., DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Classification § 2.85 Classification schedules. (a) International classification system. Section 6.1 of this chapter sets forth the international...

  17. 37 CFR 2.85 - Classification schedules.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Classification schedules. 2..., DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Classification § 2.85 Classification schedules. (a) International classification system. Section 6.1 of this chapter sets forth the international...

  18. 37 CFR 2.85 - Classification schedules.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Classification schedules. 2..., DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Classification § 2.85 Classification schedules. (a) International classification system. Section 6.1 of this chapter sets forth the international...

  19. 37 CFR 2.85 - Classification schedules.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Classification schedules. 2..., DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Classification § 2.85 Classification schedules. (a) International classification system. Section 6.1 of this chapter sets forth the international...

  20. 37 CFR 2.85 - Classification schedules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Classification schedules. 2..., DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES Classification § 2.85 Classification schedules. (a) International classification system. Section 6.1 of this chapter sets forth the international...

  1. 18 CFR 3a.31 - Classification markings and special notations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... unit taking the action. When classification changes are made, the classification markings themselves... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Classification markings... REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification...

  2. Understanding patient outcomes after acute respiratory distress syndrome: identifying subtypes of physical, cognitive and mental health outcomes.

    PubMed

    Brown, Samuel M; Wilson, Emily L; Presson, Angela P; Dinglas, Victor D; Greene, Tom; Hopkins, Ramona O; Needham, Dale M

    2017-12-01

    With improving short-term mortality in acute respiratory distress syndrome (ARDS), understanding survivors' posthospitalisation outcomes is increasingly important. However, little is known regarding associations among physical, cognitive and mental health outcomes. Identification of outcome subtypes may advance understanding of post-ARDS morbidities. We analysed baseline variables and 6-month health status for participants in the ARDS Network Long-Term Outcomes Study. After division into derivation and validation datasets, we used weighted network analysis to identify subtypes from predictors and outcomes in the derivation dataset. We then used recursive partitioning to develop a subtype classification rule and assessed adequacy of the classification rule using a kappa statistic with the validation dataset. Among 645 ARDS survivors, 430 were in the derivation and 215 in the validation datasets. Physical and mental health status, but not cognitive status, were closely associated. Four distinct subtypes were apparent (percentages in the derivation cohort): (1) mildly impaired physical and mental health (22% of patients), (2) moderately impaired physical and mental health (39%), (3) severely impaired physical health with moderately impaired mental health (15%) and (4) severely impaired physical and mental health (24%). The classification rule had high agreement (kappa=0.89 in validation dataset). Female Latino smokers had the poorest status, while male, non-Latino non-smokers had the best status. We identified four post-ARDS outcome subtypes that were predicted by sex, ethnicity, pre-ARDS smoking status and other baseline factors. These subtypes may help develop tailored rehabilitation strategies, including investigation of combined physical and mental health interventions, and distinct interventions to improve cognitive outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Commercial Training Device Requirement (CTDR) for Initial Entry Rotary Wing (IERW) Aviation Training Helicopter

    DTIC Science & Technology

    1989-12-24

    training; 16 . PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF...to be leased is 205. One hundred aircraft will be VFR aircraft only. One hundred and five aircraft will be instrument flight rules ( IFR ) certified, 55...of which will be IFR equipped. The other IFR -certified aircraft will be visual flight rules equipped. c. The total lease cost is based on an assumed

  4. Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning.

    PubMed

    Grimm, Lisa R; Maddox, W Todd

    2013-11-01

    Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.

  5. Belief Function Based Decision Fusion for Decentralized Target Classification in Wireless Sensor Networks

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang

    2015-01-01

    Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399

  6. 19 CFR 102.18 - Rules of interpretation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY RULES OF ORIGIN Rules of Origin § 102.18 Rules of interpretation. (a) When General Rule of... 19 Customs Duties 1 2010-04-01 2010-04-01 false Rules of interpretation. 102.18 Section 102.18... provision from which a change in tariff classification is not allowed under the § 102.20 specific rule or...

  7. Resolving task rule incongruence during task switching by competitor rule suppression.

    PubMed

    Meiran, Nachshon; Hsieh, Shulan; Dimov, Eduard

    2010-07-01

    Task switching requires maintaining readiness to execute any task of a given set of tasks. However, when tasks switch, the readiness to execute the now-irrelevant task generates interference, as seen in the task rule incongruence effect. Overcoming such interference requires fine-tuned inhibition that impairs task readiness only minimally. In an experiment involving 2 object classification tasks and 2 location classification tasks, the authors show that irrelevant task rules that generate response conflicts are inhibited. This competitor rule suppression (CRS) is seen in response slowing in subsequent trials, when the competing rules become relevant. CRS is shown to operate on specific rules without affecting similar rules. CRS and backward inhibition, which is another inhibitory phenomenon, produced additive effects on reaction time, suggesting their mutual independence. Implications for current formal theories of task switching as well as for conflict monitoring theories are discussed. (c) 2010 APA, all rights reserved

  8. Improved GART neural network model for pattern classification and rule extraction with application to power systems.

    PubMed

    Yap, Keem Siah; Lim, Chee Peng; Au, Mau Teng

    2011-12-01

    Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.

  9. On the Discriminant Analysis in the 2-Populations Case

    NASA Astrophysics Data System (ADS)

    Rublík, František

    2008-01-01

    The empirical Bayes Gaussian rule, which in the normal case yields good values of the probability of total error, may yield high values of the maximum probability error. From this point of view the presented modified version of the classification rule of Broffitt, Randles and Hogg appears to be superior. The modification included in this paper is termed as a WR method, and the choice of its weights is discussed. The mentioned methods are also compared with the K nearest neighbours classification rule.

  10. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  11. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  12. 77 FR 28423 - Final Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ...The EPA is revising the rules for implementing the 1997 8-hour ozone national ambient air quality standards (NAAQS) to address certain limited portions of the rules vacated by the U.S. Court of Appeals for the District of Columbia Circuit. This final rule assigns Clean Air Act (CAA or Act) classifications and associated state planning and control requirements to selected ozone nonattainment areas. This final rule also addresses three vacated provisions of the 1997 8-hour NAAQS--Phase 1 Implementation Rule (April 30, 2004) that provided exemptions from the anti-backsliding requirements relating to nonattainment area New Source Review (NSR), CAA section 185 penalty fees, and contingency measures, as these three requirements applied for the 1-hour standard. This rule also reinstates the 1-hour contingency measures as applicable requirements that must be retained until the area attains the 1997 8- hour ozone standard. Finally, this rule deletes an obsolete provision that stayed the EPA's authority to revoke the 1-hour ozone standard pending the Agency's issuance of a final rule that revises or reinstates its revocation authority and considers and addresses certain other issues. That rule has now been issued.

  13. Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

    ERIC Educational Resources Information Center

    Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.

    2010-01-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…

  14. 19 CFR 102.20 - Specific rules by tariff classification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... bonds are formed between the fragmented molecules and/or added elements so that one or more of the... between the fragmented molecules and/or added elements so that one or more of the original bonds no longer... requirements of these rules by reason of a change from one classification to another merely as the result of...

  15. Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results.

    PubMed

    Otero, Fernando E B; Freitas, Alex A

    2016-01-01

    Most ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e., the ACO search is guided by the quality of a list of rules instead of an individual rule. In this paper we propose an extension of the cAnt-Miner[Formula: see text] algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines, and the cAnt-Miner[Formula: see text] producing ordered rules are also presented.

  16. Semi-automated landform classification for hazard mapping of soil liquefaction by earthquake

    NASA Astrophysics Data System (ADS)

    Nakano, Takayuki

    2018-05-01

    Soil liquefaction damages were caused by huge earthquake in Japan, and the similar damages are concerned in near future huge earthquake. On the other hand, a preparation of soil liquefaction risk map (soil liquefaction hazard map) is impeded by the difficulty of evaluation of soil liquefaction risk. Generally, relative soil liquefaction risk should be able to be evaluated from landform classification data by using experimental rule based on the relationship between extent of soil liquefaction damage and landform classification items associated with past earthquake. Therefore, I rearranged the relationship between landform classification items and soil liquefaction risk intelligibly in order to enable the evaluation of soil liquefaction risk based on landform classification data appropriately and efficiently. And I developed a new method of generating landform classification data of 50-m grid size from existing landform classification data of 250-m grid size by using digital elevation model (DEM) data and multi-band satellite image data in order to evaluate soil liquefaction risk in detail spatially. It is expected that the products of this study contribute to efficient producing of soil liquefaction hazard map by local government.

  17. 77 FR 47544 - Approval of Classification Societies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ...-AB35 Approval of Classification Societies AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: Federal law requires that classification societies conducting certain work in the United States be... that classification societies must meet in order to obtain approval by the Coast Guard. Through this...

  18. A Swarm Optimization approach for clinical knowledge mining.

    PubMed

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. [Study on biopharmaceutics classification system for Chinese materia medica of extract of Huanglian].

    PubMed

    Liu, Yang; Yin, Xiu-Wen; Wang, Zi-Yu; Li, Xue-Lian; Pan, Meng; Li, Yan-Ping; Dong, Ling

    2017-11-01

    One of the advantages of biopharmaceutics classification system of Chinese materia medica (CMMBCS) is expanding the classification research level from single ingredient to multi-components of Chinese herb, and from multi-components research to holistic research of the Chinese materia medica. In present paper, the alkaloids of extract of huanglian were chosen as the main research object to explore their change rules in solubility and intestinal permeability of single-component and multi-components, and to determine the biopharmaceutical classification of extract of Huanglian from holistic level. The typical shake-flask method and HPLC were used to detect the solubility of single ingredient of alkaloids from extract of huanglian. The quantitative research of alkaloids in intestinal absorption was measured in single-pass intestinal perfusion experiment while permeability coefficient of extract of huanglian was calculated by self-defined weight coefficient method. Copyright© by the Chinese Pharmaceutical Association.

  20. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    PubMed

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  1. 18 CFR 3a.11 - Classification of official information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... classification categories are defined as follows: (1) Top Secret. Top Secret refers to national security... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Classification of... REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  2. 76 FR 59031 - Classification Challenge Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... CENTRAL INTELLIGENCE AGENCY 32 CFR Part 1907 Classification Challenge Regulations AGENCY: Central Intelligence Agency. ACTION: Final rule. SUMMARY: Consistent with Executive Order 13526, the Central Intelligence Agency (CIA) has undertaken and completed a review of its public Classification Challenge...

  3. Microcomputer-based classification of environmental data in municipal areas

    NASA Astrophysics Data System (ADS)

    Thiergärtner, H.

    1995-10-01

    Multivariate data-processing methods used in mineral resource identification can be used to classify urban regions. Using elements of expert systems, geographical information systems, as well as known classification and prognosis systems, it is possible to outline a single model that consists of resistant and of temporary parts of a knowledge base including graphical input and output treatment and of resistant and temporary elements of a bank of methods and algorithms. Whereas decision rules created by experts will be stored in expert systems directly, powerful classification rules in form of resistant but latent (implicit) decision algorithms may be implemented in the suggested model. The latent functions will be transformed into temporary explicit decision rules by learning processes depending on the actual task(s), parameter set(s), pixels selection(s), and expert control(s). This takes place both at supervised and nonsupervised classification of multivariately described pixel sets representing municipal subareas. The model is outlined briefly and illustrated by results obtained in a target area covering a part of the city of Berlin (Germany).

  4. Similarity-Dissimilarity Competition in Disjunctive Classification Tasks

    PubMed Central

    Mathy, Fabien; Haladjian, Harry H.; Laurent, Eric; Goldstone, Robert L.

    2013-01-01

    Typical disjunctive artificial classification tasks require participants to sort stimuli according to rules such as “x likes cars only when black and coupe OR white and SUV.” For categories like this, increasing the salience of the diagnostic dimensions has two simultaneous effects: increasing the distance between members of the same category and increasing the distance between members of opposite categories. Potentially, these two effects respectively hinder and facilitate classification learning, leading to competing predictions for learning. Increasing saliency may lead to members of the same category to be considered less similar, while the members of separate categories might be considered more dissimilar. This implies a similarity-dissimilarity competition between two basic classification processes. When focusing on sub-category similarity, one would expect more difficult classification when members of the same category become less similar (disregarding the increase of between-category dissimilarity); however, the between-category dissimilarity increase predicts a less difficult classification. Our categorization study suggests that participants rely more on using dissimilarities between opposite categories than finding similarities between sub-categories. We connect our results to rule- and exemplar-based classification models. The pattern of influences of within- and between-category similarities are challenging for simple single-process categorization systems based on rules or exemplars. Instead, our results suggest that either these processes should be integrated in a hybrid model, or that category learning operates by forming clusters within each category. PMID:23403979

  5. 78 FR 18252 - Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System... 2007 North American Industry Classification System (NAICS) codes currently used in Federal Wage System... (OPM) issued a final rule (73 FR 45853) to update the 2002 North American Industry Classification...

  6. The Universal Decimal Classification: Some Factors Concerning Its Origins, Development, and Influence.

    ERIC Educational Resources Information Center

    McIlwaine, I. C.

    1997-01-01

    Discusses the history and development of the Universal Decimal Classification (UDC). Topics include the relationship with Dewey Decimal Classification; revision process; structure; facet analysis; lack of standard rules for application; application in automated systems; influence of UDC on classification development; links with thesauri; and use…

  7. A novel artificial immune clonal selection classification and rule mining with swarm learning model

    NASA Astrophysics Data System (ADS)

    Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.

    2013-06-01

    Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.

  8. Liver fibrosis diagnosis by blood test and elastography in chronic hepatitis C: agreement or combination?

    PubMed

    Calès, P; Boursier, J; Lebigot, J; de Ledinghen, V; Aubé, C; Hubert, I; Oberti, F

    2017-04-01

    In chronic hepatitis C, the European Association for the Study of the Liver and the Asociacion Latinoamericana para el Estudio del Higado recommend performing transient elastography plus a blood test to diagnose significant fibrosis; test concordance confirms the diagnosis. To validate this rule and improve it by combining a blood test, FibroMeter (virus second generation, Echosens, Paris, France) and transient elastography (constitutive tests) into a single combined test, as suggested by the American Association for the Study of Liver Diseases and the Infectious Diseases Society of America. A total of 1199 patients were included in an exploratory set (HCV, n = 679) or in two validation sets (HCV ± HIV, HBV, n = 520). Accuracy was mainly evaluated by correct diagnosis rate for severe fibrosis (pathological Metavir F ≥ 3, primary outcome) by classical test scores or a fibrosis classification, reflecting Metavir staging, as a function of test concordance. Score accuracy: there were no significant differences between the blood test (75.7%), elastography (79.1%) and the combined test (79.4%) (P = 0.066); the score accuracy of each test was significantly (P < 0.001) decreased in discordant vs. concordant tests. Classification accuracy: combined test accuracy (91.7%) was significantly (P < 0.001) increased vs. the blood test (84.1%) and elastography (88.2%); accuracy of each constitutive test was significantly (P < 0.001) decreased in discordant vs. concordant tests but not with combined test: 89.0 vs. 92.7% (P = 0.118). Multivariate analysis for accuracy showed an interaction between concordance and fibrosis level: in the 1% of patients with full classification discordance and severe fibrosis, non-invasive tests were unreliable. The advantage of combined test classification was confirmed in the validation sets. The concordance recommendation is validated. A combined test, expressed in classification instead of score, improves this rule and validates the recommendation of a combined test, avoiding 99% of biopsies, and offering precise staging. © 2017 John Wiley & Sons Ltd.

  9. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    NASA Astrophysics Data System (ADS)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  10. Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

    PubMed

    Bi, Xia-An; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

  11. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.

  12. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. Results Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. Conclusions The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences. PMID:23815266

  13. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients.

    PubMed

    Cangelosi, Davide; Blengio, Fabiola; Versteeg, Rogier; Eggert, Angelika; Garaventa, Alberto; Gambini, Claudio; Conte, Massimo; Eva, Alessandra; Muselli, Marco; Varesio, Luigi

    2013-01-01

    Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences.

  14. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.

    PubMed

    Park, Inho; Lee, Kwang H; Lee, Doheon

    2010-06-15

    Gene set analysis has become an important tool for the functional interpretation of high-throughput gene expression datasets. Moreover, pattern analyses based on inferred gene set activities of individual samples have shown the ability to identify more robust disease signatures than individual gene-based pattern analyses. Although a number of approaches have been proposed for gene set-based pattern analysis, the combinatorial influence of deregulated gene sets on disease phenotype classification has not been studied sufficiently. We propose a new approach for inferring combinatorial Boolean rules of gene sets for a better understanding of cancer transcriptome and cancer classification. To reduce the search space of the possible Boolean rules, we identify small groups of gene sets that synergistically contribute to the classification of samples into their corresponding phenotypic groups (such as normal and cancer). We then measure the significance of the candidate Boolean rules derived from each group of gene sets; the level of significance is based on the class entropy of the samples selected in accordance with the rules. By applying the present approach to publicly available prostate cancer datasets, we identified 72 significant Boolean rules. Finally, we discuss several identified Boolean rules, such as the rule of glutathione metabolism (down) and prostaglandin synthesis regulation (down), which are consistent with known prostate cancer biology. Scripts written in Python and R are available at http://biosoft.kaist.ac.kr/~ihpark/. The refined gene sets and the full list of the identified Boolean rules are provided in the Supplementary Material. Supplementary data are available at Bioinformatics online.

  15. A Distributed Fuzzy Associative Classifier for Big Data.

    PubMed

    Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco

    2017-09-19

    Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.

  16. Local Subspace Classifier with Transform-Invariance for Image Classification

    NASA Astrophysics Data System (ADS)

    Hotta, Seiji

    A family of linear subspace classifiers called local subspace classifier (LSC) outperforms the k-nearest neighbor rule (kNN) and conventional subspace classifiers in handwritten digit classification. However, LSC suffers very high sensitivity to image transformations because it uses projection and the Euclidean distances for classification. In this paper, I present a combination of a local subspace classifier (LSC) and a tangent distance (TD) for improving accuracy of handwritten digit recognition. In this classification rule, we can deal with transform-invariance easily because we are able to use tangent vectors for approximation of transformations. However, we cannot use tangent vectors in other type of images such as color images. Hence, kernel LSC (KLSC) is proposed for incorporating transform-invariance into LSC via kernel mapping. The performance of the proposed methods is verified with the experiments on handwritten digit and color image classification.

  17. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.

    2014-12-01

    Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.

  18. A clinical decision support system for diagnosis of Allergic Rhinitis based on intradermal skin tests.

    PubMed

    Jabez Christopher, J; Khanna Nehemiah, H; Kannan, A

    2015-10-01

    Allergic Rhinitis is a universal common disease, especially in populated cities and urban areas. Diagnosis and treatment of Allergic Rhinitis will improve the quality of life of allergic patients. Though skin tests remain the gold standard test for diagnosis of allergic disorders, clinical experts are required for accurate interpretation of test outcomes. This work presents a clinical decision support system (CDSS) to assist junior clinicians in the diagnosis of Allergic Rhinitis. Intradermal Skin tests were performed on patients who had plausible allergic symptoms. Based on patient׳s history, 40 clinically relevant allergens were tested. 872 patients who had allergic symptoms were considered for this study. The rule based classification approach and the clinical test results were used to develop and validate the CDSS. Clinical relevance of the CDSS was compared with the Score for Allergic Rhinitis (SFAR). Tests were conducted for junior clinicians to assess their diagnostic capability in the absence of an expert. The class based Association rule generation approach provides a concise set of rules that is further validated by clinical experts. The interpretations of the experts are considered as the gold standard. The CDSS diagnoses the presence or absence of rhinitis with an accuracy of 88.31%. The allergy specialist and the junior clinicians prefer the rule based approach for its comprehendible knowledge model. The Clinical Decision Support Systems with rule based classification approach assists junior doctors and clinicians in the diagnosis of Allergic Rhinitis to make reliable decisions based on the reports of intradermal skin tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 43 CFR 2091.7-1 - Segregative effect and opening: Classifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Classifications. 2091.7-1 Section 2091.7-1 Public Lands: Interior Regulations Relating to Public Lands (Continued... RULES Segregation and Opening of Lands § 2091.7-1 Segregative effect and opening: Classifications. (a)(1... authority of the Classification and Multiple Use Act (43 U.S.C. 1411-18) are segregated to the extent...

  20. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.

  1. From Cues to Nudge: A Knowledge-Based Framework for Surveillance of Healthcare-Associated Infections.

    PubMed

    Shaban-Nejad, Arash; Mamiya, Hiroshi; Riazanov, Alexandre; Forster, Alan J; Baker, Christopher J O; Tamblyn, Robyn; Buckeridge, David L

    2016-01-01

    We propose an integrated semantic web framework consisting of formal ontologies, web services, a reasoner and a rule engine that together recommend appropriate level of patient-care based on the defined semantic rules and guidelines. The classification of healthcare-associated infections within the HAIKU (Hospital Acquired Infections - Knowledge in Use) framework enables hospitals to consistently follow the standards along with their routine clinical practice and diagnosis coding to improve quality of care and patient safety. The HAI ontology (HAIO) groups over thousands of codes into a consistent hierarchy of concepts, along with relationships and axioms to capture knowledge on hospital-associated infections and complications with focus on the big four types, surgical site infections (SSIs), catheter-associated urinary tract infection (CAUTI); hospital-acquired pneumonia, and blood stream infection. By employing statistical inferencing in our study we use a set of heuristics to define the rule axioms to improve the SSI case detection. We also demonstrate how the occurrence of an SSI is identified using semantic e-triggers. The e-triggers will be used to improve our risk assessment of post-operative surgical site infections (SSIs) for patients undergoing certain type of surgeries (e.g., coronary artery bypass graft surgery (CABG)).

  2. Choosing the Rules: Distinct and Overlapping Frontoparietal Representations of Task Rules for Perceptual Decisions

    PubMed Central

    Kriegeskorte, Nikolaus; Carlin, Johan D.; Rowe, James B.

    2013-01-01

    Behavior is governed by rules that associate stimuli with responses and outcomes. Human and monkey studies have shown that rule-specific information is widely represented in the frontoparietal cortex. However, it is not known how establishing a rule under different contexts affects its neural representation. Here, we use event-related functional MRI (fMRI) and multivoxel pattern classification methods to investigate the human brain's mechanisms of establishing and maintaining rules for multiple perceptual decision tasks. Rules were either chosen by participants or specifically instructed to them, and the fMRI activation patterns representing rule-specific information were compared between these contexts. We show that frontoparietal regions differ in the properties of their rule representations during active maintenance before execution. First, rule-specific information maintained in the dorsolateral and medial frontal cortex depends on the context in which it was established (chosen vs specified). Second, rule representations maintained in the ventrolateral frontal and parietal cortex are independent of the context in which they were established. Furthermore, we found that the rule-specific coding maintained in anticipation of stimuli may change with execution of the rule: representations in context-independent regions remain invariant from maintenance to execution stages, whereas rule representations in context-dependent regions do not generalize to execution stage. The identification of distinct frontoparietal systems with context-independent and context-dependent task rule representations, and the distinction between anticipatory and executive rule representations, provide new insights into the functional architecture of goal-directed behavior. PMID:23864675

  3. 26 CFR 1.1441-1 - Requirement for the deduction and withholding of tax on payments to foreign persons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). Further, payments that the withholding agent can reliably associate with documentary evidence described in... valid documentary evidence under §§ 1.1441-1(e)(1)(ii)(2) and 1.6049-5(c)(1) or (4) but cannot determine a payee's classification from the documentary evidence must apply the rules of this paragraph (b)(3...

  4. 26 CFR 1.1441-1 - Requirement for the deduction and withholding of tax on payments to foreign persons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...). Further, payments that the withholding agent can reliably associate with documentary evidence described in... valid documentary evidence under §§ 1.1441-1(e)(1)(ii)(2) and 1.6049-5(c)(1) or (4) but cannot determine a payee's classification from the documentary evidence must apply the rules of this paragraph (b)(3...

  5. 26 CFR 1.1441-1 - Requirement for the deduction and withholding of tax on payments to foreign persons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). Further, payments that the withholding agent can reliably associate with documentary evidence described in... valid documentary evidence under §§ 1.1441-1(e)(1)(ii)(2) and 1.6049-5(c)(1) or (4) but cannot determine a payee's classification from the documentary evidence must apply the rules of this paragraph (b)(3...

  6. Comparative analysis of expert and machine-learning methods for classification of body cavity effusions in companion animals.

    PubMed

    Hotz, Christine S; Templeton, Steven J; Christopher, Mary M

    2005-03-01

    A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.

  7. 46 CFR 8.100 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 8.100 Definitions. Authorized Classification Society means a recognized classification society that... 46 Shipping 1 2010-10-01 2010-10-01 false Definitions. 8.100 Section 8.100 Shipping COAST GUARD... Coast Guard. Class Rules means the standards developed and published by a classification society...

