Sample records for classification electric generation

  1. 21 CFR 884.4120 - Gynecologic electrocautery and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... electrically heated probe. It is used to excise cervical lesions, perform biopsies, or treat chronic cervicitis... electrical generator, a probe, and electrical cables. (b) Classification. Class II (performance standards). ...

  2. 21 CFR 884.4120 - Gynecologic electrocautery and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... electrically heated probe. It is used to excise cervical lesions, perform biopsies, or treat chronic cervicitis... electrical generator, a probe, and electrical cables. (b) Classification. Class II (performance standards). ...

  3. 21 CFR 884.4120 - Gynecologic electrocautery and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... electrically heated probe. It is used to excise cervical lesions, perform biopsies, or treat chronic cervicitis... electrical generator, a probe, and electrical cables. (b) Classification. Class II (performance standards). ...

  4. 21 CFR 884.4120 - Gynecologic electrocautery and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... electrically heated probe. It is used to excise cervical lesions, perform biopsies, or treat chronic cervicitis... electrical generator, a probe, and electrical cables. (b) Classification. Class II (performance standards). ...

  5. Financial statistics of major U.S. publicly owned electric utilities 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data aremore » provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.« less

  6. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113 Nuclear Electric Power... Materials and Basic Forms and Shapes Merchant Wholesalers 100 424690 Other Chemical and Allied Products...

  7. Capacity withholding in wholesale electricity markets: The experience in England and Wales

    NASA Astrophysics Data System (ADS)

    Quinn, James Arnold

    This thesis examines the incentives wholesale electricity generators face to withhold generating capacity from centralized electricity spot markets. The first chapter includes a brief history of electricity industry regulation in England and Wales and in the United States, including a description of key institutional features of England and Wales' restructured electricity market. The first chapter also includes a review of the literature on both bid price manipulation and capacity bid manipulation in centralized electricity markets. The second chapter details a theoretical model of wholesale generator behavior in a single price electricity market. A duopoly model is specified under the assumption that demand is non-stochastic. This model assumes that duopoly generators offer to sell electricity at their marginal cost, but can withhold a continuous segment of their capacity from the market. The Nash equilibrium withholding strategy of this model involves each duopoly generator withholding so that it produces the Cournot equilibrium output. A monopoly model along the lines of the duopoly model is specified and simulated under the assumption that demand is stochastic. The optimal strategy depends on the degree of demand uncertainty. When there is a moderate degree of demand uncertainty, the optimal withholding strategy involves production inefficiencies. When there is a high degree of demand uncertainty, the optimal monopoly quantity is greater than the optimal output level when demand is non-stochastic. The third chapter contains an empirical examination of the behavior of generators in the wholesale electricity market in England and Wales in the early 1990's. The wholesale market in England and Wales is analyzed because the industry structure in the early 1990's created a natural experiment, which is described in this chapter, whereby one of the two dominant generators had no incentive to behave non-competitively. This chapter develops a classification methodology consistent with the equilibrium identified in the second chapter. The availability of generating units owned by the two dominant generators is analyzed based on this classification system. This analysis includes the use of sample statistics as well as estimates from a dynamic random effects probit model. The analysis suggests a minimal degree of capacity withholding.

  8. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Hydroelectric Power Generation See footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113... Materials and Basic Forms and Shapes Merchant Wholesalers 100 424690 Other Chemical and Allied Products...

  9. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113 Nuclear Electric Power... 500 323115 Digital Printing 500 323116 Manifold Business Forms Printing 500 323117 Books Printing 500... 424590 Other Farm Product Raw Material Merchant Wholesalers 100 424610 Plastics Materials and Basic Forms...

  10. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113 Nuclear Electric Power... 500 323115 Digital Printing 500 323116 Manifold Business Forms Printing 500 323117 Books Printing 500... Merchant Wholesalers 100 424610 Plastics Materials and Basic Forms and Shapes Merchant Wholesalers 100...

  11. 13 CFR 121.201 - What size standards has SBA identified by North American Industry Classification System codes?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... footnote 1 221112 Fossil Fuel Electric Power Generation See footnote 1 221113 Nuclear Electric Power... 500 323115 Digital Printing 500 323116 Manifold Business Forms Printing 500 323117 Books Printing 500... Merchant Wholesalers 100 424610 Plastics Materials and Basic Forms and Shapes Merchant Wholesalers 100...

  12. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  13. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.

    PubMed

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur

    2017-09-22

    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Selection of battery technology to support grid-integrated renewable electricity

    NASA Astrophysics Data System (ADS)

    Leadbetter, Jason; Swan, Lukas G.

    2012-10-01

    Operation of the electricity grid has traditionally been done using slow responding base and intermediate load generators with fast responding peak load generators to capture the chaotic behavior of end-use demands. Many modern electricity grids are implementing intermittent non-dispatchable renewable energy resources. As a result, the existing support services are becoming inadequate and technological innovation in grid support services are necessary. Support services fall into short (seconds to minutes), medium (minutes to hours), and long duration (several hours) categories. Energy storage offers a method of providing these services and can enable increased penetration rates of renewable energy generators. Many energy storage technologies exist. Of these, batteries span a significant range of required storage capacity and power output. By assessing the energy to power ratio of electricity grid services, suitable battery technologies were selected. These include lead-acid, lithium-ion, sodium-sulfur, and vanadium-redox. Findings show the variety of grid services require different battery technologies and batteries are capable of meeting the short, medium, and long duration categories. A brief review of each battery technology and its present state of development, commercial implementation, and research frontiers is presented to support these classifications.

  15. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) You must classify all areas according to API RP 500, Recommended Practice for Classification of... Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... and hazards of electrical equipment. (c) You must install all electrical systems according to API RP...

  16. Communications and control for electric power systems: Power flow classification for static security assessment

    NASA Technical Reports Server (NTRS)

    Niebur, D.; Germond, A.

    1993-01-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  17. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  18. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  19. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Production Platform Piping Systems (as incorporated by reference in § 250.198). (4) Electrical system... classified according to API RP 500, Recommended Practice for Classification of Locations for Electrical..., Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities...

  20. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  1. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  2. ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines

    DTIC Science & Technology

    2014-05-16

    ML-o-scope: a diagnostic visualization system for deep machine learning pipelines Daniel Bruckner Electrical Engineering and Computer Sciences... machine learning pipelines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...the system as a support for tuning large scale object-classification pipelines. 1 Introduction A new generation of pipelined machine learning models

  3. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.

  4. Pine Needles as Potential Energy Feedstock: Availability in the Central Himalayan State of Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Kala, L. D.; Subbarao, P. M. V.

    2017-11-01

    The amount of pine needles (pinus roxburgii) potentially available for use as energy feedstock in the Central Himalayan state of Uttarakhand in India has been estimated. It involves estimating the gross annual amount of pine needle yield followed by a comprehensive identification and quantification of the factors that affect the net annual pine needle yield available as energy feedstock. These factors include considerations such as accessibility, alternative uses, forest fires, other losses, etc., that are influenced by aspects ranging from physical constraints to traditional societal traits. Tree canopy cover method has been used for estimating the gross annual pine needle yield. The information on canopy density is obtained from remote sensing data, that forms the basis for forest classification. The annual gross pine needle yield has been estimated at 1.9 million tonnes while the annual net pine needle yield at 1.33 million tonnes. The annual primary energy potential of pine needles available as energy feedstock has also been estimated. For annual net energy potential estimation, thermal and electrical routes are considered. Electrical energy generation from pine needles using thermochemical conversion has been examined and the corresponding potential for electricity generation been estimated. An installed capacity of 789 MW can be supported with pine needles feedstock for supplying electricity in rural areas for five hours a day. For round the clock generation, an installed capacity of 165 MW can be supported by the pine needle energy feedstock.

  5. Integrated pillar scatterers for speeding up classification of cell holograms.

    PubMed

    Lugnan, Alessio; Dambre, Joni; Bienstman, Peter

    2017-11-27

    The computational power required to classify cell holograms is a major limit to the throughput of label-free cell sorting based on digital holographic microscopy. In this work, a simple integrated photonic stage comprising a collection of silica pillar scatterers is proposed as an effective nonlinear mixing interface between the light scattered by a cell and an image sensor. The light processing provided by the photonic stage allows for the use of a simple linear classifier implemented in the electric domain and applied on a limited number of pixels. A proof-of-concept of the presented machine learning technique, which is based on the extreme learning machine (ELM) paradigm, is provided by the classification results on samples generated by 2D FDTD simulations of cells in a microfluidic channel.

  6. Low complexity feature extraction for classification of harmonic signals

    NASA Astrophysics Data System (ADS)

    William, Peter E.

    In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.

  7. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  8. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  9. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  10. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  11. 7 CFR 1794.31 - Classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Classification. 1794.31 Section 1794.31 Agriculture... Classification. (a) Electric and telecommunications programs. RUS will normally determine the proper environmental classification of projects based on its evaluation of the project description set forth in the...

  12. Multi-label spacecraft electrical signal classification method based on DBN and random forest

    PubMed Central

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479

  13. Multi-label spacecraft electrical signal classification method based on DBN and random forest.

    PubMed

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.

  14. Research on unit commitment with large-scale wind power connected power system

    NASA Astrophysics Data System (ADS)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  15. A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions

    DOE PAGES

    Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan; ...

    2017-04-24

    Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less

  16. A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan

    Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less

  17. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon

    NASA Astrophysics Data System (ADS)

    Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda

    2016-07-01

    In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option for off-grid electrification of small and remote communities.

  18. A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM

    PubMed Central

    Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi

    2015-01-01

    This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549

  19. Modern prospects of development of branch of solar power

    NASA Astrophysics Data System (ADS)

    Luchkina, Veronika

    2017-10-01

    Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.

  20. Low Thrust Mission Trajectories to Near Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Saripalli, Pratik; Cardiff, Eric

    2017-01-01

    The discovery of 2016 HO3 and its classification as a quasi-satellite has sparked a stronger interest towards Near Earth Asteroids (NEAs). This work presents low-thrust low-power mission designs to various NEAs using an EELV Secondary Payload Adapter (ESPA). A global trajectory optimizer (EMTG) was used to generate mission solutions to a select 13 NEAs using a 200 watt BHT-200 thruster as a proof of concept. The missions presented here demonstrate that a low-cost electric propulsion ESPA mission to NEAs is a feasible concept for many asteroids.

  1. Resilience in Utility Technologies

    NASA Astrophysics Data System (ADS)

    Seaton, Roger

    The following sections are included: * Scope of paper * Preamble * Background to the case-study projects * Source projects * Resilience * Case study 1: Electricity generation * Context * Model * Case study 2: Water recycling * Context * Model * Case study 3: Ecotechnology and water treatment * Context * The problem of classification: Finding a classificatory solution * Application of the new taxonomy to water treatment * Concluding comments and questions * Conclusions * Questions and issues * Purposive or Purposeful? * Resilience: Flexibility and adaptivity? * Resilience: With respect of what? * Risk, uncertainty, surprise, emergence - What sort of shock, and who says so? * Co-evolutionary friction * References

  2. Behavioral state classification in epileptic brain using intracranial electrophysiology

    NASA Astrophysics Data System (ADS)

    Kremen, Vaclav; Duque, Juliano J.; Brinkmann, Benjamin H.; Berry, Brent M.; Kucewicz, Michal T.; Khadjevand, Fatemeh; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Worrell, Gregory A.

    2017-04-01

    Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age 34+/- 12 , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8  ±  0.3% (normal tissue) and 89.4  ±  0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8  ±  0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1  ±  1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy  ⩾90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.

  3. Coal-cleaning plant refuse characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalet, J.R.; Torak, E.R.

    1985-06-01

    This report describes a study performed for the Electric Power Research Institute's Coal Cleaning Test Facility in Homer City, Pennsylvania. The purpose of the study was to design a standard methods for chemically and physically classifying refuse generated by physical coal cleaning and to construct a matrix that will accurately predict how a particular refuse will react to particular disposal methods - based solely on raw-coal characteristics and the process used to clean the coal. The value of such a classification system (which has not existed to this point) is the ability to design efficient and economical systems for disposingmore » of specific coal cleaning refuse. The report describes the project's literature search and a four-tier classification system. It also provides designs for test piles, sampling procedures, and guidelines for a series of experiments to test the classfication system and create an accurate, reliable predictive matrix. 38 refs., 39 figs., 35 tabs.« less

  4. A complete electrical shock hazard classification system and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Lloyd; Cartelli, Laura; Graham, Nicole

    Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less

  5. A complete electrical shock hazard classification system and its application

    DOE PAGES

    Gordon, Lloyd; Cartelli, Laura; Graham, Nicole

    2018-02-08

    Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less

  6. Compositionally Graded Multilayer Ceramic Capacitors.

    PubMed

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less

  8. Semiotic indexing of digital resources

    DOEpatents

    Parker, Charles T; Garrity, George M

    2014-12-02

    A method of classifying a plurality of documents. The method includes steps of providing a first set of classification terms and a second set of classification terms, the second set of classification terms being different from the first set of classification terms; generating a first frequency array of a number of occurrences of each term from the first set of classification terms in each document; generating a second frequency array of a number of occurrences of each term from the second set of classification terms in each document; generating a first similarity matrix from the first frequency array; generating a second similarity matrix from the second frequency array; determining an entrywise combination of the first similarity matrix and the second similarity matrix; and clustering the plurality of documents based on the result of the entrywise combination.

  9. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  10. 78 FR 30393 - Preparations for the 43rd Session of the United Nations Sub-Committee of Experts on the Transport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... System of Classification and Labelling of Chemicals (UNSCEGHS) AGENCY: Pipeline and Hazardous Materials... the Globally Harmonized System of Classification and Labelling of Chemicals (UNSCEGHS) to be held July... UNSCOE TDG meeting include: Explosives and related matters Listing, classification and packing Electric...

  11. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... their facilities. (a) You must classify all areas according to API RP 500, Recommended Practice for... 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... electrical systems according to API RP 14F, Recommended Practice for Design and Installation of Electrical...

  12. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... their facilities. (a) You must classify all areas according to API RP 500, Recommended Practice for... 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... electrical systems according to API RP 14F, Recommended Practice for Design and Installation of Electrical...

  13. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... their facilities. (a) You must classify all areas according to API RP 500, Recommended Practice for... 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical... electrical systems according to API RP 14F, Recommended Practice for Design and Installation of Electrical...

  14. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  15. 49 CFR 1245.6 - Cross reference to standard occupational classification manual.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Electrical Worker (lineman) 6433. Electrical Worker (groundsman) 6432. Communications Maintainer 6151... Maintainer Helper 8635. 320Camp Car Cooks: Camp Car Cook 5214. Camp Car Helper 5219. 400Maintenance of... Reclamations Plant 6318. Assist. General Foreman 6318. 403Equipment, Shop, Electrical Inspectors: Chief...

  16. 49 CFR 1245.6 - Cross reference to standard occupational classification manual.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Electrical Worker (lineman) 6433. Electrical Worker (groundsman) 6432. Communications Maintainer 6151... Maintainer Helper 8635. 320Camp Car Cooks: Camp Car Cook 5214. Camp Car Helper 5219. 400Maintenance of... Reclamations Plant 6318. Assist. General Foreman 6318. 403Equipment, Shop, Electrical Inspectors: Chief...

  17. 49 CFR 1245.6 - Cross reference to standard occupational classification manual.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Electrical Worker (lineman) 6433. Electrical Worker (groundsman) 6432. Communications Maintainer 6151... Maintainer Helper 8635. 320Camp Car Cooks: Camp Car Cook 5214. Camp Car Helper 5219. 400Maintenance of... Reclamations Plant 6318. Assist. General Foreman 6318. 403Equipment, Shop, Electrical Inspectors: Chief...

  18. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical and electrical systems to be installed was approved by registered professional engineers. After... Installation of Offshore Production Platform Piping Systems; (3) Electrical system information including a plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  19. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Mitigation measures Excessive laser power Electrical safety and electromagnetic compatibility (EMC... should validate electromagnetic compatibility (EMC), electrical safety, and battery characteristics; (4...

  20. Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes

    PubMed Central

    Schwartz, Laurent; Lafitte, Olivier; da Veiga Moreira, Jorgelindo

    2018-01-01

    Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future. PMID:29541031

  1. ASTM and other specifications and classifications for petroleum products and lubricants. Fifth edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This book includes specifications and classifications from ASTM committees on paint and related coatings and materials; road and paving materials; wood; roofing, waterproofing and bituminous materials; rubber; soaps and other detergents; aromatic hydrocarbons and related chemicals; and electrical insulating liquids and gases. Also included are several related, important specifications and classifications from other organizations.

  2. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Systems; (3) Electrical system information including a plan of each platform deck, outlining all hazardous... Electrical Installations at Petroleum Facilities Classified as Class I, Division 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations for Electrical Installations at Petroleum...

  3. Detection of Partial Discharge Sources Using UHF Sensors and Blind Signal Separation

    PubMed Central

    Boya, Carlos; Parrado-Hernández, Emilio

    2017-01-01

    The measurement of the emitted electromagnetic energy in the UHF region of the spectrum allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when there are several simultaneous insulation defects. This paper proposes the use of an independent component analysis (ICA) algorithm to separate the signals coming from different partial discharge (PD) sources. The performance of the algorithm has been tested using UHF signals generated by test objects. The results are validated by two automatic classification techniques: support vector machines and similarity with class mean. Both methods corroborate the suitability of the algorithm to separate the signals emitted by each PD source even when they are generated by the same type of insulation defect. PMID:29140267

  4. Compositionally Graded Multilayer Ceramic Capacitors

    DOE PAGES

    Song, Hyun-Cheol; Zhou, Jie E.; Maurya, Deepam; ...

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. In this paper, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters andmore » power converters.« less

  5. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  6. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  7. 30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and electrical systems to be installed were approved by registered professional engineers. After these... reference as specified in § 250.198). (4) Electrical system information including the following: (i) A plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  8. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  9. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Systems (as incorporated by reference in § 250.198); (3) Electrical system information including a plan of... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as... for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2...

  10. Fines classification based on sensitivity to pore-fluid chemistry

    USGS Publications Warehouse

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  11. Support vector machine for day ahead electricity price forecasting

    NASA Astrophysics Data System (ADS)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  12. Electricity Consumption Risk Map - The use of Urban Climate Mapping for smarter analysis: Case study for Birmingham, UK.

