Comparison promotes learning and transfer of relational categories.
Kurtz, Kenneth J; Boukrina, Olga; Gentner, Dedre
2013-07-01
We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and transfer of categories that cohere around a common relational property. The effect of comparison was investigated using learning trials that elicited a separate classification response for each item in presentation pairs that could be drawn from the same or different categories. This methodology ensures consideration of both items and invites comparison through an implicit same-different judgment inherent in making the two responses. In a test phase measuring learning and transfer, the comparison group significantly outperformed a control group receiving an equivalent training session of single-item classification learning. Comparison-based learners also outperformed the control group on a test of far transfer, that is, the ability to accurately classify items from a novel domain that was relationally alike, but surface-dissimilar, to the training materials. Theoretical and applied implications of this comparison advantage are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Comparison Promotes Learning and Transfer of Relational Categories
ERIC Educational Resources Information Center
Kurtz, Kenneth J.; Boukrina, Olga; Gentner, Dedre
2013-01-01
We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and…
FRASS: the web-server for RNA structural comparison
2010-01-01
Background The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla) are available for the structural comparison of large and intact RNA molecules. Results The FRASS web-server represents a RNA chain with its Gauss integrals and allows one to compare structures of RNA chains and to find similar entries in a database derived from the Protein Data Bank. We observed that FRASS scores correlate well with the ARTS and LaJolla similarity scores. Moreover, the-web server can also reproduce satisfactorily the DARTS classification of RNA 3D structures and the classification of the SCOR functions that was obtained by the SARA method. Conclusions The FRASS web-server can be easily used to detect relationships among RNA molecules and to scan efficiently the rapidly enlarging structural databases. PMID:20553602
COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES
Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...
Classification of ligand molecules in PDB with graph match-based structural superposition.
Shionyu-Mitsuyama, Clara; Hijikata, Atsushi; Tsuji, Toshiyuki; Shirai, Tsuyoshi
2016-12-01
The fast heuristic graph match algorithm for small molecules, COMPLIG, was improved by adding a structural superposition process to verify the atom-atom matching. The modified method was used to classify the small molecule ligands in the Protein Data Bank (PDB) by their three-dimensional structures, and 16,660 types of ligands in the PDB were classified into 7561 clusters. In contrast, a classification by a previous method (without structure superposition) generated 3371 clusters from the same ligand set. The characteristic feature in the current classification system is the increased number of singleton clusters, which contained only one ligand molecule in a cluster. Inspections of the singletons in the current classification system but not in the previous one implied that the major factors for the isolation were differences in chirality, cyclic conformations, separation of substructures, and bond length. Comparisons between current and previous classification systems revealed that the superposition-based classification was effective in clustering functionally related ligands, such as drugs targeted to specific biological processes, owing to the strictness of the atom-atom matching.
NASA Astrophysics Data System (ADS)
Yang, Y.; Tenenbaum, D. E.
2009-12-01
The process of urbanization has major effects on both human and natural systems. In order to monitor these changes and better understand how urban ecological systems work, urban spatial structure and the variation needs to be first quantified at a fine scale. Because the land-use and land-cover (LULC) in urbanizing areas is highly heterogeneous, the classification of urbanizing environments is the most challenging field in remote sensing. Although a pixel-based method is a common way to do classification, the results are not good enough for many research objectives which require more accurate classification data in fine scales. Transect sampling and object-oriented classification methods are more appropriate for urbanizing areas. Tenenbaum used a transect sampling method using a computer-based facility within a widely available commercial GIS in the Glyndon Catchment and the Upper Baismans Run Catchment, Baltimore, Maryland. It was a two-tiered classification system, including a primary level (which includes 7 classes) and a secondary level (which includes 37 categories). The statistical information of LULC was collected. W. Zhou applied an object-oriented method at the parcel level in Gwynn’s Falls Watershed which includes the two previously mentioned catchments and six classes were extracted. The two urbanizing catchments are located in greater Baltimore, Maryland and drain into Chesapeake Bay. In this research, the two different methods are compared for 6 classes (woody, herbaceous, water, ground, pavement and structure). The comparison method uses the segments in the transect method to extract LULC information from the results of the object-oriented method. Classification results were compared in order to evaluate the difference between the two methods. The overall proportions of LULC classes from the two studies show that there is overestimation of structures in the object-oriented method. For the other five classes, the results from the two methods are similar, except for a difference in the proportions of the woody class. The segment to segment comparison shows that the resolution of the light detection and ranging (LIDAR) data used in the object-oriented method does affect the accuracy of the classification. Shadows of trees and structures are still a big problem in the object-oriented method. For classes that make up a small proportion of the catchments, such as water, neither method was capable of detecting them.
Bayesian Model Comparison for the Order Restricted RC Association Model
ERIC Educational Resources Information Center
Iliopoulos, G.; Kateri, M.; Ntzoufras, I.
2009-01-01
Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…
Kinjo, Akira R.; Nakamura, Haruki
2012-01-01
Comparison and classification of protein structures are fundamental means to understand protein functions. Due to the computational difficulty and the ever-increasing amount of structural data, however, it is in general not feasible to perform exhaustive all-against-all structure comparisons necessary for comprehensive classifications. To efficiently handle such situations, we have previously proposed a method, now called GIRAF. We herein describe further improvements in the GIRAF protein structure search and alignment method. The GIRAF method achieves extremely efficient search of similar structures of ligand binding sites of proteins by exploiting database indexing of structural features of local coordinate frames. In addition, it produces refined atom-wise alignments by iterative applications of the Hungarian method to the bipartite graph defined for a pair of superimposed structures. By combining the refined alignments based on different local coordinate frames, it is made possible to align structures involving domain movements. We provide detailed accounts for the database design, the search and alignment algorithms as well as some benchmark results. PMID:27493524
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...
2015-10-09
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
Benchmarking protein classification algorithms via supervised cross-validation.
Kertész-Farkas, Attila; Dhir, Somdutta; Sonego, Paolo; Pacurar, Mircea; Netoteia, Sergiu; Nijveen, Harm; Kuzniar, Arnold; Leunissen, Jack A M; Kocsor, András; Pongor, Sándor
2008-04-24
Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.
Improved protein surface comparison and application to low-resolution protein structure data.
Sael, Lee; Kihara, Daisuke
2010-12-14
Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.
Classification of mathematics deficiency using shape and scale analysis of 3D brain structures
NASA Astrophysics Data System (ADS)
Kurtek, Sebastian; Klassen, Eric; Gore, John C.; Ding, Zhaohua; Srivastava, Anuj
2011-03-01
We investigate the use of a recent technique for shape analysis of brain substructures in identifying learning disabilities in third-grade children. This Riemannian technique provides a quantification of differences in shapes of parameterized surfaces, using a distance that is invariant to rigid motions and re-parameterizations. Additionally, it provides an optimal registration across surfaces for improved matching and comparisons. We utilize an efficient gradient based method to obtain the optimal re-parameterizations of surfaces. In this study we consider 20 different substructures in the human brain and correlate the differences in their shapes with abnormalities manifested in deficiency of mathematical skills in 106 subjects. The selection of these structures is motivated in part by the past links between their shapes and cognitive skills, albeit in broader contexts. We have studied the use of both individual substructures and multiple structures jointly for disease classification. Using a leave-one-out nearest neighbor classifier, we obtained a 62.3% classification rate based on the shape of the left hippocampus. The use of multiple structures resulted in an improved classification rate of 71.4%.
[Comparison study between biological vision and computer vision].
Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R
2001-08-01
The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.
7 CFR 28.179 - Methods of cotton classification and comparison.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...
7 CFR 28.179 - Methods of cotton classification and comparison.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...
7 CFR 28.179 - Methods of cotton classification and comparison.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...
7 CFR 28.179 - Methods of cotton classification and comparison.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...
7 CFR 28.179 - Methods of cotton classification and comparison.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Methods of cotton classification and comparison. 28... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.179 Methods of cotton classification and comparison. The classification of samples from...
Modeling ready biodegradability of fragrance materials.
Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola
2015-06-01
In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.
SCOWLP classification: Structural comparison and analysis of protein binding regions
Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa
2008-01-01
Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical classification of PBRs is implemented into the SCOWLP database and extends the SCOP classification with three additional family sub-levels: Binding Region, Interface and Contacting Domains. SCOWLP contains 9,334 binding regions distributed within 2,561 families. In 65% of the cases we observe families containing more than one binding region. Besides, 22% of the regions are forming complex with more than one different protein family. Conclusion The current SCOWLP classification and its web application represent a framework for the study of protein interfaces and comparative analysis of protein family binding regions. This comparison can be performed at atomic level and allows the user to study interactome conservation and variability. The new SCOWLP classification may be of great utility for reconstruction of protein complexes, understanding protein networks and ligand design. SCOWLP will be updated with every SCOP release. The web application is available at . PMID:18182098
Evaluation of change detection techniques for monitoring coastal zone environments
NASA Technical Reports Server (NTRS)
Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.
1977-01-01
The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.
Improved protein surface comparison and application to low-resolution protein structure data
2010-01-01
Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy. PMID:21172052
Annotation and Classification of CRISPR-Cas Systems
Makarova, Kira S.; Koonin, Eugene V.
2018-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods. PMID:25981466
Annotation and Classification of CRISPR-Cas Systems.
Makarova, Kira S; Koonin, Eugene V
2015-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.
NASA Astrophysics Data System (ADS)
Wurm, Michael; Taubenböck, Hannes; Dech, Stefan
2010-10-01
Dynamics of urban environments are a challenge to a sustainable development. Urban areas promise wealth, realization of individual dreams and power. Hence, many cities are characterized by a population growth as well as physical development. Traditional, visual mapping and updating of urban structure information of cities is a very laborious and cost-intensive task, especially for large urban areas. For this purpose, we developed a workflow for the extraction of the relevant information by means of object-based image classification. In this manner, multisensoral remote sensing data has been analyzed in terms of very high resolution optical satellite imagery together with height information by a digital surface model to retrieve a detailed 3D city model with the relevant land-use / land-cover information. This information has been aggregated on the level of the building block to describe the urban structure by physical indicators. A comparison between the indicators derived by the classification and a reference classification has been accomplished to show the correlation between the individual indicators and a reference classification of urban structure types. The indicators have been used to apply a cluster analysis to group the individual blocks into similar clusters.
7 CFR 28.177 - Request for classification and comparison of cotton.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...
7 CFR 28.177 - Request for classification and comparison of cotton.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...
7 CFR 28.177 - Request for classification and comparison of cotton.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...
7 CFR 28.177 - Request for classification and comparison of cotton.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...
7 CFR 28.177 - Request for classification and comparison of cotton.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Request for classification and comparison of cotton... STANDARD CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.177 Request for classification and comparison of cotton. The applicant shall make a separate...
Representing and comparing protein structures as paths in three-dimensional space
Zhi, Degui; Krishna, S Sri; Cao, Haibo; Pevzner, Pavel; Godzik, Adam
2006-01-01
Background Most existing formulations of protein structure comparison are based on detailed atomic level descriptions of protein structures and bypass potential insights that arise from a higher-level abstraction. Results We propose a structure comparison approach based on a simplified representation of proteins that describes its three-dimensional path by local curvature along the generalized backbone of the polypeptide. We have implemented a dynamic programming procedure that aligns curvatures of proteins by optimizing a defined sum turning angle deviation measure. Conclusion Although our procedure does not directly optimize global structural similarity as measured by RMSD, our benchmarking results indicate that it can surprisingly well recover the structural similarity defined by structure classification databases and traditional structure alignment programs. In addition, our program can recognize similarities between structures with extensive conformation changes that are beyond the ability of traditional structure alignment programs. We demonstrate the applications of procedure to several contexts of structure comparison. An implementation of our procedure, CURVE, is available as a public webserver. PMID:17052359
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
ERIC Educational Resources Information Center
French, Russell L.; And Others
The Annehurst Curriculum Classification System (ACCS), a tool for matching individual learners with appropriate curriculum materials, was used with a group of fifty-nine students (Air National Guard officer candidates) and their four instructor-advisors to examine two issues: (1) the applicability of the ACCS in a highly structured,…
An alternative view of protein fold space.