  8. 76 FR 76896 - International Anti-Fouling System Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ...-fouling System (IAFS) Certificate to the list of certificates a recognized classification society may..., 2001. This final rule will enable recognized classification societies to apply to the Coast Guard for... the Coast Guard to authorize recognized classification societies to issue IAFS Certificates...

  9. Clinical decision rules, spinal pain classification and prediction of treatment outcome: A discussion of recent reports in the rehabilitation literature

    PubMed Central

    2012-01-01

    Clinical decision rules are an increasingly common presence in the biomedical literature and represent one strategy of enhancing clinical-decision making with the goal of improving the efficiency and effectiveness of healthcare delivery. In the context of rehabilitation research, clinical decision rules have been predominantly aimed at classifying patients by predicting their treatment response to specific therapies. Traditionally, recommendations for developing clinical decision rules propose a multistep process (derivation, validation, impact analysis) using defined methodology. Research efforts aimed at developing a “diagnosis-based clinical decision rule” have departed from this convention. Recent publications in this line of research have used the modified terminology “diagnosis-based clinical decision guide.” Modifications to terminology and methodology surrounding clinical decision rules can make it more difficult for clinicians to recognize the level of evidence associated with a decision rule and understand how this evidence should be implemented to inform patient care. We provide a brief overview of clinical decision rule development in the context of the rehabilitation literature and two specific papers recently published in Chiropractic and Manual Therapies. PMID:22726639

  10. Multi-factorial analysis of class prediction error: estimating optimal number of biomarkers for various classification rules.

    PubMed

    Khondoker, Mizanur R; Bachmann, Till T; Mewissen, Muriel; Dickinson, Paul; Dobrzelecki, Bartosz; Campbell, Colin J; Mount, Andrew R; Walton, Anthony J; Crain, Jason; Schulze, Holger; Giraud, Gerard; Ross, Alan J; Ciani, Ilenia; Ember, Stuart W J; Tlili, Chaker; Terry, Jonathan G; Grant, Eilidh; McDonnell, Nicola; Ghazal, Peter

    2010-12-01

    Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive, under investigated, yet vital in determining the optimal number of biomarkers for various classification purposes aimed towards improved detection, diagnosis, and therapeutic monitoring of diseases. We investigate the impact of microarray based data characteristics on the predictive performance for various classification rules using simulation studies. Our investigation using Random Forest, Support Vector Machines, Linear Discriminant Analysis and k-Nearest Neighbour shows that the predictive performance of classifiers is strongly influenced by training set size, biological and technical variability, replication, fold change and correlation between biomarkers. Optimal number of biomarkers for a classification problem should therefore be estimated taking account of the impact of all these factors. A database of average generalization errors is built for various combinations of these factors. The database of generalization errors can be used for estimating the optimal number of biomarkers for given levels of predictive accuracy as a function of these factors. Examples show that curves from actual biological data resemble that of simulated data with corresponding levels of data characteristics. An R package optBiomarker implementing the method is freely available for academic use from the Comprehensive R Archive Network (http://www.cran.r-project.org/web/packages/optBiomarker/).

  11. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  12. 42 CFR 412.10 - Changes in the DRG classification system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Changes in the DRG classification system. 412.10... § 412.10 Changes in the DRG classification system. (a) General rule. CMS issues changes in the DRG classification system in a Federal Register notice at least annually. Except as specified in paragraphs (c) and...

  13. 42 CFR 412.10 - Changes in the DRG classification system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Changes in the DRG classification system. 412.10... § 412.10 Changes in the DRG classification system. (a) General rule. CMS issues changes in the DRG classification system in a Federal Register notice at least annually. Except as specified in paragraphs (c) and...

  14. Hierarchical trie packet classification algorithm based on expectation-maximization clustering

    PubMed Central

    Bi, Xia-an; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476

  15. 46 CFR 71.15-5 - Alternate compliance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-521), 2100 2nd St. SW., Stop 7126, Washington, DC 20593-7126; telephone (202) 372-1372; or fax (202) 372-1925. Approved classification society...

  16. 46 CFR 71.15-5 - Alternate compliance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-521), 2100 2nd St. SW., Stop 7126, Washington, DC 20593-7126; telephone (202) 372-1372; or fax (202) 372-1925. Approved classification society...

  17. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...This rule establishes initial air quality designations for most areas in the United States, including areas of Indian country, for the 2008 primary and secondary national ambient air quality standards (NAAQS) for ozone. The designations for several counties in Illinois, Indiana, and Wisconsin that the EPA is considering for inclusion in the Chicago nonattainment area will be designated in a subsequent action, no later than May 31, 2012. Areas designated as nonattainment are also being classified by operation of law according to the severity of their air quality problems. The classification categories are Marginal, Moderate, Serious, Severe, and Extreme. The EPA is establishing the air quality thresholds that define the classifications in a separate rule that the EPA is signing and publishing in the Federal Register on the same schedule as these designations. In accordance with that separate rule, six nonattainment areas in California are being reclassified to a higher classification.

  18. The research of selection model based on LOD in multi-scale display of electronic map

    NASA Astrophysics Data System (ADS)

    Zhang, Jinming; You, Xiong; Liu, Yingzhen

    2008-10-01

    This paper proposes a selection model based on LOD to aid the display of electronic map. The ratio of display scale to map scale is regarded as a LOD operator. The categorization rule, classification rule, elementary rule and spatial geometry character rule of LOD operator setting are also concluded.

  19. The P600 in Implicit Artificial Grammar Learning.

    PubMed

    Silva, Susana; Folia, Vasiliki; Hagoort, Peter; Petersson, Karl Magnus

    2017-01-01

    The suitability of the artificial grammar learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. After exposure, a typical, centroparietal P600 effect was elicited by grammatical violations and not by unfamiliar subsequences, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere-exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test. Copyright © 2016 Cognitive Science Society, Inc.

  20. 46 CFR 189.15-5 - Alternate compliance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., a list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-521), 2100 2nd St., SW., Stop 7126, Washington, DC 20593-7126; telephone (202) 372-1371; or fax (202) 372-1925. Approved classification society...

  1. 46 CFR 189.15-5 - Alternate compliance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., a list of authorized classification societies, including information for ordering copies of approved classification society rules and supplements, is available from Commandant (CG-521), 2100 2nd St., SW., Stop 7126, Washington, DC 20593-7126; telephone (202) 372-1371; or fax (202) 372-1925. Approved classification society...

  2. Intra-regional classification of grape seeds produced in Mendoza province (Argentina) by multi-elemental analysis and chemometrics tools.

    PubMed

    Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G

    2018-03-01

    The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Scattering property based contextual PolSAR speckle filter

    NASA Astrophysics Data System (ADS)

    Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred

    2017-12-01

    Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.

  4. Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks

    PubMed Central

    Bennett, Kristin P.

    2014-01-01

    We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web. PMID:24864238

  5. Ventricular beat classifier using fractal number clustering.

    PubMed

    Bakardjian, H

    1992-09-01

    A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.

  6. Semantic Classification of Diseases in Discharge Summaries Using a Context-aware Rule-based Classifier

    PubMed Central

    Solt, Illés; Tikk, Domonkos; Gál, Viktor; Kardkovács, Zsolt T.

    2009-01-01

    Objective Automated and disease-specific classification of textual clinical discharge summaries is of great importance in human life science, as it helps physicians to make medical studies by providing statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries, semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a patient, or is unmentioned in the document. The authors present a classification technique that successfully solves the semantic classification task. Design The authors introduce a context-aware rule-based semantic classification technique for use on clinical discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a sequence of binary classifiers is applied to assign the appropriate semantic labels. Measurement For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its evaluation measures: F1-macro and F1-micro for measurements. Results On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed very well, and achieved a F1-macro = 0.80 for the textual and F1-macro = 0.67 for the intuitive tasks, and obtained second place at the textual and first place at the intuitive subtasks of the challenge. Conclusions The authors show in the paper that a simple rule-based classifier can tackle the semantic classification task more successfully than machine learning techniques, if the training data are limited and some semantic labels are very sparse. PMID:19390101

  7. 78 FR 59995 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Change To Clarify the Classification and Reporting of Certain Securities to FINRA September 24, 2013... interpretation to clarify the classification and the reporting of certain securities to FINRA. The proposed rule....'' FINRA recently has received inquiries regarding the appropriate classification of certain ``hybrid...

  8. 46 CFR 8.440 - Vessel enrollment in the Alternate Compliance Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... classification society and accepted by the Coast Guard, the cognizant OCMI may decline to issue a certificate of... recognized classification society authorized by the Coast Guard to determine compliance with applicable international treaties and agreements, the classification society's class rules, and the U.S. supplement...

  9. 46 CFR 8.440 - Vessel enrollment in the Alternate Compliance Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... classification society and accepted by the Coast Guard, the cognizant OCMI may decline to issue a certificate of... recognized classification society authorized by the Coast Guard to determine compliance with applicable international treaties and agreements, the classification society's class rules, and the U.S. Supplement...

  10. 46 CFR 8.440 - Vessel enrollment in the Alternate Compliance Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... classification society and accepted by the Coast Guard, the cognizant OCMI may decline to issue a certificate of... recognized classification society authorized by the Coast Guard to determine compliance with applicable international treaties and agreements, the classification society's class rules, and the U.S. supplement...

  11. 46 CFR 8.440 - Vessel enrollment in the Alternate Compliance Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... issuance or renewal of a COI may submit the vessel for classification, plan review and inspection by a recognized classification society authorized by the Coast Guard to determine compliance with applicable international treaties and agreements, the classification society's class rules, and the U.S. Supplement...

  12. 46 CFR 8.440 - Vessel enrollment in the Alternate Compliance Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... issuance or renewal of a COI may submit the vessel for classification, plan review and inspection by a recognized classification society authorized by the Coast Guard to determine compliance with applicable international treaties and agreements, the classification society's class rules, and the U.S. Supplement...

  13. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  14. 18 CFR 3a.31 - Classification markings and special notations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Classification markings and special notations. 3a.31 Section 3a.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification...

  15. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  16. 18 CFR 3a.11 - Classification of official information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Classification of official information. 3a.11 Section 3a.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  17. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  18. 18 CFR 3a.11 - Classification of official information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Classification of official information. 3a.11 Section 3a.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  19. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  20. 18 CFR 3a.31 - Classification markings and special notations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Classification markings and special notations. 3a.31 Section 3a.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification...

  1. 18 CFR 3a.11 - Classification of official information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Classification of official information. 3a.11 Section 3a.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  2. 18 CFR 3a.11 - Classification of official information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Classification of official information. 3a.11 Section 3a.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  3. 18 CFR 3a.31 - Classification markings and special notations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Classification markings and special notations. 3a.31 Section 3a.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification...

  4. The implicit rules of combat.

    PubMed

    Romero, Gorge A; Pham, Michael N; Goetz, Aaron T

    2014-12-01

    Conspecific violence has been pervasive throughout evolutionary history. The current research tested the hypotheses that individuals implicitly categorize combative contexts (i.e., play fighting, status contests, warfare, and anti-exploitative violence) and use the associated contextual information to guide expectations of combative tactics. Using U.S. and non-U.S. samples, Study 1 demonstrated consistent classification of combative contexts from scenarios for which little information was given and predictable shifts in the acceptability of combative tactics across contexts. Whereas severe tactics (e.g., eye-gouging) were acceptable in warfare and anti-exploitative violence, they were unacceptable in status contests and play fights. These results suggest the existence of implicit rules governing the contexts of combat. In Study 2, we explored the reputational consequences of violating these implicit rules. Results suggest that rule violators (e.g., those who use severe tactics in a status contest) are given less respect. These are the first studies to implicate specialized mechanisms for aggression that use contextual cues of violence to guide expectations and behavior.

  5. 78 FR 20371 - Small Business Size Standards; Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SMALL BUSINESS ADMINISTRATION Small Business Size Standards; Waiver of the Nonmanufacturer Rule AGENCY: U.S. Small Business Administration. ACTION: On April 16, 2001, SBA granted a Class Waiver of the Nonmanufacturer Rule (NMR) for Aerospace Ball and Roller Bearings, North American Industry Classification System...

  6. 19 CFR 177.9 - Effect of ruling letters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... classification of an article under the provisions of the Harmonized Tariff Schedule of the United States will be applied only with respect to transactions involving articles identical to the sample submitted with the ruling request or to articles whose description is identical to the description set forth in the ruling...

  7. 22 CFR 42.12 - Rules of chargeability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Rules of chargeability. 42.12 Section 42.12 Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION OF IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.12 Rules of chargeability. (a...

  8. 22 CFR 42.12 - Rules of chargeability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Rules of chargeability. 42.12 Section 42.12 Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION OF IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.12 Rules of chargeability. (a...

  9. 22 CFR 42.12 - Rules of chargeability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Rules of chargeability. 42.12 Section 42.12 Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION OF IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.12 Rules of chargeability. (a...

  10. 22 CFR 42.12 - Rules of chargeability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Rules of chargeability. 42.12 Section 42.12 Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION OF IMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.12 Rules of chargeability. (a...

  11. Bug Distribution and Pattern Classification.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.

    The study examines the rule space model, a probabilistic model capable of measuring cognitive skill acquisition and of diagnosing erroneous rules of operation in a procedural domain. The model involves two important components: (1) determination of a set of bug distributions (bug density functions representing clusters around the rules); and (2)…

  12. Stratification of the severity of critically ill patients with classification trees

    PubMed Central

    2009-01-01

    Background Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69-75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients. PMID:20003229

  13. 78 FR 35085 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Classification System (NAICS) code 332991, Products and Services Code (PSC) 3110, made available for public... American Industry Classification System (NAICS) Industry Number as established by the Office of Management...

  14. Argumentation Based Joint Learning: A Novel Ensemble Learning Approach

    PubMed Central

    Xu, Junyi; Yao, Li; Li, Le

    2015-01-01

    Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359

  15. A study of some nine-element decision rules. [for multispectral recognition of remote sensing

    NASA Technical Reports Server (NTRS)

    Richardson, W.

    1974-01-01

    A nine-element rule is one that makes a classification decision for each pixel based on data from that pixel and its eight immediate neighbors. Three such rules, all fast and simple to use, are defined and tested. All performed substantially better on field interiors than the best one-point rule. Qualitative results indicate that fine detail and contradictory testimony tend to be overlooked by the rules.

  16. 26 CFR 601.102 - Classification of taxes collected by the Internal Revenue Service.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Rules § 601.102 Classification of taxes collected by the Internal Revenue Service. (a) Principal... 26 Internal Revenue 20 2010-04-01 2010-04-01 false Classification of taxes collected by the Internal Revenue Service. 601.102 Section 601.102 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF...

  17. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  18. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  19. 40 CFR 164.120 - Notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND... imminent hazard during the time required for cancellation or change in classification proceedings, but that...

  20. 40 CFR 164.120 - Notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND... imminent hazard during the time required for cancellation or change in classification proceedings, but that...

  1. Visualization of usability and functionality of a professional website through web-mining.

    PubMed

    Jones, Josette F; Mahoui, Malika; Gopa, Venkata Devi Pragna

    2007-10-11

    Functional interface design requires understanding of the information system structure and the user. Web logs record user interactions with the interface, and thus provide some insight into user search behavior and efficiency of the search process. The present study uses a data-mining approach with techniques such as association rules, clustering and classification, to visualize the usability and functionality of a digital library through in depth analyses of web logs.

  2. Designing boosting ensemble of relational fuzzy systems.

    PubMed

    Scherer, Rafał

    2010-10-01

    A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.

  3. Evaluating an ensemble classification approach for crop diversity verification in Danish greening subsidy control

    NASA Astrophysics Data System (ADS)

    Chellasamy, Menaka; Ferré, Ty Paul Andrew; Greve, Mogens Humlekrog

    2016-07-01

    Beginning in 2015, Danish farmers are obliged to meet specific crop diversification rules based on total land area and number of crops cultivated to be eligible for new greening subsidies. Hence, there is a need for the Danish government to extend their subsidy control system to verify farmers' declarations to warrant greening payments under the new crop diversification rules. Remote Sensing (RS) technology has been used since 1992 to control farmers' subsidies in Denmark. However, a proper RS-based approach is yet to be finalised to validate new crop diversity requirements designed for assessing compliance under the recent subsidy scheme (2014-2020); This study uses an ensemble classification approach (proposed by the authors in previous studies) for validating the crop diversity requirements of the new rules. The approach uses a neural network ensemble classification system with bi-temporal (spring and early summer) WorldView-2 imagery (WV2) and includes the following steps: (1) automatic computation of pixel-based prediction probabilities using multiple neural networks; (2) quantification of the classification uncertainty using Endorsement Theory (ET); (3) discrimination of crop pixels and validation of the crop diversification rules at farm level; and (4) identification of farmers who are violating the requirements for greening subsidies. The prediction probabilities are computed by a neural network ensemble supplied with training samples selected automatically using farmers declared parcels (field vectors containing crop information and the field boundary of each crop). Crop discrimination is performed by considering a set of conclusions derived from individual neural networks based on ET. Verification of the diversification rules is performed by incorporating pixel-based classification uncertainty or confidence intervals with the class labels at the farmer level. The proposed approach was tested with WV2 imagery acquired in 2011 for a study area in Vennebjerg, Denmark, containing 132 farmers, 1258 fields, and 18 crops. The classification results obtained show an overall accuracy of 90.2%. The RS-based results suggest that 36 farmers did not follow the crop diversification rules that would qualify for the greening subsidies. When compared to the farmers' reported crop mixes, irrespective of the rule, the RS results indicate that false crop declarations were made by 8 farmers, covering 15 fields. If the farmers' reports had been submitted for the new greening subsidies, 3 farmers would have made a false claim; while remaining 5 farmers obey the rules of required crop proportion even though they have submitted the false crop code due to their small holding size. The RS results would have supported 96 farmers for greening subsidy claims, with no instances of suggesting a greening subsidy for a holding that the farmer did not report as meeting the required conditions. These results suggest that the proposed RS based method shows great promise for validating the new greening subsidies in Denmark.

  4. Suitability of the isolated chicken eye test for classification of extreme pH detergents and cleaning products.

    PubMed

    Cazelle, Elodie; Eskes, Chantra; Hermann, Martina; Jones, Penny; McNamee, Pauline; Prinsen, Menk; Taylor, Hannah; Wijnands, Marcel V W

    2015-04-01

    A.I.S.E. investigated the suitability of the regulatory adopted ICE in vitro test method (OECD TG 438) with or without histopathology to identify detergent and cleaning formulations having extreme pH that require classification as EU CLP/UN GHS Category 1. To this aim, 18 extreme pH detergent and cleaning formulations were tested covering both alkaline and acidic extreme pHs. The ICE standard test method following OECD Test Guideline 438 showed good concordance with in vivo classification (83%) and good and balanced specificity and sensitivity values (83%) which are in line with the performances of currently adopted in vitro test guidelines, confirming its suitability to identify Category 1 extreme pH detergent and cleaning products. In contrast to previous findings obtained with non-extreme pH formulations, the use of histopathology did not improve the sensitivity of the assay whilst it strongly decreased its specificity for the extreme pH formulations. Furthermore, use of non-testing prediction rules for classification showed poor concordance values (33% for the extreme pH rule and 61% for the EU CLP additivity approach) with high rates of over-prediction (100% for the extreme pH rule and 50% for the additivity approach), indicating that these non-testing prediction rules are not suitable to predict Category 1 hazards of extreme pH detergent and cleaning formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Symbolic rule-based classification of lung cancer stages from free-text pathology reports.

    PubMed

    Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni

    2010-01-01

    To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.

  6. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  7. Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, X.; Xiao, W.

    2018-05-01

    The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.

  8. 29 CFR 2530.200b-3 - Determination of service to be credited to employees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hours of other employees in the same job classification based on these records. A plan may use any of... general rule set forth in § 2530.200b-2(a), for different classifications of employees covered under the plan or for different purposes, provided that such classifications are reasonable and are consistently...

  9. 29 CFR 2530.200b-3 - Determination of service to be credited to employees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hours of other employees in the same job classification based on these records. A plan may use any of... general rule set forth in § 2530.200b-2(a), for different classifications of employees covered under the plan or for different purposes, provided that such classifications are reasonable and are consistently...

  10. 29 CFR 2530.200b-3 - Determination of service to be credited to employees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hours of other employees in the same job classification based on these records. A plan may use any of... general rule set forth in § 2530.200b-2(a), for different classifications of employees covered under the plan or for different purposes, provided that such classifications are reasonable and are consistently...

  11. 26 CFR 301.7701(i)-3 - Effective dates and duration of taxable mortgage pool classification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... mortgage pool classification. 301.7701(i)-3 Section 301.7701(i)-3 Internal Revenue INTERNAL REVENUE SERVICE... § 301.7701(i)-3 Effective dates and duration of taxable mortgage pool classification. (a) Effective...(c) of the Tax Reform Act of 1986. (2) Special rule for certain transfers. A transfer made to an...

  12. Classification capacity of a modular neural network implementing neurally inspired architecture and training rules.

    PubMed

    Poirazi, Panayiota; Neocleous, Costas; Pattichis, Costantinos S; Schizas, Christos N

    2004-05-01

    A three-layer neural network (NN) with novel adaptive architecture has been developed. The hidden layer of the network consists of slabs of single neuron models, where neurons within a slab--but not between slabs--have the same type of activation function. The network activation functions in all three layers have adaptable parameters. The network was trained using a biologically inspired, guided-annealing learning rule on a variety of medical data. Good training/testing classification performance was obtained on all data sets tested. The performance achieved was comparable to that of SVM classifiers. It was shown that the adaptive network architecture, inspired from the modular organization often encountered in the mammalian cerebral cortex, can benefit classification performance.

  13. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  14. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  15. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  16. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of the Road means the statutory and... operation and the sea, including seamanship, navigation, oceanography, other nautical and marine sciences...

  17. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  18. Measuring the Influence of Mainstream Media on Twitter Users

    DTIC Science & Technology

    2014-07-01

    dataset or called from a Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and...server at CAU. The command line to start Weka is: java -jar /opt/weka-3-6-9/weka.jar & The first window that appears is the Weka’s graphical user...website hosts all detailed information at the fedora website at1. We chose the 140dev streaming API to store the tweets into our fedora using MySQL

  19. A Novel Feature Level Fusion for Heart Rate Variability Classification Using Correntropy and Cauchy-Schwarz Divergence.

    PubMed

    Goshvarpour, Ateke; Goshvarpour, Atefeh

    2018-04-30

    Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence. Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.

  20. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  1. A fuzzy decision tree for fault classification.

    PubMed

    Zio, Enrico; Baraldi, Piero; Popescu, Irina C

    2008-02-01

    In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.

  2. Rule-Based Category Learning in Children: The Role of Age and Executive Functioning

    PubMed Central

    Rabi, Rahel; Minda, John Paul

    2014-01-01

    Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658

  3. Normalization of relative and incomplete temporal expressions in clinical narratives.

    PubMed

    Sun, Weiyi; Rumshisky, Anna; Uzuner, Ozlem

    2015-09-01

    To improve the normalization of relative and incomplete temporal expressions (RI-TIMEXes) in clinical narratives. We analyzed the RI-TIMEXes in temporally annotated corpora and propose two hypotheses regarding the normalization of RI-TIMEXes in the clinical narrative domain: the anchor point hypothesis and the anchor relation hypothesis. We annotated the RI-TIMEXes in three corpora to study the characteristics of RI-TMEXes in different domains. This informed the design of our RI-TIMEX normalization system for the clinical domain, which consists of an anchor point classifier, an anchor relation classifier, and a rule-based RI-TIMEX text span parser. We experimented with different feature sets and performed an error analysis for each system component. The annotation confirmed the hypotheses that we can simplify the RI-TIMEXes normalization task using two multi-label classifiers. Our system achieves anchor point classification, anchor relation classification, and rule-based parsing accuracy of 74.68%, 87.71%, and 57.2% (82.09% under relaxed matching criteria), respectively, on the held-out test set of the 2012 i2b2 temporal relation challenge. Experiments with feature sets reveal some interesting findings, such as: the verbal tense feature does not inform the anchor relation classification in clinical narratives as much as the tokens near the RI-TIMEX. Error analysis showed that underrepresented anchor point and anchor relation classes are difficult to detect. We formulate the RI-TIMEX normalization problem as a pair of multi-label classification problems. Considering only RI-TIMEX extraction and normalization, the system achieves statistically significant improvement over the RI-TIMEX results of the best systems in the 2012 i2b2 challenge. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications.

    PubMed

    Barat, Ana; Ruskin, Heather J; Byrne, Annette T; Prehn, Jochen H M

    2015-11-23

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  5. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype. PMID:27600244

  6. 46 CFR 169.107 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under section 501(a) of such Code, as now or hereafter amended. Recognized Classification Society means the American Bureau of Shipping or other classification society recognized by the Commandant. Rules of..., oceanography, other nautical and marine sciences, and maritime history and literature. In conjunction with any...