    NASA Astrophysics Data System (ADS)

    Antunes Azevedo, Juliana; Burghardt, René; Chapman, Lee; Katzchner, Lutz; Muller, Catherine L.

    2015-04-01

    Climate is a key driving factor in energy consumption. However, income, vegetation, building mass structure, topography also impact on the amount of energy consumption. In a changing climate, increased temperatures are likely to lead to increased electricity consumption, affecting demand, distribution and generation. Furthermore, as the world population becomes more urbanized, increasing numbers of people will need to deal with not only increased temperatures from climate change, but also from the unintentional modification of the urban climate in the form of urban heat islands. Hence, climate and climate change needs to be taken into account for future urban planning aspects to increase the climate and energy resilience of the community and decrease the future social and economic costs. Geographical Information Systems provide a means to create urban climate maps as part of the urban planning process. Geostatistical analyses linking these maps with demographic and social data, enables a geo-statistical analysis to identify linkages to high-risk groups of the community and vulnerable areas of town and cities. Presently, the climatope classification is oriented towards thermal aspects and the ventilation quality (roughness) of the urban areas but can also be adapted to take into account other structural "environmental factors". This study aims to use the climatope approach to predict areas of potential high electricity consumption in Birmingham, UK. Several datasets were used to produce an average surface temperature map, vegetation map, land use map, topography map, building height map, built-up area roughness calculations, an average air temperature map and a domestic electricity consumption map. From the correlations obtained between the layers it is possible to average the importance of each factor and create a map for domestic electricity consumption to understand the influence of environmental aspects on spatial energy consumption. Based on these results city planners and local authorities can guide their directives and policies towards electricity consumption, demand, generation and distribution.

  13. Method for protecting an electric generator

    DOEpatents

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  14. Rationale for classification of combustible gases, vapors and dusts with reference to the National Electrical Code

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Serious reservations about the entire classification procedure of chemical compounds present in electrical equipment environments and the precepts on which it is based are discussed. Although some tests were conducted on selected key compounds, the committee primarily considered the chemical similarity of compounds and other known flammability properties and relied heavily on the experience and intuition of its members. The committee also recommended that the NEC grouping of dusts be changed in some ways and has reclassified dusts according to the modified version of the code.

  15. Comparison analysis for classification algorithm in data mining and the study of model use

    NASA Astrophysics Data System (ADS)

    Chen, Junde; Zhang, Defu

    2018-04-01

    As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.

  16. Real-time human versus animal classification using pyro-electric sensor array and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2014-03-01

    In this paper, we propose a real-time human versus animal classification technique using a pyro-electric sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a pyro-electric sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.

  17. Feasibility of Geothermal Energy Extraction from Non-Activated Petroleum Wells in Arun Field

    NASA Astrophysics Data System (ADS)

    Syarifudin, M.; Octavius, F.; Maurice, K.

    2016-09-01

    The big obstacle to develop geothermal is frequently came from the economical viewpoint which mostly contributed by the drilling cost. However, it potentially be tackled by converting the existing decommissioned petroleum well to be converted for geothermal purposes. In Arun Field, Aceh, there are 188 wells and 62% of them are inactive (2013). The major obstacle is that the outlet water temperature from this conversion setup will not as high as the temperature that come out from the conventional geothermal well, since it will only range from 60 to 180oC depending on several key parameters such as the values of ground temperature, geothermal gradient in current location, the flow inside of the tubes, and type of the tubes (the effect from these parameters are studied). It will just be considered as low to medium temperature, according to geothermal well classification. Several adjustments has to be made such as putting out pipes inside the well that have been used to lift the oil/gas and replacing them with a curly long coil tubing which act as a heat exchanger. It will convert the cold water from the surface to be indirectly heated by the hot rock at the bottom of the well in a closed loop system. In order to make power production, the binary cycle system is used so that the low to medium temperature fluid is able to generate electricity. Based on this study, producing geothermal energy for direct use and electricity generation in Arun Field is technically possible. In this study case, we conclude that 2900 kW of electricity could be generated. While for-direct utility, a lot of local industries in Northern Sumatera could get the benefits from this innovation.

  18. Research on potential user identification model for electric energy substitution

    NASA Astrophysics Data System (ADS)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  19. An evaluation of the transferability of cross classification trip generation models.

    DOT National Transportation Integrated Search

    1978-01-01

    This report describes the results of the application in Virginia of the trip generation procedures described in the Federal Highway Administration report entitled Trip Generation Analysis and published in 1975. Cross classification models, disaggrega...

  20. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  1. Dedication of emergency diesel generators` control air subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, M.; Myers, G.; Palumbo, M.

    1994-12-31

    In the spring of 1993, the need to upgrade Seabrook Station`s emergency diesel generators` (EDGs`) control air system from nonsafety related to safety related was identified. This need was identified as a result of questions raised by the US Nuclear Regulatory Commission, which was conducting an Electrical Distribution Safety Functional Inspection at Seabrook at that time. The specific reason for the reassignment of safety classification was recognition that failure of the control air supply to the EDGs` jacket cooling water temperature control valves could cause overcooling of the EDGs, which potentially could result in EDG failure during long-term operation. Thismore » paper addresses how the installed control air system was upgraded to safety related using Seabrook`s Commercial Grade Dedication (CGD) Program and how, by using the dedication skills obtained over the past few years, it was done at minimal cost.« less

  2. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  3. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  4. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  5. 29 CFR Appendix A to Subpart S of... - References for Further Information

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Safety, Health, and Environmental Training. ANSI/IEEE C2-2002 National Electrical Safety Code. ANSI K61.1.... NFPA 59-2004 Utility LP-Gas Plant Code. NFPA 70-2002 National Electrical Code. (See also NFPA 70-2005.... NMAB 353-3-1980 Classification of Combustible Dust in Accordance with the National Electrical Code. [72...

  6. Electric Trees and Pond Creatures.

    ERIC Educational Resources Information Center

    Weaver, Helen; Hounshell, Paul B.

    1978-01-01

    Two learning activities are presented to develop observation and classification skills at the elementary level. The first is an electric box that associates tree names with leaf and bark specimens, and the second is a pond water observation and slide preparation activity. (BB)

  7. Draft de novo transcriptome assembly and proteome characterization of the electric lobe of Tetronarce californica: a molecular tool for the study of cholinergic neurotransmission in the electric organ.

    PubMed

    Stavrianakou, Maria; Perez, Ricardo; Wu, Cheng; Sachs, Matthew S; Aramayo, Rodolfo; Harlow, Mark

    2017-08-14

    The electric organ of Tetronarce californica (an electric ray formerly known as Torpedo californica) is a classic preparation for biochemical studies of cholinergic neurotransmission. To broaden the usefulness of this preparation, we have performed a transcriptome assembly of the presynaptic component of the electric organ (the electric lobe). We combined our assembled transcriptome with a previous transcriptome of the postsynaptic electric organ, to define a MetaProteome containing pre- and post-synaptic components of the electric organ. Sequencing yielded 102 million paired-end 100 bp reads. De novo Trinity assembly was performed at Kmer 25 (default) and Kmers 27, 29, and 31. Trinity, generated around 103,000 transcripts, and 78,000 genes per assembly. Assemblies were evaluated based on the number of bases/transcripts assembled, RSEM-EVAL scores and informational content and completeness. We found that different assemblies scored differently according to the evaluation criteria used, and that while each individual assembly contained unique information, much of the assembly information was shared by all assemblies. To generate the presynaptic transcriptome (electric lobe), while capturing all information, assemblies were first clustered and then combined with postsynaptic transcripts (electric organ) downloaded from NCBI. The completness of the resulting clustered predicted MetaProteome was rigorously evaluated by comparing its information against the predicted proteomes from Homo sapiens, Callorhinchus milli, and the Transporter Classification Database (TCDB). In summary, we obtained a MetaProteome containing 92%, 88.5%, and 66% of the expected set of ultra-conserved sequences (i.e., BUSCOs), expected to be found for Eukaryotes, Metazoa, and Vertebrata, respectively. We cross-annotated the conserved set of proteins shared between the T. californica MetaProteome and the proteomes of H. sapiens and C. milli, using the H. sapiens genome as a reference. This information was used to predict the position in human pathways of the conserved members of the T. californica MetaProteome. We found proteins not detected before in T. californica, corresponding to processes involved in synaptic vesicle biology. Finally, we identified 42 transporter proteins in TCDB that were detected by the T. californica MetaProteome (electric fish) and not selected by a control proteome consisting of the combined proteomes of 12 widely diverse non-electric fishes by Reverse-Blast-Hit Blast. Combined, the information provided here is not only a unique tool for the study of cholinergic neurotransmission, but it is also a starting point for understanding the evolution of early vertebrates.

  8. Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)

    2012-01-01

    A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.

  9. Classification of wheat: Badhwar profile similarity technique

    NASA Technical Reports Server (NTRS)

    Austin, W. W.

    1980-01-01

    The Badwar profile similarity classification technique used successfully for classification of corn was applied to spring wheat classifications. The software programs and the procedures used to generate full-scene classifications are presented, and numerical results of the acreage estimations are given.

  10. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification.

    PubMed

    Lee, Eugene K; Tran, David D; Keung, Wendy; Chan, Patrick; Wong, Gabriel; Chan, Camie W; Costa, Kevin D; Li, Ronald A; Khine, Michelle

    2017-11-14

    Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research effort has been focused toward creating new screening platforms that utilize human pluripotent stem cell (hPSC)-derived cardiomyocytes and three-dimensional engineered cardiac tissue constructs to better recapitulate human heart function and drug responses. As these new platforms become increasingly sophisticated and high throughput, the drug screens result in larger multidimensional datasets. Improved automated analysis methods must therefore be developed in parallel to fully comprehend the cellular response across a multidimensional parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS) electrically paced at a range of frequencies and exposed to a library of compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a classification model that can automatically predict the mechanistic action of an unknown cardioactive drug. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. 46 CFR 111.106-11 - Classification of storage and handling locations of heated combustible liquid cargoes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous... cargoes. (a) This section applies to locations surrounding the storage and handling of combustible liquid... hazardous locations in § 111.106-9 of this subpart apply. ...

  12. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  13. District heating and cooling systems for communities through power plant retrofit and distribution networks. Phase 1: identificaion and assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    Appendix A, Utility Plant Characteristics, contains information describing the characteristics of seven utility plants that were considered during the final site selection process. The plants are: Valley Electric Generating Plant, downtown Milwaukee; Manitowoc Electric Generating Plant, downtown Manitowoc; Blount Street Electric Generating Plant, downtown Madison; Pulliam Electric Generating Plant, downtown Green Bay; Edgewater Electric Generating Plant, downtown Sheboygan; Rock River Electric Generating Plant, near Janesville and Beloit; and Black Hawk Electric Generating Plant, downtown Beloit. Additional appendices are: Future Loads; hvac Inventory; Load Calculations; Factors to Induce Potential Users; Turbine Retrofit/Distribution System Data; and Detailed Economic Analysis Results/Data.

  14. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site : final report.

    DOT National Transportation Integrated Search

    1991-07-01

    Oregon has twelve pavement test sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot proj...

  15. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site.

    DOT National Transportation Integrated Search

    1990-05-01

    Oregon has twelve sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot project was to hel...

  16. Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint.

    PubMed

    Thilak Krishna, Thilakam Vimal; Creusere, Charles D; Voelz, David G

    2011-01-01

    Polarization, a property of light that conveys information about the transverse electric field orientation, complements other attributes of electromagnetic radiation such as intensity and frequency. Using multiple passive polarimetric images, we develop an iterative, model-based approach to estimate the complex index of refraction and apply it to target classification.

  17. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  18. Understanding the use of standardized nursing terminology and classification systems in published research: A case study using the International Classification for Nursing Practice(®).

    PubMed

    Strudwick, Gillian; Hardiker, Nicholas R

    2016-10-01

    In the era of evidenced based healthcare, nursing is required to demonstrate that care provided by nurses is associated with optimal patient outcomes, and a high degree of quality and safety. The use of standardized nursing terminologies and classification systems are a way that nursing documentation can be leveraged to generate evidence related to nursing practice. Several widely-reported nursing specific terminologies and classifications systems currently exist including the Clinical Care Classification System, International Classification for Nursing Practice(®), Nursing Intervention Classification, Nursing Outcome Classification, Omaha System, Perioperative Nursing Data Set and NANDA International. However, the influence of these systems on demonstrating the value of nursing and the professions' impact on quality, safety and patient outcomes in published research is relatively unknown. This paper seeks to understand the use of standardized nursing terminology and classification systems in published research, using the International Classification for Nursing Practice(®) as a case study. A systematic review of international published empirical studies on, or using, the International Classification for Nursing Practice(®) were completed using Medline and the Cumulative Index for Nursing and Allied Health Literature. Since 2006, 38 studies have been published on the International Classification for Nursing Practice(®). The main objectives of the published studies have been to validate the appropriateness of the classification system for particular care areas or populations, further develop the classification system, or utilize it to support the generation of new nursing knowledge. To date, most studies have focused on the classification system itself, and a lesser number of studies have used the system to generate information about the outcomes of nursing practice. Based on the published literature that features the International Classification for Nursing Practice, standardized nursing terminology and classification systems appear to be well developed for various populations, settings and to harmonize with other health-related terminology systems. However, the use of the systems to generate new nursing knowledge, and to validate nursing practice is still in its infancy. There is an opportunity now to utilize the well-developed systems in their current state to further what is know about nursing practice, and how best to demonstrate improvements in patient outcomes through nursing care. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. 78 FR 58153 - Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... engine and engine parts manufacturing,'' ``Motor vehicle electrical and electronic equipment... manufacturing,'' ``Other motor vehicle electrical and electronic equipment manufacturing,'' and ``All other motor vehicle parts manufacturing'' in the second column from the list of required NAICS codes for the...

  20. Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles.

    PubMed

    Akhlaghi, Nima; Baker, Clayton A; Lahlou, Mohamed; Zafar, Hozaifah; Murthy, Karthik G; Rangwala, Huzefa S; Kosecka, Jana; Joiner, Wilsaan M; Pancrazio, Joseph J; Sikdar, Siddhartha

    2016-08-01

    Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.

  1. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  2. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    NASA Astrophysics Data System (ADS)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  3. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  4. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  5. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  6. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  7. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  8. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    EPA Science Inventory

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  9. Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java

    NASA Astrophysics Data System (ADS)

    Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.

    2018-04-01

    Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.

  10. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  11. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  12. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  13. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  14. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  15. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  16. 10 CFR 1045.37 - Classification guides.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Classification guides. 1045.37 Section 1045.37 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.37 Classification guides...

  17. 10 CFR 1045.37 - Classification guides.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Classification guides. 1045.37 Section 1045.37 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.37 Classification guides...

  18. 10 CFR 1045.37 - Classification guides.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Classification guides. 1045.37 Section 1045.37 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.37 Classification guides...

  19. 10 CFR 1045.37 - Classification guides.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Classification guides. 1045.37 Section 1045.37 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.37 Classification guides...

  20. 10 CFR 1045.37 - Classification guides.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Classification guides. 1045.37 Section 1045.37 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.37 Classification guides...

  1. Stationary diesel engines for use with generators to supply electric power

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  2. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  3. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  4. Electrical Engineering | Classification | College of Engineering & Applied

    Science.gov Websites

    ) 229-6916bsra@uwm.eduEng & Math Sciences 995 profile photo Robert Cuzner, Ph.D.Assistant ChairDepartment Chair of Electrical Engineering(414) 229-3885george@uwm.eduEng & Math Sciences 1245 profile photo Hossein Hosseini, Ph.D.ProfessorComputer Science(414) 229-5184hosseini@uwm.eduEng & Math

  5. 30 CFR 250.114 - How must I install and operate electrical equipment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... structures, and their facilities. (a) You must classify all areas according to API RP 500, Recommended... Class I, Division 1 and Division 2, or API RP 505, Recommended Practice for Classification of Locations... according to API RP 14F, Recommended Practice for Design and Installation of Electrical Systems for Fixed...

  6. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  7. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    PubMed Central

    Hu, Yuanan; Cheng, Hefa

    2017-01-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467

  8. An Introduction to Electrical Breakdown in Dielectrics

    DTIC Science & Technology

    1985-04-01

    PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. NO. 11TI TL E ’tniclude Security Classification) AN INTRODUCTION TO ELECTRICAL 1PERSONAL AUTHOR(S...find themselves working in the area without the benefit of formal coursework. inAlthough the title of the course was High Voltage Engineer- inI titled...this work , "An Introduction to Electrical Breakdown * Phenomena," because breakdown may occur at low voltages when spacecraft systems are considered

  9. Advanced eddy current test signal analysis for steam generator tube defect classification and characterization

    NASA Astrophysics Data System (ADS)

    McClanahan, James Patrick

    Eddy Current Testing (ECT) is a Non-Destructive Examination (NDE) technique that is widely used in power generating plants (both nuclear and fossil) to test the integrity of heat exchanger (HX) and steam generator (SG) tubing. Specifically for this research, laboratory-generated, flawed tubing data were examined. The purpose of this dissertation is to develop and implement an automated method for the classification and an advanced characterization of defects in HX and SG tubing. These two improvements enhanced the robustness of characterization as compared to traditional bobbin-coil ECT data analysis methods. A more robust classification and characterization of the tube flaw in-situ (while the SG is on-line but not when the plant is operating), should provide valuable information to the power industry. The following are the conclusions reached from this research. A feature extraction program acquiring relevant information from both the mixed, absolute and differential data was successfully implemented. The CWT was utilized to extract more information from the mixed, complex differential data. Image Processing techniques used to extract the information contained in the generated CWT, classified the data with a high success rate. The data were accurately classified, utilizing the compressed feature vector and using a Bayes classification system. An estimation of the upper bound for the probability of error, using the Bhattacharyya distance, was successfully applied to the Bayesian classification. The classified data were separated according to flaw-type (classification) to enhance characterization. The characterization routine used dedicated, flaw-type specific ANNs that made the characterization of the tube flaw more robust. The inclusion of outliers may help complete the feature space so that classification accuracy is increased. Given that the eddy current test signals appear very similar, there may not be sufficient information to make an extremely accurate (>95%) classification or an advanced characterization using this system. It is necessary to have a larger database fore more accurate system learning.