Shindyalov, I N; Bourne, P E
2000-02-15
Comparing and subsequently classifying protein structures information has received significant attention concurrent with the increase in the number of experimentally derived 3-dimensional structures. Classification schemes have focused on biological function found within protein domains and on structure classification based on topology. Here an alternative view is presented that groups substructures. Substructures are long (50-150 residue) highly repetitive near-contiguous pieces of polypeptide chain that occur frequently in a set of proteins from the PDB defined as structurally non-redundant over the complete polypeptide chain. The substructure classification is based on a previously reported Combinatorial Extension (CE) algorithm that provides a significantly different set of structure alignments than those previously described, having, for example, only a 40% overlap with FSSP. Qualitatively the algorithm provides longer contiguous aligned segments at the price of a slightly higher root-mean-square deviation (rmsd). Clustering these alignments gives a discreet and highly repetitive set of substructures not detectable by sequence similarity alone. In some cases different substructures represent all or different parts of well known folds indicative of the Russian doll effect--the continuity of protein fold space. In other cases they fall into different structure and functional classifications. It is too early to determine whether these newly classified substructures represent new insights into the evolution of a structural framework important to many proteins. What is apparent from on-going work is that these substructures have the potential to be useful probes in finding remote sequence homology and in structure prediction studies. The characteristics of the complete all-by-all comparison of the polypeptide chains present in the PDB and details of the filtering procedure by pair-wise structure alignment that led to the emergent substructure gallery are discussed. Substructure classification, alignments, and tools to analyze them are available at http://cl.sdsc.edu/ce.html.
Cognitive Education with Deaf Adolescents: Effects of Instrumental Enrichment.
ERIC Educational Resources Information Center
Haywood, H. Carl; And Others
1988-01-01
Twenty-six deaf adolescents received instruction in a structured program of cognitive education called "Instrumental Enrichment." The program addresses, among other processes, comparison, classification, logical progression, spatial orientation, analysis and synthesis, and syllogistic thinking. Following training, the subjects showed…
A simple and fast heuristic for protein structure comparison.
Pelta, David A; González, Juan R; Moreno Vega, Marcos
2008-03-25
Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results.
NASA Astrophysics Data System (ADS)
Zink, Frank Edward
The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.
Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery
LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T
2015-01-01
We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover,we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging [corrected].
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T.
2015-01-01
We quantify the amount of information filtered by different hierarchical clustering methods on correlations between stock returns comparing the clustering structure with the underlying industrial activity classification. We apply, for the first time to financial data, a novel hierarchical clustering approach, the Directed Bubble Hierarchical Tree and we compare it with other methods including the Linkage and k-medoids. By taking the industrial sector classification of stocks as a benchmark partition, we evaluate how the different methods retrieve this classification. The results show that the Directed Bubble Hierarchical Tree can outperform other methods, being able to retrieve more information with fewer clusters. Moreover, we show that the economic information is hidden at different levels of the hierarchical structures depending on the clustering method. The dynamical analysis on a rolling window also reveals that the different methods show different degrees of sensitivity to events affecting financial markets, like crises. These results can be of interest for all the applications of clustering methods to portfolio optimization and risk hedging. PMID:25786703
Huo, Guanying
2017-01-01
As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614
A consensus view of fold space: Combining SCOP, CATH, and the Dali Domain Dictionary
Day, Ryan; Beck, David A.C.; Armen, Roger S.; Daggett, Valerie
2003-01-01
We have determined consensus protein-fold classifications on the basis of three classification methods, SCOP, CATH, and Dali. These classifications make use of different methods of defining and categorizing protein folds that lead to different views of protein-fold space. Pairwise comparisons of domains on the basis of their fold classifications show that much of the disagreement between the classification systems is due to differing domain definitions rather than assigning the same domain to different folds. However, there are significant differences in the fold assignments between the three systems. These remaining differences can be explained primarily in terms of the breadth of the fold classifications. Many structures may be defined as having one fold in one system, whereas far fewer are defined as having the analogous fold in another system. By comparing these folds for a nonredundant set of proteins, the consensus method breaks up broad fold classifications and combines restrictive fold classifications into metafolds, creating, in effect, an averaged view of fold space. This averaged view requires that the structural similarities between proteins having the same metafold be recognized by multiple classification systems. Thus, the consensus map is useful for researchers looking for fold similarities that are relatively independent of the method used to compare proteins. The 30 most populated metafolds, representing the folds of about half of a nonredundant subset of the PDB, are presented here. The full list of metafolds is presented on the Web. PMID:14500873
A consensus view of fold space: combining SCOP, CATH, and the Dali Domain Dictionary.
Day, Ryan; Beck, David A C; Armen, Roger S; Daggett, Valerie
2003-10-01
We have determined consensus protein-fold classifications on the basis of three classification methods, SCOP, CATH, and Dali. These classifications make use of different methods of defining and categorizing protein folds that lead to different views of protein-fold space. Pairwise comparisons of domains on the basis of their fold classifications show that much of the disagreement between the classification systems is due to differing domain definitions rather than assigning the same domain to different folds. However, there are significant differences in the fold assignments between the three systems. These remaining differences can be explained primarily in terms of the breadth of the fold classifications. Many structures may be defined as having one fold in one system, whereas far fewer are defined as having the analogous fold in another system. By comparing these folds for a nonredundant set of proteins, the consensus method breaks up broad fold classifications and combines restrictive fold classifications into metafolds, creating, in effect, an averaged view of fold space. This averaged view requires that the structural similarities between proteins having the same metafold be recognized by multiple classification systems. Thus, the consensus map is useful for researchers looking for fold similarities that are relatively independent of the method used to compare proteins. The 30 most populated metafolds, representing the folds of about half of a nonredundant subset of the PDB, are presented here. The full list of metafolds is presented on the Web.
3D Complex: A Structural Classification of Protein Complexes
Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A
2006-01-01
Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. PMID:17112313
Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine
NASA Technical Reports Server (NTRS)
Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)
2002-01-01
The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.
NASA Astrophysics Data System (ADS)
Teutsch, Michael; Saur, Günter
2011-11-01
Spaceborne SAR imagery offers high capability for wide-ranging maritime surveillance especially in situations, where AIS (Automatic Identification System) data is not available. Therefore, maritime objects have to be detected and optional information such as size, orientation, or object/ship class is desired. In recent research work, we proposed a SAR processing chain consisting of pre-processing, detection, segmentation, and classification for single-polarimetric (HH) TerraSAR-X StripMap images to finally assign detection hypotheses to class "clutter", "non-ship", "unstructured ship", or "ship structure 1" (bulk carrier appearance) respectively "ship structure 2" (oil tanker appearance). In this work, we extend the existing processing chain and are now able to handle full-polarimetric (HH, HV, VH, VV) TerraSAR-X data. With the possibility of better noise suppression using the different polarizations, we slightly improve both the segmentation and the classification process. In several experiments we demonstrate the potential benefit for segmentation and classification. Precision of size and orientation estimation as well as correct classification rates are calculated individually for single- and quad-polarization and compared to each other.
Free classification of regional dialects of American English.
Clopper, Cynthia G; Pisoni, David B
2007-07-01
Recent studies have found that naïve listeners perform poorly in forced-choice dialect categorization tasks. However, the listeners' error patterns in these tasks reveal systematic confusions between phonologically similar dialects. In the present study, a free classification procedure was used to measure the perceptual similarity structure of regional dialect variation in the United States. In two experiments, participants listened to a set of short English sentences produced by male talkers only (Experiment 1) and by male and female talkers (Experiment 2). The listeners were instructed to group the talkers by regional dialect into as many groups as they wanted with as many talkers in each group as they wished. Multidimensional scaling analyses of the data revealed three primary dimensions of perceptual similarity (linguistic markedness, geography, and gender). In addition, a comparison of the results obtained from the free classification task to previous results using the same stimulus materials in six-alternative forced-choice categorization tasks revealed that response biases in the six-alternative task were reduced or eliminated in the free classification task. Thus, the results obtained with the free classification task in the current study provided further evidence that the underlying structure of perceptual dialect category representations reflects important linguistic and sociolinguistic factors.
Structure-based classification and ontology in chemistry
2012-01-01
Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research. PMID:22480202
A simple and fast heuristic for protein structure comparison
Pelta, David A; González, Juan R; Moreno Vega, Marcos
2008-01-01
Background Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. Results We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. Conclusion We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results. Software is available for download at . PMID:18366735
Ranacher, Peter; Tzavella, Katerina
2014-05-27
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods.
Ranacher, Peter; Tzavella, Katerina
2014-01-01
In geographic information science, a plethora of different approaches and methods is used to assess the similarity of movement. Some of these approaches term two moving objects similar if they share akin paths. Others require objects to move at similar speed and yet others consider movement similar if it occurs at the same time. We believe that a structured and comprehensive classification of movement comparison measures is missing. We argue that such a classification not only depicts the status quo of qualitative and quantitative movement analysis, but also allows for identifying those aspects of movement for which similarity measures are scarce or entirely missing. In this review paper we, first, decompose movement into its spatial, temporal, and spatiotemporal movement parameters. A movement parameter is a physical quantity of movement, such as speed, spatial path, or temporal duration. For each of these parameters we then review qualitative and quantitative methods of how to compare movement. Thus, we provide a systematic and comprehensive classification of different movement similarity measures used in geographic information science. This classification is a valuable first step toward a GIS toolbox comprising all relevant movement comparison methods. PMID:27019646
Definition and Classification of Assisted Living
ERIC Educational Resources Information Center
Zimmerman, Sheryl; Sloane, Philip D.
2007-01-01
Purpose: The purpose of this article is to discuss the benefits and limitations of, and considerations in, developing a typology of assisted living (AL). Design and Methods: We conducted a review and comparison of nine AL typologies drawn from the literature. Results: Typologies addressed matters related to the structure, process, population, and…
Preparing novice teachers to develop basic reading and spelling skills in children.
Spear-Swerling, Louise; Brucker, Pamela Owen
2004-12-01
This study examined the word-structure knowledge of novice teachers and the progress of children tutored by a subgroup of the teachers. Teachers' word-structure knowledge was assessed using three tasks: graphophonemic segmentation, classification of pseudowords by syllable type, and classification of real words as phonetically regular or irregular. Tutored children were assessed on several measures of basic reading and spelling skills. Novice teachers who received word-structure instruction outperformed a comparison group of teachers in word-structure knowledge at post-test. Tutored children improved significantly from pre-test to post-test on all assessments. Teachers' post-test knowledge on the graphophonemic segmentation and irregular words tasks correlated significantly with tutored children's progress in decoding phonetically regular words; error analyses indicated links between teachers' patterns of word-structure knowledge and children's patterns of decoding progress. The study suggests that word-structure knowledge is important to effective teaching of word decoding and underscores the need to include this information in teacher preparation.
Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A
2007-12-15
Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.
Free classification of regional dialects of American English
Clopper, Cynthia G.; Pisoni, David B.
2011-01-01
Recent studies have found that naïve listeners perform poorly in forced-choice dialect categorization tasks. However, the listeners' error patterns in these tasks reveal systematic confusions between phonologically similar dialects. In the present study, a free classification procedure was used to measure the perceptual similarity structure of regional dialect variation in the United States. In two experiments, participants listened to a set of short English sentences produced by male talkers only (Experiment 1) and by male and female talkers (Experiment 2). The listeners were instructed to group the talkers by regional dialect into as many groups as they wanted with as many talkers in each group as they wished. Multidimensional scaling analyses of the data revealed three primary dimensions of perceptual similarity (linguistic markedness, geography, and gender). In addition, a comparison of the results obtained from the free classification task to previous results using the same stimulus materials in six-alternative forced-choice categorization tasks revealed that response biases in the six-alternative task were reduced or eliminated in the free classification task. Thus, the results obtained with the free classification task in the current study provided further evidence that the underlying structure of perceptual dialect category representations reflects important linguistic and sociolinguistic factors. PMID:21423862
ERIC Educational Resources Information Center
Chong, Pei Wen; Graham, Linda J.
2013-01-01
International comparison is complicated by the use of different terms, classification methods, policy frameworks and system structures, not to mention different languages and terminology. Multi-case studies can assist in the understanding of the influence wielded by cultural, social, economic, historical and political forces upon educational…
Multistrategy Self-Organizing Map Learning for Classification Problems
Hasan, S.; Shamsuddin, S. M.
2011-01-01
Multistrategy Learning of Self-Organizing Map (SOM) and Particle Swarm Optimization (PSO) is commonly implemented in clustering domain due to its capabilities in handling complex data characteristics. However, some of these multistrategy learning architectures have weaknesses such as slow convergence time always being trapped in the local minima. This paper proposes multistrategy learning of SOM lattice structure with Particle Swarm Optimisation which is called ESOMPSO for solving various classification problems. The enhancement of SOM lattice structure is implemented by introducing a new hexagon formulation for better mapping quality in data classification and labeling. The weights of the enhanced SOM are optimised using PSO to obtain better output quality. The proposed method has been tested on various standard datasets with substantial comparisons with existing SOM network and various distance measurement. The results show that our proposed method yields a promising result with better average accuracy and quantisation errors compared to the other methods as well as convincing significant test. PMID:21876686
Critical Protection Item classification for a waste processing facility at Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ades, M.J.; Garrett, R.J.