  7. Site selection for managed aquifer recharge using fuzzy rules: integrating geographical information system (GIS) tools and multi-criteria decision making

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza

    2012-11-01

    One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.

  8. Une nouvelle méthode de cartographie de la région d'Oran (Algérie) à l'aide de la télédétection multispectrale

    NASA Astrophysics Data System (ADS)

    Laoufi, Fatiha; Belbachir, Ahmed-Hafid; Benabadji, Noureddine; Zanoun, Abdelouahab

    2011-10-01

    We have mapped the region of Oran, Algeria, using multispectral remote sensing with different resolutions. For the identification of objects on the ground using their spectral signatures, two methods were applied to images from SPOT, LANDSAT, IRS-1 C and ASTER. The first one is called Base Rule method (BR method) and is based on a set of rules that must be met at each pixel in the different bands reflectance calibrated and henceforth it is assigned to a given class. The construction of these rules is based on the spectral profiles of popular classes in the scene studied. The second one is called Spectral Angle Mapper method (SAM method) and is based on the direct calculation of the spectral angle between the target vector representing the spectral profile of the desired class and the pixel vector whose components are numbered accounts in the different bands of the calibrated image reflectance. This new method was performed using PCSATWIN software developed by our own laboratory LAAR. After collecting a library of spectral signatures with multiple libraries, a detailed study of the principles and physical processes that can influence the spectral signature has been conducted. The final goal is to establish the range of variation of a spectral profile of a well-defined class and therefore to get precise bases for spectral rules. From the results we have obtained, we find that the supervised classification of these pixels by BR method derived from spectral signatures reduces the uncertainty associated with identifying objects by enhancing significantly the percentage of correct classification with very distinct classes.

  9. Exceptions to the rule: case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes.

    PubMed

    Rosenthal, E T; Bowles, K R; Pruss, D; van Kan, A; Vail, P J; McElroy, H; Wenstrup, R J

    2015-12-01

    Based on current consensus guidelines and standard practice, many genetic variants detected in clinical testing are classified as disease causing based on their predicted impact on the normal expression or function of the gene in the absence of additional data. However, our laboratory has identified a subset of such variants in hereditary cancer genes for which compelling contradictory evidence emerged after the initial evaluation following the first observation of the variant. Three representative examples of variants in BRCA1, BRCA2 and MSH2 that are predicted to disrupt splicing, prematurely truncate the protein, or remove the start codon were evaluated for pathogenicity by analyzing clinical data with multiple classification algorithms. Available clinical data for all three variants contradicts the expected pathogenic classification. These variants illustrate potential pitfalls associated with standard approaches to variant classification as well as the challenges associated with monitoring data, updating classifications, and reporting potentially contradictory interpretations to the clinicians responsible for translating test outcomes to appropriate clinical action. It is important to address these challenges now as the model for clinical testing moves toward the use of large multi-gene panels and whole exome/genome analysis, which will dramatically increase the number of genetic variants identified. © 2015 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  11. The changes in hazard classification and product notification procedures of the new European CLP and Cosmetics Regulations.

    PubMed

    de Groot, Ronald; Brekelmans, Pieter; Herremans, Joke; Meulenbelt, Jan

    2010-01-01

    The United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN-GHS) is developed to harmonize the criteria for hazard communication worldwide. The European Regulation on classification, labeling, and packaging of substances and mixtures [CLP Regulation (European Commission, EC) No 1272/2008] will align the existing European Union (EU) legislation to the UN-GHS. This CLP Regulation entered into force on January 20, 2009, and will, after a transitional period, replace the current rules on classification, labeling, and packaging for supply and use in Europe. Both old and new classifications will exist simultaneously until 2010 for substances and until 2015 for mixtures. The new hazard classification will introduce new health hazard classes and categories, with associated new hazard pictograms, signal words, Hazard (H)-statements, and Precautionary (P)-statements as labeling elements. Furthermore, the CLP Regulation will affect the notification of product information on hazardous products to poisons information centers (PICs). At this moment product notification widely varies in procedures and requirements across EU Member States. Article 45 of the CLP Regulation contains a provision stating that the EC will (by January 20, 2012) review the possibility of harmonizing product notification. The European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) is recognized as an important stakeholder. For cosmetic products, the new Cosmetics Regulation will directly implement a new procedure for electronic cosmetic product notification in all EU Member States. Both the CLP Regulation and the Cosmetics Regulation will develop their own product notification procedure within different time frames. Harmonization of notification procedures for both product groups, especially a common electronic format, would be most effective from a cost-benefit viewpoint and would be welcomed by PICs.

  12. Metric learning for automatic sleep stage classification.

    PubMed

    Phan, Huy; Do, Quan; Do, The-Luan; Vu, Duc-Lung

    2013-01-01

    We introduce in this paper a metric learning approach for automatic sleep stage classification based on single-channel EEG data. We show that learning a global metric from training data instead of using the default Euclidean metric, the k-nearest neighbor classification rule outperforms state-of-the-art methods on Sleep-EDF dataset with various classification settings. The overall accuracy for Awake/Sleep and 4-class classification setting are 98.32% and 94.49% respectively. Furthermore, the superior accuracy is achieved by performing classification on a low-dimensional feature space derived from time and frequency domains and without the need for artifact removal as a preprocessing step.

  13. 76 FR 54419 - International Anti-Fouling System Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... society may issue on behalf of the Coast Guard. This action is being taken in response to recently enacted..., 2001. This proposed rule would enable recognized classification societies to apply to the Coast Guard... classification societies to issue international certificates to vessels. The United States currently recognizes...

  14. A comprehensive review on privacy preserving data mining.

    PubMed

    Aldeen, Yousra Abdul Alsahib S; Salleh, Mazleena; Razzaque, Mohammad Abdur

    2015-01-01

    Preservation of privacy in data mining has emerged as an absolute prerequisite for exchanging confidential information in terms of data analysis, validation, and publishing. Ever-escalating internet phishing posed severe threat on widespread propagation of sensitive information over the web. Conversely, the dubious feelings and contentions mediated unwillingness of various information providers towards the reliability protection of data from disclosure often results utter rejection in data sharing or incorrect information sharing. This article provides a panoramic overview on new perspective and systematic interpretation of a list published literatures via their meticulous organization in subcategories. The fundamental notions of the existing privacy preserving data mining methods, their merits, and shortcomings are presented. The current privacy preserving data mining techniques are classified based on distortion, association rule, hide association rule, taxonomy, clustering, associative classification, outsourced data mining, distributed, and k-anonymity, where their notable advantages and disadvantages are emphasized. This careful scrutiny reveals the past development, present research challenges, future trends, the gaps and weaknesses. Further significant enhancements for more robust privacy protection and preservation are affirmed to be mandatory.

  15. Do Americans Have a Preference for Rule-Based Classification?

    ERIC Educational Resources Information Center

    Murphy, Gregory L.; Bosch, David A.; Kim, ShinWoo

    2017-01-01

    Six experiments investigated variables predicted to influence subjects' tendency to classify items by a single property ("rule-based" responding) instead of overall similarity, following the paradigm of Norenzayan et al. (2002, "Cognitive Science"), who found that European Americans tended to give more "logical"…

  16. 17 CFR 242.402 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with Regulation T and the margin rules of the self-regulatory authorities of which the security futures... security future and related positions in accordance with the margin rules of the self-regulatory... same regulatory classification or account type and are owned by the same customer to be a single...

  17. 75 FR 42173 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Configured Tape Library Storage Equipment. SUMMARY: The U.S. Small Business Administration (SBA) is granting a class waiver of the Nonmanufacturer Rule for Configured Tape Library Storage Equipment, Product... Support Equipment, and PSC 7045 ADP Supplies, under the North American Industry Classification System...

  18. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  19. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  20. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  1. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  2. 46 CFR 116.300 - Structural design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structure § 116.300 Structural design. Except as otherwise allowed by this subpart, a vessel must comply... the vessel. (a) Steel hull vessels: (1) Rules and Regulations for the Classification of Yachts and Small Craft, Lloyd's Register of Shipping (Lloyd's); or (2) Rules for Building and Classing Steel...

  3. A fuzzy neural network for intelligent data processing

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam

    2005-03-01

    In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.

  4. Optimal two-phase sampling design for comparing accuracies of two binary classification rules.

    PubMed

    Xu, Huiping; Hui, Siu L; Grannis, Shaun

    2014-02-10

    In this paper, we consider the design for comparing the performance of two binary classification rules, for example, two record linkage algorithms or two screening tests. Statistical methods are well developed for comparing these accuracy measures when the gold standard is available for every unit in the sample, or in a two-phase study when the gold standard is ascertained only in the second phase in a subsample using a fixed sampling scheme. However, these methods do not attempt to optimize the sampling scheme to minimize the variance of the estimators of interest. In comparing the performance of two classification rules, the parameters of primary interest are the difference in sensitivities, specificities, and positive predictive values. We derived the analytic variance formulas for these parameter estimates and used them to obtain the optimal sampling design. The efficiency of the optimal sampling design is evaluated through an empirical investigation that compares the optimal sampling with simple random sampling and with proportional allocation. Results of the empirical study show that the optimal sampling design is similar for estimating the difference in sensitivities and in specificities, and both achieve a substantial amount of variance reduction with an over-sample of subjects with discordant results and under-sample of subjects with concordant results. A heuristic rule is recommended when there is no prior knowledge of individual sensitivities and specificities, or the prevalence of the true positive findings in the study population. The optimal sampling is applied to a real-world example in record linkage to evaluate the difference in classification accuracy of two matching algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Mapping of High Value Crops Through AN Object-Based Svm Model Using LIDAR Data and Orthophoto in Agusan del Norte Philippines

    NASA Astrophysics Data System (ADS)

    Candare, Rudolph Joshua; Japitana, Michelle; Cubillas, James Earl; Ramirez, Cherry Bryan

    2016-06-01

    This research describes the methods involved in the mapping of different high value crops in Agusan del Norte Philippines using LiDAR. This project is part of the Phil-LiDAR 2 Program which aims to conduct a nationwide resource assessment using LiDAR. Because of the high resolution data involved, the methodology described here utilizes object-based image analysis and the use of optimal features from LiDAR data and Orthophoto. Object-based classification was primarily done by developing rule-sets in eCognition. Several features from the LiDAR data and Orthophotos were used in the development of rule-sets for classification. Generally, classes of objects can't be separated by simple thresholds from different features making it difficult to develop a rule-set. To resolve this problem, the image-objects were subjected to Support Vector Machine learning. SVMs have gained popularity because of their ability to generalize well given a limited number of training samples. However, SVMs also suffer from parameter assignment issues that can significantly affect the classification results. More specifically, the regularization parameter C in linear SVM has to be optimized through cross validation to increase the overall accuracy. After performing the segmentation in eCognition, the optimization procedure as well as the extraction of the equations of the hyper-planes was done in Matlab. The learned hyper-planes separating one class from another in the multi-dimensional feature-space can be thought of as super-features which were then used in developing the classifier rule set in eCognition. In this study, we report an overall classification accuracy of greater than 90% in different areas.

  6. 78 FR 68239 - Final Rules Under the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... requirement or quantitative treatment limitation on mental health and substance use disorder benefits in any classification that is more restrictive than the predominant financial requirement or quantitative treatment... or quantitative treatment limitation in the relevant classification. Using these numerical standards...

  7. Identification of Nonattainment Classification and Deadlines for Submission of State Implementation Plan (SIP) Provisions for the 1997 & 2006 Fine Particle National Ambient Air Quality Standards (NAAQS) Fact Sheet

    EPA Pesticide Factsheets

    This page contains the fact sheet for the Final Nonattainment Classification and Deadlines for Submission of State Implementation Plan (SIP) Provisions for the 1997 and 2006 Particulate Matter (PM) rule.

  8. 76 FR 28689 - Microbiology Devices; Classification of In Vitro Diagnostic Device for Bacillus Species Detection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    .... FDA-2011-N-0103] Microbiology Devices; Classification of In Vitro Diagnostic Device for Bacillus... of the Microbiology Devices Advisory Panel (the Panel). In addition, the proposed rule would... in the Federal Register. 1. Transcript of the FDA Microbiology Devices Panel meeting, March 7, 2002...

  9. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  10. Cataloging Guide for Instructional Materials Used in Livonia Public Schools Instructional Materials Centers.

    ERIC Educational Resources Information Center

    Livonia Public Schools, MI.

    This working guide for Livonia's Public Schools provides detailed instructions in preparing and handling catalog cards, a supplemental cataloging and classification guide, and typing rules for technical processing. Standard abbreviations are given for making classification entries, and separate cataloging instructions are given for charts,…

  11. Application of decision rules for empowering of Indonesian telematics services SMEs

    NASA Astrophysics Data System (ADS)

    Tosida, E. T.; Hairlangga, O.; Amirudin, F.; Ridwanah, M.

    2018-03-01

    The independence of the field of telematics became one of Indonesia's vision in 2024. One effort to achieve it can be done by empowering SMEs in the field of telematics. Empowerment carried out need a practical mechanism by utilizing data centered, including through the National Economic Census database (Susenas). Based on the Susenas can be formulated the decision rules of determining the provision of assistance for SMEs in the field of telematics. The way it did by generating the rule base through the classification technique. The CART algorithm-based decision rule model performs better than C45 and ID3 models. The high level of performance model is also in line with the regulations applied by the government. This becomes one of the strengths of research, because the resulting model is consistent with the existing conditions in Indonesia. The rules base generated from the three classification techniques show different rules. The CART technique has pattern matching with the realization of activities in The Ministry of Cooperatives and SMEs. So far, the government has difficulty in referring data related to the empowerment of SMEs telematics services. Therefore, the findings resulting from this research can be used as an alternative decision support system related to the program of empowerment of SMEs in telematics.

  12. Track classification within wireless sensor network

    NASA Astrophysics Data System (ADS)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  13. 75 FR 68394 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U. S. Small Business... Flat Dipped Rubber/Plastic Gloves, under North American Industry Classification System (NAICS) code... Rule for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves under PSC 9999...

  14. Primate immunodeficiency virus classification and nomenclature: Review

    DOE PAGES

    Foley, Brian T.; Leitner, Thomas; Paraskevis, Dimitrios; ...

    2016-10-24

    The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. As a result, this review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written inmore » 2000.« less

  15. Computer-Aided Breast Cancer Diagnosis with Optimal Feature Sets: Reduction Rules and Optimization Techniques.

    PubMed

    Mathieson, Luke; Mendes, Alexandre; Marsden, John; Pond, Jeffrey; Moscato, Pablo

    2017-01-01

    This chapter introduces a new method for knowledge extraction from databases for the purpose of finding a discriminative set of features that is also a robust set for within-class classification. Our method is generic and we introduce it here in the field of breast cancer diagnosis from digital mammography data. The mathematical formalism is based on a generalization of the k-Feature Set problem called (α, β)-k-Feature Set problem, introduced by Cotta and Moscato (J Comput Syst Sci 67(4):686-690, 2003). This method proceeds in two steps: first, an optimal (α, β)-k-feature set of minimum cardinality is identified and then, a set of classification rules using these features is obtained. We obtain the (α, β)-k-feature set in two phases; first a series of extremely powerful reduction techniques, which do not lose the optimal solution, are employed; and second, a metaheuristic search to identify the remaining features to be considered or disregarded. Two algorithms were tested with a public domain digital mammography dataset composed of 71 malignant and 75 benign cases. Based on the results provided by the algorithms, we obtain classification rules that employ only a subset of these features.

  16. Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts

    PubMed Central

    Zhang, Shaodian; Elhadad, Nóemie

    2013-01-01

    Named entity recognition is a crucial component of biomedical natural language processing, enabling information extraction and ultimately reasoning over and knowledge discovery from text. Much progress has been made in the design of rule-based and supervised tools, but they are often genre and task dependent. As such, adapting them to different genres of text or identifying new types of entities requires major effort in re-annotation or rule development. In this paper, we propose an unsupervised approach to extracting named entities from biomedical text. We describe a stepwise solution to tackle the challenges of entity boundary detection and entity type classification without relying on any handcrafted rules, heuristics, or annotated data. A noun phrase chunker followed by a filter based on inverse document frequency extracts candidate entities from free text. Classification of candidate entities into categories of interest is carried out by leveraging principles from distributional semantics. Experiments show that our system, especially the entity classification step, yields competitive results on two popular biomedical datasets of clinical notes and biological literature, and outperforms a baseline dictionary match approach. Detailed error analysis provides a road map for future work. PMID:23954592

  17. Textural features for image classification

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  18. Rule Based System for Medicine Inventory Control Using Radio Frequency Identification (RFID)

    NASA Astrophysics Data System (ADS)

    Nugraha, Joanna Ardhyanti Mita; Suryono; Suseno, dan Jatmiko Endro

    2018-02-01

    Rule based system is very efficient to ensure stock of drug to remain available by utilizing Radio Frequency Identification (RFID) as input means automatically. This method can ensure the stock of drugs to remain available by analyzing the needs of drug users. The research data was the amount of drug usage in hospital for 1 year. The data was processed by using ABC classification to determine the drug with fast, medium and slow movement. In each classification result, rule based algorithm was given for determination of safety stock and Reorder Point (ROP). This research yielded safety stock and ROP values that vary depending on the class of each drug. Validation is done by comparing the calculation of safety stock and reorder point both manually and by system, then, it was found that the mean deviation value at safety stock was 0,03 and and ROP was 0,08.

  19. On Classification of Modular Categories by Rank: Table A.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.

    2016-04-10

    The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

  20. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  1. A QUANTITATIVE ASSESSMENT OF A COMBINED SPECTRAL AND GIS RULE-BASED LAND-COVER CLASSIFICATION IN THE NEUSE RIVER BASIN OF NORTH CAROLINA

    EPA Science Inventory

    The 14,582 km2 Neuse River Basin in North Carolina was characterized based on a user defined land-cover (LC) classification system developed specifically to support spatially explicit, non-point source nitrogen allocation modeling studies. Data processing incorporated both spect...

  2. 40 CFR 164.21 - Contents of a denial of registration, notice of intent to cancel a registration, or notice of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., notice of intent to cancel a registration, or notice of intent to change a classification. 164.21 Section 164.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES..., ARISING FROM REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS...

  3. 42 CFR 412.22 - Excluded hospitals and hospital units: General rules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provisions. The following classifications of hospitals are paid under special provisions and therefore are... criteria for one or more of the excluded classifications described in § 412.23. For purposes of this... following criteria in order to be excluded from the prospective payment systems specified in § 412.1(a)(1...

  4. Data Mining Methods for Recommender Systems

    NASA Astrophysics Data System (ADS)

    Amatriain, Xavier; Jaimes*, Alejandro; Oliver, Nuria; Pujol, Josep M.

    In this chapter, we give an overview of the main Data Mining techniques used in the context of Recommender Systems. We first describe common preprocessing methods such as sampling or dimensionality reduction. Next, we review the most important classification techniques, including Bayesian Networks and Support Vector Machines. We describe the k-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.

  5. Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores

    ERIC Educational Resources Information Center

    Douglas, Karen M.; Mislevy, Robert J.

    2010-01-01

    Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…

  6. Rule extraction from minimal neural networks for credit card screening.

    PubMed

    Setiono, Rudy; Baesens, Bart; Mues, Christophe

    2011-08-01

    While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.

  7. R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub. PMID:26798326

  8. Occupational injury and illness recording and reporting requirements--NAICS update and reporting revisions. Final rule.

    PubMed

    2014-09-18

    OSHA is issuing a final rule to update the appendix to its Injury and Illness Recording and Reporting regulation. The appendix contains a list of industries that are partially exempt from requirements to keep records of work-related injuries and illnesses due to relatively low occupational injury and illness rates. The updated appendix is based on more recent injury and illness data and lists industry groups classified by the North American Industry Classification System (NAICS). The current appendix lists industries classified by Standard Industrial Classification (SIC). The final rule also revises the requirements for reporting work-related fatality, injury, and illness information to OSHA. The current regulation requires employers to report work-related fatalities and in-patient hospitalizations of three or more employees within eight hours of the event. The final rule retains the requirement for employers to report work-related fatalities to OSHA within eight hours of the event but amends the regulation to require employers to report all work-related in-patient hospitalizations, as well as amputations and losses of an eye, to OSHA within 24 hours of the event.

  9. Analysis of Traffic Signals on a Software-Defined Network for Detection and Classification of a Man-in-the-Middle Attack

    DTIC Science & Technology

    2017-09-01

    unique characteristics of reported anomalies in the collected traffic signals to build a classification framework. Other cyber events, such as a...Furthermore, we identify unique characteristics of reported anomalies in the collected traffic signals to build a classification framework. Other cyber...2]. The applications build flow rules using network topology information provided by the control plane [1]. Since the control plane is able to

  10. Development of a clinical prediction rule for risk stratification of recurrent venous thromboembolism in patients with cancer-associated venous thromboembolism.

    PubMed

    Louzada, Martha L; Carrier, Marc; Lazo-Langner, Alejandro; Dao, Vi; Kovacs, Michael J; Ramsay, Timothy O; Rodger, Marc A; Zhang, Jerry; Lee, Agnes Y Y; Meyer, Guy; Wells, Philip S

    2012-07-24

    Long-term low-molecular-weight heparin (LMWH) is the current standard for treatment of venous thromboembolism (VTE) in cancer patients. Whether treatment strategies should vary according to individual risk of VTE recurrence remains unknown. We performed a retrospective cohort study and a validation study in patients with cancer-associated VTE to derive a clinical prediction rule that stratifies VTE recurrence risk. The cohort study of 543 patients determined the model with the best classification performance included 4 independent predictors (sex, primary tumor site, stage, and prior VTE) with 100% sensitivity, a wide separation of recurrence rates, 98.1% negative predictive value, and a negative likelihood ratio of 0.16. In this model, the score sum ranged between -3 and 3 score points. Patients with a score ≤ 0 had low risk (≤ 4.5%) for recurrence and patients with a score >1 had a high risk (≥ 19%) for VTE recurrence. Subsequently, we applied and validated the rule in an independent set of 819 patients from 2 randomized, controlled trials comparing low-molecular-weight heparin to coumarin treatment in cancer patients. By identifying VTE recurrence risk in cancer patients with VTE, we may be able to tailor treatment, improving clinical outcomes while minimizing costs.

  11. A drop in performance on a fluid intelligence test due to instructed-rule mindset.

    PubMed

    ErEl, Hadas; Meiran, Nachshon

    2017-09-01

    A 'mindset' is a configuration of processing resources that are made available for the task at hand as well as their suitable tuning for carrying it out. Of special interest, remote-relation abstract mindsets are introduced by activities sharing only general control processes with the task. To test the effect of a remote-relation mindset on performance on a Fluid Intelligence test (Raven's Advanced Progressive Matrices, RAPM), we induced a mindset associated with little usage of executive processing by requiring participants to execute a well-defined classification rule 12 times, a manipulation known from previous work to drastically impair rule-generation performance and associated cognitive processes. In Experiment 1, this manipulation led to a drop in RAPM performance equivalent to 10.1 IQ points. No drop was observed in a General Knowledge task. In Experiment 2, a similar drop in RAPM performance was observed (equivalent to 7.9 and 9.2 IQ points) regardless if participants were pre-informed about the upcoming RAPM test. These results indicate strong (most likely, transient) adverse effects of a remote-relation mindset on test performance. They imply that although the trait of Fluid Intelligence has probably not changed, mindsets can severely distort estimates of this trait.

  12. Evolving rule-based systems in two medical domains using genetic programming.

    PubMed

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf

    2004-11-01

    To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.

  13. Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects

    NASA Technical Reports Server (NTRS)

    Kettig, R. L.

    1975-01-01

    A method of classification of digitized multispectral images is developed and experimentally evaluated on actual earth resources data collected by aircraft and satellite. The method is designed to exploit the characteristic dependence between adjacent states of nature that is neglected by the more conventional simple-symmetric decision rule. Thus contextual information is incorporated into the classification scheme. The principle reason for doing this is to improve the accuracy of the classification. For general types of dependence this would generally require more computation per resolution element than the simple-symmetric classifier. But when the dependence occurs in the form of redundance, the elements can be classified collectively, in groups, therby reducing the number of classifications required.

  14. Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients.