  10. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  11. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials.

    PubMed

    Finke, Mareike; Billinger, Martin; Büchner, Andreas

    Cochlear implants (CIs) restore hearing to the profoundly deaf by direct electrical stimulation of the auditory nerve. To provide an optimal electrical stimulation pattern the CI must be individually fitted to each CI user. To date, CI fitting is primarily based on subjective feedback from the user. However, not all CI users are able to provide such feedback, for example, small children. This study explores the possibility of using the electroencephalogram (EEG) to objectively determine if CI users are able to hear differences in tones presented to them, which has potential applications in CI fitting or closed loop systems. Deviant and standard stimuli were presented to 12 CI users in an active auditory oddball paradigm. The EEG was recorded in two sessions and classification of the EEG data was performed with shrinkage linear discriminant analysis. Also, the impact of CI artifact removal on classification performance and the possibility to reuse a trained classifier in future sessions were evaluated. Overall, classification performance was above chance level for all participants although performance varied considerably between participants. Also, artifacts were successfully removed from the EEG without impairing classification performance. Finally, reuse of the classifier causes only a small loss in classification performance. Our data provide first evidence that EEG can be automatically classified on single-trial basis in CI users. Despite the slightly poorer classification performance over sessions, classifier and CI artifact correction appear stable over successive sessions. Thus, classifier and artifact correction weights can be reused without repeating the set-up procedure in every session, which makes the technique easier applicable. With our present data, we can show successful classification of event-related cortical potential patterns in CI users. In the future, this has the potential to objectify and automate parts of CI fitting procedures.

  12. The Effects of Embedding Generative Cognitive Strategies in Science Software.

    ERIC Educational Resources Information Center

    Barba, Robertta H.; Merchant, Linda J.

    1990-01-01

    Discussed is whether embedding generative cognitive strategies in microcomputer courseware improves student performance on cognitive assessment measures and on insect classification tasks. The effects of transactional software on students' knowledge of insect anatomy and principles of insect classification were also investigated. (KR)

  13. Structural Validation of Nursing Terminologies

    PubMed Central

    Hardiker, Nicholas R.; Rector, Alan L.

    2001-01-01

    Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications. Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology. Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification. Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy. Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications. PMID:11320066

  14. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  15. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  16. 78 FR 77343 - Small Business Size Standards: Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348

  17. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-025; NRC-2008-0252] Vogtle Electric Generating Plant....01, for the Vogtle Electric Generating Plant, Unit 3. ADDRESSES: Please refer to Docket ID NRC-2008... Generating Plant, Unit 3 [[Page 36278

  18. Optically activated switches for the generation of complex electrical waveforms with multigigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.

    1995-01-01

    An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.

  19. Learning for VMM + WTA Embedded Classifiers

    DTIC Science & Technology

    2016-03-31

    enabling correct classification of each novel acoustic signal (generator, idle car , and idle truck). The classification structure requires, after...measured on our SoC FPAA IC. The test input is composed of signals from urban environment for 3 objects (generator, idle car , and idle truck...classifier results from a rural truck data set, an urban generator set, and urban idle car dataset. Solid lines represent our extracted background

  20. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-03-09

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.

  1. Project DIPOLE WEST - Multiburst Environment (Non-Simultaneous Detonations)

    DTIC Science & Technology

    1976-09-01

    PAGE (WIMn Dat• Bntered) Unclassified SECURITY CLASSIFICATION OP’ THIS PAGE(ft• Data .Bnt......, 20. Abstract Purpose of the series was to obtain...HULL hydrodynamic air blast code show good correlation. UNCLASSIFIED SECUFUTY CLASSIFICATION OF THIS PA.GE(When Date Bntered) • • 1...supervision. Contributions were also made by Dr. John Dewey, University of Victoria; Mr. A. P. R. Lambert, Canadian General Electric; Mr. Charles Needham

  2. Nuclear electric generation: Political, social, and economic cost and benefit to Indonesia. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waliyo

    Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less

  3. Drug related webpages classification using images and text information based on multi-kernel learning

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan

    2015-12-01

    In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.

  4. Electric Power Annual

    EIA Publications

    2016-01-01

    The Electric Power Annual 2015 presents 11 years (2005-15) of national-level data on electricity generating capacity, electricity generation and useful thermal output, fuel receipts, consumption, and emissions.

  5. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    PubMed

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, LOOKING SOUTH; IN THE CENTER, BEHIND THE STACK IS THE GENERATING STATION BUILT IN 1959; THE TALL METAL-CLAD BUILDING CONTAINS A COAL BUNKER, COAL PULVERIZER, FURNACE, BOILER, SUPER-HEATER, STEAM PIPES, AND HOT-AIR DUCTS. TO THE RIGHT OF THIS 1959 GENERATING STATION IS THE ORIGINAL POWERHOUSE. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  7. 76 FR 74072 - Endangered and Threatened Wildlife and Plants; Incidental Take Permit Application; Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... operating the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity... the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity on... generates electricity on Maui. The Service listed the Hawaiian petrel as endangered on March 11, 1967 (32 FR...

  8. Lossless Compression of Classification-Map Data

    NASA Technical Reports Server (NTRS)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  9. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  10. NREL Updates Baseline Cost and Performance Data for Electricity Generation

    Science.gov Websites

    Technologies | News | NREL Updates Baseline Cost and Performance Data for Electricity Generation Technologies News Release: NREL Updates Baseline Cost and Performance Data for Electricity generation technology cost and performance data used to support and inform electric sector analysis in the

  11. 26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  12. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...

  13. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  14. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  15. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  16. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  17. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  18. Classification of urine sediment based on convolution neural network

    NASA Astrophysics Data System (ADS)

    Pan, Jingjing; Jiang, Cunbo; Zhu, Tiantian

    2018-04-01

    By designing a new convolution neural network framework, this paper breaks the constraints of the original convolution neural network framework requiring large training samples and samples of the same size. Move and cropping the input images, generate the same size of the sub-graph. And then, the generated sub-graph uses the method of dropout, increasing the diversity of samples and preventing the fitting generation. Randomly select some proper subset in the sub-graphic set and ensure that the number of elements in the proper subset is same and the proper subset is not the same. The proper subsets are used as input layers for the convolution neural network. Through the convolution layer, the pooling, the full connection layer and output layer, we can obtained the classification loss rate of test set and training set. In the red blood cells, white blood cells, calcium oxalate crystallization classification experiment, the classification accuracy rate of 97% or more.

  19. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  20. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  1. Two-Dimensional Signal Processing and Storage and Theory and Applications of Electromagnetic Measurements.

    DTIC Science & Technology

    1986-01-01

    7 O-AI6 175 TWO- 1NENSION L SIGNAL PROCESSING AD STORAGE AND IA-1 ATLANTA SCHOOL OF ELECTRICAL ENGINEERING.. ULRSSIFIED R SCHAFER ET AL. SI JAN... ELECTRICAL ENGINEERING L’- ATLANTA, GEORGIA 30332 .’ -.. .. ~ i 4 2 i 2 " 𔃾, I IT= J ., . 4 2.~ i1 ov--.,-w. A -A *- t . . . SECURITY CLASSIFICATION O0...School of Electrical Engineering Atlanta, Georgia 30332 Research Triangle Park, NC 27709 •e. NAME OP PUNOINGMSONSORING 0b. OPPIC SYMBOL L PROCUREMENT

  2. State Electricity Profiles

    EIA Publications

    2017-01-01

    The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.

  3. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    NASA Astrophysics Data System (ADS)

    Stala-Szlugaj, Katarzyna; Grudziński, Zbigniew

    2017-10-01

    In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA) whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS) changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i) and CO2 emission allowances, cover all costs (ii), or constitute positive prices (iii), but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh). The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  4. Overview of hybrid electric vehicle trend

    NASA Astrophysics Data System (ADS)

    Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun

    2018-04-01

    With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.

  5. Experimental study of camel powered electricity generation unit

    NASA Astrophysics Data System (ADS)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  6. Maximum power point tracking analysis of a coreless ironless electric generator for renewable energy application

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.

  7. Protein classification using modified n-grams and skip-grams.

    PubMed

    Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J

    2018-05-01

    Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.

  8. 76 FR 75876 - Record of Decision for the Modification of the Groton Generation Station Interconnection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ...) received a request from Basin Electric Power Cooperative (Basin Electric) to modify its Large Generator Interconnection Agreement (LGIA) with Basin Electric for the Groton Generation Station to eliminate current... considered the environmental impacts and has decided to modify its LGIA with Basin Electric for the Groton...

  9. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere

    NASA Astrophysics Data System (ADS)

    Xu, Jin

    2017-12-01

    When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.

  10. Design mechanic generator under speed bumper to support electricity recourse for urban traffic light

    NASA Astrophysics Data System (ADS)

    Sabri, M.; Lauzuardy, Jason; Syam, Bustami

    2018-03-01

    The electrical energy needs for the traffic lights in some cities of developing countries cannot be achieved continuously due to limited capacity and interruption of electricity distribution, the main power plant. This issues can lead to congestion at the crossroads. To overcome the problem of street chaos due to power failure, we can cultivate to provide electrical energy from other sources such as using the bumper to generate kinetic energy, which can be converted into electrical energy. This study designed a generator mechanic that will be mounted on the bumper construction to generate electricity for the purposes of traffic lights at the crossroads. The Mechanical generator is composed of springs, levers, sprockets, chains, flywheel and customize power generator. Through the rotation of the flywheel, we can earned 9 Volt DC voltage and electrical current of 5.89 Ampere. This achievement can be used to charge the accumulator which can be used to power the traffic lights, and to charge the accumulator capacity of 6 Ah, the generator works in the charging time for 1.01 hours.

  11. Participatory Classification in a System for Assessing Multimodal Transportation Patterns

    DTIC Science & Technology

    2015-02-17

    Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm

  12. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    PubMed Central

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  13. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  14. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  15. General Approach for Rock Classification Based on Digital Image Analysis of Electrical Borehole Wall Images

    NASA Astrophysics Data System (ADS)

    Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.

    2005-12-01

    Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.

  16. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  17. Nuclear power generation and fuel cycle report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less

  18. Usage monitoring of electrical devices in a smart home.

    PubMed

    Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A

    2011-01-01

    Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.

  19. Towards the use of similarity distances to music genre classification: A comparative study.

    PubMed

    Goienetxea, Izaro; Martínez-Otzeta, José María; Sierra, Basilio; Mendialdua, Iñigo

    2018-01-01

    Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.

  20. Towards the use of similarity distances to music genre classification: A comparative study

    PubMed Central

    Martínez-Otzeta, José María; Sierra, Basilio; Mendialdua, Iñigo

    2018-01-01

    Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets –or clusters– and then generating in an automatic way a new song which is somehow “inspired” in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is. PMID:29444160

  1. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    PubMed

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  2. Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.

    ERIC Educational Resources Information Center

    Griffiths, Alan; And Others

    1984-01-01

    Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…

  3. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review... holder that it contains RD or FRD information, the level of classification assigned, and the additional... classification level of the document, the following notices shall appear on the front of the document, as...

  4. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review... holder that it contains RD or FRD information, the level of classification assigned, and the additional... classification level of the document, the following notices shall appear on the front of the document, as...

  5. Future Market Share of Space Solar Electric Power Under Open Competition

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.

    2002-01-01

    This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of electricity generated by Space Solar Power. In agreement with previous work on this subject, we note that launch costs are a significant impediment for the widespread implementation of Space Solar Power. KEY WORDS: space satellite power, advanced electric generation, electricity price, climate change

  6. Microphysical and Kinematic Characteristics of Regions of Flash Initiation in a Supercell Storm and a Multicell Storm Observed During the DC3 Field Program

    NASA Astrophysics Data System (ADS)

    DiGangi, E.; MacGorman, D. R.; Ziegler, C.; Betten, D.; Biggerstaff, M. I.

    2017-12-01

    Lightning initiation in thunderstorms requires that the local electric field magnitude exceed breakdown values somewhere, and this tends to occur between regions of positive and negative charge, where the largest electric field magnitudes tend to occur. Past studies have demonstrated that, near updrafts, storms with very strong updrafts tend to elevate regions of charge and of flash initiations higher, as well as to have more flashes initiated by small pockets of charge, than in storms with much weaker updrafts. In all thunderstorms, the source of these charge regions is generally thought to be microscopic charge separation via the relative growth rate noninductive mechanism, followed by macroscopic charge separation via sedimentation, although other charge generation mechanisms can contribute to charge in some regions. Charge generation and lightning initiation are therefore inherently dependent on the microphysical and kinematic characteristics of a given storm. This study compares the results of a hydrometeor classification algorithm applied to C-band mobile radar data with mixing ratios calculated by a diabatic Lagrangian analysis retrieval from the dual-Doppler wind fields for two storms, the 29-30 May 2012 supercell storm and the 21 June 2012 multicell storm, observed during the Deep Convective Clouds and Chemistry experiment. Using these data, we then compare the inferred microphysical and kinematic characteristics of regions in which the Oklahoma Lightning Mapping Array indicated that flashes were initiated in these two very different storms.

  7. Electricity Monthly Update

    EIA Publications

    2017-01-01

    Provides analysis and highlights of the data included in the Electric Power Monthly (EPM) publication and presents tables of electricity generation, fuel consumption for generation, fossil fuel stocks, and average retail sales and prices of electricity. The Electricity Monthly Update is published at the same time as the EPM.

  8. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ..., personal protective equipment, insulating and shielding materials, and insulated tools for working on or...] Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and Distribution... the information collection requirements specified in its standards on Electrical Protective Equipment...

  9. Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliersmore » must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.« less

  10. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.W.

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less

  12. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhong, Yu

    2009-01-01

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.

  13. A new MUSIC electromagnetic imaging method with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Chen, Xudong

    2008-11-01

    This paper investigates the influence of test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply.

  14. Development and bottlenecks of renewable electricity generation in China: a critical review.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  15. The DTIC Review. Volume 5, Number 3. Cybernetics: Enhancing Human Performance

    DTIC Science & Technology

    2001-03-01

    Human Factors Engineering 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Phyllis...2 AD Number: A382305 Corporate Author: Arizona University - Tucson Department of Electrical and Computer Engineering Tucson, AZ...Visualization Aids AD-A382305 Aug 2000 Arizona University - Tucson Department of Electrical and Computer Engineering Tucson, AZ 2 THIS PAGE INTENTIONALLY

  16. Characterization and Physics-Based Modeling of Electrochemical Memristors

    DTIC Science & Technology

    2015-11-16

    conducting films that result from electrical or optical stress. Model parameters and electrical characteristics were obtained from and validated...x- ray scattering, Conductive Bridge Random Access Memory 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...Calculated DOS for GeSe2 in valence band and (b) conduction band .................. 43  Figure 45. DFT band structure for crystalline GeSe2

  17. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  18. 77 FR 45967 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...

  19. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator of the Environmental Protection Agency (“EPA”) conditionally exempts electric generating units on... significant deterioration (“PSD”) permit prior to construction is granted for the electric generating units... to be constructed at Orote, with the following conditions: (i) Each electric generating unit shall...

  20. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...

  1. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort

    PubMed Central

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Background Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). Methodology/Principal Findings We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester’s overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. Conclusions/Significance These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities. PMID:26039493

  2. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    PubMed

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  3. Automated interpretation of home blood pressure assessment (Hy-Result software) versus physician's assessment: a validation study.

    PubMed

    Postel-Vinay, Nicolas; Bobrie, Guillaume; Ruelland, Alan; Oufkir, Majida; Savard, Sebastien; Persu, Alexandre; Katsahian, Sandrine; Plouin, Pierre F

    2016-04-01

    Hy-Result is the first software for self-interpretation of home blood pressure measurement results, taking into account both the recommended thresholds for normal values and patient characteristics. We compare the software-generated classification with the physician's evaluation. The primary assessment criterion was whether algorithm classification of the blood pressure (BP) status concurred with the physician's advice (blinded to the software's results) following a consultation (n=195 patients). Secondary assessment was the reliability of text messages. In the 58 untreated patients, the agreement between classification of the BP status generated by the software and the physician's classification was 87.9%. In the 137 treated patients, the agreement was 91.9%. The κ-test applied for all the patients was 0.81 (95% confidence interval: 0.73-0.89). After correction of errors identified in the algorithm during the study, agreement increased to 95.4% [κ=0.9 (95% confidence interval: 0.84-0.97)]. For 100% of the patients with comorbidities (n=46), specific text messages were generated, indicating that a physician might recommend a target BP lower than 135/85 mmHg. Specific text messages were also generated for 100% of the patients for whom global cardiovascular risks markedly exceeded norms. Classification by Hy-Result is at least as accurate as that of a specialist in current practice (http://www.hy-result.com).

  4. Organic solar cells and physics education

    NASA Astrophysics Data System (ADS)

    Csernovszky, Zoltán; Horváth, Ákos

    2018-07-01

    This paper explains the operational principles of a home-made organic solar cell with the representation of an electron-cycle on an energy-level diagram. We present test data for a home-made organic solar cell which operates as a galvanic cell and current source in an electrical circuit. To determine the maximum power of the cell, the optimal current was estimated with a linear approximation. Using different light sources and dyes, the electrical properties of organic solar cells were compared. The solar cells were studied by looking at spectrophotometric data from different sensitizer dyes, generated by a do-it-yourself diffraction grating spectroscope. The sensitizer dyes of solar cells were tested by the diffraction grating spectroscope. The data were analysed on a light-intensity‑wavelength diagram to discover which photons were absorbed and to understand the colours of the fruits containing these dyes. In terms of theoretical applications, the paper underlines the analogous nature of organic solar cells, a conventional single p‑n junction solar cell and the light-dependent reactions of photosynthesis, using energy-level diagrams of electron-cycles. To conclude, a classification of photon‑electron interactions in molecular systems and crystal lattices is offered, to show the importance of organic solar cells.