1993-10-01
This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less
Smith, Mary Lou
2016-11-01
The new approach to classification of the epilepsies emphasizes the role of dysfunction in networks in defining types of epilepsies. This paper reviews the structural and neuropsychological deficits in two types of childhood epilepsy: frontal lobe and temporal lobe epilepsy. The evidence for and against a pattern of specificity of deficits in executive function and memory associated with these two types of epilepsies is presented. The evidence varies with the methodologies used in the studies, but direct comparison of the two types of epilepsies does not suggest a clear-cut mapping of function onto structure. These findings are discussed in light of the concept of network dysfunction. The evidence supports the conceptualization of epilepsy as a network disease. Implications for future work in the neuropsychology of pediatric epilepsy are suggested. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.
Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar
dos Santos, Matheus; Ribeiro, Pedro Otávio; Núñez, Pedro; Botelho, Silvia
2017-01-01
The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper. PMID:28961163
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R; Nguyen, Tuan N; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
Chai, Rifai; Ling, Sai Ho; San, Phyo Phyo; Naik, Ganesh R.; Nguyen, Tuan N.; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T.
2017-01-01
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively. PMID:28326009
Detailed Quantitative Classifications of Galaxy Morphology
NASA Astrophysics Data System (ADS)
Nair, Preethi
2018-01-01
Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.
Applications of remote sensing, volume 3
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Of the four change detection techniques (post classification comparison, delta data, spectral/temporal, and layered spectral temporal), the post classification comparison was selected for further development. This was based upon test performances of the four change detection method, straightforwardness of the procedures, and the output products desired. A standardized modified, supervised classification procedure for analyzing the Texas coastal zone data was compiled. This procedure was developed in order that all quadrangles in the study are would be classified using similar analysis techniques to allow for meaningful comparisons and evaluations of the classifications.
HHsvm: fast and accurate classification of profile–profile matches identified by HHsearch
Dlakić, Mensur
2009-01-01
Motivation: Recently developed profile–profile methods rival structural comparisons in their ability to detect homology between distantly related proteins. Despite this tremendous progress, many genuine relationships between protein families cannot be recognized as comparisons of their profiles result in scores that are statistically insignificant. Results: Using known evolutionary relationships among protein superfamilies in SCOP database, support vector machines were trained on four sets of discriminatory features derived from the output of HHsearch. Upon validation, it was shown that the automatic classification of all profile–profile matches was superior to fixed threshold-based annotation in terms of sensitivity and specificity. The effectiveness of this approach was demonstrated by annotating several domains of unknown function from the Pfam database. Availability: Programs and scripts implementing the methods described in this manuscript are freely available from http://hhsvm.dlakiclab.org/. Contact: mdlakic@montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19773335
Multilabel user classification using the community structure of online networks
Papadopoulos, Symeon; Kompatsiaris, Yiannis
2017-01-01
We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user’s graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score. PMID:28278242
Multilabel user classification using the community structure of online networks.
Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis
2017-01-01
We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.
A Comprehensive Study of Retinal Vessel Classification Methods in Fundus Images
Miri, Maliheh; Amini, Zahra; Rabbani, Hossein; Kafieh, Raheleh
2017-01-01
Nowadays, it is obvious that there is a relationship between changes in the retinal vessel structure and diseases such as diabetic, hypertension, stroke, and the other cardiovascular diseases in adults as well as retinopathy of prematurity in infants. Retinal fundus images provide non-invasive visualization of the retinal vessel structure. Applying image processing techniques in the study of digital color fundus photographs and analyzing their vasculature is a reliable approach for early diagnosis of the aforementioned diseases. Reduction in the arteriolar–venular ratio of retina is one of the primary signs of hypertension, diabetic, and cardiovascular diseases which can be calculated by analyzing the fundus images. To achieve a precise measuring of this parameter and meaningful diagnostic results, accurate classification of arteries and veins is necessary. Classification of vessels in fundus images faces with some challenges that make it difficult. In this paper, a comprehensive study of the proposed methods for classification of arteries and veins in fundus images is presented. Considering that these methods are evaluated on different datasets and use different evaluation criteria, it is not possible to conduct a fair comparison of their performance. Therefore, we evaluate the classification methods from modeling perspective. This analysis reveals that most of the proposed approaches have focused on statistics, and geometric models in spatial domain and transform domain models have received less attention. This could suggest the possibility of using transform models, especially data adaptive ones, for modeling of the fundus images in future classification approaches. PMID:28553578
NASA Astrophysics Data System (ADS)
Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.
2018-01-01
Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.
Variance estimates and confidence intervals for the Kappa measure of classification accuracy
M. A. Kalkhan; R. M. Reich; R. L. Czaplewski
1997-01-01
The Kappa statistic is frequently used to characterize the results of an accuracy assessment used to evaluate land use and land cover classifications obtained by remotely sensed data. This statistic allows comparisons of alternative sampling designs, classification algorithms, photo-interpreters, and so forth. In order to make these comparisons, it is...
Solar Prominence Fine Structure and Dynamics
NASA Astrophysics Data System (ADS)
Berger, Thomas
2014-01-01
We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
Zhang, WenJun
2007-07-01
Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.
Whewell on classification and consilience.
Quinn, Aleta
2017-08-01
In this paper I sketch William Whewell's attempts to impose order on classificatory mineralogy, which was in Whewell's day (1794-1866) a confused science of uncertain prospects. Whewell argued that progress was impeded by the crude reductionist assumption that all macroproperties of crystals could be straightforwardly explained by reference to the crystals' chemical constituents. By comparison with biological classification, Whewell proposed methodological reforms that he claimed would lead to a natural classification of minerals, which in turn would support advances in causal understanding of the properties of minerals. Whewell's comparison to successful biological classification is particularly striking given that classificatory biologists did not share an understanding of the causal structure underlying the natural classification of life (the common descent with modification of all organisms). Whewell's key proposed methodological reform is consideration of multiple, distinct principles of classification. The most powerful evidence in support of a natural classificatory claim is the consilience of claims arrived at through distinct lines of reasoning, rooted in distinct conceptual approaches to the target objects. Mineralogists must consider not only elemental composition and chemical affinities, but also symmetry and polarity. Geometrical properties are central to what makes an individual mineral the type of mineral that it is. In Whewell's view, function and organization jointly define life, and so are the keys to understanding what makes an organism the type of organism that it is. I explain the relationship between Whewell's teleological account of life and his natural theology. I conclude with brief comments about the importance of Whewell's classificatory theory for the further development of his philosophy of science and in particular his account of consilience. Copyright © 2017 Elsevier Ltd. All rights reserved.
CANDELS Visual Classifications: Scheme, Data Release, and First Results
NASA Technical Reports Server (NTRS)
Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Henry; Koo, David; Bassett, Robert;
2014-01-01
We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
A Pruning Neural Network Model in Credit Classification Analysis
Tang, Yajiao; Ji, Junkai; Dai, Hongwei; Yu, Yang; Todo, Yuki
2018-01-01
Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs) have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN) and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs) to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency. PMID:29606961
Neumann, Sindy; Hartmann, Holger; Martin-Galiano, Antonio J; Fuchs, Angelika; Frishman, Dmitrij
2012-03-01
Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ∼1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/. Copyright © 2011 Wiley Periodicals, Inc.
Kireeva, N; Baskin, I I; Gaspar, H A; Horvath, D; Marcou, G; Varnek, A
2012-04-01
Here, the utility of Generative Topographic Maps (GTM) for data visualization, structure-activity modeling and database comparison is evaluated, on hand of subsets of the Database of Useful Decoys (DUD). Unlike other popular dimensionality reduction approaches like Principal Component Analysis, Sammon Mapping or Self-Organizing Maps, the great advantage of GTMs is providing data probability distribution functions (PDF), both in the high-dimensional space defined by molecular descriptors and in 2D latent space. PDFs for the molecules of different activity classes were successfully used to build classification models in the framework of the Bayesian approach. Because PDFs are represented by a mixture of Gaussian functions, the Bhattacharyya kernel has been proposed as a measure of the overlap of datasets, which leads to an elegant method of global comparison of chemical libraries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A review and analysis of neural networks for classification of remotely sensed multispectral imagery
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1993-01-01
A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.
CANDELS Visual Classifications: Scheme, Data Release, and First Results
NASA Astrophysics Data System (ADS)
Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Harry; Koo, David; Bassett, Robert; Bernyk, Maksym; Blancato, Kirsten; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Cheung, Edmond; Conselice, Christopher J.; Croton, Darren; Dahlen, Tomas; de Mello, Duilia F.; DeGroot, Laura; Donley, Jennifer; Guedes, Javiera; Grogin, Norman; Hathi, Nimish; Hilton, Matt; Hollon, Brett; Koekemoer, Anton; Liu, Nick; Lucas, Ray A.; Martig, Marie; McGrath, Elizabeth; McPartland, Conor; Mobasher, Bahram; Morlock, Alice; O'Leary, Erin; Peth, Mike; Pforr, Janine; Pillepich, Annalisa; Rosario, David; Soto, Emmaris; Straughn, Amber; Telford, Olivia; Sunnquist, Ben; Trump, Jonathan; Weiner, Benjamin; Wuyts, Stijn; Inami, Hanae; Kassin, Susan; Lani, Caterina; Poole, Gregory B.; Rizer, Zachary
2015-11-01
We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed—GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sérsic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sérsic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
Ground truth management system to support multispectral scanner /MSS/ digital analysis
NASA Technical Reports Server (NTRS)
Coiner, J. C.; Ungar, S. G.
1977-01-01
A computerized geographic information system for management of ground truth has been designed and implemented to relate MSS classification results to in situ observations. The ground truth system transforms, generalizes and rectifies ground observations to conform to the pixel size and shape of high resolution MSS aircraft data. These observations can then be aggregated for comparison to lower resolution sensor data. Construction of a digital ground truth array allows direct pixel by pixel comparison between classification results of MSS data and ground truth. By making comparisons, analysts can identify spatial distribution of error within the MSS data as well as usual figures of merit for the classifications. Use of the ground truth system permits investigators to compare a variety of environmental or anthropogenic data, such as soil color or tillage patterns, with classification results and allows direct inclusion of such data into classification operations. To illustrate the system, examples from classification of simulated Thematic Mapper data for agricultural test sites in North Dakota and Kansas are provided.
Nonlinear channel equalization for QAM signal constellation using artificial neural networks.
Patra, J C; Pal, R N; Baliarsingh, R; Panda, G
1999-01-01
Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.
Zhang, Fan; Song, Yang; Ebrahimi, Mohammad; Niu, Liwen; Teng, Maikun; Li, Xu
2016-09-02
Clathrin-coated vesicles (CCVs) play critical roles in multiple cellular processes, including nutrient uptake, endosome/lysosome biogenesis, pathogen invasion, regulation of signalling receptors, etc. Saccharomyces cerevisiae Ent5 (ScEnt5) is one of the two major adaptors supporting the CCV-mediated TGN/endosome traffic in yeast cells. However, the classification and phosphoinositide binding characteristic of ScEnt5 remain elusive. Here we report the crystal structures of the ScEnt5 N-terminal domain, and find that ScEnt5 contains an insertion α' helix that does not exist in other ENTH or ANTH domains. Furthermore, we investigate the classification of ScEnt5-N(31-191) by evolutionary history analyses and structure comparisons, and find that the ScEnt5 N-terminal domain shows different phosphoinositide binding property from rEpsin1 and rCALM. Above results facilitate the understanding of the ScEnt5-mediated vesicle coat formation process. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparison analysis for classification algorithm in data mining and the study of model use
NASA Astrophysics Data System (ADS)
Chen, Junde; Zhang, Defu
2018-04-01
As a key technique in data mining, classification algorithm was received extensive attention. Through an experiment of classification algorithm in UCI data set, we gave a comparison analysis method for the different algorithms and the statistical test was used here. Than that, an adaptive diagnosis model for preventive electricity stealing and leakage was given as a specific case in the paper.
Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards
2006-01-01
Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...
ERIC Educational Resources Information Center
Montoye, Alexander H. K.; Pivarnik, James M.; Mudd, Lanay M.; Biswas, Subir; Pfeiffer, Karin A.
2016-01-01
The purpose of this article is to compare accuracy of activity type prediction models for accelerometers worn on the hip, wrists, and thigh. Forty-four adults performed sedentary, ambulatory, lifestyle, and exercise activities (14 total, 10 categories) for 3-10 minutes each in a 90-minute semi-structured laboratory protocol. Artificial neural…
Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.