    PubMed

    Cangelosi, Davide; Muselli, Marco; Parodi, Stefano; Blengio, Fabiola; Becherini, Pamela; Versteeg, Rogier; Conte, Massimo; Varesio, Luigi

    2014-01-01

    Cancer patient's outcome is written, in part, in the gene expression profile of the tumor. We previously identified a 62-probe sets signature (NB-hypo) to identify tissue hypoxia in neuroblastoma tumors and showed that NB-hypo stratified neuroblastoma patients in good and poor outcome 1. It was important to develop a prognostic classifier to cluster patients into risk groups benefiting of defined therapeutic approaches. Novel classification and data discretization approaches can be instrumental for the generation of accurate predictors and robust tools for clinical decision support. We explored the application to gene expression data of Rulex, a novel software suite including the Attribute Driven Incremental Discretization technique for transforming continuous variables into simplified discrete ones and the Logic Learning Machine model for intelligible rule generation. We applied Rulex components to the problem of predicting the outcome of neuroblastoma patients on the bases of 62 probe sets NB-hypo gene expression signature. The resulting classifier consisted in 9 rules utilizing mainly two conditions of the relative expression of 11 probe sets. These rules were very effective predictors, as shown in an independent validation set, demonstrating the validity of the LLM algorithm applied to microarray data and patients' classification. The LLM performed as efficiently as Prediction Analysis of Microarray and Support Vector Machine, and outperformed other learning algorithms such as C4.5. Rulex carried out a feature selection by selecting a new signature (NB-hypo-II) of 11 probe sets that turned out to be the most relevant in predicting outcome among the 62 of the NB-hypo signature. Rules are easily interpretable as they involve only few conditions. Our findings provided evidence that the application of Rulex to the expression values of NB-hypo signature created a set of accurate, high quality, consistent and interpretable rules for the prediction of neuroblastoma patients' outcome. We identified the Rulex weighted classification as a flexible tool that can support clinical decisions. For these reasons, we consider Rulex to be a useful tool for cancer classification from microarray gene expression data.

  15. The Comprehensive AOCMF Classification: Skull Base and Cranial Vault Fractures – Level 2 and 3 Tutorial

    PubMed Central

    Ieva, Antonio Di; Audigé, Laurent; Kellman, Robert M.; Shumrick, Kevin A.; Ringl, Helmut; Prein, Joachim; Matula, Christian

    2014-01-01

    The AOCMF Classification Group developed a hierarchical three-level craniomaxillofacial classification system with increasing level of complexity and details. The highest level 1 system distinguish four major anatomical units, including the mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). This tutorial presents the level 2 and more detailed level 3 systems for the skull base and cranial vault units. The level 2 system describes fracture location outlining the topographic boundaries of the anatomic regions, considering in particular the endocranial and exocranial skull base surfaces. The endocranial skull base is divided into nine regions; a central skull base adjoining a left and right side are divided into the anterior, middle, and posterior skull base. The exocranial skull base surface and cranial vault are divided in regions defined by the names of the bones involved: frontal, parietal, temporal, sphenoid, and occipital bones. The level 3 system allows assessing fracture morphology described by the presence of fracture fragmentation, displacement, and bone loss. A documentation of associated intracranial diagnostic features is proposed. This tutorial is organized in a sequence of sections dealing with the description of the classification system with illustrations of the topographical skull base and cranial vault regions along with rules for fracture location and coding, a series of case examples with clinical imaging and a general discussion on the design of this classification. PMID:25489394

  16. Carbamates and ICH M7 classification: Making use of expert knowledge.

    PubMed

    Hemingway, Rachel; Fowkes, Adrian; Williams, Richard V

    2017-06-01

    Carbamates are widely used in the chemical industry so understanding their toxicity is important to safety assessment. Carbamates have been associated with certain toxicities resulting in publication of structural alerts, including alerts for mutagenicity. Structural alerts for bacterial mutagenicity can be used in combination with statistical systems to enable ICH M7 classification, which allows assessment of the genotoxic risk posed by pharmaceutical impurities. This study tested a hypothetical bacterial mutagenicity alert for carbamates and examined the impact it would have on ICH M7 classifications using (Q)SAR predictions from the expert rule-based system Derek Nexus and the statistical-based system Sarah Nexus. Public datasets have a low prevalence of mutagenic carbamates, which highlighted that systems containing an alert for carbamates perform poorly for achieving correct ICH M7 classifications. Carbamates are commonly used as protecting groups and proprietary datasets containing such compounds were also found to have a low prevalence of mutagenic compounds. Expert review of the mutagenic compounds established that mutagenicity was often only observed under certain (non-standard) conditions and more generally that the Ames test may be a poor predictor for the risk of carcinogenicity posed by chemicals in this class. Overall a structural alert for the in vitro bacterial mutagenesis of carbamates does not benefit workflows for assigning ICH M7 classification to impurities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Rule-driven defect detection in CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2000-01-01

    This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (...

  18. Improving Emergency Department Triage Classification with Computerized Clinical Decision Support at a Pediatric Hospital

    ERIC Educational Resources Information Center

    Kunisch, Joseph Martin

    2012-01-01

    Background: The Emergency Severity Index (ESI) is an emergency department (ED) triage classification system based on estimated patient-specific resource utilization. Rules for a computerized clinical decision support (CDS) system based on a patient's chief complaint were developed and tested using a stochastic model for predicting ESI scores.…

  19. Differential diagnosis of pleural mesothelioma using Logic Learning Machine.

    PubMed

    Parodi, Stefano; Filiberti, Rosa; Marroni, Paola; Libener, Roberta; Ivaldi, Giovanni Paolo; Mussap, Michele; Ferrari, Enrico; Manneschi, Chiara; Montani, Erika; Muselli, Marco

    2015-01-01

    Tumour markers are standard tools for the differential diagnosis of cancer. However, the occurrence of nonspecific symptoms and different malignancies involving the same cancer site may lead to a high proportion of misclassifications. Classification accuracy can be improved by combining information from different markers using standard data mining techniques, like Decision Tree (DT), Artificial Neural Network (ANN), and k-Nearest Neighbour (KNN) classifier. Unfortunately, each method suffers from some unavoidable limitations. DT, in general, tends to show a low classification performance, whereas ANN and KNN produce a "black-box" classification that does not provide biological information useful for clinical purposes. Logic Learning Machine (LLM) is an innovative method of supervised data analysis capable of building classifiers described by a set of intelligible rules including simple conditions in their antecedent part. It is essentially an efficient implementation of the Switching Neural Network model and reaches excellent classification accuracy while keeping low the computational demand. LLM was applied to data from a consecutive cohort of 169 patients admitted for diagnosis to two pulmonary departments in Northern Italy from 2009 to 2011. Patients included 52 malignant pleural mesotheliomas (MPM), 62 pleural metastases (MTX) from other tumours and 55 benign diseases (BD) associated with pleurisies. Concentration of three tumour markers (CEA, CYFRA 21-1 and SMRP) was measured in the pleural fluid of each patient and a cytological examination was also carried out. The performance of LLM and that of three competing methods (DT, KNN and ANN) was assessed by leave-one-out cross-validation. LLM outperformed all other considered methods. Global accuracy was 77.5% for LLM, 72.8% for DT, 54.4% for KNN, and 63.9% for ANN, respectively. In more details, LLM correctly classified 79% of MPM, 66% of MTX and 89% of BD. The corresponding figures for DT were: MPM = 83%, MTX = 55% and BD = 84%; for KNN: MPM = 58%, MTX = 45%, BD = 62%; for ANN: MPM = 71%, MTX = 47%, BD = 76%. Finally, LLM provided classification rules in a very good agreement with a priori knowledge about the biological role of the considered tumour markers. LLM is a new flexible tool potentially useful for the differential diagnosis of pleural mesothelioma.

  20. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode classification methods. On empirical data their classification performances are at a comparable level to the other methods. Conclusions The classification analysis shows that supervised machine learning methods are promising candidates for handling with success the DNA Barcoding species classification problem, obtaining excellent performances. To conclude, a powerful tool to perform species identification is now available to the DNA Barcoding community. PMID:24721333

  1. Automatic evidence quality prediction to support evidence-based decision making.

    PubMed

    Sarker, Abeed; Mollá, Diego; Paris, Cécile

    2015-06-01

    Evidence-based medicine practice requires practitioners to obtain the best available medical evidence, and appraise the quality of the evidence when making clinical decisions. Primarily due to the plethora of electronically available data from the medical literature, the manual appraisal of the quality of evidence is a time-consuming process. We present a fully automatic approach for predicting the quality of medical evidence in order to aid practitioners at point-of-care. Our approach extracts relevant information from medical article abstracts and utilises data from a specialised corpus to apply supervised machine learning for the prediction of the quality grades. Following an in-depth analysis of the usefulness of features (e.g., publication types of articles), they are extracted from the text via rule-based approaches and from the meta-data associated with the articles, and then applied in the supervised classification model. We propose the use of a highly scalable and portable approach using a sequence of high precision classifiers, and introduce a simple evaluation metric called average error distance (AED) that simplifies the comparison of systems. We also perform elaborate human evaluations to compare the performance of our system against human judgments. We test and evaluate our approaches on a publicly available, specialised, annotated corpus containing 1132 evidence-based recommendations. Our rule-based approach performs exceptionally well at the automatic extraction of publication types of articles, with F-scores of up to 0.99 for high-quality publication types. For evidence quality classification, our approach obtains an accuracy of 63.84% and an AED of 0.271. The human evaluations show that the performance of our system, in terms of AED and accuracy, is comparable to the performance of humans on the same data. The experiments suggest that our structured text classification framework achieves evaluation results comparable to those of human performance. Our overall classification approach and evaluation technique are also highly portable and can be used for various evidence grading scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Decision Rules for Pictorial Threat Classification

    DTIC Science & Technology

    2009-07-01

    utilise un seul indice pour classifier des cibles, et la stratégie de classification bayesienne qui repose sur des modèles de statistiques...L’approche heuristique consistant à « ne garder que le meilleur en vue de la classification » (TTB-C) repose sur l’hypothèse qu’un seul repère, hautement...stratégie bayesienne repose sur le recrutement de mécanismes perceptuels automatiques, elle peut s’avérer plus profitable dans des situations où

  3. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  4. Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal Year 2018. Final rule.

    PubMed

    2017-08-03

    This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2018 as required by the statute. As required by section 1886(j)(5) of the Social Security Act (the Act), this rule includes the classification and weighting factors for the IRF prospective payment system's (IRF PPS) case-mix groups and a description of the methodologies and data used in computing the prospective payment rates for FY 2018. This final rule also revises the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) diagnosis codes that are used to determine presumptive compliance under the "60 percent rule," removes the 25 percent payment penalty for inpatient rehabilitation facility patient assessment instrument (IRF-PAI) late transmissions, removes the voluntary swallowing status item (Item 27) from the IRF-PAI, summarizes comments regarding the criteria used to classify facilities for payment under the IRF PPS, provides for a subregulatory process for certain annual updates to the presumptive methodology diagnosis code lists, adopts the use of height/weight items on the IRF-PAI to determine patient body mass index (BMI) greater than 50 for cases of single-joint replacement under the presumptive methodology, and revises and updates measures and reporting requirements under the IRF quality reporting program (QRP).

  5. Sleep Promotes the Extraction of Grammatical Rules

    PubMed Central

    Nieuwenhuis, Ingrid L. C.; Folia, Vasiliki; Forkstam, Christian; Jensen, Ole; Petersson, Karl Magnus

    2013-01-01

    Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep) or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1) the holistic abstraction of the underlying grammar rules and (2) the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired. PMID:23755173

  6. The Origin of Exemplar Effects in Rule-Driven Categorization

    ERIC Educational Resources Information Center

    Lacroix, Guy L.; Giguere, Gyslain; Larochelle, Serge

    2005-01-01

    S. W. Allen and L. R. Brooks (1991) have shown that exemplar memory can affect categorization even when participants are provided with a classification rule. G. Regehr and L. R. Brooks (1993) argued that stimuli must be individuated for such effects to occur. In this study, the authors further analyze the conditions that yield exemplar effects in…

  7. Algorithm Diversity for Resilent Systems

    DTIC Science & Technology

    2016-06-27

    data structures. 15. SUBJECT TERMS computer security, software diversity, program transformation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18...systematic method for transforming Datalog rules with general universal and existential quantification into efficient algorithms with precise complexity...worst case in the size of the ground rules. There are numerous choices during the transformation that lead to diverse algorithms and different

  8. Measuring Metasyntactic Abilities: On a Classification of Metasyntactic Tasks.

    PubMed

    Simard, Daphnée; Labelle, Marie; Bergeron, Annie

    2017-04-01

    Researchers working on metasyntactic abilities (i.e., the metalinguistic ability associated with syntax) face the problem of defining and measuring them. Metasyntactic abilities is a multifaceted concept, which encompasses various types of behaviours, from being able to intentionally manipulate syntactic structures to being able to state syntactic rules, and the way in which it is defined and measured varies greatly from one study to another. The present paper proposes a theoretically informed classification of syntax related tasks. The first part presents previous research defining and distinguishing various types of syntactic and metasyntactic abilities and their interrelations. In the second part, commonly used tasks are described and analyzed in terms of the framework presented, with the aim of better pinpointing the type of ability measured by each task. Ultimately, with this analysis of commonly used tasks, we hope to offer criteria for discriminating between the various measures of metasyntactic abilities.

  9. Standards and reliability in evaluation: when rules of thumb don't apply.

    PubMed

    Norcini, J J

    1999-10-01

    The purpose of this paper is to identify situations in which two rules of thumb in evaluation do not apply. The first rule is that all standards should be absolute. When selection decisions are being made or when classroom tests are given, however, relative standards may be better. The second rule of thumb is that every test should have a reliability of .80 or better. Depending on the circumstances, though, the standard error of measurement, the consistency of pass/fail classifications, and the domain-referenced reliability coefficients may be better indicators of reproducibility.

  10. Evaluation of air quality zone classification methods based on ambient air concentration exposure.

    PubMed

    Freeman, Brian; McBean, Ed; Gharabaghi, Bahram; Thé, Jesse

    2017-05-01

    Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO 2 and 8-hr O 3 within a zone that meets the compliance requirements of each method. The first method, the "3 Strike" method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity of the statistical tests, causing the null hypothesis to fail. Local air quality managers can use either methodology to classify the compliance of an air zone, but must accept that the 99% Rule method may cause exposures that are statistically more significant than the 3 Strike method. A novel method using the Central Limit Theorem and Monte Carlo analysis is used to directly compare different air standard compliance classification methods by estimating the chronic daily intake of pollutants. This method allows air quality managers to rapidly see how individual classification methods may impact individual population groups, as well as to evaluate different pollutants based on dosage and exposure when complete health impacts are not known.

  11. The Hpp Rule with Memory and the Density Classification Task

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    This article considers an extension to the standard framework of cellular automata by implementing memory capability in cells. It is shown that the important block HPP rule behaves as an excellent classifier of the density in the initial configuration when applied to cells endowed with pondered memory of their previous states. If the weighing is made so that the most recent state values are assigning the highest weights, the HPP rule surpasses the performance of the best two-dimensional density classifiers reported in the literature.

  12. Program for Experimentation With Expert Systems

    NASA Technical Reports Server (NTRS)

    Engle, S. W.

    1986-01-01

    CERBERUS is forward-chaining, knowledge-based system program useful for experimentation with expert systems. Inference-engine mechanism performs deductions according to user-supplied rule set. Information stored in intermediate area, and user interrogated only when no applicable data found in storage. Each assertion posed by CERBERUS answered with certainty ranging from 0 to 100 percent. Rule processor stops investigating applicable rules when goal reaches certainty of 95 percent or higher. Capable of operating for wide variety of domains. Sample rule files included for animal identification, pixel classification in image processing, and rudimentary car repair for novice mechanic. User supplies set of end goals or actions. System complexity decided by user's rule file. CERBERUS written in FORTRAN 77.

  13. An Expert System for Diagnosis of Sleep Disorder Using Fuzzy Rule-Based Classification Systems

    NASA Astrophysics Data System (ADS)

    Septem Riza, Lala; Pradini, Mila; Fitrajaya Rahman, Eka; Rasim

    2017-03-01

    Sleep disorder is an anomaly that could cause problems for someone’ sleeping pattern. Nowadays, it becomes an issue since people are getting busy with their own business and have no time to visit the doctors. Therefore, this research aims to develop a system used for diagnosis of sleep disorder using Fuzzy Rule-Based Classification System (FRBCS). FRBCS is a method based on the fuzzy set concepts. It consists of two steps: (i) constructing a model/knowledge involving rulebase and database, and (ii) prediction over new data. In this case, the knowledge is obtained from experts whereas in the prediction stage, we perform fuzzification, inference, and classification. Then, a platform implementing the method is built with a combination between PHP and the R programming language using the “Shiny” package. To validate the system that has been made, some experiments have been done using data from a psychiatric hospital in West Java, Indonesia. Accuracy of the result and computation time are 84.85% and 0.0133 seconds, respectively.

  14. Analytical formulation of cellular automata rules using data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.

    2009-05-01

    We present a unique method for converting traditional cellular automata (CA) rules into analytical function form. CA rules have been successfully used for morphological image processing and volumetric shape recognition and classification. Further, the use of CA rules as analog models to the physical and biological sciences can be significantly extended if analytical (as opposed to discrete) models could be formulated. We show that such transformations are possible. We use as our example John Horton Conway's famous "Game of Life" rule set. We show that using Data Modeling, we are able to derive both polynomial and bi-spectrum models of the IF-THEN rules that yield equivalent results. Further, we demonstrate that the "Game of Life" rule set can be modeled using the multi-fluxion, yielding a closed form nth order derivative and integral. All of the demonstrated analytical forms of the CA rule are general and applicable to real-time use.

  15. A Comparison Study of Rule Space Method and Neural Network Model for Classifying Individuals and an Application.

    ERIC Educational Resources Information Center

    Hayashi, Atsuhiro

    Both the Rule Space Method (RSM) and the Neural Network Model (NNM) are techniques of statistical pattern recognition and classification approaches developed for applications from different fields. RSM was developed in the domain of educational statistics. It started from the use of an incidence matrix Q that characterizes the underlying cognitive…

  16. 78 FR 42875 - Community Right-to-Know; Adoption of 2012 North American Industry Classification System (NAICS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ....regulations.gov or email. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA.../ . SUPPLEMENTARY INFORMATION: I. Why is EPA using a direct final rule? EPA is publishing this rule without a prior... entity, consult the person listed in the FOR FURTHER INFORMATION CONTACT section. III. What should I...

  17. 29 CFR 2530.210 - Employer or employers maintaining the plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this section sets forth special break in service rules for such plans. Paragraph (g) of this section applies the break in service rules of sections 202(b)(4) and 203(b)(3)(D) of the Act and sections 410(a)(5...” shall mean service with an employer or employers maintaining the plan within a job classification or...

  18. 29 CFR 2530.210 - Employer or employers maintaining the plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section sets forth special break in service rules for such plans. Paragraph (g) of this section applies the break in service rules of sections 202(b)(4) and 203(b)(3)(D) of the Act and sections 410(a)(5...” shall mean service with an employer or employers maintaining the plan within a job classification or...

  19. 29 CFR 2530.210 - Employer or employers maintaining the plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section sets forth special break in service rules for such plans. Paragraph (g) of this section applies the break in service rules of sections 202(b)(4) and 203(b)(3)(D) of the Act and sections 410(a)(5...” shall mean service with an employer or employers maintaining the plan within a job classification or...

  20. 29 CFR 2530.210 - Employer or employers maintaining the plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this section sets forth special break in service rules for such plans. Paragraph (g) of this section applies the break in service rules of sections 202(b)(4) and 203(b)(3)(D) of the Act and sections 410(a)(5...” shall mean service with an employer or employers maintaining the plan within a job classification or...

  1. 29 CFR 2530.210 - Employer or employers maintaining the plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section sets forth special break in service rules for such plans. Paragraph (g) of this section applies the break in service rules of sections 202(b)(4) and 203(b)(3)(D) of the Act and sections 410(a)(5...” shall mean service with an employer or employers maintaining the plan within a job classification or...

  2. Landcover classification in MRF context using Dempster-Shafer fusion for multisensor imagery.

    PubMed

    Sarkar, Anjan; Banerjee, Anjan; Banerjee, Nilanjan; Brahma, Siddhartha; Kartikeyan, B; Chakraborty, Manab; Majumder, K L

    2005-05-01

    This work deals with multisensor data fusion to obtain landcover classification. The role of feature-level fusion using the Dempster-Shafer rule and that of data-level fusion in the MRF context is studied in this paper to obtain an optimally segmented image. Subsequently, segments are validated and classification accuracy for the test data is evaluated. Two examples of data fusion of optical images and a synthetic aperture radar image are presented, each set having been acquired on different dates. Classification accuracies of the technique proposed are compared with those of some recent techniques in literature for the same image data.

  3. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2010; minimum data set, version 3.0 for skilled nursing facilities and Medicaid nursing facilities. Final rule.

    PubMed

    2009-08-11

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2010. In addition, it recalibrates the case-mix indexes so that they more accurately reflect parity in expenditures related to the implementation of case-mix refinements in January 2006. It also discusses the results of our ongoing analysis of nursing home staff time measurement data collected in the Staff Time and Resource Intensity Verification project, as well as a new Resource Utilization Groups, version 4 case-mix classification model for FY 2011 that will use the updated Minimum Data Set 3.0 resident assessment for case-mix classification. In addition, this final rule discusses the public comments that we have received on these and other issues, including a possible requirement for the quarterly reporting of nursing home staffing data, as well as on applying the quality monitoring mechanism in place for all other SNF PPS facilities to rural swing-bed hospitals. Finally, this final rule revises the regulations to incorporate certain technical corrections.

  4. E-book recommender system design and implementation based on data mining

    NASA Astrophysics Data System (ADS)

    Wang, Zongjiang

    2011-12-01

    In the knowledge explosion, rapid development of information age, how quickly the user or users interested in useful information for feedback to the user problem to be solved in this article. This paper based on data mining, association rules to the model and classification model a combination of electronic books on the recommendation of the user's neighboring users interested in e-books to target users. Introduced the e-book recommendation and the key technologies, system implementation algorithms, and implementation process, was proved through experiments that this system can help users quickly find the required e-books.

  5. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  6. A Novel Modulation Classification Approach Using Gabor Filter Network

    PubMed Central

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603

  7. Maximizing the Predictive Value of Production Rules

    DTIC Science & Technology

    1988-08-31

    Clancev, 1985] Clancey, W. "Heuristic Classification." Artifcial Intelligence . 27 (1985) 289-350. [Crawford, 19881 Crawford, S. "Extensions to the CART...Optimality 16 6.1.2. Comparative Analysis for Normally Distributed Data 17 6.2. Comparison with Alternative Machine Learning Methods 18 6.2.1. Alternative...are reported on data sets previously analyzed in the Al literature using alternative classification techniques. 1. Introduction MIanv decision-making

  8. Optimal number of features as a function of sample size for various classification rules.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R

    2005-04-15

    Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.

  9. Compiling standardized information from clinical practice: using content analysis and ICF Linking Rules in a goal-oriented youth rehabilitation program.

    PubMed

    Lustenberger, Nadia A; Prodinger, Birgit; Dorjbal, Delgerjargal; Rubinelli, Sara; Schmitt, Klaus; Scheel-Sailer, Anke

    2017-09-23

    To illustrate how routinely written narrative admission and discharge reports of a rehabilitation program for eight youths with chronic neurological health conditions can be transformed to the International Classification of Functioning, Disability and Health. First, a qualitative content analysis was conducted by building meaningful units with text segments assigned of the reports to the five elements of the Rehab-Cycle ® : goal; assessment; assignment; intervention; evaluation. Second, the meaningful units were then linked to the ICF using the refined ICF Linking Rules. With the first step of transformation, the emphasis of the narrative reports changed to a process oriented interdisciplinary layout, revealing three thematic blocks of goals: mobility, self-care, mental, and social functions. The linked 95 unique ICF codes could be grouped in clinically meaningful goal-centered ICF codes. Between the two independent linkers, the agreement rate was improved after complementing the rules with additional agreements. The ICF Linking Rules can be used to compile standardized health information from narrative reports if prior structured. The process requires time and expertise. To implement the ICF into common practice, the findings provide the starting point for reporting rehabilitation that builds upon existing practice and adheres to international standards. Implications for Rehabilitation This study provides evidence that routinely collected health information from rehabilitation practice can be transformed to the International Classification of Functioning, Disability and Health by using the "ICF Linking Rules", however, this requires time and expertise. The Rehab-Cycle ® , including assessments, assignments, goal setting, interventions and goal evaluation, serves as feasible framework for structuring this rehabilitation program and ensures that the complexity of local practice is appropriately reflected. The refined "ICF Linking Rules" lead to a standardized transformation process of narrative text and thus a higher quality with increased transparency. As a next step, the resulting format of goal codes supplemented by goal-clarifying codes could be validated to strengthen the implementation of the International Classification of Functioning, Disability and Health into rehabilitation routine by respecting the variety of clinical practice.

  10. Identification of genetic markers for treatment success in heart failure patients: insight from cardiac resynchronization therapy.