  5. Solar electricity: An effective asset to supply urban loads in hot climates

    NASA Astrophysics Data System (ADS)

    Robert, Fabien Chidanand; Gopalan, Sundararaman

    2018-04-01

    While human population has been multiplied by four in the last hundred years, the world energy consumption was multiplied by ten. The common method of using fossil fuels to provide energy and electricity has dangerously disturbed nature's and climate's balance. It has become urgent and crucial to find sustainable and eco-friendly alternatives to preserve a livable environment with unpolluted air and water. Renewable energy is the unique eco-friendly opportunity known today. The main challenge of using renewable energy is to ensure the constant balance of electricity demand and generation on the electrical grid. This paper investigates whether the solar electricity generation is correlated with the urban electricity consumption in hot climates. The solar generation and total consumption have been compared for three cities in Florida. The hourly solar generation has been found to be highly correlated with the consumption that occurs 6 h later, while the monthly solar generation is correlated with the monthly energy consumption. Producing 30% of the electricity using solar energy has been found to compensate partly for the monthly variation in the urban electricity demand. In addition, if 30% of the world electricity is produced using solar, global CO2 emissions would be reduced by 11.7% (14.6% for India). Thus, generating 30% solar electricity represents a valuable asset for urban areas situated in hot climates, reducing the need for electrical operating reserve, providing local supply with minimal transmission losses, but above all reducing the need for fossil fuel electricity and reducing global CO2 emission.

  6. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., and a means of propelling the fluid through the tubing, such as an electric roller pump. (b) Classification. Class II (special controls). The device is exempt from the premarket notification procedures in...

  7. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., and a means of propelling the fluid through the tubing, such as an electric roller pump. (b) Classification. Class II (special controls). The device is exempt from the premarket notification procedures in...

  8. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... neuromuscular function or degree of neuromuscular blockage by measuring, with a force transducer (a device that translates force into electrical impulses), the grip-strength of a patient's hand. (b) Classification. Class...

  9. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... neuromuscular function or degree of neuromuscular blockage by measuring, with a force transducer (a device that translates force into electrical impulses), the grip-strength of a patient's hand. (b) Classification. Class...

  10. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  11. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  12. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  13. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  14. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  15. The Iterated Classification Game: A New Model of the Cultural Transmission of Language

    PubMed Central

    Swarup, Samarth; Gasser, Les

    2010-01-01

    The Iterated Classification Game (ICG) combines the Classification Game with the Iterated Learning Model (ILM) to create a more realistic model of the cultural transmission of language through generations. It includes both learning from parents and learning from peers. Further, it eliminates some of the chief criticisms of the ILM: that it does not study grounded languages, that it does not include peer learning, and that it builds in a bias for compositional languages. We show that, over the span of a few generations, a stable linguistic system emerges that can be acquired very quickly by each generation, is compositional, and helps the agents to solve the classification problem with which they are faced. The ICG also leads to a different interpretation of the language acquisition process. It suggests that the role of parents is to initialize the linguistic system of the child in such a way that subsequent interaction with peers results in rapid convergence to the correct language. PMID:20190877

  16. Electric Power Monthly, August 1990. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  17. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ...) Comments 135 (b) Commission Determination 139 6. Impact on Generation Owners and Operators 142 (a) Comments... Organization, the electrical generation resources, transmission lines, interconnections with neighboring... above that interconnect with registered generation facilities are excluded from NPCC's list of bulk...

  18. Classification of standard-like heterotic-string vacua

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.; Rizos, John; Sonmez, Hasan

    2018-02-01

    We extend the free fermionic classification methodology to the class of standard-like heterotic-string vacua, in which the SO (10) GUT symmetry is broken at the string level to SU (3) × SU (2) × U(1) 2. The space of GGSO free phase configurations in this case is vastly enlarged compared to the corresponding SO (6) × SO (4) and SU (5) × U (1) vacua. Extracting substantial numbers of phenomenologically viable models therefore requires a modification of the classification methods. This is achieved by identifying conditions on the GGSO projection coefficients, which are satisfied at the SO (10) level by random phase configurations, and that lead to three generation models with the SO (10) symmetry broken to the SU (3) × SU (2) × U(1) 2 subgroup. Around each of these fertile SO (10) configurations, we perform a complete classification of standard-like models, by adding the SO (10) symmetry breaking basis vectors, and scanning all the associated GGSO phases. Following this methodology we are able to generate some 107 three generation Standard-like Models. We present the results of the classification and one exemplary model with distinct phenomenological properties, compared to previous SLM constructions.

  19. Regional air quality impacts of increased natural gas production and use in Texas.

    PubMed

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  20. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    PubMed

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  1. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  2. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  3. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  4. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  5. Electricity: Today's Technologies, Tomorrow's Alternatives. Teacher's Guide.

    ERIC Educational Resources Information Center

    Electric Power Research Inst., Palo Alto, CA.

    This teaching guide is designed to help teachers develop lesson plans around nine chapters provided in the student textbook. Chapters focus on energy use, energy demand, energy supply, principles of electric power generation, today's generating options, future generating options, electricity storage and delivery, environmental concerns, and making…

  6. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  7. Next Generation Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zilai; Gough, Charles

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  8. Apparatus for detecting alpha radiation in difficult access areas

    DOEpatents

    Steadman, Peter; MacArthur, Duncan W.

    1997-09-02

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.

  9. Electricity and generator availability in LMIC hospitals: improving access to safe surgery.

    PubMed

    Chawla, Sagar; Kurani, Shaheen; Wren, Sherry M; Stewart, Barclay; Burnham, Gilbert; Kushner, Adam; McIntyre, Thomas

    2018-03-01

    Access to reliable energy has been identified as a global priority and codified within United Nations Sustainable Goal 7 and the Electrify Africa Act of 2015. Reliable hospital access to electricity is necessary to provide safe surgical care. The current state of electrical availability in hospitals in low- and middle-income countries (LMICs) throughout the world is not well known. This study aimed to review the surgical capacity literature and document the availability of electricity and generators. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding electricity and generator availability were extracted. Estimated percentages for individual countries were calculated. Of 76 articles identified, 21 reported electricity availability, totaling 528 hospitals. Continuous electricity availability at hospitals providing surgical care was 312/528 (59.1%). Generator availability was 309/427 (72.4%). Estimated continuous electricity availability ranged from 0% (Sierra Leone and Malawi) to 100% (Iran); estimated generator availability was 14% (Somalia) to 97.6% (Iran). Less than two-thirds of hospitals providing surgical care in 21 LMICs have a continuous electricity source or have an available generator. Efforts are needed to improve electricity infrastructure at hospitals to assure safe surgical care. Future research should look at the effect of energy availability on surgical care and patient outcomes and novel methods of powering surgical equipment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Recycling of electrical motors by automatic disassembly

    NASA Astrophysics Data System (ADS)

    Karlsson, Björn; Järrhed, Jan-Ove

    2000-04-01

    This paper presents a robotized workstation for end-of-life treatment of electrical motors with an electrical effect of about 1 kW. These motors can, for example, be found in washing machines and in industry. There are two main steps in the work. The first step is an inspection whereby the functionality of the motor is checked and classification either for re-use or for disassembly is done. In the second step the motors classified for disassembly are disassembled in a robotized automatic station. In the initial step measurements are performed during a start-up sequence of about 1 s. By measuring the rotation speed and the current and voltage of the three phases of the motor classification for either reuse or disassembly can be done. During the disassembly work, vision data are fused in order to classify the motors according to their type. The vision system also feeds the control system of the robot with various object co-ordinates, to facilitate correct operation of the robot. Finally, tests with a vision system and eddy-current equipment are performed to decide whether all copper has been removed from the stator.

  11. Physicochemical properties of honey from Marche, Central Italy: classification of unifloral and multifloral honeys by multivariate analysis.

    PubMed

    Truzzi, Cristina; Illuminati, Silvia; Annibaldia, Anna; Finale, Carolina; Rossetti, Monica; Scarponi, Giuseppe

    2014-11-01

    The purpose of this study was the physicochemical characterization and classification of Italian honey from Marche Region with a chemometric approach. A total of 135 honeys of different botanical origins [acacia (Robinia pseudoacacia L.), chestnut (Castanea sativa), coriander (Coriandrum sativum L.), lime (Tilia spp.), sunflower (Helianthus annuus L.), Metcalfa honeydew and multifloral honey] were considered. The average results of electrical conductivity (0.14-1.45 mS cm(-1)), pH (3.89-5.42), free acidity (10.9-39.0 meq(NaOH) kg(-1)), lactones (2.4-4.5 meq(NaOH) kg(-1)), total acidity (14.5-40.9 meq(NaOH) kg(-1)), proline (229-665 mg kg(-1)) and 5-(hydroxy-methyl)-2-furaldehyde (0.6-3.9 mg kg(-1)) content show wide variability among the analysed honey types, with statistically significant differences between the different honey types. Pattern recognition methods such as principal component analysis and discriminant analysis were performed in order to find a relationship between variables and types of honey and to classify honey on the basis of its physicochemical properties. The variables of electrical conductivity, acidity (free, lactones), pH and proline content exhibited higher discriminant power and provided enough information for the classification and distinction of unifloral honey types, but not for the classification of multifloral honey (100% and 85% of samples correctly classified, respectively).

  12. ¹³C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells.

    PubMed

    Luo, Shuai; Guo, Weihua; Nealson, Kenneth H; Feng, Xueyang; He, Zhen

    2016-02-12

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.

  13. 46 CFR 111.10-3 - Two generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Two generating sources. 111.10-3 Section 111.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... drilling unit must have at least two electric generating sources. [CGD 94-108, 61 FR 28276, June 4, 1996] ...

  14. 46 CFR 111.10-3 - Two generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Two generating sources. 111.10-3 Section 111.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... drilling unit must have at least two electric generating sources. [CGD 94-108, 61 FR 28276, June 4, 1996] ...

  15. 46 CFR 111.10-3 - Two generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Two generating sources. 111.10-3 Section 111.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... drilling unit must have at least two electric generating sources. [CGD 94-108, 61 FR 28276, June 4, 1996] ...

  16. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  17. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  18. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  19. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  20. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  1. 18. VIEW OF TURBINEGENERATOR UNIT NO. 19, MANUFACTURED BY GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF TURBINE-GENERATOR UNIT NO. 19, MANUFACTURED BY GENERAL ELECTRIC IN 1959 AND RATED AT 342 MEGAWATTS; IT REMAINS IN OPERATION. THIS VIEW IS INSIDE THE GENERATING STATION OF 1959. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  2. 46 CFR 34.50-5 - Classification-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fires in combustible or flammable liquids such as gasoline, lubricating oil, diesel oil, greases, etc., where a blanketing or smothering effect is essential. (3) “C” for fires in electrical equipment where...

  3. 46 CFR 34.50-5 - Classification-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fires in combustible or flammable liquids such as gasoline, lubricating oil, diesel oil, greases, etc., where a blanketing or smothering effect is essential. (3) “C” for fires in electrical equipment where...

  4. An SVM-Based Solution for Fault Detection in Wind Turbines

    PubMed Central

    Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-01-01

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051

  5. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor.

    PubMed

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-29

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

  6. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor

    PubMed Central

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-01

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect—using electric current shape analysis—for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between “does-not-need-to-be-replaced” and “needs-to-be-replaced” shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification. PMID:28146057

  7. Fault classification method for the driving safety of electrified vehicles

    NASA Astrophysics Data System (ADS)

    Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika

    2014-05-01

    A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.

  8. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    PubMed

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-08

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.

  9. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  10. Ontology for Life-Cycle Modeling of Electrical Distribution Systems: Application of Model View Definition Attributes

    DTIC Science & Technology

    2013-06-01

    Building in- formation exchange (COBie), Building Information Modeling ( BIM ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains general information de...develop an information -exchange Model View Definition (MVD) for building electrical systems. The objective of the current work was to document the

  11. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  12. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  13. Heat operated cryogenic electrical generator

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of the rotor cell was employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of the cell. An electrical conductor was placed in surrounding proximity to the cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement was provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively.

  14. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  15. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  16. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? Thismore » study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.« less

  17. Distributed Generation of Electricity and its Environmental Impacts

    EPA Pesticide Factsheets

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  18. Environmental effects of interstate power trading on electricity consumption mixes.

    PubMed

    Marriott, Joe; Matthews, H Scott

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. We create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these "consumption mixes" can provide a more accurate assessment of electricity use in life-cycle analyses. We conclude that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy--such as resource extraction and material processing sectors--are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses.

  19. EL68D Wasteway Watershed Land-Cover Generation

    USGS Publications Warehouse

    Ruhl, Sheila; Usery, E. Lynn; Finn, Michael P.

    2007-01-01

    Classification of land cover from Landsat Enhanced Thematic Mapper Plus (ETM+) for the EL68D Wasteway Watershed in the State of Washington is documented. The procedures for classification include use of two ETM+ scenes in a simultaneous unsupervised classification process supported by extensive field data collection using Global Positioning System receivers and digital photos. The procedure resulted in a detailed classification at the individual crop species level.

  20. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reasonably necessary to generate plant parasitic electricity or electricity for Federal lease operations; and (B) A reasonable amount of commercially demineralized water necessary for power plant operations or... generate plant parasitic electricity or electricity for Federal lease operations, as approved by BLM; or (C...

  1. A Theoretical Secure Enterprise Architecture for Multi Revenue Generating Smart Grid Sub Electric Infrastructure

    ERIC Educational Resources Information Center

    Chaudhry, Hina

    2013-01-01

    This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…

  2. Renewable Electricity Futures for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis ismore » that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.« less

  3. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  4. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  5. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  6. Inventory of Power Plants in the United States, October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the generalmore » public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.« less

  7. Investigating the water consumption for electricity generation at Turkish power plants

    NASA Astrophysics Data System (ADS)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  8. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  9. Effects of static electric fields on growth and development of wheat aphid Sitobion aveanae (Hemiptera: Aphididae) through multiple generations.

    PubMed

    He, Juan; Cao, Zhu; Yang, Jie; Zhao, Hui-Yan; Pan, Wei-Dong

    2016-01-01

    Insects show a variety of responses to electric fields and most of them are associated with immediate effects. To investigate the long-term effects of static electric field on the wheat aphid Sitbion avenae, the insert was exposed to 4 min of a static electric field at intensities of 0, 2, 4, or 6 kV/cm. Development effects over 30 consecutive generations of the insect were studied. The results showed that the electric field could exert adverse effects on the developmental duration and total longevity of S. avenae nymphs regardless of exposure intensities or generations. The effects appeared to be more intense and fluctuated at higher electric field intensities and more insect generations. The most favorable exposure for development was 6 kV/cm for 4 min while the most detrimental electric fields were 2 kV/cm for 4 min and 4 kV/cm for 4 min. Among the treatments, the first instar duration was significantly prolonged while the adult longevities were significantly shortened in the sixth generation. The intrinsic rate of increase and net reproductive rate in the sixth generation were also the lowest among the 30 consecutive generations studied. Based on the results, the adverse effects of electric fields on insects may be used in the bio-control of pest insects in terms of pest management.

  10. Army Net Zero Prove Out. Net Zero Energy Best Practices

    DTIC Science & Technology

    2014-11-18

    energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy

  11. 50 CFR 218.170 - Specified activity and specified geographical area and effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... site QUTR site Test Vehicle Propulsion Thermal propulsion systemsElectric/Chemical propulsion systems..., classification and localization 05 4520 1510 Non-Navy testing 5 5 5 Acoustic & non-acoustic sensors (magnetic...

  12. Percy Thomas wind generator designs

    NASA Technical Reports Server (NTRS)

    Lines, C. W.

    1973-01-01

    The technical and economic feasibilities of constructing a windpowered generator with a capacity of 2,000 to 4,000 kilowatt are considered. Possible benefits of an integrated wind generating electric energy source in an electric utility network are elaborated. Applications of a windpowered waterpump, including its use as a pumping source for hydroelectric pump storage operations, are also mentioned. It is concluded that the greatest potential of the wind generator is to generate heat directly and not conversion to electricity and then to heat.

  13. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  14. Electrical system architecture

    DOEpatents

    Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  15. Combined fuel and air staged power generation system

    DOEpatents

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  16. Design of portable electric and magnetic field generators

    NASA Astrophysics Data System (ADS)

    Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.

    2000-11-01

    Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.

  17. 13C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells

    PubMed Central

    Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen

    2016-01-01

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848

  18. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    PubMed

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  19. Apparatus for detecting alpha radiation in difficult access areas

    DOEpatents

    Steadman, P.; MacArthur, D.W.

    1997-09-02

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.

  20. Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator

    NASA Astrophysics Data System (ADS)

    Bravo, A.

    2017-12-01

    Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.

  1. Wireless Chemical Sensor and Sensing Method for Use Therewith

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  2. Wireless Chemical Sensor and Sensing Method for Use Therewith

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant Douglas (Inventor)

    2014-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  3. Wireless Chemical Sensing Method

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor)

    2017-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  4. Passive, Highly-Sensitive, Room-Temperature Magnetic Field Sensors and Arrays for Detection and Imaging of Hidden Threats in Urban Environments

    DTIC Science & Technology

    2012-07-01

    units made from the various sensors. This was because the different types of ME laminates have different electrical properties ( resistance and...DC resistance of a sensor (Rdc) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 338 19a. NAME OF...3.3.6. Electric -field tuning effect ..................................................................70 A.3.4. Dielectric loss noise reduction

  5. Transport of Energetic Ions in the Ring Current During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Kistler, Lynn M.; Kaufmann, Richard

    2001-01-01

    In the final year (plus no-cost extentions) of this grant, we have: Used the particle tracing code to perform a systematic study of the expected energy spectra over the full range of local times in the ring current using a variety of electric and magnetic field models. Shown that the Weimer electric field is superior to the Volland-Stern electric field in reproducing the observed energy spectra on the AMPTE CCE spacecraft. Redone our analysis of the pitch angle spectra of energetic ions during storms in the magnetosphere, using a larger data set, and a more reliable classification technique.

  6. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.

    PubMed

    Wu, Shang-Lin; Liao, Lun-De; Lu, Shao-Wei; Jiang, Wei-Ling; Chen, Shi-An; Lin, Chin-Teng

    2013-08-01

    Electrooculography (EOG) signals can be used to control human-computer interface (HCI) systems, if properly classified. The ability to measure and process these signals may help HCI users to overcome many of the physical limitations and inconveniences in daily life. However, there are currently no effective multidirectional classification methods for monitoring eye movements. Here, we describe a classification method used in a wireless EOG-based HCI device for detecting eye movements in eight directions. This device includes wireless EOG signal acquisition components, wet electrodes and an EOG signal classification algorithm. The EOG classification algorithm is based on extracting features from the electrical signals corresponding to eight directions of eye movement (up, down, left, right, up-left, down-left, up-right, and down-right) and blinking. The recognition and processing of these eight different features were achieved in real-life conditions, demonstrating that this device can reliably measure the features of EOG signals. This system and its classification procedure provide an effective method for identifying eye movements. Additionally, it may be applied to study eye functions in real-life conditions in the near future.