Zhang, Jianguang; Jiang, Jianmin
2018-02-01
While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.
A comparison of blood vessel features and local binary patterns for colorectal polyp classification
NASA Astrophysics Data System (ADS)
Gross, Sebastian; Stehle, Thomas; Behrens, Alexander; Auer, Roland; Aach, Til; Winograd, Ron; Trautwein, Christian; Tischendorf, Jens
2009-02-01
Colorectal cancer is the third leading cause of cancer deaths in the United States of America for both women and men. By means of early detection, the five year survival rate can be up to 90%. Polyps can to be grouped into three different classes: hyperplastic, adenomatous, and carcinomatous polyps. Hyperplastic polyps are benign and are not likely to develop into cancer. Adenomas, on the other hand, are known to grow into cancer (adenoma-carcinoma sequence). Carcinomas are fully developed cancers and can be easily distinguished from adenomas and hyperplastic polyps. A recent narrow band imaging (NBI) study by Tischendorf et al. has shown that hyperplastic polyps and adenomas can be discriminated by their blood vessel structure. We designed a computer-aided system for the differentiation between hyperplastic and adenomatous polyps. Our development aim is to provide the medical practitioner with an additional objective interpretation of the available image data as well as a confidence measure for the classification. We propose classification features calculated on the basis of the extracted blood vessel structure. We use the combined length of the detected blood vessels, the average perimeter of the vessels and their average gray level value. We achieve a successful classification rate of more than 90% on 102 polyps from our polyp data base. The classification results based on these features are compared to the results of Local Binary Patterns (LBP). The results indicate that the implemented features are superior to LBP.
Conti-Becker, Angela; Doralp, Samantha; Fayed, Nora; Kean, Crystal; Lencucha, Raphael; Leyshon, Rhysa; Mersich, Jackie; Robbins, Shawn; Doyle, Phillip C
2007-01-01
The Disability Tax Credit (DTC) Certification is an assessment tool used to provide Canadians with disability tax relief The International Classification of Functioning, Disability and Health (ICF) provides a universal framework for defining disability. The purpose of this study was to evaluate the DTC and familiarize occupational therapists with the process of mapping measures to the ICF classification system. Concepts within the DTC were identified and mapped to appropriate ICF codes (Cieza et al., 2005). The DTC was linked to 45 unique ICF codes (16 Body Functions, 19 Activities and Participation, and 8 Environmental Factors). The DTC encompasses various domains of the ICF; however, there is no consideration of Personal Factors, Body Structures, and key aspects of Activities and Participation. Refining the DTC to address these aspects will provide an opportunity for fair and just determinations for those who experience disability.
NASA Astrophysics Data System (ADS)
Schmalz, M.; Ritter, G.; Key, R.
Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false detections (Rfa). As proof of principle, we analyze classification of multiple closely spaced signatures from a NASA database of space material signatures. Additional analysis pertains to computational complexity and noise sensitivity, which are superior to Bayesian techniques based on classical neural networks. [1] Winter, M.E. "Fast autonomous spectral end-member determination in hyperspectral data," in Proceedings of the 13th International Conference On Applied Geologic Remote Sensing, Vancouver, B.C., Canada, pp. 337-44 (1999). [2] N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Laboratory Journal 14:55-78 (2003). [3] Key, G., M.S. SCHMALZ, F.M. Caimi, and G.X. Ritter. "Performance analysis of tabular nearest neighbor encoding algorithm for joint compression and ATR", in Proceedings SPIE 3814:115-126 (1999). [4] Schmalz, M.S. and G. Key. "Algorithms for hyperspectral signature classification in unresolved object detection using tabular nearest neighbor encoding" in Proceedings of the 2007 AMOS Conference, Maui HI (2007). [5] Ritter, G.X., G. Urcid, and M.S. Schmalz. "Autonomous single-pass endmember approximation using lattice auto-associative memories", Neurocomputing (Elsevier), accepted (June 2008).
Bisenius, Sandrine; Mueller, Karsten; Diehl-Schmid, Janine; Fassbender, Klaus; Grimmer, Timo; Jessen, Frank; Kassubek, Jan; Kornhuber, Johannes; Landwehrmeyer, Bernhard; Ludolph, Albert; Schneider, Anja; Anderl-Straub, Sarah; Stuke, Katharina; Danek, Adrian; Otto, Markus; Schroeter, Matthias L
2017-01-01
Primary progressive aphasia (PPA) encompasses the three subtypes nonfluent/agrammatic variant PPA, semantic variant PPA, and the logopenic variant PPA, which are characterized by distinct patterns of language difficulties and regional brain atrophy. To validate the potential of structural magnetic resonance imaging data for early individual diagnosis, we used support vector machine classification on grey matter density maps obtained by voxel-based morphometry analysis to discriminate PPA subtypes (44 patients: 16 nonfluent/agrammatic variant PPA, 17 semantic variant PPA, 11 logopenic variant PPA) from 20 healthy controls (matched for sample size, age, and gender) in the cohort of the multi-center study of the German consortium for frontotemporal lobar degeneration. Here, we compared a whole-brain with a meta-analysis-based disease-specific regions-of-interest approach for support vector machine classification. We also used support vector machine classification to discriminate the three PPA subtypes from each other. Whole brain support vector machine classification enabled a very high accuracy between 91 and 97% for identifying specific PPA subtypes vs. healthy controls, and 78/95% for the discrimination between semantic variant vs. nonfluent/agrammatic or logopenic PPA variants. Only for the discrimination between nonfluent/agrammatic and logopenic PPA variants accuracy was low with 55%. Interestingly, the regions that contributed the most to the support vector machine classification of patients corresponded largely to the regions that were atrophic in these patients as revealed by group comparisons. Although the whole brain approach took also into account regions that were not covered in the regions-of-interest approach, both approaches showed similar accuracies due to the disease-specificity of the selected networks. Conclusion, support vector machine classification of multi-center structural magnetic resonance imaging data enables prediction of PPA subtypes with a very high accuracy paving the road for its application in clinical settings.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
7 CFR 28.181 - Review of cotton classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...
7 CFR 28.181 - Review of cotton classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...
7 CFR 28.181 - Review of cotton classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...
7 CFR 28.181 - Review of cotton classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...
7 CFR 28.181 - Review of cotton classification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Review of cotton classification. 28.181 Section 28.181... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.181 Review of cotton classification. A review of any classification or comparison made pursuant to this subpart...
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Barthel, Roland
2016-04-01
When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes corresponding to geological descriptors. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria.
NASA Astrophysics Data System (ADS)
Liu, Yansong; Monteiro, Sildomar T.; Saber, Eli
2015-10-01
Changes in vegetation cover, building construction, road network and traffic conditions caused by urban expansion affect the human habitat as well as the natural environment in rapidly developing cities. It is crucial to assess these changes and respond accordingly by identifying man-made and natural structures with accurate classification algorithms. With the increase in use of multi-sensor remote sensing systems, researchers are able to obtain a more complete description of the scene of interest. By utilizing multi-sensor data, the accuracy of classification algorithms can be improved. In this paper, we propose a method for combining 3D LiDAR point clouds and high-resolution color images to classify urban areas using Gaussian processes (GP). GP classification is a powerful non-parametric classification method that yields probabilistic classification results. It makes predictions in a way that addresses the uncertainty of real world. In this paper, we attempt to identify man-made and natural objects in urban areas including buildings, roads, trees, grass, water and vehicles. LiDAR features are derived from the 3D point clouds and the spatial and color features are extracted from RGB images. For classification, we use the Laplacian approximation for GP binary classification on the new combined feature space. The multiclass classification has been implemented by using one-vs-all binary classification strategy. The result of applying support vector machines (SVMs) and logistic regression (LR) classifier is also provided for comparison. Our experiments show a clear improvement of classification results by using the two sensors combined instead of each sensor separately. Also we found the advantage of applying GP approach to handle the uncertainty in classification result without compromising accuracy compared to SVM, which is considered as the state-of-the-art classification method.
NASA Technical Reports Server (NTRS)
Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin
1990-01-01
Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.
A cDNA microarray gene expression data classifier for clinical diagnostics based on graph theory.
Benso, Alfredo; Di Carlo, Stefano; Politano, Gianfranco
2011-01-01
Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithms.
Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T
2010-11-01
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.
van Wingerden, Jan J; Ubbink, Dirk T; van der Horst, Chantal M A M; de Mol, Bas A J M
2014-11-23
Early recognition and, where possible, avoidance of risk factors that contribute to the development of poststernotomy mediastinitis (PSM) form the basis for successful prevention. Once the presence of PSM is diagnosed, the known risk factors have been shown to have limited influence on management decisions. Evidence-based knowledge on treatment decisions, which include the extent and type of surgical intervention (other than debridement), timing and others is available but has not yet been incorporated into a classification on management decisions regarding PSM. Ours is a first attempt at developing a classification system for management of PSM, taking the various evidence-based reconstructive options into consideration. The classification is simple to introduce (there are four Types) and relies on the careful establishment of two variables (sternal stability and sternal bone viability and stock) prior to deciding on the best available reconstructive option. It should allow better insight into why treatment decisions fail or have to be altered and will allow better comparison of treatment outcomes between various institutions.
A 3D sequence-independent representation of the protein data bank.
Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H
1995-10-01
Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The resulting set can serve as a basis for extensive structural classification and studies of 3D recurring motifs and of sequence-structure relationships. The clustering algorithm succeeds in classifying into the same structural family chains with no significant sequence homology, e.g. all the globins in one single group, all the trypsin-like serine proteases in another or all the immunoglobulin-like folds into a third. In addition, unexpected structural similarities of interest have been automatically detected between pairs of chains. A cluster analysis of the representative structures demonstrates the way the "structural universe' is populated.
Automatic EEG artifact removal: a weighted support vector machine approach with error correction.
Shao, Shi-Yun; Shen, Kai-Quan; Ong, Chong Jin; Wilder-Smith, Einar P V; Li, Xiao-Ping
2009-02-01
An automatic electroencephalogram (EEG) artifact removal method is presented in this paper. Compared to past methods, it has two unique features: 1) a weighted version of support vector machine formulation that handles the inherent unbalanced nature of component classification and 2) the ability to accommodate structural information typically found in component classification. The advantages of the proposed method are demonstrated on real-life EEG recordings with comparisons made to several benchmark methods. Results show that the proposed method is preferable to the other methods in the context of artifact removal by achieving a better tradeoff between removing artifacts and preserving inherent brain activities. Qualitative evaluation of the reconstructed EEG epochs also demonstrates that after artifact removal inherent brain activities are largely preserved.
ON DEPARTURES FROM INDEPENDENCE IN CROSS-CLASSIFICATIONS.
ERIC Educational Resources Information Center
CASE, C. MARSTON
THIS NOTE IS CONCERNED WITH IDEAS AND PROBLEMS INVOLVED IN CROSS-CLASSIFICATION OF OBSERVATIONS ON A GIVEN POPULATION, ESPECIALLY TWO-DIMENSIONAL CROSS-CLASSIFICATIONS. MAIN OBJECTIVES OF THE NOTE INCLUDE--(1) ESTABLISHMENT OF A CONCEPTUAL FRAMEWORK FOR CHARACTERIZATION AND COMPARISON OF CROSS-CLASSIFICATIONS, (2) DISCUSSION OF EXISTING METHODS…
Conceptual Change through Changing the Process of Comparison
ERIC Educational Resources Information Center
Wasmann-Frahm, Astrid
2009-01-01
Classification can serve as a tool for conceptualising ideas about vertebrates. Training enhances classification skills as well as sharpening concepts. The method described in this paper is based on the "hybrid-model" of comparison that proposes two independently working processes: associative and theory-based. The two interact during a…
Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites
NASA Astrophysics Data System (ADS)
Valasatava, Yana; Andreini, Claudia; Rosato, Antonio
2015-03-01
Metalloproteins account for a substantial fraction of all proteins. They incorporate metal atoms, which are required for their structure and/or function. Here we describe a new computational protocol to systematically compare and classify metal-binding sites on the basis of their structural similarity. These sites are extracted from the MetalPDB database of minimal functional sites (MFSs) in metal-binding biological macromolecules. Structural similarity is measured by the scoring function of the available MetalS2 program. Hierarchical clustering was used to organize MFSs into clusters, for each of which a representative MFS was identified. The comparison of all representative MFSs provided a thorough structure-based classification of the sites analyzed. As examples, the application of the proposed computational protocol to all heme-binding proteins and zinc-binding proteins of known structure highlighted the existence of structural subtypes, validated known evolutionary links and shed new light on the occurrence of similar sites in systems at different evolutionary distances. The present approach thus makes available an innovative viewpoint on metalloproteins, where the functionally crucial metal sites effectively lead the discovery of structural and functional relationships in a largely protein-independent manner.
CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
Terashi, Genki; Takeda-Shitaka, Mayuko
2015-01-01
Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.
NASA Astrophysics Data System (ADS)
Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan
2012-02-01
Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation should now be included in urban biotope classifications.
A Comparison of Two-Group Classification Methods
ERIC Educational Resources Information Center
Holden, Jocelyn E.; Finch, W. Holmes; Kelley, Ken
2011-01-01
The statistical classification of "N" individuals into "G" mutually exclusive groups when the actual group membership is unknown is common in the social and behavioral sciences. The results of such classification methods often have important consequences. Among the most common methods of statistical classification are linear discriminant analysis,…
A Comparison of Speed Profiles During Training and Competition in Elite Wheelchair Rugby Players.
Rhodes, James M; Mason, Barry S; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L
2017-07-01
To investigate the speed profiles of individual training modes in comparison with wheelchair rugby (WCR) competition across player classifications. Speed profiles of 15 international WCR players were determined using a radio-frequency-based indoor tracking system. Mean and peak speed (m/s), work:rest ratios, and the relative time spent in (%) and number of high-speed activities performed were measured across training sessions (n = 464) and international competition (n = 34). Training was classified into 1 of 4 modes: conditioning (n = 71), skill-based (n = 133), game-related (n = 151), and game-simulation drills (n = 109). Game-simulation drills were further categorized by the structured duration, which were 3-min game clock (n = 44), 8-min game clock (n = 39), and 10-min running clock (n = 26). Players were grouped by their International Wheelchair Rugby Federation classification as either low-point (≤1.5; n = 8) or high-point players (≥2.0; n = 7). Conditioning drills were shown to exceed the demands of competition, irrespective of classification (P ≤ .005; effect size [ES] = 0.6-2.0). Skill-based and game-related drills underrepresented the speed profiles of competition (P ≤ .005; ES = 0.5-1.1). Mean speed and work:rest ratios were significantly lower during 3- and 8-min game-simulation drills in relation to competition (P ≤ .039; ES = 0.5-0.7). However, no significant differences were identified between the 10-min running clock and competition. Although game-simulation drills provided the closest representation of competition, the structured duration appeared important since the 10-min running clock increased training specificity. Coaches can therefore modify the desired training response by making subtle changes to the format of game-simulation drills.
Fast protein tertiary structure retrieval based on global surface shape similarity.
Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke
2008-09-01
Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.
Coban, Huseyin Oguz; Koc, Ayhan; Eker, Mehmet
2010-01-01
Previous studies have been able to successfully detect changes in gently-sloping forested areas with low-diversity and homogeneous vegetation cover using medium-resolution satellite data such as landsat. The aim of the present study is to examine the capacity of multi-temporal landsat data to identify changes in forested areas with mixed vegetation and generally located on steep slopes or non-uniform topography landsat thematic mapper (TM) and landsat enhanced thematic mapperplus (ETM+) data for the years 1987-2000 was used to detect changes within a 19,500 ha forested area in the Western Black sea region of Turkey. The data comply with the forest cover type maps previously created for forest management plans of the research area. The methods used to detect changes were: post-classification comparison, image differencing, image rationing and NDVI (Normalized Difference Vegetation Index) differencing methods. Following the supervised classification process, error matrices were used to evaluate the accuracy of classified images obtained. The overall accuracy has been calculated as 87.59% for 1987 image and as 91.81% for 2000 image. General kappa statistics have been calculated as 0.8543 and 0.9038 for 1987 and 2000, respectively. The changes identified via the post-classification comparison method were compared with other change detetion methods. Maximum coherence was found to be 74.95% at 4/3 band rate. The NDVI difference and 3rd band difference methods achieved the same coherence with slight variations. The results suggest that landsat satellite data accurately conveys the temporal changes which occur on steeply-sloping forested areas with a mixed structure, providing a limited amount of detail but with a high level of accuracy. Moreover it has been decided that the post-classification comparison method can meet the needs of forestry activities better than other methods as it provides information about the direction of these changes.
Parameter Estimation for Thurstone Choice Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vojnovic, Milan; Yun, Seyoung
We consider the estimation accuracy of individual strength parameters of a Thurstone choice model when each input observation consists of a choice of one item from a set of two or more items (so called top-1 lists). This model accommodates the well-known choice models such as the Luce choice model for comparison sets of two or more items and the Bradley-Terry model for pair comparisons. We provide a tight characterization of the mean squared error of the maximum likelihood parameter estimator. We also provide similar characterizations for parameter estimators defined by a rank-breaking method, which amounts to deducing one ormore » more pair comparisons from a comparison of two or more items, assuming independence of these pair comparisons, and maximizing a likelihood function derived under these assumptions. We also consider a related binary classification problem where each individual parameter takes value from a set of two possible values and the goal is to correctly classify all items within a prescribed classification error. The results of this paper shed light on how the parameter estimation accuracy depends on given Thurstone choice model and the structure of comparison sets. In particular, we found that for unbiased input comparison sets of a given cardinality, when in expectation each comparison set of given cardinality occurs the same number of times, for a broad class of Thurstone choice models, the mean squared error decreases with the cardinality of comparison sets, but only marginally according to a diminishing returns relation. On the other hand, we found that there exist Thurstone choice models for which the mean squared error of the maximum likelihood parameter estimator can decrease much faster with the cardinality of comparison sets. We report empirical evaluation of some claims and key parameters revealed by theory using both synthetic and real-world input data from some popular sport competitions and online labor platforms.« less
Finding modules and hierarchy in weighted financial network using transfer entropy
NASA Astrophysics Data System (ADS)
Yook, Soon-Hyung; Chae, Huiseung; Kim, Jinho; Kim, Yup
2016-04-01
We study the modular structure of financial network based on the transfer entropy (TE). From the comparison with the obtained modular structure using the cross-correlation (CC), we find that TE and CC both provide well organized modular structure and the hierarchical relationship between each industrial group when the time scale of the measurement is less than one month. However, when the time scale of the measurement becomes larger than one month, we find that the modular structure from CC cannot correctly reflect the known industrial classification and their hierarchy. In addition the measured maximum modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better weight measure than CC for the system with asymmetric relationship.
Richesson, Rachel L.; Fung, Kin Wah; Krischer, Jeffrey P.
2008-01-01
Monitoring adverse events (AEs) is an important part of clinical research and a crucial target for data standards. The representation of adverse events themselves requires the use of controlled vocabularies with thousands of needed clinical concepts. Several data standards for adverse events currently exist, each with a strong user base. The structure and features of these current adverse event data standards (including terminologies and classifications) are different, so comparisons and evaluations are not straightforward, nor are strategies for their harmonization. Three different data standards - the Medical Dictionary for Regulatory Activities (MedDRA) and the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) terminologies, and Common Terminology Criteria for Adverse Events (CTCAE) classification - are explored as candidate representations for AEs. This paper describes the structural features of each coding system, their content and relationship to the Unified Medical Language System (UMLS), and unsettled issues for future interoperability of these standards. PMID:18406213
Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification
Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander
2013-01-01
Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138
Liu, Jiemeng; Wang, Haifeng; Yang, Hongxing; Zhang, Yizhe; Wang, Jinfeng; Zhao, Fangqing; Qi, Ji
2013-01-01
Compared with traditional algorithms for long metagenomic sequence classification, characterizing microorganisms’ taxonomic and functional abundance based on tens of millions of very short reads are much more challenging. We describe an efficient composition and phylogeny-based algorithm [Metagenome Composition Vector (MetaCV)] to classify very short metagenomic reads (75–100 bp) into specific taxonomic and functional groups. We applied MetaCV to the Meta-HIT data (371-Gb 75-bp reads of 109 human gut metagenomes), and this single-read-based, instead of assembly-based, classification has a high resolution to characterize the composition and structure of human gut microbiota, especially for low abundance species. Most strikingly, it only took MetaCV 10 days to do all the computation work on a server with five 24-core nodes. To our knowledge, MetaCV, benefited from the strategy of composition comparison, is the first algorithm that can classify millions of very short reads within affordable time. PMID:22941634
Sørensen, Lauge; Nielsen, Mads
2018-05-15
The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparison of morphological and conventional edge detectors in medical imaging applications
NASA Astrophysics Data System (ADS)
Kaabi, Lotfi; Loloyan, Mansur; Huang, H. K.
1991-06-01
Recently, mathematical morphology has been used to develop efficient image analysis tools. This paper compares the performance of morphological and conventional edge detectors applied to radiological images. Two morphological edge detectors including the dilation residue found by subtracting the original signal from its dilation by a small structuring element, and the blur-minimization edge detector which is defined as the minimum of erosion and dilation residues of the blurred image version, are compared with the linear Laplacian and Sobel and the non-linear Robert edge detectors. Various structuring elements were used in this study: regular 2-dimensional, and 3-dimensional. We utilized two criterions for edge detector's performance classification: edge point connectivity and the sensitivity to the noise. CT/MR and chest radiograph images have been used as test data. Comparison results show that the blur-minimization edge detector, with a rolling ball-like structuring element outperforms other standard linear and nonlinear edge detectors. It is less noise sensitive, and performs the most closed contours.
Question analysis for Indonesian comparative question
NASA Astrophysics Data System (ADS)
Saelan, A.; Purwarianti, A.; Widyantoro, D. H.
2017-01-01
Information seeking is one of human needs today. Comparing things using search engine surely take more times than search only one thing. In this paper, we analyzed comparative questions for comparative question answering system. Comparative question is a question that comparing two or more entities. We grouped comparative questions into 5 types: selection between mentioned entities, selection between unmentioned entities, selection between any entity, comparison, and yes or no question. Then we extracted 4 types of information from comparative questions: entity, aspect, comparison, and constraint. We built classifiers for classification task and information extraction task. Features used for classification task are bag of words, whether for information extraction, we used lexical, 2 previous and following words lexical, and previous label as features. We tried 2 scenarios: classification first and extraction first. For classification first, we used classification result as a feature for extraction. Otherwise, for extraction first, we used extraction result as features for classification. We found that the result would be better if we do extraction first before classification. For the extraction task, classification using SMO gave the best result (88.78%), while for classification, it is better to use naïve bayes (82.35%).
7 CFR 28.56 - Form A and Form D memorandum.
Code of Federal Regulations, 2011 CFR
2011-01-01
... classification and/or comparison has been made of any samples submitted by the owner of the cotton or the owner's... Certificates and Memoranda § 28.56 Form A and Form D memorandum. (a) When a classification and/or comparison has been made of any samples submitted to a Classing Office direct from a public warehouse, the...
7 CFR 28.56 - Form A and Form D memorandum.
Code of Federal Regulations, 2010 CFR
2010-01-01
... classification and/or comparison has been made of any samples submitted by the owner of the cotton or the owner's... Certificates and Memoranda § 28.56 Form A and Form D memorandum. (a) When a classification and/or comparison has been made of any samples submitted to a Classing Office direct from a public warehouse, the...
Ceylan, Murat; Ceylan, Rahime; Ozbay, Yüksel; Kara, Sadik
2008-09-01
In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.
A method of assigning socio-economic status classification to British Armed Forces personnel.
Yoong, S Y; Miles, D; McKinney, P A; Smith, I J; Spencer, N J
1999-10-01
The objective of this paper was to develop and evaluate a socio-economic status classification method for British Armed Forces personnel. Two study groups comprising of civilian and Armed Forces families were identified from livebirths delivered between 1 January-30 June 1996 within the Northallerton Health district which includes Catterick Garrison and RAF Leeming. The participants were the parents of babies delivered at a District General Hospital, comprising of 436 civilian and 162 Armed Forces families. A new classification method was successfully used to assign Registrar General's social classification to Armed Forces personnel. Comparison of the two study groups showed a significant difference in social class distribution (p = 0.0001). This study has devised a new method for classifying occupations within the Armed Forces to categories of social class thus permitting comparison with Registrar General's classification.
Transporter taxonomy - a comparison of different transport protein classification schemes.
Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F
2014-06-01
Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.
Cho, Youngsang; Seong, Joon-Kyung; Jeong, Yong; Shin, Sung Yong
2012-02-01
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Florian, Lani; Hollenweger, Judith; Simeonsson, Rune J.; Wedell, Klaus; Riddell, Sheila; Terzi, Lorella; Holland, Anthony
2006-01-01
This article is the first of a 2-part synthesis of an international seminar on the classification of children with disabilities. It synthesizes 6 papers that address broad questions relating to disability classification and categorization, cross-national comparisons on disability in education, the World Health Organization's "International…
Classification of proteins: available structural space for molecular modeling.