    PubMed

    Schmitz, Boris; De Maria, Renata; Gatsios, Dimitris; Chrysanthakopoulou, Theodora; Landolina, Maurizio; Gasparini, Maurizio; Campolo, Jonica; Parolini, Marina; Sanzo, Antonio; Galimberti, Paola; Bianchi, Michele; Lenders, Malte; Brand, Eva; Parodi, Oberdan; Lunati, Maurizio; Brand, Stefan-Martin

    2014-12-01

    Cardiac resynchronization therapy (CRT) can improve ventricular size, shape, and mass and reduce mitral regurgitation by reverse remodeling of the failing ventricle. About 30% of patients do not respond to this therapy for unknown reasons. In this study, we aimed at the identification and classification of CRT responder by the use of genetic variants and clinical parameters. Of 1421 CRT patients, 207 subjects were consecutively selected, and CRT responder and nonresponder were matched for their baseline parameters before CRT. Treatment success of CRT was defined as a decrease in left ventricular end-systolic volume >15% at follow-up echocardiography compared with left ventricular end-systolic volume at baseline. All other changes classified the patient as CRT nonresponder. A genetic association study was performed, which identified 4 genetic variants to be associated with the CRT responder phenotype at the allelic (P<0.035) and genotypic (P<0.031) level: rs3766031 (ATPIB1), rs5443 (GNB3), rs5522 (NR3C2), and rs7325635 (TNFSF11). Machine learning algorithms were used for the classification of CRT patients into responder and nonresponder status, including combinations of the identified genetic variants and clinical parameters. We demonstrated that rule induction algorithms can successfully be applied for the classification of heart failure patients in CRT responder and nonresponder status using clinical and genetic parameters. Our analysis included information on alleles and genotypes of 4 genetic loci, rs3766031 (ATPIB1), rs5443 (GNB3), rs5522 (NR3C2), and rs7325635 (TNFSF11), pathophysiologically associated with remodeling of the failing ventricle. © 2014 American Heart Association, Inc.

  11. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  12. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  13. Combined rule extraction and feature elimination in supervised classification.

    PubMed

    Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E

    2012-09-01

    There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.

  14. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  15. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  16. Analyzing injury severity factors at highway railway grade crossing accidents involving vulnerable road users: A comparative study.

    PubMed

    Ghomi, Haniyeh; Bagheri, Morteza; Fu, Liping; Miranda-Moreno, Luis F

    2016-11-16

    The main objective of this study is to identify the main factors associated with injury severity of vulnerable road users (VRUs) involved in accidents at highway railroad grade crossings (HRGCs) using data mining techniques. This article applies an ordered probit model, association rules, and classification and regression tree (CART) algorithms to the U.S. Federal Railroad Administration's (FRA) HRGC accident database for the period 2007-2013 to identify VRU injury severity factors at HRGCs. The results show that train speed is a key factor influencing injury severity. Further analysis illustrated that the presence of illumination does not reduce the severity of accidents for high-speed trains. In addition, there is a greater propensity toward fatal accidents for elderly road users compared to younger individuals. Interestingly, at night, injury accidents involving female road users are more severe compared to those involving males. The ordered probit model was the primary technique, and CART and association rules act as the supporter and identifier of interactions between variables. All 3 algorithms' results consistently show that the most influential accident factors are train speed, VRU age, and gender. The findings of this research could be applied for identifying high-risk hotspots and developing cost-effective countermeasures targeting VRUs at HRGCs.

  17. Diagnosing Cognitive Errors: Statistical Pattern Classification and Recognition Approach

    DTIC Science & Technology

    1985-01-01

    often produces several different erroneous rules. For example, when adding two fractions with different denominators, many students add the numerators ...common denominator and add the numerators . As listed in Tatsuoka (1984a), there are eleven different erroneous rules which result from a misconception...the score of five. These patterns correspond to different values of 42 (Tatsuoka, 1985) The numerator of 42 is divided into two parts in Equation (5

  18. Applications of rule-induction in the derivation of quantitative structure-activity relationships.

    PubMed

    A-Razzak, M; Glen, R C

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  19. Applications of rule-induction in the derivation of quantitative structure-activity relationships

    NASA Astrophysics Data System (ADS)

    A-Razzak, Mohammed; Glen, Robert C.

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  20. Nearest Neighbor Algorithms for Pattern Classification

    NASA Technical Reports Server (NTRS)

    Barrios, J. O.

    1972-01-01

    A solution of the discrimination problem is considered by means of the minimum distance classifier, commonly referred to as the nearest neighbor (NN) rule. The NN rule is nonparametric, or distribution free, in the sense that it does not depend on any assumptions about the underlying statistics for its application. The k-NN rule is a procedure that assigns an observation vector z to a category F if most of the k nearby observations x sub i are elements of F. The condensed nearest neighbor (CNN) rule may be used to reduce the size of the training set required categorize The Bayes risk serves merely as a reference-the limit of excellence beyond which it is not possible to go. The NN rule is bounded below by the Bayes risk and above by twice the Bayes risk.

  1. Knowledge-guided mutation in classification rules for autism treatment efficacy.

    PubMed

    Engle, Kelley; Rada, Roy

    2017-03-01

    Data mining methods in biomedical research might benefit by combining genetic algorithms with domain-specific knowledge. The objective of this research is to show how the evolution of treatment rules for autism might be guided. The semantic distance between two concepts in the taxonomy is measured by the number of relationships separating the concepts in the taxonomy. The hypothesis is that replacing a concept in a treatment rule will change the accuracy of the rule in direct proportion to the semantic distance between the concepts. The method uses a patient database and autism taxonomies. Treatment rules are developed with an algorithm that exploits the taxonomies. The results support the hypothesis. This research should both advance the understanding of autism data mining in particular and of knowledge-guided evolutionary search in biomedicine in general.

  2. Correlation of Clinicoserologic and Pathologic Classifications of Inflammatory Myopathies

    PubMed Central

    Fernandez, Carla; Bardin, Nathalie; De Paula, André Maues; Salort-Campana, Emmanuelle; Benyamine, Audrey; Franques, Jérôme; Schleinitz, Nicolas; Weiller, Pierre-Jean; Pouget, Jean; Pellissier, Jean-François; Figarella-Branger, Dominique

    2013-01-01

    Abstract The idiopathic inflammatory myopathies (IIM) are acquired muscle diseases characterized by muscle weakness and inflammation on muscle biopsy. Clinicoserologic classifications do not take muscle histology into account to distinguish the subsets of IIM. Our objective was to determine the pathologic features of each serologic subset of IIM and to correlate muscle biopsy results with the clinicoserologic classification defined by Troyanov et al, and with the final diagnoses. We retrospectively studied a cohort of 178 patients with clinicopathologic features suggestive of IIM with the exclusion of inclusion body myositis. At the end of follow-up, 156 of 178 cases were still categorized as IIM: pure dermatomyositis, n = 44; pure polymyositis, n = 14; overlap myositis, n = 68; necrotizing autoimmune myopathy, n = 8; cancer-associated myositis, n = 18; and unclassified IIM, n = 4. The diagnosis of IIM was ruled out in the 22 remaining cases. Pathologic dermatomyositis was the most frequent histologic picture in all serologic subsets of IIM, with the exception of patients with anti-Ku or anti-SRP autoantibodies, suggesting that it supports the histologic diagnosis of pure dermatomyositis, but also myositis of connective tissue diseases and cancer-associated myositis. Unspecified myositis was the second most frequent histologic pattern. It frequently correlated with overlap myositis, especially with anti-Ku or anti-PM-Scl autoantibodies. Pathologic polymyositis was rare and more frequently correlated with myositis mimickers than true polymyositis. The current study shows that clinicoserologic and pathologic data are complementary and must be taken into account when classifying patients with IIM patients. We propose guidelines for diagnosis according to both clinicoserologic and pathologic classifications, to be used in clinical practice. PMID:23269233

  3. Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan

    2012-01-01

    In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

  4. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  5. Learning and transfer of category knowledge in an indirect categorization task.

    PubMed

    Helie, Sebastien; Ashby, F Gregory

    2012-05-01

    Knowledge representations acquired during category learning experiments are 'tuned' to the task goal. A useful paradigm to study category representations is indirect category learning. In the present article, we propose a new indirect categorization task called the "same"-"different" categorization task. The same-different categorization task is a regular same-different task, but the question asked to the participants is about the stimulus category membership instead of stimulus identity. Experiment 1 explores the possibility of indirectly learning rule-based and information-integration category structures using the new paradigm. The results suggest that there is little learning about the category structures resulting from an indirect categorization task unless the categories can be separated by a one-dimensional rule. Experiment 2 explores whether a category representation learned indirectly can be used in a direct classification task (and vice versa). The results suggest that previous categorical knowledge acquired during a direct classification task can be expressed in the same-different categorization task only when the categories can be separated by a rule that is easily verbalized. Implications of these results for categorization research are discussed.

  6. 77 FR 54663 - Administrative Simplification: Adoption of a Standard for a Unique Health Plan Identifier...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...This final rule adopts the standard for a national unique health plan identifier (HPID) and establishes requirements for the implementation of the HPID. In addition, it adopts a data element that will serve as an other entity identifier (OEID), or an identifier for entities that are not health plans, health care providers, or individuals, but that need to be identified in standard transactions. This final rule also specifies the circumstances under which an organization covered health care provider must require certain noncovered individual health care providers who are prescribers to obtain and disclose a National Provider Identifier (NPI). Lastly, this final rule changes the compliance date for the International Classification of Diseases, 10th Revision, Clinical Modification (ICD- 10-CM) for diagnosis coding, including the Official ICD-10-CM Guidelines for Coding and Reporting, and the International Classification of Diseases, 10th Revision, Procedure Coding System (ICD-10-PCS) for inpatient hospital procedure coding, including the Official ICD-10-PCS Guidelines for Coding and Reporting, from October 1, 2013 to October 1, 2014.

  7. Systematic methods for knowledge acquisition and expert system development

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    Nine cooperating rule-based systems, collectively called AUTOCREW which were designed to automate functions and decisions associated with a combat aircraft's subsystems, are discussed. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base and to assess the cooperation between the rule bases. Simulation and comparative workload results for two mission scenarios are given. The scenarios are inbound surface-to-air-missile attack on the aircraft and pilot incapacitation. The methodology used to develop the AUTOCREW knowledge bases is summarized. Issues involved in designing the navigation sensor selection expert in AUTOCREW's NAVIGATOR knowledge base are discussed in detail. The performance of seven navigation systems aiding a medium-accuracy INS was investigated using Kalman filter covariance analyses. A navigation sensor management (NSM) expert system was formulated from covariance simulation data using the analysis of variance (ANOVA) method and the ID3 algorithm. ANOVA results show that statistically different position accuracies are obtained when different navaids are used, the number of navaids aiding the INS is varied, the aircraft's trajectory is varied, and the performance history is varied. The ID3 algorithm determines the NSM expert's classification rules in the form of decision trees. The performance of these decision trees was assessed on two arbitrary trajectories, and the results demonstrate that the NSM expert adapts to new situations and provides reasonable estimates of the expected hybrid performance.

  8. The relationship between strategic control and conscious structural knowledge in artificial grammar learning.

    PubMed

    Norman, Elisabeth; Scott, Ryan B; Price, Mark C; Dienes, Zoltan

    2016-05-01

    We address Jacoby's (1991) proposal that strategic control over knowledge requires conscious awareness of that knowledge. In a two-grammar artificial grammar learning experiment all participants were trained on two grammars, consisting of a regularity in letter sequences, while two other dimensions (colours and fonts) varied randomly. Strategic control was measured as the ability to selectively apply the grammars during classification. For each classification, participants also made a combined judgement of (a) decision strategy and (b) relevant stimulus dimension. Strategic control was found for all types of decision strategy, including trials where participants claimed to lack conscious structural knowledge. However, strong evidence of strategic control only occurred when participants knew or guessed that the letter dimension was relevant, suggesting that strategic control might be associated with - or even causally requires - global awareness of the nature of the rules even though it does not require detailed knowledge of their content. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Automated solar collector installation design

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  10. Application of text mining for customer evaluations in commercial banking

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Du, Xiaojiang; Hao, Pengpeng; Wang, Yanbo J.

    2015-07-01

    Nowadays customer attrition is increasingly serious in commercial banks. To combat this problem roundly, mining customer evaluation texts is as important as mining customer structured data. In order to extract hidden information from customer evaluations, Textual Feature Selection, Classification and Association Rule Mining are necessary techniques. This paper presents all three techniques by using Chinese Word Segmentation, C5.0 and Apriori, and a set of experiments were run based on a collection of real textual data that includes 823 customer evaluations taken from a Chinese commercial bank. Results, consequent solutions, some advice for the commercial bank are given in this paper.

  11. Online ranking by projecting.

    PubMed

    Crammer, Koby; Singer, Yoram

    2005-01-01

    We discuss the problem of ranking instances. In our framework, each instance is associated with a rank or a rating, which is an integer in 1 to k. Our goal is to find a rank-prediction rule that assigns each instance a rank that is as close as possible to the instance's true rank. We discuss a group of closely related online algorithms, analyze their performance in the mistake-bound model, and prove their correctness. We describe two sets of experiments, with synthetic data and with the EachMovie data set for collaborative filtering. In the experiments we performed, our algorithms outperform online algorithms for regression and classification applied to ranking.

  12. Early lactate clearance for predicting active bleeding in critically ill patients with acute upper gastrointestinal bleeding: a retrospective study.

    PubMed

    Wada, Tomoki; Hagiwara, Akiyoshi; Uemura, Tatsuki; Yahagi, Naoki; Kimura, Akio

    2016-08-01

    Not all patients with upper gastrointestinal bleeding (UGIB) require emergency endoscopy. Lactate clearance has been suggested as a parameter for predicting patient outcomes in various critical care settings. This study investigates whether lactate clearance can predict active bleeding in critically ill patients with UGIB. This single-center, retrospective, observational study included critically ill patients with UGIB who met all of the following criteria: admission to the emergency department (ED) from April 2011 to August 2014; had blood samples for lactate evaluation at least twice during the ED stay; and had emergency endoscopy within 6 h of ED presentation. The main outcome was active bleeding detected with emergency endoscopy. Classification and regression tree (CART) analyses were performed using variables associated with active bleeding to derive a prediction rule for active bleeding in critically ill UGIB patients. A total of 154 patients with UGIB were analyzed, and 31.2 % (48/154) had active bleeding. In the univariate analysis, lactate clearance was significantly lower in patients with active bleeding than in those without active bleeding (13 vs. 29 %, P < 0.001). Using the CART analysis, a prediction rule for active bleeding is derived, and includes three variables: lactate clearance; platelet count; and systolic blood pressure at ED presentation. The rule has 97.9 % (95 % CI 90.2-99.6 %) sensitivity with 32.1 % (28.6-32.9 %) specificity. Lactate clearance may be associated with active bleeding in critically ill patients with UGIB, and may be clinically useful as a component of a prediction rule for active bleeding.

  13. Computer-aided classification of optical images for diagnosis of osteoarthritis in the finger joints.

    PubMed

    Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei

    2011-01-01

    This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.

  14. Using cluster analysis and a classification and regression tree model to developed cover types in the Sky Islands of southeastern Arizona

    Treesearch

    Jose M. Iniguez; Joseph L. Ganey; Peter J. Daughtery; John D. Bailey

    2005-01-01

    The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such a system we qualitatively and quantitatively compared a hierarchical (Ward’s) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups represented by...

  15. Using cluster analysis and a classification and regression tree model to developed cover types in the Sky Islands of southeastern Arizona [Abstract

    Treesearch

    Jose M. Iniguez; Joseph L. Ganey; Peter J. Daugherty; John D. Bailey

    2005-01-01

    The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such system we qualitatively and quantitatively compared a hierarchical (Ward’s) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups and plots...

  16. A crystal-chemical classification of borate structures with emphasis on hydrated borates

    USGS Publications Warehouse

    Christ, C.L.; Clark, J.R.

    1977-01-01

    The rules governing formation of hydrated borate polyanions that were proposed by C.L. Christ in 1960 are critically reviewed and new rules added on the basis of recent crystal structure determinations. Principles and classifications previously published by others are also critically reviewed briefly. The fundamental building blocks from which borate polyanions can be constructed are defined on the basis of the number n of boron atoms, and the fully hydrated polyanions are illustrated. Known structures are grouped accordingly, and a shorthand notation using n and symbols ?? = triangle, T = tetrahedron is introduced so that the polyanions can be easily characterized. For example, 3:??+2T describes [B3O3(OH)5]2-. Correct structural formulas are assigned borates with known structures whereas borates of unknown structure are grouped separately. ?? 1977 Springer-Verlag.

  17. Large-scale optimization-based classification models in medicine and biology.

    PubMed

    Lee, Eva K

    2007-06-01

    We present novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule); and (5) successive multi-stage classification capability to handle data points placed in the reserved-judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multi-group prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80 to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  18. Larger than Life's Extremes: Rigorous Results for Simplified Rules and Speculation on the Phase Boundaries

    NASA Astrophysics Data System (ADS)

    Evans, Kellie Michele

    Larger than Life (LtL), is a four-parameter family of two-dimensional cellular automata that generalizes John Conway's Game of Life (Life) to large neighborhoods and general birth and survival thresholds. LtL was proposed by David Griffeath in the early 1990s to explore whether Life might be a clue to a critical phase point in the threshold-range scaling limit. The LtL family of rules includes Life as well as a rich set of two-dimensional rules, some of which exhibit dynamics vastly different from Life. In this chapter we present rigorous results and conjectures about the ergodic classifications of several sets of "simplified" LtL rules, each of which has a property that makes the rule easier to analyze. For example, these include symmetric rules such as the threshold voter automaton and the anti-voter automaton, monotone rules such as the threshold growth models, and others. We also provide qualitative results and speculation about LtL rules on various phase boundaries and summarize results and open questions about our favorite "Life-like" LtL rules.

  19. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  20. Automated classification of MMPI profiles into psychotic, neurotic or personality disorder types.

    PubMed

    Hatcher, W E

    1978-03-01

    A Fortran program has been developed which can objectively classify Minnesota Multiphasic Inventory (MMPI) profiles as being psychotic, neurotic, personality disorder, or indeterminate types. The method used is a set of configural rules, 'Henrichs' rules for males'. The only input data required are K-corrected T scores, which are the end product of standard scoring techniques. To automate these rules it was necessary to rewrite them so that all decisions were the result of arithmetic comparisons or logical tests using only and, or and not. In particular, examination of the Welsh code, which many rules required, had to be stimulated by the use of several sorted arrays. The program has been carefully tested and is in the use in our computer lab.

  1. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  2. Bug Distribution and Statistical Pattern Classification.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.

    1987-01-01

    The rule space model permits measurement of cognitive skill acquisition and error diagnosis. Further discussion introduces Bayesian hypothesis testing and bug distribution. An illustration involves an artificial intelligence approach to testing fractions and arithmetic. (Author/GDC)

  3. Mapping the categories of the Swedish primary health care version of ICD-10 to SNOMED CT concepts: Rule development and intercoder reliability in a mapping trial

    PubMed Central

    Vikström, Anna; Skånér, Ylva; Strender, Lars-Erik; Nilsson, Gunnar H

    2007-01-01

    Background Terminologies and classifications are used for different purposes and have different structures and content. Linking or mapping terminologies and classifications has been pointed out as a possible way to achieve various aims as well as to attain additional advantages in describing and documenting health care data. The objectives of this study were: • to explore and develop rules to be used in a mapping process • to evaluate intercoder reliability and the assessed degree of concordance when the 'Swedish primary health care version of the International Classification of Diseases version 10' (ICD-10) is matched to the Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) • to describe characteristics in the coding systems that are related to obstacles to high quality mapping. Methods Mapping (interpretation, matching, assessment and rule development) was done by two coders. The Swedish primary health care version of ICD-10 with 972 codes was randomly divided into an allotment of three sets of categories, used in three mapping sequences, A, B and C. Mapping was done independently by the coders and new rules were developed between the sequences. Intercoder reliability was measured by comparing the results after each set. The extent of matching was assessed as either 'partly' or 'completely concordant' Results General principles for mapping were outlined before the first sequence, A. New mapping rules had significant impact on the results between sequences A - B (p < 0.01) and A - C (p < 0.001). The intercoder reliability in our study reached 83%. Obstacles to high quality mapping were mainly a lack of agreement by the coders due to structural and content factors in SNOMED CT and in the current ICD-10 version. The predominant reasons for this were difficulties in interpreting the meaning of the categories in the current ICD-10 version, and the presence of many related concepts in SNOMED CT. Conclusion Mapping from ICD-10-categories to SNOMED CT needs clear and extensive rules. It is possible to reach high intercoder reliability in mapping from ICD-10-categories to SNOMED CT. However, several obstacles to high quality mapping remain due to structure and content characteristics in both coding systems. PMID:17472757

  4. System for selecting relevant information for decision support.

    PubMed

    Kalina, Jan; Seidl, Libor; Zvára, Karel; Grünfeldová, Hana; Slovák, Dalibor; Zvárová, Jana

    2013-01-01

    We implemented a prototype of a decision support system called SIR which has a form of a web-based classification service for diagnostic decision support. The system has the ability to select the most relevant variables and to learn a classification rule, which is guaranteed to be suitable also for high-dimensional measurements. The classification system can be useful for clinicians in primary care to support their decision-making tasks with relevant information extracted from any available clinical study. The implemented prototype was tested on a sample of patients in a cardiological study and performs an information extraction from a high-dimensional set containing both clinical and gene expression data.

  5. Land cover change detection using a GIS-guided, feature-based classification of Landsat thematic mapper data. [Geographic Information System

    NASA Technical Reports Server (NTRS)

    Enslin, William R.; Ton, Jezching; Jain, Anil

    1987-01-01

    Landsat TM data were combined with land cover and planimetric data layers contained in the State of Michigan's geographic information system (GIS) to identify changes in forestlands, specifically new oil/gas wells. A GIS-guided feature-based classification method was developed. The regions extracted by the best image band/operator combination were studied using a set of rules based on the characteristics of the GIS oil/gas pads.

  6. Classification and disease prediction via mathematical programming

    NASA Astrophysics Data System (ADS)

    Lee, Eva K.; Wu, Tsung-Lin

    2007-11-01

    In this chapter, we present classification models based on mathematical programming approaches. We first provide an overview on various mathematical programming approaches, including linear programming, mixed integer programming, nonlinear programming and support vector machines. Next, we present our effort of novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule) and (5) successive multi-stage classification capability to handle data points placed in the reserved judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multigroup prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; multistage discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80% to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  7. Certain and possible rules for decision making using rough set theory extended to fuzzy sets

    NASA Technical Reports Server (NTRS)

    Dekorvin, Andre; Shipley, Margaret F.

    1993-01-01

    Uncertainty may be caused by the ambiguity in the terms used to describe a specific situation. It may also be caused by skepticism of rules used to describe a course of action or by missing and/or erroneous data. To deal with uncertainty, techniques other than classical logic need to be developed. Although, statistics may be the best tool available for handling likelihood, it is not always adequate for dealing with knowledge acquisition under uncertainty. Inadequacies caused by estimating probabilities in statistical processes can be alleviated through use of the Dempster-Shafer theory of evidence. Fuzzy set theory is another tool used to deal with uncertainty where ambiguous terms are present. Other methods include rough sets, the theory of endorsements and nonmonotonic logic. J. Grzymala-Busse has defined the concept of lower and upper approximation of a (crisp) set and has used that concept to extract rules from a set of examples. We will define the fuzzy analogs of lower and upper approximations and use these to obtain certain and possible rules from a set of examples where the data is fuzzy. Central to these concepts will be the idea of the degree to which a fuzzy set A is contained in another fuzzy set B, and the degree of intersection of a set A with set B. These concepts will also give meaning to the statement; A implies B. The two meanings will be: (1) if x is certainly in A then it is certainly in B, and (2) if x is possibly in A then it is possibly in B. Next, classification will be looked at and it will be shown that if a classification will be looked at and it will be shown that if a classification is well externally definable then it is well internally definable, and if it is poorly externally definable then it is poorly internally definable, thus generalizing a result of Grzymala-Busse. Finally, some ideas of how to define consensus and group options to form clusters of rules will be given.

  8. Special report on taxation. New IRS revenue procedure clarifies tax classification of limited liability companies.

    PubMed

    Schieble, M T

    1995-05-01

    Although its rules are complex, the publication of Revenue Procedure 95-10 will substantially facilitate the use of LLCs in those states with statutes that permit significant flexibility in the structuring of LLCs. Previously, the only way to assure that LLCs in those states would be classified as partnerships for income tax purposes was to obtain a private letter ruling from the IRS, often resulting in lengthy delays. The new revenue procedure should provide sufficient guidance in the vast majority of cases to allow tax counsel to determine the appropriate treatment for tax purposes without having to seek an IRS private letter ruling.

  9. A method for classification of multisource data using interval-valued probabilities and its application to HIRIS data

    NASA Technical Reports Server (NTRS)

    Kim, H.; Swain, P. H.