  7. Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Goebel, kai

    2007-01-01

    Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.

  8. The structural role of weak and strong links in a financial market network

    NASA Astrophysics Data System (ADS)

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  9. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    PubMed

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  10. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  11. Determinants of Electricity Consumption Intensity in China: Analysis of Cities at Subprovince and Prefecture Levels in 2009

    PubMed Central

    Xia, X. H.; Hu, Yi

    2012-01-01

    China has experienced great social and economic vicissitudes that caused the vast complexity and uncertainty for electricity consumption. This paper attempts to identify the main determinants of the electricity consumption intensity by using the data from Chinese cities at subprovince and prefecture levels in 2009. The key category factors, including urban morphology, industrial structure, regulation context, urbanization degree, price, natural condition, and resource endowment, are abstracted and the influence of these determinants is evaluated by adopting the finite mixture models. The variation of each determinant across regions, the comparative weights of all the factors, and the detailed classifications of the cities are reported for facilitating the understanding of electricity consumption in China. The corresponding policies for electricity administration are addressed as well. PMID:22927781

  12. 43 CFR 3211.18 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... commercial generation of electricity? 3211.18 Section 3211.18 Public Lands: Interior Regulations Relating to... directly for purposes other than commercial generation of electricity? (a) For leases issued on or after... purposes other than commercial generation of electricity, your royalty rate is 10 percent. You must apply...

  13. 43 CFR 3211.18 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... commercial generation of electricity? 3211.18 Section 3211.18 Public Lands: Interior Regulations Relating to... directly for purposes other than commercial generation of electricity? (a) For leases issued on or after... purposes other than commercial generation of electricity, your royalty rate is 10 percent. You must apply...

  14. 43 CFR 3211.18 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... commercial generation of electricity? 3211.18 Section 3211.18 Public Lands: Interior Regulations Relating to... directly for purposes other than commercial generation of electricity? (a) For leases issued on or after... purposes other than commercial generation of electricity, your royalty rate is 10 percent. You must apply...

  15. 75 FR 63198 - Notice of Availability of the Record of Decision for the Ivanpah Solar Electric Generating System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Ivanpah Solar Electric Generating System (ISEGS) Project located in San Bernardino County, California. The... FX0000 LVRWB09B2400 LLCAD09000] Notice of Availability of the Record of Decision for the Ivanpah Solar Electric Generating System Project and Approved Plan Amendment to the California Desert Conservation Area...

  16. Essays on restructured electricity markets

    NASA Astrophysics Data System (ADS)

    Nicholson, Emma Leah

    This dissertation focuses on the performance of restructured electricity markets in the United States. In chapter 1, I study bidder-specific offer caps ("BSOCs") which are used to mitigate market power in three wholesale electricity markets. The price of electricity is determined through multi-unit uniform price auctions and BSOCs impose an upper limit, which is increasing in marginal cost, on each generator's bid. I apply BSOCs in both the uniform and discriminatory price auctions and characterize the equilibria in a two firm model with stochastic demand. BSOCs unambiguously increase expected production efficiency in the uniform price auction and they can increase the expected profit of the generator with the lower cap. Chapter 2, coauthored with Ramteen Sioshansi, Ph.D., compares two types of uniform price auction formats used in wholesale electricity markets, centrally committed markets and self committed markets. In centrally committed markets, generators submit two-part bids consisting of a fixed startup cost and a variable (per MWh) energy cost, and the auctioneer ensures that no generator operates at a loss. Generators in self committed markets must incorporate their startup costs into their one part energy bids. We derive Nash equilibria for both the centrally and self committed electricity markets in a model with two symmetric generators with nonconvex costs and deterministic demand. Using a numerical example, we demonstrate that if the caps on the bid elements are chosen appropriately, the two market designs are equivalent in terms of generator revenues and settlement costs. Regulators and prominent academic experts believe that electric restructuring polices have stifled investment in new generation capacity. In chapter 3 I seek to determine whether these fears are supported by empirical evidence. I examine both total investment in megawatts and the number of new investments across regions that adopted different electric restructuring policies to determine whether electric restructuring is associated with lower levels of investment in new generation capacity. The estimation results do not prove that total investment levels are lower in regions with restructured electric systems, but I cannot rule the possibility out.

  17. Environmental effects of interstate power trading on electricity consumption mixes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Marriott; H. Scott Matthews

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity usemore » in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.« less

  18. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of greenhouse gas emitting electric generation plants. However, renewable energy policies do not have an effect on productivity growth. Renewable energy inputs are found to be as efficient if not more efficient than traditional energy sources.

  19. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chiu, Alan W. L.; Jahromi, Shokrollah S.; Khosravani, Houman; Carlen, Peter L.; Bardakjian, Berj L.

    2006-03-01

    The existence of hippocampal high-frequency electrical activities (greater than 100 Hz) during the progression of seizure episodes in both human and animal experimental models of epilepsy has been well documented (Bragin A, Engel J, Wilson C L, Fried I and Buzsáki G 1999 Hippocampus 9 137-42 Khosravani H, Pinnegar C R, Mitchell J R, Bardakjian B L, Federico P and Carlen P L 2005 Epilepsia 46 1-10). However, this information has not been studied between successive seizure episodes or utilized in the application of seizure classification. In this study, we examine the dynamical changes of an in vitro low Mg2+ rat hippocampal slice model of epilepsy at different frequency bands using wavelet transforms and artificial neural networks. By dividing the time-frequency spectrum of each seizure-like event (SLE) into frequency bins, we can analyze their burst-to-burst variations within individual SLEs as well as between successive SLE episodes. Wavelet energy and wavelet entropy are estimated for intracellular and extracellular electrical recordings using sufficiently high sampling rates (10 kHz). We demonstrate that the activities of high-frequency oscillations in the 100-400 Hz range increase as the slice approaches SLE onsets and in later episodes of SLEs. Utilizing the time-dependent relationship between different frequency bands, we can achieve frequency-dependent state classification. We demonstrate that activities in the frequency range 100-400 Hz are critical for the accurate classification of the different states of electrographic seizure-like episodes (containing interictal, preictal and ictal states) in brain slices undergoing recurrent spontaneous SLEs. While preictal activities can be classified with an average accuracy of 77.4 ± 6.7% utilizing the frequency spectrum in the range 0-400 Hz, we can also achieve a similar level of accuracy by using a nonlinear relationship between 100-400 Hz and <4 Hz frequency bands only.

  20. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul

    2009-01-22

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. Here, we find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. Bymore » changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO x emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO 2, SO 2, and NO x emissions can be reduced even further.« less

  1. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    PubMed

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  2. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    NASA Astrophysics Data System (ADS)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the cascaded reservoir-hydro plants. Specifically, an equilibrium model of oligopoly, where only private firms compete for electricity supply is proposed. Since some electricity generation markets are better characterized as mixed oligopolies, where the public firm coexists with the private firms for electricity supply, and not as oligopolies, another equilibrium model of mixed oligopoly is proposed. The proposed mixed oligopoly equilibrium model is the first implementation of such market structure in electricity markets. The mathematical models developed in this research are applied to the simplified representation of the Turkish electricity generation market to investigate the impact of various ownership allocation scenarios that may result from the privatization of the state owned generation plants, including the cascaded reservoir-hydro plants, on the competitive market outcomes.

  3. Electric Power Monthly, June 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-13

    The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity andmore » quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.« less

  4. 78 FR 28733 - Medical Devices; General Hospital and Personal Use Monitoring Devices; Classification of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Toxicology Testing. Labeling (dose limits). Electromagnetic incompatibility........ Electromagnetic... analysis and nonclinical testing must validate electromagnetic compatibility performance, wireless... electromagnetic compatibility performance, wireless performance, and electrical safety; and (4) Labeling must...

  5. A Survey on Gas Sensing Technology

    PubMed Central

    Liu, Xiao; Cheng, Sitian; Liu, Hong; Hu, Sha; Zhang, Daqiang; Ning, Huansheng

    2012-01-01

    Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches. PMID:23012563

  6. Optimization of the Heat Exchangers of a Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Vián, J. G.; Astrain, D.; Rodríguez, A.; Berrio, I.

    2010-09-01

    The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.

  7. 17 CFR 250.7 - Companies deemed not to be electric or gas utility companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or manufactured gas distributed at retail by means of the facilities owned or operated by such... connection with the generation, transmission, or distribution of electric energy is the ownership or... steam is used in the generation of electric energy shall not be deemed an electric utility company...

  8. Electricity restructuring and nuclear power renewal in Ontario: A glossary and list of acronyms. Backgrounder Number 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeager, L.; Mills, C.

    1997-12-31

    This glossary is arranged in alphabetical order in three sections: Electrical planning and generation terms; electrical power and nuclear generation acronyms and abbreviations; and radiological quantities and units. The glossary provides a handy reference for those interested in policy issues involving the electricity sector.

  9. Solar electricity supply isolines of generation capacity and storage.

    PubMed

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W

    2015-03-24

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.

  10. Solar electricity supply isolines of generation capacity and storage

    PubMed Central

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.

    2015-01-01

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261

  11. Projected Growth in Small-Scale, Fossil-Fueled Distributed Generation: Potential Implications for the U.S. Greenhouse Gas Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A

    The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less

  12. Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model

    NASA Astrophysics Data System (ADS)

    Cifra, M.; Havelka, D.; Deriu, M. A.

    2011-12-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.

  13. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.

  14. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.

    PubMed

    Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang

    2016-07-26

    The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.

  15. Deregulation Impact in Negotiating a New Electrical Contract Between NASA Glenn Research Center at Lewis Field and FirstEnergy Corp., Cleveland, Ohio, USA

    NASA Technical Reports Server (NTRS)

    Quach, Quyen T.; Zala, Laszlo F.

    2002-01-01

    The governor of the State of Ohio signed amended substitute Senate bill 3 on July 6, 1999, requiring Ohio's electric industry to change from a monopoly environment to a competitive electric environment for generation services. The start date for competitive retail generation services was set for January 1, 2001. This new deregulation law allowed all Ohioans to choose the supplier of generation service, but the transmission and distribution would remain regulated. It also required electric utilities to unbundle the three main components (generation, transmission, and distribution) and make other changes designed to produce a competitive electric generation market. While deregulation was taking shape, the NASA Glenn Research Center electrical contract with FirstEnergy Corp. of Cleveland, Ohio, was to expire on September 7, 1999. Glenn strategically evaluated and incorporated the impacts of electric deregulation in the negotiations. Glenn and FirstEnergy spent over a year in negotiations until the Glenn utility team and the FirstEnergy negotiating team came to an agreement in the fall of 2000, and a new contract became effective on January 1, 2001.

  16. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  17. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  18. 30 CFR 206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... geothermal resources used for commercial production or generation of electricity? 206.352 Section 206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  19. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  20. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  1. Brake blending strategy for a hybrid vehicle

    DOEpatents

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  2. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  3. 46 CFR 111.12-11 - Generator protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Generator protection. 111.12-11 Section 111.12-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-11 Generator protection. (a...

  4. 46 CFR 111.12-11 - Generator protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Generator protection. 111.12-11 Section 111.12-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-11 Generator protection. (a...

  5. 46 CFR 111.12-11 - Generator protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Generator protection. 111.12-11 Section 111.12-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-11 Generator protection. (a...

  6. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    EPA Science Inventory

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  7. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    DTIC Science & Technology

    2003-09-01

    standby charges, among others. Federal law (Public Utilities Regulatory Policy Act [ PURPA ] Section 210) prohibits utilities from assessing...a customer-generator. PURPA . The PURPA of 1978 requires electric utilities to purchase electricity produced from any qualifying power producers

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIAmore » publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.« less

  9. Evaluation of Electric Power Procurement Strategies by Stochastic Dynamic Programming

    NASA Astrophysics Data System (ADS)

    Saisho, Yuichi; Hayashi, Taketo; Fujii, Yasumasa; Yamaji, Kenji

    In deregulated electricity markets, the role of a distribution company is to purchase electricity from the wholesale electricity market at randomly fluctuating prices and to provide it to its customers at a given fixed price. Therefore the company has to take risk stemming from the uncertainties of electricity prices and/or demand fluctuation instead of the customers. The way to avoid the risk is to make a bilateral contact with generating companies or install its own power generation facility. This entails the necessity to develop a certain method to make an optimal strategy for electric power procurement. In such a circumstance, this research has the purpose for proposing a mathematical method based on stochastic dynamic programming and additionally considering the characteristics of the start-up cost of electric power generation facility to evaluate strategies of combination of the bilateral contract and power auto-generation with its own facility for procuring electric power in deregulated electricity market. In the beginning we proposed two approaches to solve the stochastic dynamic programming, and they are a Monte Carlo simulation method and a finite difference method to derive the solution of a partial differential equation of the total procurement cost of electric power. Finally we discussed the influences of the price uncertainty on optimal strategies of power procurement.

  10. Flow diagram analysis of electrical fatalities in construction industry.

    PubMed

    Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad

    2012-01-01

    The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.

  11. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  12. Future trends in electrical energy generation economics in the United States

    NASA Technical Reports Server (NTRS)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  13. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  14. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  15. Automated Run-Time Mission and Dialog Generation

    DTIC Science & Technology

    2007-03-01

    Processing, Social Network Analysis, Simulation, Automated Scenario Generation 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified...9 D. SOCIAL NETWORKS...13 B. MISSION AND DIALOG GENERATION.................................................13 C. SOCIAL NETWORKS

  16. 60-Hz electric and magnetic fields generated by a distribution network.

    PubMed

    Héroux, P

    1987-01-01

    From a mobile unit, 60-Hz electric and magnetic fields generated by Hydro-Québec's distribution network were measured. Nine runs, representative of various human environments, were investigated. Typical values were 32 V/m and 0.16 microT. The electrical distribution networks investigated were major contributors to the electric and magnetic environments.

  17. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening

    NASA Astrophysics Data System (ADS)

    Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan

    2015-02-01

    The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.

  18. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  19. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2017-05-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  20. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  1. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  2. 46 CFR 111.12-13 - Propulsion generator protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion generator protection. 111.12-13 Section 111.12-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-13 Propulsion generator...

  3. 46 CFR 111.12-13 - Propulsion generator protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion generator protection. 111.12-13 Section 111.12-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-13 Propulsion generator...

  4. 46 CFR 111.12-13 - Propulsion generator protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion generator protection. 111.12-13 Section 111.12-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-13 Propulsion generator...

  5. 46 CFR 111.12-13 - Propulsion generator protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion generator protection. 111.12-13 Section 111.12-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-13 Propulsion generator...

  6. 46 CFR 111.12-13 - Propulsion generator protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion generator protection. 111.12-13 Section 111.12-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-13 Propulsion generator...

  7. Electricity generation by Rhodopseudomonas palustris DX-1.

    PubMed

    Xing, Defeng; Zuo, Yi; Cheng, Shaoan; Regan, John M; Logan, Bruce E

    2008-06-01

    Bacteria able to generate electricity in microbial fuel cells (MFCs) are of great interest, but there are few strains capable of high power production in these systems. Here we report that the phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC, produced electricity at higher power densities (2720 +/- 60 mW/m2) than mixed cultures in the same device. While Rhodopseudomonas species are known for their ability to generate hydrogen, they have not previously been shown to generate power in an MFC, and current was generated without the need for light or hydrogen production. Strain DX-1 utilizes a wide variety of substrates (volatile acids, yeast extract, and thiosulfate) for power production in different metabolic modes, making it highly useful for studying power generation in MFCs and generating power from a range of simple and complex sources of organic matter. These results demonstrate that a phototrophic purple nonsulfur bacterium can efficiently generate electricity by direct electron transfer in MFCs, providing another model microorganism for MFC investigations.

  8. Soil classification based on cone penetration test (CPT) data in Western Central Java

    NASA Astrophysics Data System (ADS)

    Apriyono, Arwan; Yanto, Santoso, Purwanto Bekti; Sumiyanto

    2018-03-01

    This study presents a modified friction ratio range for soil classification i.e. gravel, sand, silt & clay and peat, using CPT data in Western Central Java. The CPT data was obtained solely from Soil Mechanic Laboratory of Jenderal Soedirman University that covers more than 300 sites within the study area. About 197 data were produced from data filtering process. IDW method was employed to interpolated friction ratio values in a regular grid point for soil classification map generation. Soil classification map was generated and presented using QGIS software. In addition, soil classification map with respect to modified friction ratio range was validated using 10% of total measurements. The result shows that silt and clay dominate soil type in the study area, which is in agreement with two popular methods namely Begemann and Vos. However, the modified friction ratio range produces 85% similarity with laboratory measurements whereby Begemann and Vos method yields 70% similarity. In addition, modified friction ratio range can effectively distinguish fine and coarse grains, thus useful for soil classification and subsequently for landslide analysis. Therefore, modified friction ratio range proposed in this study can be used to identify soil type for mountainous tropical region.

  9. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  10. Intelligent electrical outlet for collective load control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and amore » supply of generated electric power in the microgrid at a given time.« less

  11. Inventory of Electric Utility Power Plants in the United States

    EIA Publications

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  12. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one ofmore » the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.« less

  13. Sensitivity of power system operations to projected changes in water availability due to climate change: the Western U.S. case study

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.

    2017-12-01

    Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.

  14. Wind turbine ring/shroud drive system

    DOEpatents

    Blakemore, Ralph W.

    2005-10-04

    A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

  15. Automated Method of Frequency Determination in Software Metric Data Through the Use of the Multiple Signal Classification (MUSIC) Algorithm

    DTIC Science & Technology

    1998-06-26

    METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is

  16. The General Electric MOD-1 wind turbine generator program

    NASA Technical Reports Server (NTRS)

    Poor, R. H.; Hobbs, R. B.

    1979-01-01

    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed.

  17. Nonlinear, non-stationary image processing technique for eddy current NDE

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita

    2012-05-01

    Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.

  18. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.

    PubMed

    Milham, Samuel

    2014-01-01

    The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.

  19. Private wind powered electricity generators for industry in the UK

    NASA Astrophysics Data System (ADS)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  20. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.