Andreeva, Antonina
2012-01-01
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Classification for Estuarine Ecosystems: A Review and Comparison of Selected Classification Schemes
Estuarine scientists have devoted considerable effort to classifying coastal, estuarine and marine environments and their watersheds, for a variety of purposes. These classifications group systems with similarities – most often in physical and hydrodynamic properties – in order ...
An Evaluation of Feature Learning Methods for High Resolution Image Classification
NASA Astrophysics Data System (ADS)
Tokarczyk, P.; Montoya, J.; Schindler, K.
2012-07-01
Automatic image classification is one of the fundamental problems of remote sensing research. The classification problem is even more challenging in high-resolution images of urban areas, where the objects are small and heterogeneous. Two questions arise, namely which features to extract from the raw sensor data to capture the local radiometry and image structure at each pixel or segment, and which classification method to apply to the feature vectors. While classifiers are nowadays well understood, selecting the right features remains a largely empirical process. Here we concentrate on the features. Several methods are evaluated which allow one to learn suitable features from unlabelled image data by analysing the image statistics. In a comparative study, we evaluate unsupervised feature learning with different linear and non-linear learning methods, including principal component analysis (PCA) and deep belief networks (DBN). We also compare these automatically learned features with popular choices of ad-hoc features including raw intensity values, standard combinations like the NDVI, a few PCA channels, and texture filters. The comparison is done in a unified framework using the same images, the target classes, reference data and a Random Forest classifier.
International hospital productivity comparison: experiences from the Nordic countries.
Medin, Emma; Häkkinen, Unto; Linna, Miika; Anthun, Kjartan S; Kittelsen, Sverre A C; Rehnberg, Clas
2013-09-01
This article focuses on describing the methodological challenges intrinsic in international comparative studies of hospital productivity and how these challenges have been addressed within the context of hospital comparisons in the Nordic countries. The hospital sectors in the Nordic countries are suitable for international comparison as they exhibit similar structures in the organisation for hospital care, hold administrative data of good quality at the hospital level, apply a similar secondary patient classification system, and use similar definitions of operating costs. The results of a number of studies have suggested marked differences in hospital cost efficiency and hospital productivity across the Nordic countries and the Finnish hospitals have the highest estimates in all the analyses. Explanatory factors that were tested and seemed to be of limited importance included institutional, structural and technical. A factor that is yet to be included in the Nordic hospital productivity comparison is the quality of care. Patient-level data available from linkable national registers in each country enable the development of quality indicators and will be included in the forthcoming hospital productivity studies within the context of the EuroHOPE (European health care outcomes, performance and efficiency) project. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu
2015-05-01
Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of artificial intelligence classifiers for SIP attack data
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Slachta, Jiri
2016-05-01
Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.
Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of approaches
The mode of toxic action (MOA) is recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, MOA classification has never been standardized in ecotoxicology, and a comprehensive comparison of classific...
33 CFR 67.01-15 - Classification of structures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Classification of structures. 67... AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements § 67.01-15 Classification of structures. (a) When will structures be assigned to a Class? The District...
NASA Astrophysics Data System (ADS)
Kotelnikov, E. V.; Milov, V. R.
2018-05-01
Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.
Merckel, Michael C; Huiskonen, Juha T; Bamford, Dennis H; Goldman, Adrian; Tuma, Roman
2005-04-15
Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.
2011-01-01
SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18 . NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 sampling is based on...atom distance-scaled ideal-gas reference state (DFIRE-AA) statistical potential func- tion.[ 18 ] The third approach is the Rosetta all-atom energy func
Using linear algebra for protein structural comparison and classification
2009-01-01
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532
Using linear algebra for protein structural comparison and classification.
Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo
2009-07-01
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
Orientation selectivity based structure for texture classification
NASA Astrophysics Data System (ADS)
Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu
2014-10-01
Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.
Siegfried, A; Delisle, M-B
2018-04-24
Medulloblastomas, embryonal neuroepithelial tumors developed in the cerebellum or brain stem, are mainly observed in childhood. The treatment of WHO-Grade IV tumors depends on stratifications that are usually based on postoperative data, histopathological subtype, tumor extension and presence of MYC or NMYC amplifications. Recently, molecular biology studies, based on new technologies (i.e. sequencing, transcriptomic, methylomic) have introduced genetic subtypes integrated into the latest WHO-2016 neuropathological classification. According to this classification, the three genetic groups WNT, SHH, with or without mutated TP53 gene, and non-WNT/non-SHH, comprising subgroups 3 and 4, are recalled in this review. The contribution of immunohistochemistry to define these groups is specified. The four histopathological groups are detailed in comparison to the WHO-2007 classification and the molecular data: classic medulloblastoma, desmoplastic/nodular medulloblastoma, medulloblastoma with extensive nodularity, and large cell/anaplastic medulloblastoma. The groups defined on genetic and histopathological grounds are not strictly concordant. Depending on the age of the patients, their correlations are different, as well as their role in the management and prognosis of these tumors. Other embryonal tumors, for which new classifications are in progress and gliomas may be confused with a medulloblastoma and the elements of the differential diagnosis of these entities are discussed. This evolution in classification fully justifies ongoing structuring procedures such as histopathological review (RENOCLIP) and the organization of molecular biology platforms. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Merrett, Christopher E.
This guide to the theory and practice of map classification begins with a discussion of the filing of maps and the function of map classification based on area and theme as illustrated by four maps of Africa. The description of the various classification systems which follows is divided into book schemes with provision for maps (including Dewey…
Aragona, Massimiliano
2013-06-01
Recent research suggests that the DSM psychiatric classification is in a paradigmatic crisis and that the DSM-5 will be unable to overcome it. One possible reason is that the DSM is based on a neopositivist epistemology which is inadequate for the present-day needs of psychopathology. However, in which sense is the DSM a neopositivist system? This paper will explore the theoretical similarities between the DSM structure and the neopositivist basic assumptions. It is shown that the DSM has the following neopositivist features: (a) a sharp distinction between scientific and non-scientific diagnoses; (b) the exclusion of the latter as nonsensical; (c) the faith on the existence of a purely observable basis (the description of reliable symptoms); (d) the introduction of the operative diagnostic criteria as rules of correspondence linking the observational level to the diagnostic concept.
Hilbert, Kevin; Lueken, Ulrike; Muehlhan, Markus; Beesdo-Baum, Katja
2017-03-01
Generalized anxiety disorder (GAD) is difficult to recognize and hard to separate from major depression (MD) in clinical settings. Biomarkers might support diagnostic decisions. This study used machine learning on multimodal biobehavioral data from a sample of GAD, MD and healthy subjects to differentiate subjects with a disorder from healthy subjects (case-classification) and to differentiate GAD from MD (disorder-classification). Subjects with GAD ( n = 19), MD without GAD ( n = 14), and healthy comparison subjects ( n = 24) were included. The sample was matched regarding age, sex, handedness and education and free of psychopharmacological medication. Binary support vector machines were used within a nested leave-one-out cross-validation framework. Clinical questionnaires, cortisol release, gray matter (GM), and white matter (WM) volumes were used as input data separately and in combination. Questionnaire data were well-suited for case-classification but not disorder-classification (accuracies: 96.40%, p < .001; 56.58%, p > .22). The opposite pattern was found for imaging data (case-classification GM/WM: 58.71%, p = .09/43.18%, p > .66; disorder-classification GM/WM: 68.05%, p = .034/58.27%, p > .15) and for cortisol data (38.02%, p = .84; 74.60%, p = .009). All data combined achieved 90.10% accuracy ( p < .001) for case-classification and 67.46% accuracy ( p = .0268) for disorder-classification. In line with previous evidence, classification of GAD was difficult using clinical questionnaire data alone. Particularly cortisol and GM volume data were able to provide incremental value for the classification of GAD. Findings suggest that neurobiological biomarkers are a useful target for further research to delineate their potential contribution to diagnostic processes.
Structural health monitoring feature design by genetic programming
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2014-09-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
Brain medical image diagnosis based on corners with importance-values.
Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao
2017-11-21
Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity calculation method for brain image classification. Experimental results on two brain image sets show the proposed corner-based brain medical image classifier outperforms the state-of-the-art studies.
NASA Astrophysics Data System (ADS)
Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia
2018-03-01
Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.
[CT morphometry for calcaneal fractures and comparison of the Zwipp and Sanders classifications].
Andermahr, J; Jesch, A B; Helling, H J; Jubel, A; Fischbach, R; Rehm, K E
2002-01-01
The aim of the study is to correlate the CT-morphological changes of fractured calcaneus and the classifications of Zwipp and Sanders with the clinical outcome. In a retrospective clinical study, the preoperative CT scans of 75 calcaneal fractures were analysed. The morphometry of the fractures was determined by measuring height, length diameter and calcaneo-cuboidal angle in comparison to the intact contralateral side. At a mean of 38 months after trauma 44 patients were clinically followed-up. The data of CT image morphometry were correlated with the severity of fracture classified by Zwipp or Sanders as well as with the functional outcome. There was a good correlation between the fracture classifications and the morphometric data. Both fracture classifying systems have a predictive impact for functional outcome. The more exacting and accurate Zwipp classification considers the most important cofactors like involvement of the calcaneo-cuboidal joint, soft tissue damage, additional fractures etc. The Sanders classification is easier to use during clinical routine. The Zwipp classification includes more relevant cofactors (fracture of the calcaneo-cuboidal-joint, soft tissue swelling, etc.) and presents a higher correlation to the choice of therapy. Both classification systems present a prognostic impact concerning the clinical outcome.
Tensor Fukunaga-Koontz transform for small target detection in infrared images
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli
2016-09-01
Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.
NASA Astrophysics Data System (ADS)
Giraldo, Diana L.; García-Arteaga, Juan D.; Romero, Eduardo
2016-03-01
Initial diagnosis of Alzheimer's disease (AD) is based on the patient's clinical history and a battery of neuropsy-chological tests. This work presents an automatic strategy that uses Structural Magnetic Resonance Imaging (MRI) to learn brain models for different stages of the disease using information from clinical assessments. Then, a comparison of the discriminant power of the models in different anatomical areas is made by using the brain region of the models as a reference frame for the classification problem, by using the projection into the AD model a Receiver Operating Characteristic (ROC) curve is constructed. Validation was performed using a leave- one-out scheme with 86 subjects (20 AD and 60 NC) from the Open Access Series of Imaging Studies (OASIS) database. The region with the best classification performance was the left amygdala where it is possible to achieve a sensibility and specificity of 85% at the same time. The regions with the best performance, in terms of the AUC, are in strong agreement with those described as important for the diagnosis of AD in clinical practice.
NASA Technical Reports Server (NTRS)
Justice, C.; Townshend, J. (Principal Investigator)
1981-01-01
Two unsupervised classification procedures were applied to ratioed and unratioed LANDSAT multispectral scanner data of an area of spatially complex vegetation and terrain. An objective accuracy assessment was undertaken on each classification and comparison was made of the classification accuracies. The two unsupervised procedures use the same clustering algorithm. By on procedure the entire area is clustered and by the other a representative sample of the area is clustered and the resulting statistics are extrapolated to the remaining area using a maximum likelihood classifier. Explanation is given of the major steps in the classification procedures including image preprocessing; classification; interpretation of cluster classes; and accuracy assessment. Of the four classifications undertaken, the monocluster block approach on the unratioed data gave the highest accuracy of 80% for five coarse cover classes. This accuracy was increased to 84% by applying a 3 x 3 contextual filter to the classified image. A detailed description and partial explanation is provided for the major misclassification. The classification of the unratioed data produced higher percentage accuracies than for the ratioed data and the monocluster block approach gave higher accuracies than clustering the entire area. The moncluster block approach was additionally the most economical in terms of computing time.
Strength Analysis on Ship Ladder Using Finite Element Method
NASA Astrophysics Data System (ADS)
Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.
2018-01-01
In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.
This study examined inter-analyst classification variability based on training site signature selection only for six classifications from a 10 km2 Landsat ETM+ image centered over a highly heterogeneous area in south-central Virginia. Six analysts classified the image...
ERIC Educational Resources Information Center
Plante, Jarrad D.; Cox, Thomas D.
2016-01-01
Service-learning has a longstanding history in higher education in and includes three main tenets: academic learning, meaningful community service, and civic learning. The Carnegie Foundation for the Advancement of Teaching created an elective classification system called the Carnegie Community Engagement Classification for higher education…
John Hogland; Nedret Billor; Nathaniel Anderson
2013-01-01
Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...
Children's use of comparison and function in novel object categorization.