    1991-01-01

    A method of classifying multisource data in remote sensing is presented. The proposed method considers each data source as an information source providing a body of evidence, represents statistical evidence by interval-valued probabilities, and uses Dempster's rule to integrate information based on multiple data source. The method is applied to the problems of ground-cover classification of multispectral data combined with digital terrain data such as elevation, slope, and aspect. Then this method is applied to simulated 201-band High Resolution Imaging Spectrometer (HIRIS) data by dividing the dimensionally huge data source into smaller and more manageable pieces based on the global statistical correlation information. It produces higher classification accuracy than the Maximum Likelihood (ML) classification method when the Hughes phenomenon is apparent.

  10. Systematization method for distinguishing plastic groups by using NIR spectroscopy.

    PubMed

    Kaihara, Mikio; Satoh, Minami; Satoh, Minoru

    2007-07-01

    A systematic classification method for polymers is not yet available in case of using near infrared spectra (NIR). That is why we have been searching for a systematic method. Because raw NIR spectra usually have few obvious peaks, NIR spectra have been pretreated by 2nd derivation for taking well modulated spectra. After the pretreatment, we applied classification and regression trees (CART) to the discrimination between the spectra and the species of polymers. As a result, we obtained a relatively simple classification tree. Judging from the obtained splitting conditions and the classified polymers, we concluded that obtained knowledge on the chemical function groups estimated by the important wavelength regions is not always applicable to this classification tree. However, we clarified the splitting rules for polymer species from the NIR spectral point of view.

  11. 40 CFR 164.123 - Emergency order.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF... Hearings § 164.123 Emergency order. (a) Whenever the Environmental Appeals Board determines that an...

  12. 40 CFR 164.90 - Initial decision.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF... Environmental Appeals Board. The initial decision shall become the decision of the Environmental Appeals Board...

  13. 40 CFR 164.90 - Initial decision.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF... Environmental Appeals Board. The initial decision shall become the decision of the Environmental Appeals Board...

  14. 40 CFR 164.121 - Expedited hearing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF... the presentation of evidence the Presiding Officer shall submit to the Environmental Appeals Board his...

  15. 40 CFR 164.121 - Expedited hearing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF... the presentation of evidence the Presiding Officer shall submit to the Environmental Appeals Board his...

  16. 40 CFR 164.123 - Emergency order.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF... Hearings § 164.123 Emergency order. (a) Whenever the Environmental Appeals Board determines that an...

  17. 49 CFR 806.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SECURITY INFORMATION POLICY AND GUIDELINES, IMPLEMENTING REGULATIONS § 806.2 Applicability. This rule supplements Executive Order 12065 within the Board with regard to national security information. It establishes general policies and certain procedures for the classification and declassification of information...

  18. A novel single neuron perceptron with universal approximation and XOR computation properties.

    PubMed

    Lotfi, Ehsan; Akbarzadeh-T, M-R

    2014-01-01

    We propose a biologically motivated brain-inspired single neuron perceptron (SNP) with universal approximation and XOR computation properties. This computational model extends the input pattern and is based on the excitatory and inhibitory learning rules inspired from neural connections in the human brain's nervous system. The resulting architecture of SNP can be trained by supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine) pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP) with gradient decent backpropagation (GDBP) learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time, and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various problems such as in pattern recognition and classification.

  19. Structural classification of CDR-H3 revisited: a lesson in antibody modeling.

    PubMed

    Kuroda, Daisuke; Shirai, Hiroki; Kobori, Masato; Nakamura, Haruki

    2008-11-15

    Among the six complementarity-determining regions (CDRs) in the variable domains of an antibody, the third CDR of the heavy chain (CDR-H3), which lies in the center of the antigen-binding site, plays a particularly important role in antigen recognition. CDR-H3 shows significant variability in its length, sequence, and structure. Although difficult, model building of this segment is the most critical step in antibody modeling. Since our first proposal of the "H3-rules," which classify CDR-H3 structure based on amino acid sequence, the number of experimentally determined antibody structures has increased. Here, we revise these H3-rules and propose an improved classification scheme for CDR-H3 structure modeling. In addition, we determine the common features of CDR-H3 in antibody drugs as well as discuss the concept of "antibody druggability," which can be applied as an indicator of antibody evaluation during drug discovery.

  20. Study on Ecological Risk Assessment of Guangxi Coastal Zone Based on 3s Technology

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Luo, H.; Ling, Z. Y.; Huang, Y.; Ning, W. Y.; Tang, Y. B.; Shao, G. Z.

    2018-05-01

    This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000-2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape's remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.

  1. Enhanced risk management by an emerging multi-agent architecture

    NASA Astrophysics Data System (ADS)

    Lin, Sin-Jin; Hsu, Ming-Fu

    2014-07-01

    Classification in imbalanced datasets has attracted much attention from researchers in the field of machine learning. Most existing techniques tend not to perform well on minority class instances when the dataset is highly skewed because they focus on minimising the forecasting error without considering the relative distribution of each class. This investigation proposes an emerging multi-agent architecture, grounded on cooperative learning, to solve the class-imbalanced classification problem. Additionally, this study deals further with the obscure nature of the multi-agent architecture and expresses comprehensive rules for auditors. The results from this study indicate that the presented model performs satisfactorily in risk management and is able to tackle a highly class-imbalanced dataset comparatively well. Furthermore, the knowledge visualised process, supported by real examples, can assist both internal and external auditors who must allocate limited detecting resources; they can take the rules as roadmaps to modify the auditing programme.

  2. C-learning: A new classification framework to estimate optimal dynamic treatment regimes.

    PubMed

    Zhang, Baqun; Zhang, Min

    2017-12-11

    A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that determine that next treatment based on each individual's own available characteristics and treatment history up to that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular, at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification error. Based on this classification perspective, we propose a powerful and flexible C-learning algorithm to learn the optimal dynamic treatment regimes backward sequentially from the last stage until the first stage. C-learning is a direct optimization method that directly targets optimizing decision rules by exploiting powerful optimization/classification techniques and it allows incorporation of patient's characteristics and treatment history to improve performance, hence enjoying advantages of both the traditional outcome regression-based methods (Q- and A-learning) and the more recent direct optimization methods. The superior performance and flexibility of the proposed methods are illustrated through extensive simulation studies. © 2017, The International Biometric Society.

  3. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2012. Final rule.

    PubMed

    2011-08-08

    This final rule updates the payment rates used under the prospective payment system for skilled nursing facilities (SNFs) for fiscal year 2012. In addition, it recalibrates the case-mix indexes so that they more accurately reflect parity in expenditures between RUG-IV and the previous case-mix classification system. It also includes a discussion of a Non-Therapy Ancillary component currently under development within CMS. In addition, this final rule discusses the impact of certain provisions of the Affordable Care Act, and reduces the SNF market basket percentage by the multi-factor productivity adjustment. This rule also implements certain changes relating to the payment of group therapy services and implements new resident assessment policies. Finally, this rule announces that the proposed provisions regarding the ownership disclosure requirements set forth in section 6101 of the Affordable Care Act will be finalized at a later date.

  4. A Spiking Neural Network System for Robust Sequence Recognition.

    PubMed

    Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2016-03-01

    This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

  5. Coding pulmonary sepsis and mortality statistics in Rio de Janeiro, RJ.

    PubMed

    Cardoso, Bruno Baptista; Kale, Pauline Lorena

    2016-01-01

    This study aimed to describe "pulmonary sepsis" reported as a cause of death, measure its association to pneumonia, and the significance of the coding rules in mortality statistics, including the diagnosis of pneumonia on death certificates (DC) with the mention of pulmonary sepsis in Rio de Janeiro, Brazil, in 2011. DC with mention of pulmonary sepsis was identified, regardless of the underlying cause of death. Medical records related to the certificates with reference to "pulmonary sepsis" were reviewed and physicians were interviewed to measure the association between pulmonary sepsis and pneumonia. A simulation was performed in the mortality data by inserting the International Classification of Diseases (ICD-10) code for pneumonia in the certificates with pulmonary sepsis. "Pulmonary sepsis" constituted 30.9% of reported sepsis and pneumonia was not reported in 51.3% of these DC. Pneumonia was registered in 82.8% of the sample of the medical records. Among physicians interviewed, 93.3% declared pneumonia as the most common cause of "pulmonary sepsis." The simulation of the coding process resulted in a different underlying cause of death for 7.8% of the deaths with sepsis reported and 2.4% of all deaths, regardless the original cause. The conclusion is that "pulmonary sepsis" is frequently associated to pneumonia and that the addition of the ICD-10 code for pneumonia in DC could affect the mortality statistics, highlighting the need to improve mortality coding rules.

  6. Association between finger tapping, attention, memory, and cognitive diagnosis in elderly patients.

    PubMed

    Rabinowitz, Israel; Lavner, Yizhar

    2014-08-01

    This study examined the association between spontaneous finger tapping and cognitive function, with a detailed analysis of the two main phases of finger tapping, the touch-phase and the off-phase. 170 elderly patients (83 men, 87 women; M age = 82.1 yr., SD = 6.2) underwent cognitive assessment including the Mini-Mental State Examination, a forward digit span test, and 15 sec. of finger tapping. Results indicated a significant increase in the length and variability of the finger-touch phase among participants with mild cognitive impairment or dementia compared to participants with no cognitive impairment, suggesting a relationship between finger tapping and attention, short-term memory, and cognitive diagnosis. Pattern classification analyses on the finger tapping parameters indicated a specificity of 0.91 and sensitivity of 0.52 for ruling out cognitive impairment.

  7. A rule-based automatic sleep staging method.

    PubMed

    Liang, Sheng-Fu; Kuo, Chin-En; Hu, Yu-Han; Cheng, Yu-Shian

    2012-03-30

    In this paper, a rule-based automatic sleep staging method was proposed. Twelve features including temporal and spectrum analyses of the EEG, EOG, and EMG signals were utilized. Normalization was applied to each feature to eliminating individual differences. A hierarchical decision tree with fourteen rules was constructed for sleep stage classification. Finally, a smoothing process considering the temporal contextual information was applied for the continuity. The overall agreement and kappa coefficient of the proposed method applied to the all night polysomnography (PSG) of seventeen healthy subjects compared with the manual scorings by R&K rules can reach 86.68% and 0.79, respectively. This method can integrate with portable PSG system for sleep evaluation at-home in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal Year 2016. Final rule.

    PubMed

    2015-08-06

    This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2016 as required by the statute. As required by section 1886(j)(5) of the Act, this rule includes the classification and weighting factors for the IRF PPS's case-mix groups and a description of the methodologies and data used in computing the prospective payment rates for FY 2016. This final rule also finalizes policy changes, including the adoption of an IRF-specific market basket that reflects the cost structures of only IRF providers, a 1-year phase-in of the revised wage index changes, a 3-year phase-out of the rural adjustment for certain IRFs, and revisions and updates to the quality reporting program (QRP).

  9. Automated Classification of Phonological Errors in Aphasic Language

    PubMed Central

    Ahuja, Sanjeev B.; Reggia, James A.; Berndt, Rita S.

    1984-01-01

    Using heuristically-guided state space search, a prototype program has been developed to simulate and classify phonemic errors occurring in the speech of neurologically-impaired patients. Simulations are based on an interchangeable rule/operator set of elementary errors which represent a theory of phonemic processing faults. This work introduces and evaluates a novel approach to error simulation and classification, it provides a prototype simulation tool for neurolinguistic research, and it forms the initial phase of a larger research effort involving computer modelling of neurolinguistic processes.

  10. The Effect of Draft DSM-5 Criteria on Posttraumatic Stress Disorder Prevalence

    PubMed Central

    Calhoun, Patrick S.; Hertzberg, Jeffrey S.; Kirby, Angela C.; Dennis, Michelle F.; Hair, Lauren P.; Dedert, Eric A.; Beckham, Jean C.

    2012-01-01

    Background This study was designed to examine the concordance of proposed DSM-5 posttraumatic stress disorder (PTSD) criteria with DSM-IV classification rules and examine the impact of the proposed DSM-5 PTSD criteria on prevalence. Method The sample (N=185) included participants who were recruited for studies focused on trauma and health conducted at an academic medical center and VA medical center in the southeastern United States. The prevalence and concordance between DSM-IV and the proposed DSM-5 classifications were calculated based on results from structured clinical interviews. Prevalence rates and diagnostic efficiency indices including sensitivity, specificity, area under the curve (AUC), and Kappa were calculated for each of the possible ways to define DSM-5 PTSD. Results Ninety-five percent of the sample reported an event that met both DSM-IV PTSD Criterion A1 and A2, but only 89% reported a trauma that met Criterion A on DSM-5. Results examining concordance between DSM-IV and DSM-5 algorithms indicated that several of the algorithms had AUCs above .90. The requirement of two symptoms from both Clusters D and E provided strong concordance to DSM-IV (AUC = .93; Kappa = .86) and a greater balance between sensitivity and specificity than requiring three symptoms in both Clusters D and E. Conclusions Despite several significant changes to the diagnostic criteria for PTSD for DSM-5, several possible classification rules provided good concordance with DSM-IV. The magnitude of the impact of DSM-5 decision rules on prevalence will be largely affected by the DSM-IV PTSD base rate in the population of interest. PMID:23109002

  11. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  12. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  13. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  14. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  15. 40 CFR 164.130 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false General. 164.130 Section 164.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  16. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  17. 40 CFR 164.130 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false General. 164.130 Section 164.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  18. 40 CFR 164.70 - Subpoenas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Subpoenas. 164.70 Section 164.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  19. 40 CFR 164.32 - Consolidation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Consolidation. 164.32 Section 164.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  20. 40 CFR 164.32 - Consolidation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Consolidation. 164.32 Section 164.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  1. 40 CFR 164.82 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Transcripts. 164.82 Section 164.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  2. 40 CFR 164.30 - Appearances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Appearances. 164.30 Section 164.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  3. 76 FR 59927 - Treatment of Aliens Whose Employment Creation Immigrant (EB-5) Petitions Were Approved After...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ...The Department of Homeland Security (DHS) is proposing to amend its regulations governing the employment creation (EB-5) immigrant classification. This rule only proposes requirements and procedures for special determinations on the applications and petitions of qualifying aliens whose employment-creation immigrant petitions were approved by the former Immigration and Naturalization Service (INS) after January 1, 1995 and before August 31, 1998. This rule would implement provisions of the 21st Century Department of Justice Appropriations Authorization Act.

  4. Blob-level active-passive data fusion for Benthic classification

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady

    2012-06-01

    We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.

  5. Nonlinear, non-stationary image processing technique for eddy current NDE

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita

    2012-05-01

    Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.

  6. Drug safety: Pregnancy rating classifications and controversies.

    PubMed

    Wilmer, Erin; Chai, Sandy; Kroumpouzos, George

    2016-01-01

    This contribution consolidates data on international pregnancy rating classifications, including the former US Food and Drug Administration (FDA), Swedish, and Australian classification systems, as well as the evidence-based medicine system, and discusses discrepancies among them. It reviews the new Pregnancy and Lactation Labeling Rule (PLLR) that replaced the former FDA labeling system with narrative-based labeling requirements. PLLR emphasizes on human data and highlights pregnancy exposure registry information. In this context, the review discusses important data on the safety of most medications used in the management of skin disease in pregnancy. There are also discussions of controversies relevant to the safety of certain dermatologic medications during gestation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Identification and classification of traditional Chinese medicine syndrome types among senior patients with vascular mild cognitive impairment using latent tree analysis.

    PubMed

    Fu, Chen; Zhang, Nevin Lianwen; Chen, Bao-Xin; Chen, Zhou Rong; Jin, Xiang Lan; Guo, Rong-Juan; Chen, Zhi-Gang; Zhang, Yun-Ling

    2017-05-01

    To treat patients with vascular mild cognitive impairment (VMCI) using traditional Chinese medicine (TCM), it is necessary to classify the patients into TCM syndrome types and to apply different treatments to different types. In this paper, we investigate how to properly carry out the classification for patients with VMCI aged 50 or above using a novel data-driven method known as latent tree analysis (LTA). A cross-sectional survey on VMCI was carried out in several regions in Northern China between February 2008 and February 2012 which resulted in a data set that involves 803 patients and 93 symptoms. LTA was performed on the data to reveal symptom co-occurrence patterns, and the patients were partitioned into clusters in multiple ways based on the patterns. The patient clusters were matched up with syndrome types, and population statistics of the clusters are used to quantify the syndrome types and to establish classification rules. Eight syndrome types are identified: Qi deficiency, Qi stagnation, Blood deficiency, Blood stasis, Phlegm-dampness, Fire-heat, Yang deficiency, and Yin deficiency. The prevalence and symptom occurrence characteristics of each syndrome type are determined. Quantitative classification rules are established for determining whether a patient belongs to each of the syndrome types. A solution for the TCM syndrome classification problem for patients with VMCI and aged 50 or above is established based on the LTA of unlabeled symptom survey data. The results can be used as a reference in clinic practice to improve the quality of syndrome differentiation and to reduce diagnosis variances across physicians. They can also be used for patient selection in research projects aimed at finding biomarkers for the syndrome types and in randomized control trials aimed at determining the efficacy of TCM treatments of VMCI.

  8. Revision concepts and distinctive points of the new Japanese classification for biliary tract cancers in comparison with the 7(th) edition of the Union for International Cancer Control and the American Joint Committee on Cancer staging system.

    PubMed

    Ohtsuka, Masayuki; Miyakawa, Shuichi; Nagino, Masato; Takada, Tadahiro; Miyazaki, Masaru

    2015-03-01

    The 3(rd) English edition of the Japanese classification of the biliary tract cancers (JC) is now available in this journal. The primary aim of this revision is to provide all clinicians and researchers with a common language of cancer staging at an international level. On the other hand, there are several important issues that should be solved for the optimization of the staging system. Revision concepts and major revision points of the 3(rd) English edition of the JC were reviewed. Furthermore, comparing with the 7(th) edition of staging system developed by the Union for International Cancer Control (UICC) and the American Joint Committee on Cancer (AJCC), distinctive points in the JC was discussed. In this edition of the JC, the same stage groupings as those in the UICC/AJCC staging system were basically adopted. T, N, and M categories were also identical in principle with those in the UICC/AJCC staging system, although slight modifications were proposed as the "Japanese rules". As distinctive points, perihilar cholangiocarcinomas and ampullary region carcinomas were clearly defined. Intraepithelial tumor was discriminated from invasive carcinoma at ductal resection margins. Classifications of site-specific surgical margin status remained in this edition. Histological classification was based on that in the former editions of the JC, but adopted some parts of the World Health Organization classification. The JC now share its staging system of the biliary tact carcinomas with the UICC/AJCC staging system. Future validation of the "Japanese rules" could provide important evidence to make globally standardized staging system. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  9. FUDS Military Munitions Response Program

    DTIC Science & Technology

    2010-06-01

    supporting decision rules - Phytoremediation of Arsenic -Advanced EMI and Multi-component Sensors (4 types) -Advanced Anomaly Classifications (4 types...Culebra, PR  Frankford Arsenal , PA  Orlando Range and Chemical Yard, FL  Pinecastle Jeep Range, FL  Spring Valley, DC  Waikoloa Maneuver

  10. 78 FR 72955 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change, as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... industry, as defined by the Standard Industrial Classification Codes utilized by the Division of Corporate Finance of the Commission.\\26\\ This limitation does not apply to investments in securities issued or...

  11. 40 CFR 164.5 - Filing and service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Filing and service. 164.5 Section 164.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF...

  12. 40 CFR 164.5 - Filing and service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Filing and service. 164.5 Section 164.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF...

  13. 40 CFR 164.71 - Fees of witnesses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Fees of witnesses. 164.71 Section 164.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF...

  14. 40 CFR 164.71 - Fees of witnesses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Fees of witnesses. 164.71 Section 164.71 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF... REFUSALS TO REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF...

  15. 43 CFR 2091.0-5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of... described in this subpart. (b) Segregation means the removal for a limited period, subject to valid existing..., withdrawals, restorations, reservations, openings, classifications applications, segregations, leases, permits...

  16. Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae

    PubMed Central

    Wilhelmsson, Per K I; Mühlich, Cornelia; Ullrich, Kristian K

    2017-01-01

    Abstract Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants—Embryophyta—with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition. PMID:29216360

  17. Influence of crisp values on the object-based data extraction procedure from LiDAR data

    NASA Astrophysics Data System (ADS)

    Tomljenovic, Ivan; Rousell, Adam

    2014-05-01

    Nowadays a plethora of approaches attempt to automate the process of object extraction from LiDAR data. However, the majority of these methods require the fusion of the LiDAR dataset with other information such as photogrammetric imagery. The approach that has been used as the basis for this paper is a novel method which makes use of human knowledge and the CNL modelling language to automatically extract buildings solely from LiDAR point cloud data in a transferable method. A number of rules are implemented to generate an artificial intelligence algorithm which is used for the object extraction. Although the single dataset method has been found to successfully extract building footprints from the point cloud dataset, at this initial stage it has one restriction that may limit its effectiveness - a number of the rules that are used are based on crisp boundary values. If, for example, the slope of the ground surface is used as a rule for determining objects then the slope value of a pixel would be assessed to determine if it is suitable for a building structure. This check would be performed by identifying whether the slope value is less than or greater than a threshold value. However, in reality such a crisp classification process is likely not to be a true reflection of real world scenarios. For example, using the crisp methods a difference of 1° in slope could result in one region in a dataset being deemed suitable and its neighboring region being seen as not suitable. It is likely however that there is in reality little difference in the actual suitability of these two neighboring regions. A more suitable classification process may be the use of fuzzy set theory whereby each region is seen as having degree of membership to a number of sets (or classifications). In the above example, the two regions would likely be seen as having very similar membership values to the different sets, although this is obviously dependent on factors such as the extent of each region. The purpose of this study is to identify to what extent the use of explicit boundary values has on the overall building footprint dataset extracted. By performing the analysis multiple times using differing threshold values for rules, it is possible to compare the resultant datasets and thus identify the impact of using such classification procedures. If a significant difference is found between the resultant datasets, this would highlight that the use of such crisp methods in the extraction processes may not be optimal and that a future enhancement to the method would be to consider the use of fuzzy classification methods.

  18. International variation in the definition of 'main condition' in ICD-coded health data.

    PubMed

    Quan, H; Moskal, L; Forster, A J; Brien, S; Walker, R; Romano, P S; Sundararajan, V; Burnand, B; Henriksson, G; Steinum, O; Droesler, S; Pincus, H A; Ghali, W A

    2014-10-01

    Hospital-based medical records are abstracted to create International Classification of Disease (ICD) coded discharge health data in many countries. The 'main condition' is not defined in a consistent manner internationally. Some countries employ a 'reason for admission' rule as the basis for the main condition, while other countries employ a 'resource use' rule. A few countries have recently transitioned from one of these approaches to the other. The definition of 'main condition' in such ICD data matters when it is used to define a disease cohort to assign diagnosis-related groups and to perform risk adjustment. We propose a method of harmonizing the international definition to enable researchers and international organizations using ICD-coded health data to aggregate or compare hospital care and outcomes across countries in a consistent manner. Inter-observer reliability of alternative harmonization approaches should be evaluated before finalizing the definition and adopting it worldwide. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  19. AUCTSP: an improved biomarker gene pair class predictor.

    PubMed

    Kagaris, Dimitri; Khamesipour, Alireza; Yiannoutsos, Constantin T

    2018-06-26

    The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable to selecting genes which do not have differential expression in the two conditions ("pivot" genes). We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less prone to selecting non-informative (pivot) genes. The proposed AUCTSP is a simple yet reliable and robust rank-based classifier for gene expression classification. While the AUCTSP works by the same principle as TSP, its ability to determine the top scoring gene pair based on the relative rankings of two marker genes across all subjects as opposed to each individual subject results in significant performance gains in classification accuracy. In addition, the proposed method tends to avoid selection of non-informative (pivot) genes as members of the top-scoring pair.

  20. Classification of patients with low back-related leg pain: a systematic review.

    PubMed

    Stynes, Siobhán; Konstantinou, Kika; Dunn, Kate M

    2016-05-23

    The identification of clinically relevant subgroups of low back pain (LBP) is considered the number one LBP research priority in primary care. One subgroup of LBP patients are those with back related leg pain. Leg pain frequently accompanies LBP and is associated with increased levels of disability and higher health costs than simple low back pain. Distinguishing between different types of low back-related leg pain (LBLP) is important for clinical management and research applications, but there is currently no clear agreement on how to define and identify LBLP due to nerve root involvement. The aim of this systematic review was to identify, describe and appraise papers that classify or subgroup populations with LBLP, and summarise how leg pain due to nerve root involvement is described and diagnosed in the various systems. The search strategy involved nine electronic databases including Medline and Embase, reference lists of eligible studies and relevant reviews. Selected papers were appraised independently by two reviewers using a standardised scoring tool. Of 13,358 initial potential eligible citations, 50 relevant papers were identified that reported on 22 classification systems. Papers were grouped according to purpose and criteria of the classification systems. Five themes emerged: (i) clinical features (ii) pathoanatomy (iii) treatment-based approach (iv) screening tools and prediction rules and (v) pain mechanisms. Three of the twenty two systems focused specifically on LBLP populations. Systems that scored highest following quality appraisal were ones where authors generally included statistical methods to develop their classifications, and supporting work had been published on the systems' validity, reliability and generalisability. There was lack of consistency in how LBLP due to nerve root involvement was described and diagnosed within the systems. Numerous classification systems exist that include patients with leg pain, a minority of them focus specifically on distinguishing between different presentations of leg pain. Further work is needed to identify clinically meaningful subgroups of LBLP patients, ideally based on large primary care cohort populations and using recommended methods for classification system development.