    1981-01-01

    A set of training statistics for the 30 meter resolution simulated thematic mapper MSS data was generated based on land use/land cover classes. In addition to this supervised data set, a nonsupervised multicluster block of training statistics is being defined in order to compare the classification results and evaluate the effect of the different training selection methods on classification performance. Two test data sets, defined using a stratified sampling procedure incorporating a grid system with dimensions of 50 lines by 50 columns, and another set based on an analyst supervised set of test fields were used to evaluate the classifications of the TMS data. The supervised training data set generated training statistics, and a per point Gaussian maximum likelihood classification of the 1979 TMS data was obtained. The August 1980 MSS data was radiometrically adjusted. The SAR data was redigitized and the SAR imagery was qualitatively analyzed.

  1. A study of electricity planning in Thailand: An integrated top-down and bottom-up Computable General Equilibrium (CGE) modeling analysis

    NASA Astrophysics Data System (ADS)

    Srisamran, Supree

    This dissertation examines the potential impacts of three electricity policies on the economy of Thailand in terms of macroeconomic performance, income distribution, and unemployment rate. The three considered policies feature responses to potential disruption of imported natural gas used in electricity generation, alternative combinations (portfolios) of fuel feedstock for electricity generation, and increases in investment and local electricity consumption. The evaluation employs Computable General Equilibrium (CGE) approach with the extension of electricity generation and transmission module to simulate the counterfactual scenario for each policy. The dissertation consists of five chapters. Chapter one begins with a discussion of Thailand's economic condition and is followed by a discussion of the current state of electricity generation and consumption and current issues in power generation. The security of imported natural gas in power generation is then briefly discussed. The persistence of imported natural gas disruption has always caused trouble to the country, however, the economic consequences of this disruption have not yet been evaluated. The current portfolio of power generation and the concerns it raises are then presented. The current portfolio of power generation is heavily reliant upon natural gas and so needs to be diversified. Lastly, the anticipated increase in investment and electricity consumption as a consequence of regional integration is discussed. Chapter two introduces the CGE model, its background and limitations. Chapter three reviews relevant literature of the CGE method and its application in electricity policies. In addition, the submodule characterizing the network of electricity generation and distribution and the method of its integration with the CGE model are explained. Chapter four presents the findings of the policy simulations. The first simulation illustrates the consequences of responses to disruptions in natural gas imports. The results indicate that the induced response to a complete reduction in natural gas imports would cause RGDP to drop by almost 0.1%. The second set of simulations examines alternative portfolios of power generation. Simulation results indicate that promoting hydro power would be the most economical solution; although the associated mix of power generation would have some adverse effects on RGDP. Consequently, the second best alternative, in which domestic natural gas dominates the portfolio, is recommended. The last simulation suggests that two power plants, South Bangkok and Siam Energy, should be upgraded to cope with an expected 30% spike in power consumption due to an anticipated increase in regional trade and domestic investment. Chapter five concludes the dissertation and suggests possibilities for future research.

  2. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    PubMed

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  3. Analysis of urban land use in the megacity of Dhaka, Bangladesh: Roof-top detection in the context of assessing solar photovoltaic potential

    NASA Astrophysics Data System (ADS)

    Jaegermeyr, J.; Kabir, H.; Endlicher, W.

    2009-12-01

    The megacity of Dhaka, Bangladesh is considered to be one of the world’s fastest growing urban centers. With nearly 14 million people Dhaka currently faces tremendous power crisis. The available power supply of Dhaka Megacity is currently 1000-1200 MW against the maximum demand of nearly 2000 MW. The objective of this study is to classify land cover of Dhaka to locate roof-top areas which are adequate for solar photovoltaic applications. Usually this task is performed with additional building-heights data. With lack of that, we present an object-based classification approach which is based on high resolution Quickbird data only. Extensive formal buildings in Dhaka mostly have flat roof-tops made from concrete which are well suited for PV applications. The classification is focused to detect these ‘Bright Roof-Tops’ to assess a lower limit for potential PV areas. With that conservative approach bright roof-top areas of 10.554 km2 out of the city’s 134.282 km2 could be found. The overall classification accuracy is 0.918, the producer’s accuracy of ‘Bright Roof-Tops’ is 0.833. Preliminary result of the PhD work of Humayun Kabir indicates that the application of only 75 Wp stand-alone solar modules on these available bright roof-tops can generate nearly 1,000 MW of electricity. The application of solar modules with high capacity (i.e., >200 Wp) preferably through grid-connected PV systems can substantially meet-up the city’s power demand, although several techno-economic and socio-political factors are certainly involved.

  4. 46 CFR 111.12-9 - Generator cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Generator cables. 111.12-9 Section 111.12-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-9 Generator cables. (a) The current-carrying capacity...

  5. 46 CFR 111.12-9 - Generator cables.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Generator cables. 111.12-9 Section 111.12-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-9 Generator cables. (a) The current-carrying capacity...

  6. 46 CFR 111.12-9 - Generator cables.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Generator cables. 111.12-9 Section 111.12-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-9 Generator cables. (a) The current-carrying capacity...

  7. 46 CFR 111.12-9 - Generator cables.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Generator cables. 111.12-9 Section 111.12-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-9 Generator cables. (a) The current-carrying capacity...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, M.T.

    This article is a compilation of the views of the changing power generation equipment market by executives of ASEA-Brown Boveri, General Electric Power Generation, Siemans Power Generation Group, and Westinghouse Electric Corporation Power Generation unit. The topics of the article include a changing market, the home market, the turnkey supplier, and back to baseload.

  9. Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.

    2013-07-01

    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.

  10. 18 CFR 366.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... owns or operates facilities used for the generation, transmission, or distribution of electric energy... that engage only in marketing of electric energy. Exempt wholesale generator. The term “exempt... operating, all or part of one or more eligible facilities and selling electric energy at wholesale. For...

  11. Efficiency arcjet thruster with controlled arc startup and steady state attachment

    NASA Technical Reports Server (NTRS)

    Smith, William W. (Inventor); Knowles, Steven C. (Inventor)

    1989-01-01

    An improved efficiency arcjet thruster has a constrictor and electrically-conductive nozzle anode defining an arc chamber, and an electrically-conductive rod having a tip spaced upstream from the constrictor and defining a cathode spaced from the anode by a gap generally coextensive with the arc chamber. An electrical potential is applied to the anode and cathode to generate an electrical arc in the arc chamber from the cathode to anode. Catalytically decomposed hydrazine is supplied to the arc chamber with generation of the arc so as to produce thermal heating and expansion thereof through the nozzle. The constrictor can have a electrically insulative portion disposed between the cathode tip and the nozzle anode, and an electrically-conductive anode extension disposed along the insulative portion so as to define an auxiliary gap with the cathode tip substantially smaller than the gap defined between the cathode and nozzle anode for facilitating startup of arc generation. The constrictor can also include an electrically-conductive electrode with a variable electrical potential to vary the shape of the arc generated in the arc chamber. Also, the cathode is mounted for axial movement such that the gap between its tip and the nozzle anode can be varied to facilitate a generally nonerosive generation of the electrical arc at startup and reliable steady state operation. Further, the arc chamber can have a nonparallel subsonic-to-supersonic transition configuration, or alternatively solely a nonparallel supersonic configuration, for improved arc attachment.

  12. Observation versus classification in supervised category learning.

    PubMed

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  13. Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources

    NASA Astrophysics Data System (ADS)

    Novakovskaia, E.; Hayes, C.; Collier, C.

    2014-12-01

    The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.

  14. Low-grade geothermal energy conversion by organic Rankine cycle turbine generator

    NASA Astrophysics Data System (ADS)

    Zarling, J. P.; Aspnes, J. D.

    Results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49 C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator are presented. The geothermal source which supplied the water is located in a rural Alaskan village. The reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: (1) high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable and (2) the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. Data is provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.

  15. Generating electricity while walking with loads.

    PubMed

    Rome, Lawrence C; Flynn, Louis; Goldman, Evan M; Yoo, Taeseung D

    2005-09-09

    We have developed the suspended-load backpack, which converts mechanical energy from the vertical movement of carried loads (weighing 20 to 38 kilograms) to electricity during normal walking [generating up to 7.4 watts, or a 300-fold increase over previous shoe devices (20 milliwatts)]. Unexpectedly, little extra metabolic energy (as compared to that expended carrying a rigid backpack) is required during electricity generation. This is probably due to a compensatory change in gait or loading regime, which reduces the metabolic power required for walking. This electricity generation can help give field scientists, explorers, and disaster-relief workers freedom from the heavy weight of replacement batteries and thereby extend their ability to operate in remote areas.

  16. Recursive heuristic classification

    NASA Technical Reports Server (NTRS)

    Wilkins, David C.

    1994-01-01

    The author will describe a new problem-solving approach called recursive heuristic classification, whereby a subproblem of heuristic classification is itself formulated and solved by heuristic classification. This allows the construction of more knowledge-intensive classification programs in a way that yields a clean organization. Further, standard knowledge acquisition and learning techniques for heuristic classification can be used to create, refine, and maintain the knowledge base associated with the recursively called classification expert system. The method of recursive heuristic classification was used in the Minerva blackboard shell for heuristic classification. Minerva recursively calls itself every problem-solving cycle to solve the important blackboard scheduler task, which involves assigning a desirability rating to alternative problem-solving actions. Knowing these ratings is critical to the use of an expert system as a component of a critiquing or apprenticeship tutoring system. One innovation of this research is a method called dynamic heuristic classification, which allows selection among dynamically generated classification categories instead of requiring them to be prenumerated.

  17. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  18. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    PubMed

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  19. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, J.I.; Reddoch, T.W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less

  20. Water withdrawal and consumption reduction analysis for electrical energy generation system

    NASA Astrophysics Data System (ADS)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  1. Cumulated UDC Supplement, 1965-1975. Volume III: Classes 6/62 (61 Medical Sciences, 62 Engineering and Technology Generally, 621 Mechanical and Electrical Engineering, 622 Mining, 623 Military and Naval Engineering, 624 Civil and Structural Engineering, 625 Railway and Highway Engineering, 626/627 Hydraulic Engineering Works, 628 Public Health Engineering, 629 Transport (Vehicle) Engineering).

    ERIC Educational Resources Information Center

    International Federation for Documentation, The Hague (Netherlands). Committee on Classification Research.

    In continuation of the "Cumulated UDC Supplement - 1964" published by the International Federation for Documentation, this document provides a cumulative supplement to the Universal Decimal Classification for 1965-1975. This third of five volumes lists new classification subdivisions in the following subject areas: (1) medical sciences; (2)…

  2. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... 2.4 Energy factor for dehumidifiers means a measure of energy efficiency of a dehumidifier... batteries and the determination, classification, and testing of relevant modes. 3.2.2 Electrical energy...

  3. Buying Renewable Electric Power in Montgomery County, Maryland

    NASA Astrophysics Data System (ADS)

    Cember, Richard P.

    2008-08-01

    From mid-August 2007 until mid-August 2008, my home electricity supply was 100% wind-generated. My experience in switching to wind-generated electric power may be of interest to fellow AGU members for three reasons. First, Montgomery County, Md., where I live, is one of the few jurisdictions in the United States that has both an electric power tax and a renewable energy credit. The county is therefore a case study in price-based public policy for greenhouse gas emissions control. Second, I was surprised by the comparatively small price difference (or ``price premium'') between wind-generated and conventionally generated power in the county, and I believe that Eos readers will be similarly surprised. Third, because so many U.S. federal agencies concerned with Earth science are based in the Washington, D. C., area, a high concentration of AGU members live in Montgomery County and may be personally interested in evaluating the price of reducing carbon dioxide emissions from the generation of their own residential electricity.

  4. Environmental externalities: Thinking globally, taxing locally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trisko, E.M.

    1993-03-01

    Assigning monetary externality values to the airborne emissions of electric power plants is gaining the attention of state utility commissions as a means to measure the social costs of alternative energy investments. Some commissions are using environmental externalities to encourage utility investments in energy conservation and renewable energy technologies such as solar, wind, and biomass. However, the monetization of externalities through so-called adders to direct generation costs can lead to inefficient resource allocation and expose consumers to electric rate increases without corresponding environmental benefits. The addition of externality values to direct electric generation costs distorts the economics of power supplymore » planning by creating artificial subsidies for generation sources that are not currently competitive in the market. Businesses and consumers will be forced to support higher-cost sources of electric generation as a consequence. Because pollutant emissions of all new sources of electric generation are stringently regulated, and generally are well below those of existing fossil-fired sources, little demonstrable environmental benefit would result from the expanded use of externality valuation.« less

  5. The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; Baek, Young Sun

    The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a numbermore » of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.« less

  6. Electric vehicle system for charging and supplying electrical power

    DOEpatents

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  7. Development of a biomechanical energy harvester.

    PubMed

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-06-23

    Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost. Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.

  8. Development of a biomechanical energy harvester

    PubMed Central

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-01-01

    Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313

  9. Associations among hydrologic classifications and fish traits to support environmental flow standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Bevelhimer, Mark S; Frimpong, Dr. Emmanuel A,

    2014-01-01

    Classification systems are valuable to ecological management in that they organize information into consolidated units thereby providing efficient means to achieve conservation objectives. Of the many ways classifications benefit management, hypothesis generation has been discussed as the most important. However, in order to provide templates for developing and testing ecologically relevant hypotheses, classifications created using environmental variables must be linked to ecological patterns. Herein, we develop associations between a recent US hydrologic classification and fish traits in order to form a template for generating flow ecology hypotheses and supporting environmental flow standard development. Tradeoffs in adaptive strategies for fish weremore » observed across a spectrum of stable, perennial flow to unstable intermittent flow. In accordance with theory, periodic strategists were associated with stable, predictable flow, whereas opportunistic strategists were more affiliated with intermittent, variable flows. We developed linkages between the uniqueness of hydrologic character and ecological distinction among classes, which may translate into predictions between losses in hydrologic uniqueness and ecological community response. Comparisons of classification strength between hydrologic classifications and other frameworks suggested that spatially contiguous classifications with higher regionalization will tend to explain more variation in ecological patterns. Despite explaining less ecological variation than other frameworks, we contend that hydrologic classifications are still useful because they provide a conceptual linkage between hydrologic variation and ecological communities to support flow ecology relationships. Mechanistic associations among fish traits and hydrologic classes support the presumption that environmental flow standards should be developed uniquely for stream classes and ecological communities, therein.« less

  10. Electrical contact structures for solid oxide electrolyte fuel cell

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

  11. Electric turbocompound control system

    DOEpatents

    Algrain, Marcelo C [Dunlap, IL

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  12. 78 FR 14521 - Agency Information Collection Extension With Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...-411, ``Coordinated Bulk Power Supply Program Report,'' Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions,'' Form EIA-860, ``Annual Electric Generator Report,'' Form EIA-860M, ``Monthly Update to the Annual Electric Generator Report,'' Form EIA-861, ``Annual...

  13. Competitive Electricity Prices: An Update

    EIA Publications

    1998-01-01

    Illustrates a third impact of the move to competitive generation pricing -- the narrowing of the range of prices across regions of the country. This feature article updates information in Electricity Prices in a Competitive Environment: Marginal Cost Pricing of Generation Services and Financial Status of Electric Utilities.

  14. Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy

    PubMed Central

    2011-01-01

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity. PMID:21761880

  15. Generation of high-density biskyrmions by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Licong; Zhang, Ying; He, Min

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  16. Contribution of anaerobic digesters to emissions mitigation and electricity generation under U.S. climate policy.

    PubMed

    Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M

    2011-08-15

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity.

  17. Potential of Micro Hydroelectric Generator Embedded at 30,000 PE Effluent Discharge of Sewerage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Che Munaaim, M. A.; Razali, N.; Ayob, A.; Hamidin, N.; Othuman Mydin, M. A.

    2018-03-01

    A micro hydroelectric generator is an energy conversion approach to generate electricity from potential (motion) energy to an electrical energy. In this research, it is desired to be implemented by using a micro hydroelectric generator which is desired to be embedded at the continuous flow of effluent discharge point of domestic sewerage treatment plant (STP). This research evaluates the potential of electricity generation from micro hydroelectric generator attached to 30,000 PE sewerage treatment plant. The power output obtained from calculation of electrical power conversion is used to identify the possibility of this system and its ability to provide electrical energy, which can minimize the cost of electric bill especially for the pumping system. The overview of this system on the practical application with the consideration of payback period is summarized. The ultimate aim of the whole application is to have a self-ecosystem electrical power generated for the internal use of STP by using its own flowing water in supporting the sustainable engineering towards renewable energy and energy efficient approach. The results shows that the output power obtained is lower than expected output power (12 kW) and fall beyond of the range of a micro hydro power (5kW - 100kW) since it is only generating 1.58 kW energy by calculation. It is also observed that the estimated payback period is longer which i.e 7 years to recoup the return of investment. A range of head from 4.5 m and above for the case where the flow shall at least have maintained at 0.05 m3/s in the selected plant in order to achieved a feasible power output. In conclusion, wastewater treatment process involves the flowing water (potential energy) especially at the effluent discharge point of STP is possibly harvested for electricity generation by embedding the micro hydroelectric generator. However, the selection of STP needs to have minimum 4.5 meter head with 0.05 m3/s of continuously flowing water to make it feasible to harvest.

  18. Generation of high-density biskyrmions by electric current

    DOE PAGES

    Peng, Licong; Zhang, Ying; He, Min; ...

    2017-06-16

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  19. Dynamic species classification of microorganisms across time, abiotic and biotic environments—A sliding window approach

    PubMed Central

    Griffiths, Jason I.; Fronhofer, Emanuel A.; Garnier, Aurélie; Seymour, Mathew; Altermatt, Florian; Petchey, Owen L.