Kimura, Katherine; Hunley, Samuel B; Namy, Laura L
2018-06-01
Although young children often rely on salient perceptual cues, such as shape, when categorizing novel objects, children eventually shift towards deeper relational reasoning about category membership. This study investigates what information young children use to classify novel instances of familiar categories. Specifically, we investigated two sources of information that have the potential to facilitate the classification of novel exemplars: (1) comparison of familiar category instances, and (2) attention to function information that might direct children's attention to functionally relevant perceptual features. Across two experiments, we found that comparing two perceptually similar category members-particularly when function information was also highlighted-led children to discover non-obvious relational features that supported their categorization of novel category instances. Together, these findings demonstrate that comparison may aid in novel object categorization by heightening the salience of less obvious, yet functionally relevant, relational structures that support conceptual reasoning. Copyright © 2018. Published by Elsevier Inc.
Multiple-rule bias in the comparison of classification rules
Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.
2011-01-01
Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390
Classification Accuracy Increase Using Multisensor Data Fusion
NASA Astrophysics Data System (ADS)
Makarau, A.; Palubinskas, G.; Reinartz, P.
2011-09-01
The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.
Zhan, Liang; Zhou, Jiayu; Wang, Yalin; Jin, Yan; Jahanshad, Neda; Prasad, Gautam; Nir, Talia M.; Leonardo, Cassandra D.; Ye, Jieping; Thompson, Paul M.; for the Alzheimer’s Disease Neuroimaging Initiative
2015-01-01
Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification. PMID:25926791
Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés
2016-07-15
Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.
Bào, Yīmíng; Kuhn, Jens H
2018-01-01
During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.
Tanno, L K; Calderon, M A; Goldberg, B J; Gayraud, J; Bircher, A J; Casale, T; Li, J; Sanchez-Borges, M; Rosenwasser, L J; Pawankar, R; Papadopoulos, N G; Demoly, P
2015-06-01
The global allergy community strongly believes that the 11th revision of the International Classification of Diseases (ICD-11) offers a unique opportunity to improve the classification and coding of hypersensitivity/allergic diseases via inclusion of a specific chapter dedicated to this disease area to facilitate epidemiological studies, as well as to evaluate the true size of the allergy epidemic. In this context, an international collaboration has decided to revise the classification of hypersensitivity/allergic diseases and to validate it for ICD-11 by crowdsourcing the allergist community. After careful comparison between ICD-10 and 11 beta phase linearization codes, we identified gaps and trade-offs allowing us to construct a classification proposal, which was sent to the European Academy of Allergy and Clinical Immunology (EAACI) sections, interest groups, executive committee as well as the World Allergy Organization (WAO), and American Academy of Allergy Asthma and Immunology (AAAAI) leaderships. The crowdsourcing process produced comments from 50 of 171 members contacted by e-mail. The classification proposal has also been discussed at face-to-face meetings with experts of EAACI sections and interest groups and presented in a number of business meetings during the 2014 EAACI annual congress in Copenhagen. As a result, a high-level complex structure of classification for hypersensitivity/allergic diseases has been constructed. The model proposed has been presented to the WHO groups in charge of the ICD revision. The international collaboration of allergy experts appreciates bilateral discussion and aims to get endorsement of their proposals for the final ICD-11. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tanno, Luciana Kase; Calderon, Moises A; Goldberg, Bruce J; Akdis, Cezmi A; Papadopoulos, Nikolaos G; Demoly, Pascal
2014-01-01
Although efforts to improve the classification of hypersensitivity/allergic diseases have been made, they have not been considered a top-level category in the International Classification of Diseases (ICD)-10 and still are not in the ICD-11 beta phase linearization. ICD-10 is the most used classification system by the allergy community worldwide but it is not considered as appropriate for clinical practice. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) on the other hand contains a tightly integrated classification of hypersensitivity/allergic disorders based on the EAACI/WAO nomenclature and the World Health Organization (WHO) may plan to align ICD-11 with SNOMED CT so that they share a common ontological basis. With the aim of actively supporting the ongoing ICD-11 revision and the optimal practice of Allergology, we performed a careful comparison of ICD-10 and 11 beta phase linearization codes to identify gaps, areas of regression in allergy coding and possibly reach solutions, in collaboration with committees in charge of the ICD-11 revision. We have found a significant degree of misclassification of terms in the allergy-related hierarchies. This stems not only from unclear definitions of these conditions but also the use of common names that falsely imply allergy. The lack of understanding of the immune mechanisms underlying some of the conditions contributes to the difficulty in classification. More than providing data to support specific changes into the ongoing linearization, these results highlight the need for either a new chapter entitled Hypersensitivity/Allergic Disorders as in SNOMED CT or a high level structure in the Immunology chapter in order to make classification more appropriate and usable.
ECOD: An Evolutionary Classification of Protein Domains
Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.
2014-01-01
Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468
ECOD: an evolutionary classification of protein domains.
Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V
2014-12-01
Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.
Experimental Data and Guidelines for Stone Masonry Structures: a Comparative Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, Alessandra
2008-07-08
Indications about the mechanical properties of masonry structures contained in many Italian guidelines are based on different aspects both concerning the constituents material (units and mortar) and their assemblage. Indeed, the documents define different classes (depending on the type, the arrangement and the unit properties) and suggest the use of amplification coefficients for taking into account the influence of different factors on the mechanical properties of masonry. In this paper, a critical discussion about the indications proposed by some Italian guidelines for stone masonry structures is presented. Particular attention is addressed to the classification criteria of the masonry type andmore » to the choice of the amplification factors. Finally, a detailed analytical comparison among the suggested values and some inherent experimental data recently published is performed.« less
ERIC Educational Resources Information Center
Kim, Jiseon
2010-01-01
Classification testing has been widely used to make categorical decisions by determining whether an examinee has a certain degree of ability required by established standards. As computer technologies have developed, classification testing has become more computerized. Several approaches have been proposed and investigated in the context of…
Exhaustive comparison and classification of ligand-binding surfaces in proteins
Murakami, Yoichi; Kinoshita, Kengo; Kinjo, Akira R; Nakamura, Haruki
2013-01-01
Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we classified the patches into ∼2000 well-characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes. PMID:23934772
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
"Classification Structures for Career Information" was created to provide Career Information Delivery Systems (CIDS) staff with pertinent and useful occupational information arranged according to the Standard Occupational Classification (SOC) structure. Through this publication, the National Occupational Information Coordinating…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
"Classification Structures for Career Information" was created to provide Career Information Delivery Systems (CIDS) staff with pertinent and useful occupational information arranged according to the Standard Occupational Classification (SOC) structure. Through this publication, the National Occupational Information Coordinating…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
"Classification Structures for Career Information" was created to provide Career Information Delivery Systems (CIDS) staff with pertinent and useful occupational information arranged according to the Standard Occupational Classification (SOC) structure. Through this publication, the National Occupational Information Coordinating…
graphkernels: R and Python packages for graph comparison
Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-01-01
Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
Dimensional models of personality: the five-factor model and the DSM-5
Trull, Timothy J.; Widiger, Thomas A.
2013-01-01
It is evident that the classification of personality disorder is shifting toward a dimensional trait model and, more specifically, the five-factor model (FFM). The purpose of this paper is to provide an overview of the FFM of personality disorder. It will begin with a description of this dimensional model of normal and abnormal personality functioning, followed by a comparison with a proposal for future revisions to DSM-5 and a discussion of its potential advantages as an integrative hierarchical model of normal and abnormal personality structure. PMID:24174888
[Landscape classification: research progress and development trend].
Liang, Fa-Chao; Liu, Li-Ming
2011-06-01
Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.
Lebo, Matthew S; Zakoor, Kathleen-Rose; Chun, Kathy; Speevak, Marsha D; Waye, John S; McCready, Elizabeth; Parboosingh, Jillian S; Lamont, Ryan E; Feilotter, Harriet; Bosdet, Ian; Tucker, Tracy; Young, Sean; Karsan, Aly; Charames, George S; Agatep, Ronald; Spriggs, Elizabeth L; Chisholm, Caitlin; Vasli, Nasim; Daoud, Hussein; Jarinova, Olga; Tomaszewski, Robert; Hume, Stacey; Taylor, Sherryl; Akbari, Mohammad R; Lerner-Ellis, Jordan
2018-03-01
PurposeThe purpose of this study was to develop a national program for Canadian diagnostic laboratories to compare DNA-variant interpretations and resolve discordant-variant classifications using the BRCA1 and BRCA2 genes as a case study.MethodsBRCA1 and BRCA2 variant data were uploaded and shared through the Canadian Open Genetics Repository (COGR; http://www.opengenetics.ca). A total of 5,554 variant observations were submitted; classification differences were identified and comparison reports were sent to participating laboratories. Each site had the opportunity to reclassify variants. The data were analyzed before and after the comparison report process to track concordant- or discordant-variant classifications by three different models.ResultsVariant-discordance rates varied by classification model: 38.9% of variants were discordant when using a five-tier model, 26.7% with a three-tier model, and 5.0% with a two-tier model. After the comparison report process, the proportion of discordant variants dropped to 30.7% with the five-tier model, to 14.2% with the three-tier model, and to 0.9% using the two-tier model.ConclusionWe present a Canadian interinstitutional quality improvement program for DNA-variant interpretations. Sharing of variant knowledge by clinical diagnostic laboratories will allow clinicians and patients to make more informed decisions and lead to better patient outcomes.
Learning about the internal structure of categories through classification and feature inference.
Jee, Benjamin D; Wiley, Jennifer
2014-01-01
Previous research on category learning has found that classification tasks produce representations that are skewed toward diagnostic feature dimensions, whereas feature inference tasks lead to richer representations of within-category structure. Yet, prior studies often measure category knowledge through tasks that involve identifying only the typical features of a category. This neglects an important aspect of a category's internal structure: how typical and atypical features are distributed within a category. The present experiments tested the hypothesis that inference learning results in richer knowledge of internal category structure than classification learning. We introduced several new measures to probe learners' representations of within-category structure. Experiment 1 found that participants in the inference condition learned and used a wider range of feature dimensions than classification learners. Classification learners, however, were more sensitive to the presence of atypical features within categories. Experiment 2 provided converging evidence that classification learners were more likely to incorporate atypical features into their representations. Inference learners were less likely to encode atypical category features, even in a "partial inference" condition that focused learners' attention on the feature dimensions relevant to classification. Overall, these results are contrary to the hypothesis that inference learning produces superior knowledge of within-category structure. Although inference learning promoted representations that included a broad range of category-typical features, classification learning promoted greater sensitivity to the distribution of typical and atypical features within categories.
Review article: A systematic review of emergency department incident classification frameworks.
Murray, Matthew; McCarthy, Sally
2018-06-01
As in any part of the hospital system, safety incidents can occur in the ED. These incidents arguably have a distinct character, as the ED involves unscheduled flows of urgent patients who require disparate services. To aid understanding of safety issues and support risk management of the ED, a comparison of published ED specific incident classification frameworks was performed. A review of emergency medicine, health management and general medical publications, using Ovid SP to interrogate Medline (1976-2016) was undertaken to identify any type of taxonomy or classification-like framework for ED related incidents. These frameworks were then analysed and compared. The review identified 17 publications containing an incident classification framework. Comparison of factors and themes making up the classification constituent elements revealed some commonality, but no overall consistency, nor evolution towards an ideal framework. Inconsistency arises from differences in the evidential basis and design methodology of classifications, with design itself being an inherently subjective process. It was not possible to identify an 'ideal' incident classification framework for ED risk management, and there is significant variation in the selection of categories used by frameworks. The variation in classification could risk an unbalanced emphasis in findings through application of a particular framework. Design of an ED specific, ideal incident classification framework should be informed by a much wider range of theories of how organisations and systems work, in addition to clinical and human factors. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
CnidBase: The Cnidarian Evolutionary Genomics Database
Ryan, Joseph F.; Finnerty, John R.
2003-01-01
CnidBase, the Cnidarian Evolutionary Genomics Database, is a tool for investigating the evolutionary, developmental and ecological factors that affect gene expression and gene function in cnidarians. In turn, CnidBase will help to illuminate the role of specific genes in shaping cnidarian biodiversity in the present day and in the distant past. CnidBase highlights evolutionary changes between species within the phylum Cnidaria and structures genomic and expression data to facilitate comparisons to non-cnidarian metazoans. CnidBase aims to further the progress that has already been made in the realm of cnidarian evolutionary genomics by creating a central community resource which will help drive future research and facilitate more accurate classification and comparison of new experimental data with existing data. CnidBase is available at http://cnidbase.bu.edu/. PMID:12519972
Comparison of six fire severity classification methods using Montana and Washington wildland fires
Pamela G. Sikkink
2015-01-01
Fire severity classifications are used in the post-fire environment to describe fire effects, such as soil alteration or fuel consumption, on the forest floor. Most of the developed classifications are limited because they address very specific fire effects or post-burn characteristics in the burned environment. However, because fire effects vary so much among soil,...