  1. Validation of a systems-actuarial computer process for multidimensional classification of child psychopathology.

    PubMed

    McDermott, P A; Hale, R L

    1982-07-01

    Tested diagnostic classifications of child psychopathology produced by a computerized technique known as multidimensional actuarial classification (MAC) against the criterion of expert psychological opinion. The MAC program applies series of statistical decision rules to assess the importance of and relationships among several dimensions of classification, i.e., intellectual functioning, academic achievement, adaptive behavior, and social and behavioral adjustment, to perform differential diagnosis of children's mental retardation, specific learning disabilities, behavioral and emotional disturbance, possible communication or perceptual-motor impairment, and academic under- and overachievement in reading and mathematics. Classifications rendered by MAC are compared to those offered by two expert child psychologists for cases of 73 children referred for psychological services. Experts' agreement with MAC was significant for all classification areas, as was MAC's agreement with the experts held as a conjoint reference standard. Whereas the experts' agreement with MAC averaged 86.0% above chance, their agreement with one another averaged 76.5% above chance. Implications of the findings are explored and potential advantages of the systems-actuarial approach are discussed.

  2. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  3. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  4. Online adaptive decision trees: pattern classification and function approximation.

    PubMed

    Basak, Jayanta

    2006-09-01

    Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.

  5. Constructions and classifications of projective Poisson varieties.

    PubMed

    Pym, Brent

    2018-01-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  6. [An object-based information extraction technology for dominant tree species group types].

    PubMed

    Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang

    2015-06-01

    Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.

  7. Constructions and classifications of projective Poisson varieties

    NASA Astrophysics Data System (ADS)

    Pym, Brent

    2018-03-01

    This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.

  8. Atmosphere-based image classification through luminance and hue

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Zhang, Yujin

    2005-07-01

    In this paper a novel image classification system is proposed. Atmosphere serves an important role in generating the scene"s topic or in conveying the message behind the scene"s story, which belongs to abstract attribute level in semantic levels. At first, five atmosphere semantic categories are defined according to rules of photo and film grammar, followed by global luminance and hue features. Then the hierarchical SVM classifiers are applied. In each classification stage, corresponding features are extracted and the trained linear SVM is implemented, resulting in two classes. After three stages of classification, five atmosphere categories are obtained. At last, the text annotation of the atmosphere semantics and the corresponding features by Extensible Markup Language (XML) in MPEG-7 is defined, which can be integrated into more multimedia applications (such as searching, indexing and accessing of multimedia content). The experiment is performed on Corel images and film frames. The classification results prove the effectiveness of the definition of atmosphere semantic classes and the corresponding features.

  9. Circuitbot

    DTIC Science & Technology

    2016-03-01

    constraints problem. Game rules described valid moves allowing player to generate a memory graph performing improved C program verification . 15. SUBJECT...TERMS Formal Verification , Static Analysis, Abstract Interpretation, Pointer Analysis, Fixpoint Iteration 16. SECURITY CLASSIFICATION OF: 17...36 3.4.12 Example: Game Play . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.13 Verification

  10. 14 CFR 151.127 - Accounting and audit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) AIRPORTS FEDERAL AID TO AIRPORTS Rules and Procedures for Advance Planning and Engineering Proposals § 151... costs are also applicable to advance planning proposal costs. However, the requirement of segregating and grouping costs applies only to § 151.55(a) (5) and (7) classifications. ...

  11. 14 CFR 151.127 - Accounting and audit.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) AIRPORTS FEDERAL AID TO AIRPORTS Rules and Procedures for Advance Planning and Engineering Proposals § 151... costs are also applicable to advance planning proposal costs. However, the requirement of segregating and grouping costs applies only to § 151.55(a) (5) and (7) classifications. ...

  12. 14 CFR 151.127 - Accounting and audit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) AIRPORTS FEDERAL AID TO AIRPORTS Rules and Procedures for Advance Planning and Engineering Proposals § 151... costs are also applicable to advance planning proposal costs. However, the requirement of segregating and grouping costs applies only to § 151.55(a) (5) and (7) classifications. ...

  13. 14 CFR 151.127 - Accounting and audit.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) AIRPORTS FEDERAL AID TO AIRPORTS Rules and Procedures for Advance Planning and Engineering Proposals § 151... costs are also applicable to advance planning proposal costs. However, the requirement of segregating and grouping costs applies only to § 151.55(a) (5) and (7) classifications. ...

  14. 76 FR 47478 - Event Data Recorders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... sale) are not required to comply with the rule until September 1, 2013. Voluntary compliance is... elements such as suppression switch status, occupant classification, antilock braking system (ABS) status... range. Mr. Thomas Kowalick petitioned the agency to reconsider a mechanical lock out system for the...

  15. 40 CFR 164.1 - Number of words.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Number of words. 164.1 Section 164.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND...

  16. 76 FR 23640 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... (Ophthalmic Instruments, Equipment, and Supplies), under the North American Industry Classification System...(a) Business Development (BD) program. DATES: Comments and source information must be submitted May... under PSC 6540 (Ophthalmic Instruments, Equipment, and Supplies), under NAICS code 339115 (Ophthalmic...

  17. 5 CFR 9701.232 - Special transition rules for Federal Air Marshal Service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Marshal Service. 9701.232 Section 9701.232 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Classification Transitional Provisions § 9701.232...

  18. Classification and evaluation of the documentary-recorded storm events in the Annals of the Choson Dynasty (1392-1910), Korea

    NASA Astrophysics Data System (ADS)

    Yoo, Chulsang; Park, Minkyu; Kim, Hyeon Jun; Choi, Juhee; Sin, Jiye; Jun, Changhyun

    2015-01-01

    In this study, the analysis of documentary records on the storm events in the Annals of the Choson Dynasty, covering the entire period of 519 years from 1392 to 1910, was carried out. By applying various key words related to storm events, a total of 556 documentary records could be identified. The main objective of this study was to develop rules of classification for the documentary records on the storm events in the Annals of the Choson Dynasty. The results were also compared with the rainfall data of the traditional Korean rain gauge, named Chukwooki, which are available from 1777 to 1910 (about 130 years). The analysis is organized as follows. First, the frequency of the documents, their length, comments about the size of the inundated area, the number of casualties, the number of property losses, and the size of the countermeasures, etc. were considered to determine the magnitude of the events. To this end, rules of classification of the storm events are developed. Cases in which the word 'disaster' was used along with detailed information about the casualties and property damages, were classified as high-level storm events. The high-level storm events were additionally sub-categorized into catastrophic, extreme, and severe events. Second, by applying the developed rules of classification, a total of 326 events were identified as high-level storm events during the 519 years of the Choson Dynasty. Among these high-level storm events, only 19 events were then classified as the catastrophic ones, 106 events as the extreme ones, and 201 events as the severe ones. The mean return period of these storm events was found to be about 30 years for the catastrophic events, 5 years for the extreme events, and 2-3 years for the severe events. Third, the classification results were verified considering the records of the traditional Korean rain gauge; it was found that the catastrophic events are strongly distinguished from other events with a mean total rainfall and a storm duration equal to 439.8 mm and 49.3 h, respectively. The return period of these catastrophic events was also estimated to be in the range 100-500 years.

  19. Training sample selection based on self-training for liver cirrhosis classification using ultrasound images

    NASA Astrophysics Data System (ADS)

    Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao

    2017-03-01

    Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.

  20. Spectral-spatial classification of hyperspectral imagery with cooperative game

    NASA Astrophysics Data System (ADS)

    Zhao, Ji; Zhong, Yanfei; Jia, Tianyi; Wang, Xinyu; Xu, Yao; Shu, Hong; Zhang, Liangpei

    2018-01-01

    Spectral-spatial classification is known to be an effective way to improve classification performance by integrating spectral information and spatial cues for hyperspectral imagery. In this paper, a game-theoretic spectral-spatial classification algorithm (GTA) using a conditional random field (CRF) model is presented, in which CRF is used to model the image considering the spatial contextual information, and a cooperative game is designed to obtain the labels. The algorithm establishes a one-to-one correspondence between image classification and game theory. The pixels of the image are considered as the players, and the labels are considered as the strategies in a game. Similar to the idea of soft classification, the uncertainty is considered to build the expected energy model in the first step. The local expected energy can be quickly calculated, based on a mixed strategy for the pixels, to establish the foundation for a cooperative game. Coalitions can then be formed by the designed merge rule based on the local expected energy, so that a majority game can be performed to make a coalition decision to obtain the label of each pixel. The experimental results on three hyperspectral data sets demonstrate the effectiveness of the proposed classification algorithm.

  1. Interpreting ASME limits and philosophy in FEA of pressure vessel parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra, L.M.; Cruz, J.R.B.; Miranda, C.A.J.

    1995-12-01

    In recent years there has been an effort to interpret finite element (FE) stress results on the light of the ASME B and PV rules and philosophy. Many task groups have issued guidelines on stress linearization and classifications. All those attempts have come up trying to cope modern FE techniques with the rules imposed by the ASME Code. This paper is an independent contribution to the Pressure Vessel Research Council (PVRC) groups which are studying the stress classification and the failure mechanism in a FE framework. This work tries to complement the interesting work by Hollinger and Hechmer presented inmore » the PVP-94 in Minneapolis. In that paper, the authors examined a typical support skirt and showed relations between the skirt collapse load obtained by finite element analysis and the loads allowed from the ASME stress limits. To complement such paper, in the present article, different skirt geometry configurations are analyzed. The configurations here investigated consist of similar support skirts but with different angles of attachments between cylinder and cone parts. It will be possible to observe the influence of the bending stress in the collapse load and its relation to the allowable loads inferred from the ASME limits. A pressure vessel with torispherical head under internal pressure is also examined. Using elastic and limit load FEA, the present paper determines the collapse loads of the configurations. It sets up the relations between these collapse loads, stress categories, and limits dictated by the ASME Code Subsection NB. On the light of NB rules and philosophy, this paper shows how different methods of stress assessment, classification, and limits may influence in the design of a pressure vessel.« less

  2. The effect of draft DSM-V criteria on posttraumatic stress disorder prevalence.

    PubMed

    Calhoun, Patrick S; Hertzberg, Jeffrey S; Kirby, Angela C; Dennis, Michelle F; Hair, Lauren P; Dedert, Eric A; Beckham, Jean C

    2012-12-01

    This study was designed to examine the concordance of proposed DSM-V posttraumatic stress disorder (PTSD) criteria with DSM-IV classification rules and examine the impact of the proposed DSM-V PTSD criteria on prevalence. The sample (N = 185) included participants who were recruited for studies focused on trauma and health conducted at an academic medical center and VA medical center in the southeastern United States. The prevalence and concordance between DSM-IV and the proposed DSM-V classifications were calculated based on results from structured clinical interviews. Prevalence rates and diagnostic efficiency indices including sensitivity, specificity, area under the curve (AUC), and Kappa were calculated for each of the possible ways to define DSM-V PTSD. Ninety-five percent of the sample reported an event that met both DSM-IV PTSD Criterion A1 and A2, but only 89% reported a trauma that met Criterion A on DSM-V. Results examining concordance between DSM-IV and DSM-V algorithms indicated that several of the algorithms had AUCs above 0.90. The requirement of two symptoms from both Clusters D and E provided strong concordance to DSM-IV (AUC = 0.93; Kappa = 0.86) and a greater balance between sensitivity and specificity than requiring three symptoms in both Clusters D and E. Despite several significant changes to the diagnostic criteria for PTSD for DSM-V, several possible classification rules provided good concordance with DSM-IV. The magnitude of the impact of DSM-V decision rules on prevalence will be largely affected by the DSM-IV PTSD base rate in the population of interest. © 2012 Wiley Periodicals, Inc.

  3. Simulation of land use change in the three gorges reservoir area based on CART-CA

    NASA Astrophysics Data System (ADS)

    Yuan, Min

    2018-05-01

    This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.

  4. Consistent latent position estimation and vertex classification for random dot product graphs.

    PubMed

    Sussman, Daniel L; Tang, Minh; Priebe, Carey E

    2014-01-01

    In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.

  5. Identification of cultivated land using remote sensing images based on object-oriented artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhu, Xiufang

    2017-04-01

    Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.

  6. The impact of category structure and training methodology on learning and generalizing within-category representations.

    PubMed

    Ell, Shawn W; Smith, David B; Peralta, Gabriela; Hélie, Sébastien

    2017-08-01

    When interacting with categories, representations focused on within-category relationships are often learned, but the conditions promoting within-category representations and their generalizability are unclear. We report the results of three experiments investigating the impact of category structure and training methodology on the learning and generalization of within-category representations (i.e., correlational structure). Participants were trained on either rule-based or information-integration structures using classification (Is the stimulus a member of Category A or Category B?), concept (e.g., Is the stimulus a member of Category A, Yes or No?), or inference (infer the missing component of the stimulus from a given category) and then tested on either an inference task (Experiments 1 and 2) or a classification task (Experiment 3). For the information-integration structure, within-category representations were consistently learned, could be generalized to novel stimuli, and could be generalized to support inference at test. For the rule-based structure, extended inference training resulted in generalization to novel stimuli (Experiment 2) and inference training resulted in generalization to classification (Experiment 3). These data help to clarify the conditions under which within-category representations can be learned. Moreover, these results make an important contribution in highlighting the impact of category structure and training methodology on the generalization of categorical knowledge.

  7. Automatic classification of diseases from free-text death certificates for real-time surveillance.

    PubMed

    Koopman, Bevan; Karimi, Sarvnaz; Nguyen, Anthony; McGuire, Rhydwyn; Muscatello, David; Kemp, Madonna; Truran, Donna; Zhang, Ming; Thackway, Sarah

    2015-07-15

    Death certificates provide an invaluable source for mortality statistics which can be used for surveillance and early warnings of increases in disease activity and to support the development and monitoring of prevention or response strategies. However, their value can be realised only if accurate, quantitative data can be extracted from death certificates, an aim hampered by both the volume and variable nature of certificates written in natural language. This study aims to develop a set of machine learning and rule-based methods to automatically classify death certificates according to four high impact diseases of interest: diabetes, influenza, pneumonia and HIV. Two classification methods are presented: i) a machine learning approach, where detailed features (terms, term n-grams and SNOMED CT concepts) are extracted from death certificates and used to train a set of supervised machine learning models (Support Vector Machines); and ii) a set of keyword-matching rules. These methods were used to identify the presence of diabetes, influenza, pneumonia and HIV in a death certificate. An empirical evaluation was conducted using 340,142 death certificates, divided between training and test sets, covering deaths from 2000-2007 in New South Wales, Australia. Precision and recall (positive predictive value and sensitivity) were used as evaluation measures, with F-measure providing a single, overall measure of effectiveness. A detailed error analysis was performed on classification errors. Classification of diabetes, influenza, pneumonia and HIV was highly accurate (F-measure 0.96). More fine-grained ICD-10 classification effectiveness was more variable but still high (F-measure 0.80). The error analysis revealed that word variations as well as certain word combinations adversely affected classification. In addition, anomalies in the ground truth likely led to an underestimation of the effectiveness. The high accuracy and low cost of the classification methods allow for an effective means for automatic and real-time surveillance of diabetes, influenza, pneumonia and HIV deaths. In addition, the methods are generally applicable to other diseases of interest and to other sources of medical free-text besides death certificates.

  8. Global Optimization Ensemble Model for Classification Methods

    PubMed Central

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  9. Rough set classification based on quantum logic

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  10. The Convallis Rule for Unsupervised Learning in Cortical Networks

    PubMed Central

    Yger, Pierre; Harris, Kenneth D.

    2013-01-01

    The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224

  11. A Review of Periprosthetic Femoral Fractures Associated With Total Hip Arthroplasty

    PubMed Central

    Marsland, Daniel; Mears, Simon C.

    2012-01-01

    Periprosthetic fractures of the femur in association with total hip arthroplasty are increasingly common and often difficult to treat. Patients with periprosthetic fractures are typically elderly and frail and have osteoporosis. No clear consensus exists regarding the optimal management strategy because there is limited high-quality research. The Vancouver classification facilitates treatment decisions. In the presence of a stable prosthesis (type-B1 and -C fractures), most authors recommend surgical stabilization of the fracture with plates, strut grafts, or a combination thereof. In up to 20% of apparent Vancouver type-B1 fractures, the femoral stem is loose, which may explain the high failure rates associated with open reduction and internal fixation. Some authors recommend routine opening and dislocation of the hip to perform an intraoperative stem stability test to rule out a loose component. Advances in plating techniques and technology are improving the outcomes for these fractures. For fractures around a loose femoral prosthesis (types B2 and 3), revision using an extensively porous-coated uncemented long stem, with or without additional fracture fixation, appears to offer the most reliable outcome. Cement-in-cement revision using a long-stem prosthesis is feasible in elderly patients with a well-fixed cement mantle. It is essential to treat the osteoporosis to help fracture healing and to prevent further fractures. We provide an overview of the causes, classification, and management of periprosthetic femoral fractures around a total hip arthroplasty based on the current best available evidence. PMID:23569704

  12. Design technology co-optimization for 14/10nm metal1 double patterning layer

    NASA Astrophysics Data System (ADS)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  13. Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2013-07-01

    We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrödinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physical translations of component breathers. We reveal the general rules required to produce these fundamental patterns. Consequently, we are able to extrapolate the general shape for rogue-wave solutions beyond order 6, at which point accuracy limitations due to current standards of numerical generation become non-negligible. Furthermore, we indicate how a large set of irregular rogue-wave solutions can be produced by hybridizing these fundamental structures.

  14. An admissible level \\widehat{osp} ( 1 \\big \\vert 2 ) -model: modular transformations and the Verlinde formula

    NASA Astrophysics Data System (ADS)

    Snadden, John; Ridout, David; Wood, Simon

    2018-05-01

    The modular properties of the simple vertex operator superalgebra associated with the affine Kac-Moody superalgebra \\widehat{{osp}} (1|2) at level -5/4 are investigated. After classifying the relaxed highest-weight modules over this vertex operator superalgebra, the characters and supercharacters of the simple weight modules are computed and their modular transforms are determined. This leads to a complete list of the Grothendieck fusion rules by way of a continuous superalgebraic analog of the Verlinde formula. All Grothendieck fusion coefficients are observed to be non-negative integers. These results indicate that the extension to general admissible levels will follow using the same methodology once the classification of relaxed highest-weight modules is completed.

  15. Effective classification of the prevalence of Schistosoma mansoni.

    PubMed

    Mitchell, Shira A; Pagano, Marcello

    2012-12-01

    To present an effective classification method based on the prevalence of Schistosoma mansoni in the community. We created decision rules (defined by cut-offs for number of positive slides), which account for imperfect sensitivity, both with a simple adjustment of fixed sensitivity and with a more complex adjustment of changing sensitivity with prevalence. To reduce screening costs while maintaining accuracy, we propose a pooled classification method. To estimate sensitivity, we use the De Vlas model for worm and egg distributions. We compare the proposed method with the standard method to investigate differences in efficiency, measured by number of slides read, and accuracy, measured by probability of correct classification. Modelling varying sensitivity lowers the lower cut-off more significantly than the upper cut-off, correctly classifying regions as moderate rather than lower, thus receiving life-saving treatment. The classification method goes directly to classification on the basis of positive pools, avoiding having to know sensitivity to estimate prevalence. For model parameter values describing worm and egg distributions among children, the pooled method with 25 slides achieves an expected 89.9% probability of correct classification, whereas the standard method with 50 slides achieves 88.7%. Among children, it is more efficient and more accurate to use the pooled method for classification of S. mansoni prevalence than the current standard method. © 2012 Blackwell Publishing Ltd.

  16. [Reproducibility of the use of classifications of causes of death in the context of inquiries in perinatal mortality].

    PubMed

    Rajmil, L; Plasencia, A; Borrell, C

    1993-11-01

    The objective of this study was to verify the reliability of the classifications of perinatal mortality causes. An independent observer coded the cases of perinatal death (n = 152) collected in the Encuesta Confidencial de Mortalidad Perinatal de Barcelona (ECMP, Confidential Perinatal Mortality Inquiry of Barcelona), by using both the Aberdeen classification system (regarding obstetric factors) and the Wigglesworth classification system (according to the initial pathological cause), with the same information used previously by the ECMP Commission. For the Aberdeen classification, the observed concordance index (Po) was 86% and the Kappa coefficient (K) 0.77 (95% CI: 0.68-0.86). For the Wigglesworth classification, the figures were 89% and 0.82 (95% CI: 0.74-0.90), respectively. The disagreement was mainly due to differences in the interpretation of the sequence of death, minimal information available in order to classify the cause of death, and misunderstanding of the existing information. To a lesser extent, the disagreement was caused by a failure to comply with the rules laid down for classifications. The assessment of the causes of death was not significantly influenced by birth weight, gestational age, time of death or the presence of necropsy. These results support the use of classifications of perinatal mortality causes in the context of confidential inquiries.

  17. 76 FR 23872 - Editorial Corrections to the Export Administration Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... No. 100709293-1073-01] RIN 0694-AE96 Editorial Corrections to the Export Administration Regulations... Administration Regulations (EAR). In particular, this rule corrects the country entry for Syria on the Commerce... the Export Administration Regulations (EAR), including several Export Control Classification Number...

  18. School Media Centers: A Handbook for Elementary Librarians.

    ERIC Educational Resources Information Center

    Baer, Eleanora A.

    Standard procedures for organizing and operating elementary school media centers are presented in simplified form in this handbook for librarians. Topics covered include media selection, supplies, acquisition procedure, accessioning, classification, cataloging (both books and non-book printed materials), printed catalog cards, filing rules,…

  19. 13 CFR 124.102 - What size business is eligible to participate in the 8(a) BD program?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as a small business concern as defined in part 121 of this title. The applicable size standard is the one for its primary industry classification. The rules for calculating the size of a tribally-owned...

  20. 76 FR 42157 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... (Ophthalmic Instruments, Equipment, and Supplies), under the North American Industry Classification System..., Service-Disabled Veteran- Owned (SDVO) small businesses, Participants in SBA's 8(a) Business Development..., Equipment, and Supplies), under NAICS code 339115 (Ophthalmic Goods Manufacturing). In response, on April 27...

  1. 7 CFR 915.110 - Exemption certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE AVOCADOS GROWN IN SOUTH FLORIDA... issued by the Avocado Administrative Committee pursuant to the following rules and regulations: (a) The... must be made for each variety or classification of avocados and shall contain the following: (1) Name...

  2. The string-junction picture of multiquark states: an update

    NASA Astrophysics Data System (ADS)

    Rossi, G. C.; Veneziano, G.

    2016-06-01

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction overline{J} . For the junction-free sector (ordinary qoverline{q} mesons and glueballs) the picture is supported by large- N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or overline{J} constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J-overline{J} annihilation diagrams. Such a rule implies that hadrons with junctions are "mesophobic" and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  3. Decision rules for unbiased inventory estimates

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.; Koch, D.

    1979-01-01

    An efficient and accurate procedure for estimating inventories from remote sensing scenes is presented. In place of the conventional and expensive full dimensional Bayes decision rule, a one-dimensional feature extraction and classification technique was employed. It is shown that this efficient decision rule can be used to develop unbiased inventory estimates and that for large sample sizes typical of satellite derived remote sensing scenes, resulting accuracies are comparable or superior to more expensive alternative procedures. Mathematical details of the procedure are provided in the body of the report and in the appendix. Results of a numerical simulation of the technique using statistics obtained from an observed LANDSAT scene are included. The simulation demonstrates the effectiveness of the technique in computing accurate inventory estimates.