    2017-01-01

    The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology. PMID:28472193

  20. Carbon monoxide poisoning from portable electric generators.

    PubMed

    Hampson, Neil B; Zmaeff, Jennette L

    2005-01-01

    While the overall death rate from unintentional carbon monoxide (CO) poisoning has decreased in the United States due to improved automobile emissions controls and a decline in CO poisonings from motor vehicles, exposures have not changed from some sources of CO. One of these is the operation of portable electrical generators in poorly ventilated spaces. This study sought to describe the population poisoned from CO produced by portable electric generators, and to determine the reasons that generators are operated in a hazardous fashion. Cases of CO poisoning referred for treatment with hyperbaric oxygen at Virginia Mason Medical Center in Seattle from November 1978 to March 2004 were reviewed. Those cases that resulted from portable generator use were selected for analysis. Sixty-three patients aged 2 to 85 years were treated for CO poisoning from portable electric generators. They included 34 males and 29 females who were poisoned in 37 separate incidents. Thirty-four lost consciousness with the exposure. Of the 63 total patients, 60 spoke English. Generators were typically used when normal electrical service was disrupted by a storm or in remote locations. In 29 of 37 incidents, the generator was operated in the home environment, most commonly in the garage. Lack of awareness of the dangers of CO poisoning or lack of knowledge of ventilation requirements were the most commonly identified reasons. CO poisoning from portable electric generators occurs in a characteristic population, in a few typical locations and for a limited number of reasons. This information may help target prevention efforts for this form of poisoning, such as warning labels or educational programs.

  1. EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

    DTIC Science & Technology

    2016-10-01

    Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration ,” Biomaterials (2004). A) B) REDD-2016-537...AWARD NUMBER: W81XWH-14-1-0542 TITLE: EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field PRINCIPAL...23 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field

  2. "Relative CIR": an image enhancement and visualization technique

    USGS Publications Warehouse

    Fleming, Michael D.

    1993-01-01

    Many techniques exist to spectrally and spatially enhance digital multispectral scanner data. One technique enhances an image while keeping the colors as they would appear in a color-infrared (CIR) image. This "relative CIR" technique generates an image that is both spectrally and spatially enhanced, while displaying a maximum range of colors. The technique enables an interpreter to visualize either spectral or land cover classes by their relative CIR characteristics. A relative CIR image is generated by developed spectral statistics for each class in the classifications and then, using a nonparametric approach for spectral enhancement, the means of the classes for each band are ranked. A 3 by 3 pixel smoothing filter is applied to the classification for spatial enhancement and the classes are mapped to the representative rank for each band. Practical applications of the technique include displaying an image classification product as a CIR image that was not derived directly from a spectral image, visualizing how a land cover classification would look as a CIR image, and displaying a spectral classification or intermediate product that will be used to label spectral classes.

  3. Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model.

    PubMed

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy

    2018-01-23

    Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation. Graphical Abstract Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.

  4. A Methodology for Calculating EGS Electricity Generation Potential Based on the Gringarten Model for Heat Extraction From Fractured Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad

    Existing methodologies for estimating the electricity generation potential of Enhanced Geothermal Systems (EGS) assume thermal recovery factors of 5% or less, resulting in relatively low volumetric electricity generation potentials for EGS reservoirs. This study proposes and develops a methodology for calculating EGS electricity generation potential based on the Gringarten conceptual model and analytical solution for heat extraction from fractured rock. The electricity generation potential of a cubic kilometer of rock as a function of temperature is calculated assuming limits on the allowed produced water temperature decline and reservoir lifetime based on surface power plant constraints. The resulting estimates of EGSmore » electricity generation potential can be one to nearly two-orders of magnitude larger than those from existing methodologies. The flow per unit fracture surface area from the Gringarten solution is found to be a key term in describing the conceptual reservoir behavior. The methodology can be applied to aid in the design of EGS reservoirs by giving minimum reservoir volume, fracture spacing, number of fractures, and flow requirements for a target reservoir power output. Limitations of the idealized model compared to actual reservoir performance and the implications on reservoir design are discussed.« less

  5. Analysis of the energy efficiency of the implementation power electric generated modules in the CHS

    NASA Astrophysics Data System (ADS)

    Sukhikh, A. A.; Milyutin, V. A.; Lvova, A. M.

    2017-11-01

    Application on the Central heat source (CHS) local generation of electricity is primarily aimed at solving problems of own needs of electric energy that not only guarantees the independence of the work of the CHS from external electrical networks, but will prevent the stop of heat supply of consumers and defrosting heating networks in case of accidents in electrical networks caused by natural or anthropogenic factors. Open the prospects of electric power supply stand-alone objects, such commercial or industrial objects on the territory of a particular neighborhood.

  6. Electric potential and electric field imaging

    NASA Astrophysics Data System (ADS)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  7. Study on Stochastic Optimal Electric Power Procurement Strategies with Uncertain Market Prices

    NASA Astrophysics Data System (ADS)

    Sakchai, Siripatanakulkhajorn; Saisho, Yuichi; Fujii, Yasumasa; Yamaji, Kenji

    The player in deregulated electricity markets can be categorized into three groups of GENCO (Generator Companies), TRNASCO (Transmission Companies), DISCO (Distribution Companies). This research focuses on the role of Distribution Companies, which purchase electricity from market at randomly fluctuating prices, and provide it to their customers at given fixed prices. Therefore Distribution companies have to take the risk stemming from price fluctuation of electricity instead of the customers. This entails the necessity to develop a certain method to make an optimal strategy for electricity procurement. In such a circumstance, this research has the purpose for proposing the mathematical method based on stochastic dynamic programming to evaluate the value of a long-term bilateral contract of electricity trade, and also a project of combination of the bilateral contract and power generation with their own generators for procuring electric power in deregulated market.

  8. Dollar Summary of Federal Supply Classification and Service Category by Company, FY84, Part 2 (2620-4540).

    DTIC Science & Technology

    1984-01-01

    MANUFACTURING OHIO DLA POWER AND HAND PUMPS 31 COCA - COLA COMPANY INC THE WISCONSIN NAVY POWER AND HAND PUMPS 85 COLE-PARMER INSTRUMENT CO ILLINOIS NAVY...ELECTRICAL & ULTRASONIC EROSION MACHINES 123 OL MARKETING INC OKLAHOMA USAF ELECTRICAL 8 ULTRASONIC EROSION MACHINES 120 JCK & CASTER CO MINNESOTA DLA...FITTINGS FOR ROPE CABLE AND CHAIN ’I9 EILO MANUFACTURING INC OKLAHOMA NAVY FITTINGS FOR ROPE CABLE AND CHAIN !2? GATEWAY MARKETING CORPORATION NEW

  9. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    PubMed

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  10. 7 CFR 1794.21 - Categorically excluded proposals without an ER.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an emergency situation to return to service damaged facilities of an applicant's system. (b) Electric... electric generating or fuel processing facilities and related support structures where there is negligible... boundaries of an existing electric generating facility site. A description of the facilities to be...

  11. 46 CFR 111.30-24 - Generation systems greater than 3000 kw.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...

  12. 46 CFR 111.30-24 - Generation systems greater than 3000 kw.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...

  13. 46 CFR 111.30-24 - Generation systems greater than 3000 kw.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...

  14. 46 CFR 111.30-24 - Generation systems greater than 3000 kw.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...

  15. 46 CFR 111.30-24 - Generation systems greater than 3000 kw.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 111.30-24 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-24 Generation systems greater than 3000 kw... Outer Continental Shelf facility, when the total installed electric power of the ship's service...

  16. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  17. MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES

    EPA Science Inventory

    Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...

  18. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  19. Electric Potential and Electric Field Imaging with Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  20. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.

    PubMed

    Inoue, Kengo; Ito, Toshihiro; Kawano, Yoshihiro; Iguchi, Atsushi; Miyahara, Morio; Suzuki, Yoshihiro; Watanabe, Kazuya

    2013-11-01

    Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for electricity generation from cattle manure suspended in water (solid to water ratio of 1:50) was examined. The CE-MFC reactor was operated in batch mode for 49 days; electricity generation became stable 2 weeks after initiating the operation. The maximum power density was measured at 16.3 W m⁻³ on day 26. Sequencing analysis of PCR-amplified 16S rRNA gene fragments obtained from the original manure and from anode biofilms suggested that Chloroflexi and Geobacteraceae were abundant in the anode biofilm (29% and 18%, respectively), whereas no Geobacteraceae sequences were detected in the original manure sample. The results of this study suggest that CE-MFCs can be used to generate electricity from water-suspended cattle manure in a scalable MFC system. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.

    PubMed

    Ogawa, Kuniyasu; Sasaki, Tatsuyoshi; Yoneda, Shigeki; Tsujinaka, Kumiko; Asai, Ritsuko

    2018-05-17

    In order to increase the current density generated in a PEFC (polymer electrolyte fuel cell), a method for measuring the spatial distribution of both the current and the water content of the MEA (membrane electrode assembly) is necessary. Based on the frequency shifts of NMR (nuclear magnetic resonance) signals acquired from the water contained in the MEA using 49 NMR coils in a 7 × 7 arrangement inserted in the PEFC, a method for measuring the two-dimensional spatial distribution of electric current generated in a unit cell with a power generation area of 140 mm × 160 mm was devised. We also developed an inverse analysis method to determine the two-dimensional electric current distribution that can be applied to actual PEFC connections. Two analytical techniques, namely coarse graining of segments and stepwise search, were used to shorten the calculation time required for inverse analysis of the electric current map. Using this method and techniques, spatial distributions of electric current and water content in the MEA were obtained when the PEFC generated electric power at 100 A. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. U.S. energy sector impacts of technology innovation, fuel price, and electric sector CO 2 policy: Results from the EMF 32 model intercomparison study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart

    We study the impact of achieving technology innovation goals, representing significant technology cost reductions and performance improvements, in both the electric power and end-use sectors by comparing outputs from four energy-economic models through the year 2050. We harmonize model input assumptions and then compare results in scenarios that vary natural gas prices, technology cost and performance metrics, and the implementation of a representative national electricity sector carbon dioxide (CO 2) policy. Achieving the representative technology innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more costmore » competitive. For the models that include domestic natural gas markets, achieving the technology innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices but fewer coal capacity retirements. Some of the models include energy efficiency improvements as part of achieving the high-technology goals. Absent these energy efficiency improvements, low-cost electricity facilitates greater electricity consumption. The effect of implementing a representative electricity sector CO 2 policy differs considerably depending on the cost and performance of generating and end-use technologies. The CO 2 policy influences electric sector evolution in the cases with reference technology assumptions but has little to no influence in the cases that achieve the technology innovation goals. This outcome implies that meeting the representative technology innovation goals achieves a generation mix with similar CO 2 emissions to the representative CO 2 policy but with smaller increases to wholesale electricity prices. Finally, higher natural gas prices, achieving the representative technology innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less

  3. Generation of Alfvenic Double Layers, Formation of Auroral Arcs, and Their Impact on Energy and Momentum Transfer in M-I Coupling System

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2017-12-01

    Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.

  4. Optical pendulum generator based on photomechanical liquid-crystalline actuators.

    PubMed

    Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng

    2015-04-29

    For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy.

  5. Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks

    NASA Technical Reports Server (NTRS)

    Thomas, W. J.

    1967-01-01

    Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.

  6. Ensemble of classifiers for confidence-rated classification of NDE signal

    NASA Astrophysics Data System (ADS)

    Banerjee, Portia; Safdarnejad, Seyed; Udpa, Lalita; Udpa, Satish

    2016-02-01

    Ensemble of classifiers in general, aims to improve classification accuracy by combining results from multiple weak hypotheses into a single strong classifier through weighted majority voting. Improved versions of ensemble of classifiers generate self-rated confidence scores which estimate the reliability of each of its prediction and boost the classifier using these confidence-rated predictions. However, such a confidence metric is based only on the rate of correct classification. In existing works, although ensemble of classifiers has been widely used in computational intelligence, the effect of all factors of unreliability on the confidence of classification is highly overlooked. With relevance to NDE, classification results are affected by inherent ambiguity of classifica-tion, non-discriminative features, inadequate training samples and noise due to measurement. In this paper, we extend the existing ensemble classification by maximizing confidence of every classification decision in addition to minimizing the classification error. Initial results of the approach on data from eddy current inspection show improvement in classification performance of defect and non-defect indications.

  7. Hierarchical classification method and its application in shape representation

    NASA Astrophysics Data System (ADS)

    Ireton, M. A.; Oakley, John P.; Xydeas, Costas S.

    1992-04-01

    In this paper we describe a technique for performing shaped-based content retrieval of images from a large database. In order to be able to formulate such user-generated queries about visual objects, we have developed an hierarchical classification technique. This hierarchical classification technique enables similarity matching between objects, with the position in the hierarchy signifying the level of generality to be used in the query. The classification technique is unsupervised, robust, and general; it can be applied to any suitable parameter set. To establish the potential of this classifier for aiding visual querying, we have applied it to the classification of the 2-D outlines of leaves.

  8. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  9. Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation

    DTIC Science & Technology

    2010-09-01

    adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such

  10. 77 FR 49991 - Small Business Size Standards; Adoption of 2012 North American Industry Classification System for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Manufacturing. ......... 322215 Nonfolding Sanitary ......... 750 employees....... Food Container Manufacturing... Manufacturing. ......... 327113 Porcelain Electrical 500 employees. Supply Manufacturing. 327120 Clay Building N 2b 750 employees....... 327121 Brick and Structural 500 employees. Material and Clay Tile...

  11. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... 2.4Energy factor for dehumidifiers means a measure of energy efficiency of a dehumidifier calculated... batteries and the determination, classification, and testing of relevant modes. 3.2.2Electrical energy...

  12. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  13. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  14. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  15. On a production system using default reasoning for pattern classification

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Lowe, Carlyle M.

    1990-01-01

    This paper addresses an unconventional application of a production system to a problem involving belief specialization. The production system reduces a large quantity of low-level descriptions into just a few higher-level descriptions that encompass the problem space in a more tractable fashion. This classification process utilizes a set of descriptions generated by combining the component hierarchy of a physical system with the semantics of the terminology employed in its operation. The paper describes an application of this process in a program, constructed in C and CLIPS, that classifies signatures of electromechanical system configurations. The program compares two independent classifications, describing the actual and expected system configurations, in order to generate a set of contradictions between the two.

  16. A Discriminant Distance Based Composite Vector Selection Method for Odor Classification

    PubMed Central

    Choi, Sang-Il; Jeong, Gu-Min

    2014-01-01

    We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735

  17. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  18. Quasi-Static Electric Field Generator

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  19. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  20. Renewable Energy for the Next Generation

    ERIC Educational Resources Information Center

    Barton, Leslie

    2005-01-01

    Renewable energy is harnessed from natural and sustainable sources, like wind, sun and water. They offer a pollution-free, endless source of electricity that is crucial in the fight against climate change. Every unit of this "green" electricity directly replaces electricity normally generated from conventional polluting sources such as coal or…

  1. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  2. Doublers of electricity

    NASA Astrophysics Data System (ADS)

    de Queiroz, Antônio Carlos M.

    2007-03-01

    This article presents a review of the forgotten history of the doubler of electricity, which by the end of the 18th century was the first apparatus used for the generation of electricity without using friction. Several examples are described, including a new one for a rotating doubler developed as an electrostatic generator.

  3. 14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINEGENERATOR UNIT NO. 18, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINE-GENERATOR UNIT NO. 18, MANUFACTURED BY GENERAL ELECTRIC IN 1949 AND RATED AT 150 MEGAWATTS. IT WAS RETIRED FROM SERVICE SEVERAL YEARS AGO. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  4. 76 FR 36526 - Columbia Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ....47-mile of 20-inch pipeline to transport natural gas for Virginia Power Services Energy Corp., Inc...- fired electric generation facility being constructed by Virginia Electric and Power Company d/b/a... expects to complete the construction and place the electric generation facility in service during 2014...

  5. Sensitivity of Solar Fossil Hybrid Electricity Technology Penetration to Price and Efficiency Projections

    EPA Science Inventory

    With many aging coal and nuclear plants nearing retirement age, new electricity production capacity will need to be built over the next several decades. There are many methods of generating electricity, each with different benefits and drawbacks. While solar and wind generation a...

  6. 40 CFR 60.45Da - Standard for mercury (Hg).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...

  7. 75 FR 77866 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Approval; Comment Request; NSPS for Electric Utility Steam Generating (Renewal) AGENCY: Environmental... the electronic docket, go to http://www.regulations.gov . Title: NSPS for Electric Utility Steam.../Affected Entities: Owners or operators of electric utility steam generating units. Estimated Number of...

  8. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.

    2012-02-09

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) andmore » the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require further study. The Pacific Northwest is vulnerable because of its heavy reliance on hydroelectric generation. Texas, conversely, is vulnerable because of its heavy dependence on thermoelectric generation, which relies on surface water for cooling, along with the fact that this basin seems to experience more severe drought events on average. Further modeling analysis will be performed in conjunction with the modeling teams at the participating interconnections (WECC and ERCOT) to explore the transmission implications of the drought scenarios in more detail. Given the first-order nature of this analysis, more detailed study of the potential impacts of drought on electricity generation is recommended. Future analyses should attempt to model the potential impacts of drought at the power-plant level, including potential mitigation strategies; include the effects of drought duration; understand the impacts of climate change; and consider economic impacts.« less

  9. Systems Biology of Skeletal Muscle: Fiber Type as an Organizing Principle

    PubMed Central

    Greising, Sarah M; Gransee, Heather M; Mantilla, Carlos B; Sieck, Gary C

    2012-01-01

    Skeletal muscle force generation and contraction are fundamental to countless aspects of human life. The complexity of skeletal muscle physiology is simplified by fiber type classification where differences are observed from neuromuscular transmission to release of intracellular Ca2+ from the sarcoplasmic reticulum and the resulting recruitment and cycling of cross-bridges. This review uses fiber type classification as an organizing and simplifying principle to explore the complex interactions between the major proteins involved in muscle force generation and contraction. PMID:22811254

  10. Understanding the Pathophysiology of Portosystemic Shunt by Simulation Using an Electric Circuit.

    PubMed

    Kim, Moonhwan; Lee, Keon-Young

    2016-01-01

    Portosystemic shunt (PSS) without a definable cause is a rare condition, and most of the studies on this topic are small series or based on case reports. Moreover, no firm agreement has been reached on the definition and classification of various forms of PSS, which makes it difficult to compare and analyze the management. The blood flow can be seen very similar to an electric current, governed by Ohm's law. The simulation of PSS using an electric circuit, combined with the interpretation of reported management results, can provide intuitive insights into the underlying mechanism of PSS development. In this article, we have built a model of PSS using electric circuit symbols and explained clinical manifestations as well as the possible mechanisms underlying a PSS formation.