  4. A critical evaluation of monkey models of amnesia and dementia.

    PubMed

    Ridley, R M; Baker, H F

    1991-01-01

    In this review we consider various models of amnesia and dementia in monkeys and examine the validity of such models. In Section 2 we describe the various types of memory tests (tasks) available for use with monkeys and discuss the extent to which these tasks assess different facets of memory according to present theories of human memory. We argue that the rules which govern correct task performance are best regarded as a form of semantic rather than procedural memory, and that when information about stimulus attributes or reward associations is stored long-term then that knowledge is semantic. The demonstration of episodic memory in monkeys is problematic and the term recognition memory has been used too loosely. In particular, it is difficult to dissociate episodic memory for stimulus events from the use of semantic memory for the rule of the task, since dysfunction of either can produce impairment on performance of the same task. Tasks can also be divided into those which assess memory for stimulus-reward associations (evaluative memory) and those which tax stimulus-response associations including spatial and conditional responding (non-evaluative memory). This dissociation cuts across the distinction between semantic and episodic memory. In Section 3 we examine the usefulness of the classification of tasks described in Section 2 in clarifying our understanding of the contribution of the temporal lobes and the cholinergic system to memory. We conclude that evaluative and non-evaluative memory are mediated by separate parallel systems involving the amygdala and hippocampus, respectively.

  5. First comparative approach to touchscreen-based visual object-location paired-associates learning in humans (Homo sapiens) and a nonhuman primate (Microcebus murinus).

    PubMed

    Schmidtke, Daniel; Ammersdörfer, Sandra; Joly, Marine; Zimmermann, Elke

    2018-05-10

    A recent study suggests that a specific, touchscreen-based task on visual object-location paired-associates learning (PAL), the so-called Different PAL (dPAL) task, allows effective translation from animal models to humans. Here, we adapted the task to a nonhuman primate (NHP), the gray mouse lemur, and provide first evidence for the successful comparative application of the task to humans and NHPs. Young human adults reach the learning criterion after considerably less sessions (one order of magnitude) than young, adult NHPs, which is likely due to faster and voluntary rejection of ineffective learning strategies in humans and almost immediate rule generalization. At criterion, however, all human subjects solved the task by either applying a visuospatial rule or, more rarely, by memorizing all possible stimulus combinations and responding correctly based on global visual information. An error-profile analysis in humans and NHPs suggests that successful learning in NHPs is comparably based either on the formation of visuospatial associative links or on more reflexive, visually guided stimulus-response learning. The classification in the NHPs is further supported by an analysis of the individual response latencies, which are considerably higher in NHPs classified as spatial learners. Our results, therefore, support the high translational potential of the standardized, touchscreen-based dPAL task by providing first empirical and comparable evidence for two different cognitive processes underlying dPAL performance in primates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Refining Measurement of Substance Use Disorders among Women of Child-bearing Age Using Hospital Records: The Development of the Explicit-Mention Substance Abuse Need for Treatment in Women (EMSANT-W) Algorithm

    PubMed Central

    Derrington, Taletha Mae; Bernstein, Judith; Belanoff, Candice; Cabral, Howard J.; Babakhanlou-Chase, Hermik; Diop, Hafsatou; Evans, Stephen R.; Kotelchuck, Milton

    2015-01-01

    Substance use disorder (SUD) in women of reproductive age is associated with adverse health consequences for both women and their offspring. US states need a feasible population-based, case-identification tool to generate better approximations of SUD prevalence, treatment use, and treatment outcomes among women. This article presents the development of the Explicit Mention Substance Abuse Need for Treatment in Women (EMSANT-W), a gender-tailored tool based upon existing International Classification of Diseases, 9th Edition, Clinical Modification diagnostic code-based groupers that can be applied to hospital administrative data. Gender-tailoring entailed the addition of codes related to infants, pregnancy, and prescription drug abuse, as well as the creation of inclusion/exclusion rules based on other conditions present in the diagnostic record. Among 1,728,027 women and associated infants who accessed hospital care from January 1, 2002 to December 31, 2008 in Massachusetts, EMSANT-W identified 103,059 women with probable SUD. EMSANT-W identified 4,116 women who were not identified by the widely used Clinical Classifications Software for Mental Health and Substance Abuse (CCS-MHSA) and did not capture 853 women identified by CCS-MHSA. Content and approach innovations in EMSANT-W address potential limitations of the Clinical Classifications Software, and create a methodologically sound, gender-tailored and feasible population-based tool for identifying women of reproductive age in need of further evaluation for SUD treatment. Rapid changes in health care service infrastructure, delivery systems and policies require tools such as the EMSANT-W that provide more precise identification methods for sub-populations and can serve as the foundation for analyses of treatment use and outcomes. PMID:25680703

  7. Refining Measurement of Substance Use Disorders Among Women of Child-Bearing Age Using Hospital Records: The Development of the Explicit-Mention Substance Abuse Need for Treatment in Women (EMSANT-W) Algorithm.

    PubMed

    Derrington, Taletha Mae; Bernstein, Judith; Belanoff, Candice; Cabral, Howard J; Babakhanlou-Chase, Hermik; Diop, Hafsatou; Evans, Stephen R; Kotelchuck, Milton

    2015-10-01

    Substance use disorder (SUD) in women of reproductive age is associated with adverse health consequences for both women and their offspring. US states need a feasible population-based, case-identification tool to generate better approximations of SUD prevalence, treatment use, and treatment outcomes among women. This article presents the development of the Explicit Mention Substance Abuse Need for Treatment in Women (EMSANT-W), a gender-tailored tool based upon existing International Classification of Diseases, 9th Edition, Clinical Modification diagnostic code-based groupers that can be applied to hospital administrative data. Gender-tailoring entailed the addition of codes related to infants, pregnancy, and prescription drug abuse, as well as the creation of inclusion/exclusion rules based on other conditions present in the diagnostic record. Among 1,728,027 women and associated infants who accessed hospital care from January 1, 2002 to December 31, 2008 in Massachusetts, EMSANT-W identified 103,059 women with probable SUD. EMSANT-W identified 4,116 women who were not identified by the widely used Clinical Classifications Software for Mental Health and Substance Abuse (CCS-MHSA) and did not capture 853 women identified by CCS-MHSA. Content and approach innovations in EMSANT-W address potential limitations of the Clinical Classifications Software, and create a methodologically sound, gender-tailored and feasible population-based tool for identifying women of reproductive age in need of further evaluation for SUD treatment. Rapid changes in health care service infrastructure, delivery systems and policies require tools such as the EMSANT-W that provide more precise identification methods for sub-populations and can serve as the foundation for analyses of treatment use and outcomes.

  8. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning

    PubMed Central

    Marks, Michał; Glinicki, Michał A.; Gibas, Karolina

    2015-01-01

    The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration. PMID:28793740

  9. TOXPERT: An Expert System for Risk Assessment

    PubMed Central

    Soto, R. J.; Osimitz, T. G.; Oleson, A.

    1988-01-01

    TOXPERT is an artificial intelligence based system used to model product safety, toxicology (TOX) and regulatory (REG) decision processes. An expert system shell uses backward chaining rule control to link “marketing approval” goals to the type of product, REG agency, exposure conditions and TOX. Marketing risks are primarily a function of the TOX, hazards and exposure potential. The method employed differentiates between REG requirements in goal seeking control for various types of products. This is accomplished by controlling rule execution by defining frames for each REG agency. In addition, TOXPERT produces classifications of TOX ratings and suggested product labeling. This production rule system uses principles of TOX, REGs, corporate guidelines and internal “rules of thumb.” TOXPERT acts as an advisor for this narrow domain. Advantages are that it can make routine decisions freeing professional's time for more complex problem solving, provide backup and training.

  10. Discovering Fine-grained Sentiment in Suicide Notes

    PubMed Central

    Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.

    2012-01-01

    This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770

  11. A two-step automatic sleep stage classification method with dubious range detection.

    PubMed

    Sousa, Teresa; Cruz, Aniana; Khalighi, Sirvan; Pires, Gabriel; Nunes, Urbano

    2015-04-01

    The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use

    USGS Publications Warehouse

    Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L.

    2009-01-01

    Detailed urban land use data are important to government officials, researchers, and businesspeople for a variety of purposes. This article presents an approach to classifying detailed urban land use based on geometrical, textural, and contextual information of land parcels. An area of 6 by 14 km in Austin, Texas, with land parcel boundaries delineated by the Travis Central Appraisal District of Travis County, Texas, is tested for the approach. We derive fifty parcel attributes from relevant geographic information system (GIS) and remote sensing data and use them to discriminate among nine urban land uses: single family, multifamily, commercial, office, industrial, civic, open space, transportation, and undeveloped. Half of the 33,025 parcels in the study area are used as training data for land use classification and the other half are used as testing data for accuracy assessment. The best result with a decision tree classification algorithm has an overall accuracy of 96 percent and a kappa coefficient of 0.78, and two naive, baseline models based on the majority rule and the spatial autocorrelation rule have overall accuracy of 89 percent and 79 percent, respectively. The algorithm is relatively good at classifying single-family, multifamily, commercial, open space, and undeveloped land uses and relatively poor at classifying office, industrial, civic, and transportation land uses. The most important attributes for land use classification are the geometrical attributes, particularly those related to building areas. Next are the contextual attributes, particularly those relevant to the spatial relationship between buildings, then the textural attributes, particularly the semivariance texture statistic from 0.61-m resolution images.

  13. Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System

    NASA Technical Reports Server (NTRS)

    Penaloza, Mauel A.; Welch, Ronald M.

    1996-01-01

    Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.

  14. 42 CFR 412.23 - Excluded hospitals: Classifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... diagnosis and treatment of mentally ill persons; and (3) Meet the conditions of participation for hospitals... hospital satellite facility as of October 1, 2011. (f) Cancer hospitals—(1) General rule. Except as... as a cancer hospital and is excluded from the prospective payment systems beginning with its first...

  15. 42 CFR 412.23 - Excluded hospitals: Classifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... diagnosis and treatment of mentally ill persons; and (3) Meet the conditions of participation for hospitals... hospital satellite facility as of October 1, 2011. (f) Cancer hospitals—(1) General rule. Except as... as a cancer hospital and is excluded from the prospective payment systems beginning with its first...

  16. 75 FR 32519 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... (Compressed and Liquefied Gases), under NAICS code 325120 (Industrial Gases Manufacturing). On March 23, 2010...), under NAICS code 325120 (Industrial Gases Manufacturing). Dated: June 1, 2010. Karen Hontz, Director... Propane Gas (LPG), North American Industry Classification System (NAICS) code 325120, Product Service Code...

  17. 36 CFR 1211.520 - Job classification and structure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or... as being for males or for females; (b) Maintain or establish separate lines of progression, seniority...

  18. 36 CFR § 1211.520 - Job classification and structure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or... as being for males or for females; (b) Maintain or establish separate lines of progression, seniority...

  19. 36 CFR 1211.520 - Job classification and structure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or... as being for males or for females; (b) Maintain or establish separate lines of progression, seniority...

  20. 36 CFR 1211.520 - Job classification and structure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or... as being for males or for females; (b) Maintain or establish separate lines of progression, seniority...

  1. 36 CFR 1211.520 - Job classification and structure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMINISTRATION GENERAL RULES NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or... as being for males or for females; (b) Maintain or establish separate lines of progression, seniority...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalchik, Kristin V.; Vallow, Laura A., E-mail: vallow.laura@mayo.edu; McDonough, Michelle

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics weremore » evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of breast cancer.« less

  3. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  4. A comparison of rule-based and machine learning approaches for classifying patient portal messages.

    PubMed

    Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Rosenbloom, S Trent; Jackson, Gretchen Purcell

    2017-09-01

    Secure messaging through patient portals is an increasingly popular way that consumers interact with healthcare providers. The increasing burden of secure messaging can affect clinic staffing and workflows. Manual management of portal messages is costly and time consuming. Automated classification of portal messages could potentially expedite message triage and delivery of care. We developed automated patient portal message classifiers with rule-based and machine learning techniques using bag of words and natural language processing (NLP) approaches. To evaluate classifier performance, we used a gold standard of 3253 portal messages manually categorized using a taxonomy of communication types (i.e., main categories of informational, medical, logistical, social, and other communications, and subcategories including prescriptions, appointments, problems, tests, follow-up, contact information, and acknowledgement). We evaluated our classifiers' accuracies in identifying individual communication types within portal messages with area under the receiver-operator curve (AUC). Portal messages often contain more than one type of communication. To predict all communication types within single messages, we used the Jaccard Index. We extracted the variables of importance for the random forest classifiers. The best performing approaches to classification for the major communication types were: logistic regression for medical communications (AUC: 0.899); basic (rule-based) for informational communications (AUC: 0.842); and random forests for social communications and logistical communications (AUCs: 0.875 and 0.925, respectively). The best performing classification approach of classifiers for individual communication subtypes was random forests for Logistical-Contact Information (AUC: 0.963). The Jaccard Indices by approach were: basic classifier, Jaccard Index: 0.674; Naïve Bayes, Jaccard Index: 0.799; random forests, Jaccard Index: 0.859; and logistic regression, Jaccard Index: 0.861. For medical communications, the most predictive variables were NLP concepts (e.g., Temporal_Concept, which maps to 'morning', 'evening' and Idea_or_Concept which maps to 'appointment' and 'refill'). For logistical communications, the most predictive variables contained similar numbers of NLP variables and words (e.g., Telephone mapping to 'phone', 'insurance'). For social and informational communications, the most predictive variables were words (e.g., social: 'thanks', 'much', informational: 'question', 'mean'). This study applies automated classification methods to the content of patient portal messages and evaluates the application of NLP techniques on consumer communications in patient portal messages. We demonstrated that random forest and logistic regression approaches accurately classified the content of portal messages, although the best approach to classification varied by communication type. Words were the most predictive variables for classification of most communication types, although NLP variables were most predictive for medical communication types. As adoption of patient portals increases, automated techniques could assist in understanding and managing growing volumes of messages. Further work is needed to improve classification performance to potentially support message triage and answering. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Image segmentation using association rule features.

    PubMed

    Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J

    2002-01-01

    A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.

  6. Characterization and classification of South American land cover types using satellite data

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.; Kalb, V.

    1987-01-01

    Various methods are compared for carrying out land cover classifications of South America using multitemporal Advanced Very High Resolution Radiometer data. Fifty-two images of the normalized difference vegetation index (NDVI) from a 1-year period are used to generate multitemporal data sets. Three main approaches to land cover classification are considered, namely the use of the principal components transformed images, the use of a characteristic curves procedure based on NDVI values plotted against time, and finally application of the maximum likelihood rule to multitemporal data sets. Comparison of results from training sites indicates that the last approach yields the most accurate results. Despite the reliance on training site figures for performance assessment, the results are nevertheless extremely encouraging, with accuracies for several cover types exceeding 90 per cent.

  7. [The method and application to construct experience recommendation platform of acupuncture ancient books based on data mining technology].

    PubMed

    Chen, Chuyun; Hong, Jiaming; Zhou, Weilin; Lin, Guohua; Wang, Zhengfei; Zhang, Qufei; Lu, Cuina; Lu, Lihong

    2017-07-12

    To construct a knowledge platform of acupuncture ancient books based on data mining technology, and to provide retrieval service for users. The Oracle 10 g database was applied and JAVA was selected as development language; based on the standard library and ancient books database established by manual entry, a variety of data mining technologies, including word segmentation, speech tagging, dependency analysis, rule extraction, similarity calculation, ambiguity analysis, supervised classification technology were applied to achieve text automatic extraction of ancient books; in the last, through association mining and decision analysis, the comprehensive and intelligent analysis of disease and symptom, meridians, acupoints, rules of acupuncture and moxibustion in acupuncture ancient books were realized, and retrieval service was provided for users through structure of browser/server (B/S). The platform realized full-text retrieval, word frequency analysis and association analysis; when diseases or acupoints were searched, the frequencies of meridian, acupoints (diseases) and techniques were presented from high to low, meanwhile the support degree and confidence coefficient between disease and acupoints (special acupoint), acupoints and acupoints in prescription, disease or acupoints and technique were presented. The experience platform of acupuncture ancient books based on data mining technology could be used as a reference for selection of disease, meridian and acupoint in clinical treatment and education of acupuncture and moxibustion.

  8. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  9. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per, E-mail: jensen@uni-wuppertal.de

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thusmore » far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.« less

  10. Student Residence Classification: Revision and Review of Regulations.

    ERIC Educational Resources Information Center

    Nussbaum, Tom; Close, Catherine

    This report proposes regulations for the implementation of California's Uniform Student Residency Act by the state's community colleges. First, background information is provided on three laws: (1) the Uniform Student Residency Act, which establishes rules for use in classifying college students as residents or non-residents; (2) legislation…

  11. 76 FR 54978 - Special Immigrant Juvenile Petitions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... proposed rule would require that juvenile court dependency be in effect at the time of filing for SIJ... continued dependency. Aliens granted SIJ classification are eligible immediately to apply for adjustment of... eligibility by requiring that dependency be due to abuse, abandonment, neglect, or a similar basis under State...

  12. 77 FR 55755 - Small Business Size Standards: Agriculture, Forestry, Fishing, and Hunting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...: Agriculture, Forestry, Fishing, and Hunting AGENCY: U.S. Small Business Administration. ACTION: Proposed rule... for 11 industries in North American Industry Classification System (NAICS) Sector 11, Agriculture... standards was published in the Federal Register on July 18, 2008 (73 FR 41237). NAICS 11, Agriculture...

  13. 77 FR 35310 - Revisions to the Export Administration Regulations (EAR): Control of Military Training Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Classification Numbers (ECCNs) 0A614, 0B614, 0D614, and 0E614. This rule is one in a planned series of proposed... that is, as a result of differences in form and fit, ``specially designed'' for military applications...

  14. 15 CFR 310.1 - Background and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Expositions (BIE) rules. The BIE is an international organization established by the Paris Convention of 1928... ratification of the Paris Convention by the U.S. Senate (114 Cong. Rec. 11012). 1 The BIE defines a General... detailed BIE classification criteria and regulations are contained in the Paris Convention of 1928, as...

  15. 77 FR 16661 - Tuberculosis in Cattle and Bison; State and Zone Designations; NM; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...-0124] Tuberculosis in Cattle and Bison; State and Zone Designations; NM; Correction AGENCY: Animal and... in the regulatory text of an interim rule that amended the bovine tuberculosis regulations by establishing two separate zones with different tuberculosis risk classifications for the State of New Mexico...

  16. 76 FR 61253 - Tuberculosis in Cattle and Bison; State and Zone Designations; Minnesota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    .... APHIS-2011-0100] Tuberculosis in Cattle and Bison; State and Zone Designations; Minnesota AGENCY: Animal... are amending the bovine tuberculosis regulations regarding State and zone classifications by... for tuberculosis. DATES: This interim rule is effective October 4, 2011. We will consider all comments...

  17. 75 FR 5546 - Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... American Industrial Classification System (NAICS) codes have been provided to assist you and others in... dermal exposure; use of the substance without a National Institute for Occupational Safety and Health... observation period of up to 3 months. Evaluation should include markers of damage, oxidant stress, cell...

  18. 46 CFR 42.13-5 - Strength of vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information to the Commandant. (b) Vessels built and maintained in conformity with the requirements of a classification society recognized by the Commandant are considered to possess adequate strength for the purpose... General Rules for Determining Load Lines § 42.13-5 Strength of vessel. (a) The assigning and issuing...

  19. 17 CFR 41.44 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... positions in accordance with Regulation T and the margin rules of the self-regulatory authorities of which... the self-regulatory authorities of which the security futures intermediary is a member. (b) Separation... are within the same regulatory classification or account type and are owned by the same customer to be...

  20. 40 CFR 164.110 - Motion for reopening hearings; for rehearing; for reargument of any proceeding; or for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND... reconsideration of the order, must be made by motion to the Environmental Appeals Board filed with the hearing...

  1. 40 CFR 164.4 - Arrangements for examining Agency records, transcripts, orders, and decisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... records, transcripts, orders, and decisions. 164.4 Section 164.4 Protection of Environment ENVIRONMENTAL..., CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND OTHER HEARINGS CALLED PURSUANT TO SECTION 6... signed documents required by the rules in this part, whether issued by the Environmental Appeals Board or...

  2. 40 CFR 164.110 - Motion for reopening hearings; for rehearing; for reargument of any proceeding; or for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS RULES OF PRACTICE... REGISTER, CANCELLATIONS OF REGISTRATIONS, CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND... reconsideration of the order, must be made by motion to the Environmental Appeals Board filed with the hearing...

  3. 40 CFR 164.4 - Arrangements for examining Agency records, transcripts, orders, and decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... records, transcripts, orders, and decisions. 164.4 Section 164.4 Protection of Environment ENVIRONMENTAL..., CHANGES OF CLASSIFICATIONS, SUSPENSIONS OF REGISTRATIONS AND OTHER HEARINGS CALLED PURSUANT TO SECTION 6... signed documents required by the rules in this part, whether issued by the Environmental Appeals Board or...

  4. 7 CFR 1000.43 - General classification rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE GENERAL PROVISIONS OF FEDERAL MILK MARKETING ORDERS... milk order and shall compute separately for each pool plant, for each handler described in § 1000.9(c... purposes of classifying all milk reported by a handler pursuant to § __.30 of each Federal milk order the...

  5. 7 CFR 1000.43 - General classification rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE GENERAL PROVISIONS OF FEDERAL MILK MARKETING ORDERS... milk order and shall compute separately for each pool plant, for each handler described in § 1000.9(c... purposes of classifying all milk reported by a handler pursuant to § __.30 of each Federal milk order the...

  6. 75 FR 17052 - Issuance of Electronic Documents and Related Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... BIS to eliminate the paper versions of most export and reexport licenses, notices of denial of license applications, notices of return of a license application without action, notices of results of classification requests, License Exception AGR notification results, and encryption review request results. This rule also...

  7. High/Scope Preschool Key Experiences: Classification, Seriation, and Number.

    ERIC Educational Resources Information Center

    Koopmann, Linda

    Noticing relationships between similar things and developing rules for treating things the same or differently, based on characteristics like color, size, shape, and texture provides the basis of beginning mathematics learning. Based on the view that teachers and parents of young children should provide children with age-appropriate words,…

  8. 78 FR 12708 - Magnuson-Stevens Fishery Conservation and Management Act Provisions; Fisheries of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    .... This action is necessary to help mitigate expected adverse economic and social harm resulting from... Classification section of this proposed rule. Copies of the supporting biological, economic, and social impact... issued both monkfish and groundfish permits, the two fisheries are closely related, and influence one...

  9. 39 CFR 241.3 - Discontinuance of USPS-operated retail facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Discontinuance of USPS-operated retail facilities... ESTABLISHMENT CLASSIFICATION, AND DISCONTINUANCE § 241.3 Discontinuance of USPS-operated retail facilities. (a... of whether an existing retail Post Office, station, or branch should be discontinued. The rules cover...

  10. 39 CFR 241.3 - Discontinuance of USPS-operated retail facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Discontinuance of USPS-operated retail facilities... ESTABLISHMENT CLASSIFICATION, AND DISCONTINUANCE § 241.3 Discontinuance of USPS-operated retail facilities. (a... of whether an existing retail Post Office, station, or branch should be discontinued. The rules cover...

  11. 39 CFR 241.3 - Discontinuance of USPS-operated retail facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Discontinuance of USPS-operated retail facilities... ESTABLISHMENT CLASSIFICATION, AND DISCONTINUANCE § 241.3 Discontinuance of USPS-operated retail facilities. (a... of whether an existing retail Post Office, station, or branch should be discontinued. The rules cover...

  12. 78 FR 77377 - Small Business Investment Companies-Investments in Passive Businesses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ..., each of which must be a non-passive small business. The proposed rule would modify this exception to.... This modification would place SBICs on an equal footing with their non-SBIC counterparts in the venture... their equivalents under the North American Industrial Classification System (NAICS); correct erroneous...

  13. 17 CFR 229.10 - (Item 10) General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... classification system; and a statement informing investors that a security rating is not a recommendation to buy... face of any pro forma financial information required to be disclosed by Article 11 of Regulation S-X... rules, or a system of regulation of a government or governmental authority or self-regulatory...

  14. Discrimination-Aware Classifiers for Student Performance Prediction

    ERIC Educational Resources Information Center

    Luo, Ling; Koprinska, Irena; Liu, Wei

    2015-01-01

    In this paper we consider discrimination-aware classification of educational data. Mining and using rules that distinguish groups of students based on sensitive attributes such as gender and nationality may lead to discrimination. It is desirable to keep the sensitive attributes during the training of a classifier to avoid information loss but…

  15. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  16. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  17. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  18. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  19. 26 CFR 1.1031(a)-2 - Additional rules for exchanges of personal property.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), (viii) Heavy general purpose trucks (asset class 00.242), (ix) Railroad cars and locomotives, except... product class within Sectors 31, 32, and 33 (pertaining to manufacturing industries) of the North American Industry Classification System (NAICS), set forth in Executive Office of the President, Office of...

  20. 26 CFR 1.1031(a)-2 - Additional rules for exchanges of personal property.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), (viii) Heavy general purpose trucks (asset class 00.242), (ix) Railroad cars and locomotives, except... product class within Sectors 31, 32, and 33 (pertaining to manufacturing industries) of the North American Industry Classification System (NAICS), set forth in Executive Office of the President, Office of...

Top