  11. Electrical system for a motor vehicle

    DOEpatents

    Tamor, Michael Alan

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  12. Electrical system for a motor vehicle

    DOEpatents

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  13. Aaron Bloom | NREL

    Science.gov Websites

    Todd Levin. "Wholesale Electricity Market Design with Increasing Levels of Renewable Generation . Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation. Golden, CO

  14. Emissions & Generation Resource Integrated Database (eGRID) Questions and Answers

    EPA Pesticide Factsheets

    eGRID is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. eGRID is based on available plant-specific data for all U.S. electricity generating plants that report data.

  15. Design and evaluation of brushless electrical generators

    NASA Technical Reports Server (NTRS)

    Collins, F. A.; Ellis, J. N.

    1970-01-01

    Ten design manuals assembled and nine computer programs are developed for evaluation of proposed designs of brushless rotating electrical generators. Design manual package provides all information required for generator design, and computer programs permit calculation of performance of specific designs including effects of materials.

  16. Average Likelihood Methods for Code Division Multiple Access (CDMA)

    DTIC Science & Technology

    2014-05-01

    lengths in the range of 22 to 213 and possibly higher. Keywords: DS / CDMA signals, classification, balanced CDMA load, synchronous CDMA , decision...likelihood ratio test (ALRT). We begin this classification problem by finding the size of the spreading matrix that generated the DS - CDMA signal. As...Theoretical Background The classification of DS / CDMA signals should not be confused with the problem of multiuser detection. The multiuser detection deals

  17. Novel method of using dynamic electrical impedance signals for noninvasive diagnosis of knee osteoarthritis.

    PubMed

    Gajre, Suhas S; Anand, Sneh; Singh, U; Saxena, Rajendra K

    2006-01-01

    Osteoarthritis (OA) of knee is the most commonly occurring non-fatal irreversible disease, mainly in the elderly population and particularly in female. Various invasive and non-invasive methods are reported for the diagnosis of this articular cartilage pathology. Well known techniques such as X-ray, computed tomography, magnetic resonance imaging, arthroscopy and arthrography are having their disadvantages, and diagnosis of OA in early stages with simple effective noninvasive method is still a biomedical engineering problem. Analyzing knee joint noninvasive signals around knee might give simple solution for diagnosis of knee OA. We used electrical impedance data from knees to compare normal and osteoarthritic subjects during the most common dynamic conditions of the knee, i.e. walking and knee swing. It was found that there is substantial difference in the properties of the walking cycle (WC) and knee swing cycle (KS) signals. In experiments on 90 pathological (combined for KS and WC signals) and 72 normal signals (combined), suitable features were drawn. Then signals were used to classify as normal or pathological. Artificial multilayer feed forward neural network was trained using back propagation algorithm for the classification. On a training data set of 54 signals for KS signals, the classification efficiency for a test set of 54 was 70.37% and 85.19% with and without normalization respectively wrt base impedance. Similarly, the training set of 27 WC signals and test set of 27 signals resulted in 77.78% and 66.67% classification efficiency. The results indicate that dynamic electrical impedance signals have potential to be used as a novel method for noninvasive diagnosis of knee OA.

  18. Electrical service reliability: the customer perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsa, M.E.; Hub, K.A.; Krohm, G.C.

    1978-09-01

    Electric-utility-system reliability criteria have traditionally been established as a matter of utility policy or through long-term engineering practice, generally with no supportive customer cost/benefit analysis as justification. This report presents results of an initial study of the customer perspective toward electric-utility-system reliability, based on critical review of over 20 previous and ongoing efforts to quantify the customer's value of reliable electric service. A possible structure of customer classifications is suggested as a reasonable level of disaggregation for further investigation of customer value, and these groups are characterized in terms of their electricity use patterns. The values that customers assign tomore » reliability are discussed in terms of internal and external cost components. A list of options for effecting changes in customer service reliability is set forth, and some of the many policy issues that could alter customer-service reliability are identified.« less

  19. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  20. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  1. Are stormwater pollution impacts significant in life cycle assessment? A new methodology for quantifying embedded urban stormwater impacts.

    PubMed

    Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne

    2018-09-15

    Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  3. How Well Do Molecular and Pedigree Relatedness Correspond, in Populations with Diverse Mating Systems, and Various Types and Quantities of Molecular and Demographic Data?

    PubMed

    Kopps, Anna M; Kang, Jungkoo; Sherwin, William B; Palsbøll, Per J

    2015-06-30

    Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies. Copyright © 2015 Kopps et al.

  4. Development of a database of health insurance claims: standardization of disease classifications and anonymous record linkage.

    PubMed

    Kimura, Shinya; Sato, Toshihiko; Ikeda, Shunya; Noda, Mitsuhiko; Nakayama, Takeo

    2010-01-01

    Health insurance claims (ie, receipts) record patient health care treatments and expenses and, although created for the health care payment system, are potentially useful for research. Combining different types of receipts generated for the same patient would dramatically increase the utility of these receipts. However, technical problems, including standardization of disease names and classifications, and anonymous linkage of individual receipts, must be addressed. In collaboration with health insurance societies, all information from receipts (inpatient, outpatient, and pharmacy) was collected. To standardize disease names and classifications, we developed a computer-aided post-entry standardization method using a disease name dictionary based on International Classification of Diseases (ICD)-10 classifications. We also developed an anonymous linkage system by using an encryption code generated from a combination of hash values and stream ciphers. Using different sets of the original data (data set 1: insurance certificate number, name, and sex; data set 2: insurance certificate number, date of birth, and relationship status), we compared the percentage of successful record matches obtained by using data set 1 to generate key codes with the percentage obtained when both data sets were used. The dictionary's automatic conversion of disease names successfully standardized 98.1% of approximately 2 million new receipts entered into the database. The percentage of anonymous matches was higher for the combined data sets (98.0%) than for data set 1 (88.5%). The use of standardized disease classifications and anonymous record linkage substantially contributed to the construction of a large, chronologically organized database of receipts. This database is expected to aid in epidemiologic and health services research using receipt information.

  5. Nanostructured Silicon Used for Flexible and Mobile Electricity Generation.

    PubMed

    Sun, Baoquan; Shao, Mingwang; Lee, Shuitong

    2016-12-01

    The use of nanostructured silicon for the generation of electricity in flexible and mobile devices is reviewed. This field has attracted widespread interest in recent years due to the emergence of plastic electronics. Such developments are likely to alter the nature of power sources in the near future. For example, flexible photovoltaic cells can supply electricity to rugged and collapsible electronics, biomedical devices, and conformable solar panels that are integrated with the curved surfaces of vehicles or buildings. Here, the unique optical and electrical properties of nanostructured silicon are examined, with regard to how they can be exploited in flexible photovoltaics, thermoelectric generators, and piezoelectric devices, which serve as power generators. Particular emphasis is placed on organic-silicon heterojunction photovoltaic devices, silicon-nanowire-based thermoelectric generators, and core-shell silicon/silicon oxide nanowire-based piezoelectric devices, because they are flexible, lightweight, and portable. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Piezoelectric diaphragm for vibration energy harvesting.

    PubMed

    Minazara, E; Vasic, D; Costa, F; Poulin, G

    2006-12-22

    This paper presents a technique of electric energy generation using a mechanically excited unimorph piezoelectric membrane transducer. The electrical characteristics of the piezoelectric power generator are investigated under dynamic conditions. The electromechanical model of the generator is presented and used to predict its electrical performances. The experiments was performed with a piezoelectric actuator (shaker) moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 0.65 mW was generated at the resonance frequency (1.71 kHz) across a 5.6 kOmega optimal resistor and for a 80 N force. A special electronic circuit has been conceived in order to increase the power harvested by the piezoelectric transducer. This electrical converter applies the SSHI (synchronized switch harvesting on inductor) technique, and leads to remarkable results: under the same actuation conditions the generated power reaches 1.7 mW, which is sufficient to supply a large range of low consumption sensors.

  7. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, C.; Bain, R.; Chapman, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderfer, B.; Eldridge, M.; Starrs, T.

    Distributed power is modular electric generation or storage located close to the point of use. Based on interviews of distributed generation project proponents, this report reviews the barriers that distributed generators of electricity are encountering when attempting to interconnect to the electrical grid. Descriptions of 26 of 65 case studies are included in the report. The survey found and the report describes a wide range of technical, business-practice, and regulatory barriers to interconnection. An action plan for reducing the impact of these barriers is also included.

  9. Residential Photovoltaic/Thermal Energy System

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  10. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  11. [Electricity generation and contaminants degradation performances of a microbial fuel cell fed with Dioscorea zingiberensis wastewater].

    PubMed

    Li, Hui; Zhu, Xiu-Ping; Xu, Nan; Ni, Jin-Ren

    2011-01-01

    The electricity generation performance of a microbial fuel cell (MFC) utilizing Dioscorea zingiberensis wastewater was studied with an H-shape reactor. Indexes including pH, conductivity, oxidation peak potential and chemical oxygen demand (COD) of the anolyte were monitored to investigate the contaminants degradation performance of the MFC during the electricity generation process, besides, contaminant ingredients in anodic influent and effluent were analyzed by GC-MS and IR spectra as well. The maximum power density of the MFC could achieve 118.1 mW/m2 and the internal resistance was about 480 omega. Connected with a 1 000 omega external resistance, the output potential was about 0.4 V. Fed with 5 mL Dioscorea zingiberensis wastewater, the electricity generation lasted about 133 h and the coulombic efficiency was about 3.93%. At the end of electricity generation cycle, COD decreased by 90.1% while NH4(+) -N decreased by 66.8%. Furfural compounds, phenols and some other complicated organics could be decomposed and utilized in the electricity generation process, and the residual contaminants in effluent included some long-chain fatty acids, esters, ethers, and esters with benzene ring, cycloalkanes, cycloolefins, etc. The results indicate that MFC, which can degrade and utilize the organic contaminants in Dioscorea zingiberensis wastewater simultaneously, provides a new approach for resource recovery treatment of Dioscorea zingiberensis wastewater.

  12. Temperature limited heater with a conduit substantially electrically isolated from the formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinegar, Harold J; Sandberg, Chester Ledlie

    2009-07-14

    A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the insidemore » of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.« less

  13. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    NASA Astrophysics Data System (ADS)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  14. Generation of electric fields and currents by neutral flows in weakly ionized plasmas through collisional dynamos

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.

    2016-08-01

    In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.

  15. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  16. Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals

    PubMed Central

    Nogueira, Javier; Caputi, Ángel Ariel

    2011-01-01

    Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228

  17. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  18. Soil texture classification algorithm using RGB characteristics of soil images

    USDA-ARS?s Scientific Manuscript database

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  19. 46 CFR 110.10-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Classing Mobile Offshore Drilling Units, Part 4 Machinery and Systems, 2001 (“ABS MODU Rules”), IBR... Hazardous (Classified) Locations: Type of Protection—Encapsulation “m”, approved July 31, 2009 (“ANSI/ISA... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...

  20. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  1. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  2. Foundations for the Fourth Generation of Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lake, James Alan

    2000-11-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world’s population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developingmore » nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20–25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world’s electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing with radioactive wastes. I will have more to say about this later. For the moment, let me put forth the proposition that nuclear power should (and must) play a role in the future world energy supply, and perhaps should play an increasing role as the only technology capable of large-scale, near-term deployment without greenhouse gas emissions. If there is a moral imperative to assure the world of abundant, affordable, and clean electricity supplies, then there is no less of a moral imperative for us to assure that nuclear power is capable of taking its rightful place in this energy mix« less

  3. Electromechanically generating electricity with a gapped-graphene electric generator

    NASA Astrophysics Data System (ADS)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  4. Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction.

    PubMed

    Ma, Qingyu; He, Bin

    2007-08-21

    A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.

  5. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  6. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation

    PubMed Central

    Valdez, Luis F.; Gutiérrez, Juan Manuel

    2016-01-01

    In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS) array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status). The data analysis tools used were Principal Components Analysis (PCA) and Artificial Neural Networks (ANNs). The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc), 0.86 precision (Prc), 0.84 sensitivity (Sen) and 0.99 specificity (Spe) for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies. PMID:27775628

  7. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation.

    PubMed

    Valdez, Luis F; Gutiérrez, Juan Manuel

    2016-10-20

    In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS) array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status). The data analysis tools used were Principal Components Analysis (PCA) and Artificial Neural Networks (ANNs). The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc), 0.86 precision (Prc), 0.84 sensitivity (Sen) and 0.99 specificity (Spe) for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies.

  8. A land classification protocol for pollinator ecology research: An urbanization case study.

    PubMed

    Samuelson, Ash E; Leadbeater, Ellouise

    2018-06-01

    Land-use change is one of the most important drivers of widespread declines in pollinator populations. Comprehensive quantitative methods for land classification are critical to understanding these effects, but co-option of existing human-focussed land classifications is often inappropriate for pollinator research. Here, we present a flexible GIS-based land classification protocol for pollinator research using a bottom-up approach driven by reference to pollinator ecology, with urbanization as a case study. Our multistep method involves manually generating land cover maps at multiple biologically relevant radii surrounding study sites using GIS, with a focus on identifying land cover types that have a specific relevance to pollinators. This is followed by a three-step refinement process using statistical tools: (i) definition of land-use categories, (ii) principal components analysis on the categories, and (iii) cluster analysis to generate a categorical land-use variable for use in subsequent analysis. Model selection is then used to determine the appropriate spatial scale for analysis. We demonstrate an application of our protocol using a case study of 38 sites across a gradient of urbanization in South-East England. In our case study, the land classification generated a categorical land-use variable at each of four radii based on the clustering of sites with different degrees of urbanization, open land, and flower-rich habitat. Studies of land-use effects on pollinators have historically employed a wide array of land classification techniques from descriptive and qualitative to complex and quantitative. We suggest that land-use studies in pollinator ecology should broadly adopt GIS-based multistep land classification techniques to enable robust analysis and aid comparative research. Our protocol offers a customizable approach that combines specific relevance to pollinator research with the potential for application to a wide range of ecological questions, including agroecological studies of pest control.

  9. Object oriented classification of high resolution data for inventory of horticultural crops

    NASA Astrophysics Data System (ADS)

    Hebbar, R.; Ravishankar, H. M.; Trivedi, S.; Subramoniam, S. R.; Uday, R.; Dadhwal, V. K.

    2014-11-01

    High resolution satellite images are associated with large variance and thus, per pixel classifiers often result in poor accuracy especially in delineation of horticultural crops. In this context, object oriented techniques are powerful and promising methods for classification. In the present study, a semi-automatic object oriented feature extraction model has been used for delineation of horticultural fruit and plantation crops using Erdas Objective Imagine. Multi-resolution data from Resourcesat LISS-IV and Cartosat-1 have been used as source data in the feature extraction model. Spectral and textural information along with NDVI were used as inputs for generation of Spectral Feature Probability (SFP) layers using sample training pixels. The SFP layers were then converted into raster objects using threshold and clump function resulting in pixel probability layer. A set of raster and vector operators was employed in the subsequent steps for generating thematic layer in the vector format. This semi-automatic feature extraction model was employed for classification of major fruit and plantations crops viz., mango, banana, citrus, coffee and coconut grown under different agro-climatic conditions. In general, the classification accuracy of about 75-80 per cent was achieved for these crops using object based classification alone and the same was further improved using minimal visual editing of misclassified areas. A comparison of on-screen visual interpretation with object oriented approach showed good agreement. It was observed that old and mature plantations were classified more accurately while young and recently planted ones (3 years or less) showed poor classification accuracy due to mixed spectral signature, wider spacing and poor stands of plantations. The results indicated the potential use of object oriented approach for classification of high resolution data for delineation of horticultural fruit and plantation crops. The present methodology is applicable at local levels and future development is focused on up-scaling the methodology for generation of fruit and plantation crop maps at regional and national level which is important for creation of database for overall horticultural crop development.

  10. 76 FR 36468 - Approval and Promulgation of Air Quality Implementation Plans; North Carolina: Clean Smokestacks Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Generate Electricity and to Provide for Recovery by Electric Utilities of the Costs of Achieving Compliance... generate 25 or more megawatts of electricity: Progress Energy Carolinas, Inc. (Progress Energy) and Duke Power, a division of Duke Energy Corporation (Duke Energy). Although the emission caps apply...

  11. 77 FR 23399 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...

  12. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  13. Project demonstration of wind-turbine electricity: Interconnecting a northern Michigan fruit farm with a major utility

    NASA Astrophysics Data System (ADS)

    Amon, D. M.

    Progress is reviewed in a project to test the economic feasibility of wind turbine technology for generating electricity. The use of wind generating electricity on a commercial fruit farm interconnecting a commercial fruit farm with a major utility to sell power are the find project goals.

  14. 75 FR 19992 - Notice of Availability of the Supplemental Draft Environmental Impact Statement for the Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Statement for the Proposed Ivanpah Solar Electric Generation System Project, San Bernardino County, CA... Notice of Availability of the Draft Ivanpah Solar Electric Generation System EIS and the Draft California... prepared a Supplemental Draft Environmental Impact Statement (EIS) for the Proposed Ivanpah Solar Electric...

  15. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  16. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  17. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  18. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.

    PubMed

    Kada, T; Asahi, S; Kaizu, T; Harada, Y; Tamaki, R; Okada, Y; Kita, T

    2017-07-19

    We studied the effects of the internal electric field on two-step photocarrier generation in InAs/GaAs quantum dot superlattice (QDSL) intermediate-band solar cells (IBSCs). The external quantum efficiency of QDSL-IBSCs was measured as a function of the internal electric field intensity, and compared with theoretical calculations accounting for interband and intersubband photoexcitations. The extra photocurrent caused by the two-step photoexcitation was maximal for a reversely biased electric field, while the current generated by the interband photoexcitation increased monotonically with increasing electric field intensity. The internal electric field in solar cells separated photogenerated electrons and holes in the superlattice (SL) miniband that played the role of an intermediate band, and the electron lifetime was extended to the microsecond scale, which improved the intersubband transition strength, therefore increasing the two-step photocurrent. There was a trade-off relation between the carrier separation enhancing the two-step photoexcitation and the electric-field-induced carrier escape from QDSLs. These results validate that long-lifetime electrons are key to maximising the two-step photocarrier generation in QDSL-IBSCs.

  19. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, Cara; Beiter, Philipp

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  20. System and method for islanding detection and prevention in distributed generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak

    Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.

Top