Yong Wang; Shanta Parajuli; Callie Schweitzer; Glendon Smalley; Dawn Lemke; Wubishet Tadesse; Xiongwen Chen
2010-01-01
Forest cover classifications focus on the overall growth form (physiognomy) of the community, dominant vegetation, and species composition of the existing forest. Accurately classifying the forest cover type is important for forest inventory and silviculture. We compared classification accuracy based on Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) and Satellite...
Elizabeth A. Freeman; Gretchen G. Moisen
2008-01-01
Modelling techniques used in binary classification problems often result in a predicted probability surface, which is then translated into a presence - absence classification map. However, this translation requires a (possibly subjective) choice of threshold above which the variable of interest is predicted to be present. The selection of this threshold value can have...
Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics
NASA Technical Reports Server (NTRS)
Bankert, Richard L.; Mitrescu, Cristian; Miller, Steven D.; Wade, Robert H.
2009-01-01
Cloud-type classification based on multispectral satellite imagery data has been widely researched and demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research described here is a comparison of the classifier output from two very different algorithms applied to Geostationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm employs spectral channel thresholding and additional physically based tests. The second algorithm was developed through a supervised learning method with characteristic features of expertly labeled image samples used as training data for a 1-nearest-neighbor classification. The latter's ability to identify classes is also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean. Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other postprocessing system that combines the output from the two algorithms could provide the most reliable cloud-type classification.
Van Eerdenbrugh, Bernard; Baird, Jared A; Taylor, Lynne S
2010-09-01
In this study, the crystallization behavior of a variety of compounds was studied following rapid solvent evaporation using spin coating. Initial screening to determine model compound suitability was performed using a structurally diverse set of 51 compounds in three different solvent systems [dichloromethane (DCM), a 1:1 (w/w) dichloromethane/ethanol mixture (MIX), and ethanol (EtOH)]. Of this starting set of 153 drug-solvent combinations, 93 (40 compounds) were selected for further evaluation based on solubility, chemical solution stability, and processability criteria. These systems were spin coated and their crystallization was monitored using polarized light microscopy (7 days, dry conditions). The crystallization behavior of the samples could be classified as rapid (Class I: 39 cases), intermediate (Class II: 23 cases), or slow (Class III: 31 cases). The solvent system employed influenced the classification outcome for only four of the compounds. The various compounds showed very diverse crystallization behavior. Upon comparison of classification results with those of a previous study, where cooling from the melt was used as a preparation technique, a good similarity was found whereby 68% of the cases were identically classified. Multivariate analysis was performed using a set of relevant physicochemical compound characteristics. It was found that a number of these parameters tended to differ between the different classes. These could be further interpreted in terms of the nature of the crystallization process. Additional multivariate analysis on the separate classes of compounds indicated some potential in predicting the crystallization tendency of a given compound.
From comparison to classification: a cortical tool for boosting perception.
Nahum, Mor; Daikhin, Luba; Lubin, Yedida; Cohen, Yamit; Ahissar, Merav
2010-01-20
Humans are much better in relative than in absolute judgments. This common assertion is based on findings that discrimination thresholds are much lower when measured with methods that allow interstimuli comparisons than when measured with methods that require classification of one stimulus at a time and are hence sensitive to memory load. We now challenged this notion by measuring discrimination thresholds and evoked potentials while listeners performed a two-tone frequency discrimination task. We tested various protocols that differed in the pattern of cross-trial tone repetition. We found that best performance was achieved only when listeners effectively used cross-trial repetition to avoid interstimulus comparisons with the repeated reference tone. Instead, they classified one tone, the nonreference tone, as either high or low by comparing it with a recently formed internal reference. Listeners were not aware of the switch from interstimulus comparison to classification. Its successful use was revealed by the conjunction of improved behavioral performance and an event-related potential component (P3), indicating an implicit perceptual decision, which followed the nonreference tone in each trial. Interestingly, tone repetition itself did not suffice for the switch, implying that the bottleneck to discrimination does not reside at the lower, sensory stage. Rather, the temporal consistency of repetition was important, suggesting the involvement of higher-level mechanisms with longer time constants. These findings suggest that classification is based on more automatic and accurate mechanisms than interstimulus comparisons and that the ability to effectively use them depends on a dynamic interplay between higher- and lower-level cortical mechanisms.
Hierarchical structure for audio-video based semantic classification of sports video sequences
NASA Astrophysics Data System (ADS)
Kolekar, M. H.; Sengupta, S.
2005-07-01
A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.
The value of protein structure classification information-Surveying the scientific literature
Fox, Naomi K.; Brenner, Steven E.; Chandonia, John -Marc
2015-08-27
The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP-extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012-2013 that cite SCOP, 439 actually use data from themore » resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non-SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings.« less
The value of protein structure classification information-Surveying the scientific literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Naomi K.; Brenner, Steven E.; Chandonia, John -Marc
The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP-extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012-2013 that cite SCOP, 439 actually use data from themore » resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non-SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings.« less
Comparison of Sub-pixel Classification Approaches for Crop-specific Mapping
The Moderate Resolution Imaging Spectroradiometer (MODIS) data has been increasingly used for crop mapping and other agricultural applications. Phenology-based classification approaches using the NDVI (Normalized Difference Vegetation Index) 16-day composite (250 m) data product...
A Model Comparison for Characterizing Protein Motions from Structure
NASA Astrophysics Data System (ADS)
David, Charles; Jacobs, Donald
2011-10-01
A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.
J-Plus: Morphological Classification Of Compact And Extended Sources By Pdf Analysis
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Vázquez-Ramió, H.; Varela, J.; Spinoso, D.; Cristóbal-Hornillos, D.; Viironen, K.; Muniesa, D.; J-PLUS Collaboration
2017-10-01
We present a morphological classification of J-PLUS EDR sources into compact (i.e. stars) and extended (i.e. galaxies). Such classification is based on the Bayesian modelling of the concentration distribution, including observational errors and magnitude + sky position priors. We provide the star / galaxy probability of each source computed from the gri images. The comparison with the SDSS number counts support our classification up to r 21. The 31.7 deg² analised comprises 150k stars and 101k galaxies.
The value of protein structure classification information—Surveying the scientific literature
Fox, Naomi K.; Brenner, Steven E.
2015-01-01
ABSTRACT The Structural Classification of Proteins (SCOP) and Class, Architecture, Topology, Homology (CATH) databases have been valuable resources for protein structure classification for over 20 years. Development of SCOP (version 1) concluded in June 2009 with SCOP 1.75. The SCOPe (SCOP–extended) database offers continued development of the classic SCOP hierarchy, adding over 33,000 structures. We have attempted to assess the impact of these two decade old resources and guide future development. To this end, we surveyed recent articles to learn how structure classification data are used. Of 571 articles published in 2012–2013 that cite SCOP, 439 actually use data from the resource. We found that the type of use was fairly evenly distributed among four top categories: A) study protein structure or evolution (27% of articles), B) train and/or benchmark algorithms (28% of articles), C) augment non‐SCOP datasets with SCOP classification (21% of articles), and D) examine the classification of one protein/a small set of proteins (22% of articles). Most articles described computational research, although 11% described purely experimental research, and a further 9% included both. We examined how CATH and SCOP were used in 158 articles that cited both databases: while some studies used only one dataset, the majority used data from both resources. Protein structure classification remains highly relevant for a diverse range of problems and settings. Proteins 2015; 83:2025–2038. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26313554
Zubieta, Chloe; Joseph, Rosanne; Krishna, S Sri; McMullan, Daniel; Kapoor, Mili; Axelrod, Herbert L; Miller, Mitchell D; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C; Duan, Lian; Elias, Ylva; Elsliger, Marc-André; Feuerhelm, Julie; Grzechnik, Slawomir K; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Kumar, Abhinav; Marciano, David; Morse, Andrew T; Murphy, Kevin D; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L; Schimmel, Paul; Trout, Christina V; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A
2007-11-01
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases. (c) 2007 Wiley-Liss, Inc.
Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.
1983-01-01
The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.
Stromatolites of the Belt Series in Glacier National Park and Vicinity, Montana
Rezak, Richard
1957-01-01
Eight zones of Precambrian stromatolites that are useful for local correlation are recognized in the Belt series of the Glacier National Park region, Montana. The zones vary in composition, thickness, and areal extent. Some are widespread and extend into neighboring regions, and others occur only in small areas. Their names are taken from the dominant species that occurs in each zone. The zones are, from youngest to oldest - Conophyton zone 2 Missoula group Collenia symmetrica zone 2 Collenia undosa zone 2 Collenia multiflabella zone Piegan group Conophyton zone 1 Collenia symmetrica zone 1 Collenia undosa zone 1 Ravalli group Collenia frequens zone Only the Conophyton zones have been mapped in the park area. The present study uses a classification based upon the three criteria of (1) mode of growth, (2) gross form of the colony, and (3) nature and orientation of the laminae. The scheme of classification also seems applicable to Paleozoic and later stromatolites. Possibly a consistent pattern of form-genera and form-species may be developed. Four form-genera and seven form-species are recognized in the Belt series of the park region. These are Cryptozoon occidentale Dawson, Collenia undosa Walcott, C. frequens Walcott, C. symmetrica Fenton and Fenton, Newlandia sp., and Conophyton inclinatum n. sp. It is realized that these structures should not be classified according to biological nomenclature. However, biological names are here applied to the structures until a suitable system of classification can be devised. Comparisons of the stromatolites of the Belt series with modern stromatolites on Andros Island, Bahama Islands, and Pleistocene stromatolites from Lake Lahonton, Nev., reveal similarities in structure that appear to be significant as to physical mode of origin.
Kalpathy-Cramer, Jayashree; Campbell, J Peter; Erdogmus, Deniz; Tian, Peng; Kedarisetti, Dharanish; Moleta, Chace; Reynolds, James D; Hutcheson, Kelly; Shapiro, Michael J; Repka, Michael X; Ferrone, Philip; Drenser, Kimberly; Horowitz, Jason; Sonmez, Kemal; Swan, Ryan; Ostmo, Susan; Jonas, Karyn E; Chan, R V Paul; Chiang, Michael F
2016-11-01
To determine expert agreement on relative retinopathy of prematurity (ROP) disease severity and whether computer-based image analysis can model relative disease severity, and to propose consideration of a more continuous severity score for ROP. We developed 2 databases of clinical images of varying disease severity (100 images and 34 images) as part of the Imaging and Informatics in ROP (i-ROP) cohort study and recruited expert physician, nonexpert physician, and nonphysician graders to classify and perform pairwise comparisons on both databases. Six participating expert ROP clinician-scientists, each with a minimum of 10 years of clinical ROP experience and 5 ROP publications, and 5 image graders (3 physicians and 2 nonphysician graders) who analyzed images that were obtained during routine ROP screening in neonatal intensive care units. Images in both databases were ranked by average disease classification (classification ranking), by pairwise comparison using the Elo rating method (comparison ranking), and by correlation with the i-ROP computer-based image analysis system. Interexpert agreement (weighted κ statistic) compared with the correlation coefficient (CC) between experts on pairwise comparisons and correlation between expert rankings and computer-based image analysis modeling. There was variable interexpert agreement on diagnostic classification of disease (plus, preplus, or normal) among the 6 experts (mean weighted κ, 0.27; range, 0.06-0.63), but good correlation between experts on comparison ranking of disease severity (mean CC, 0.84; range, 0.74-0.93) on the set of 34 images. Comparison ranking provided a severity ranking that was in good agreement with ranking obtained by classification ranking (CC, 0.92). Comparison ranking on the larger dataset by both expert and nonexpert graders demonstrated good correlation (mean CC, 0.97; range, 0.95-0.98). The i-ROP system was able to model this continuous severity with good correlation (CC, 0.86). Experts diagnose plus disease on a continuum, with poor absolute agreement on classification but good relative agreement on disease severity. These results suggest that the use of pairwise rankings and a continuous severity score, such as that provided by the i-ROP system, may improve agreement on disease severity in the future. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Tamboer, P; Vorst, H C M; Ghebreab, S; Scholte, H S
2016-01-01
Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique--support vector machine--to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18-21 years), a classification performance of 80% (p < 0.001; d-prime = 1.67) was achieved on the basis of differences in gray matter (sensitivity 82%, specificity 78%). The voxels that were most reliable for classification were found in the left occipital fusiform gyrus (LOFG), in the right occipital fusiform gyrus (ROFG), and in the left inferior parietal lobule (LIPL). Additionally, we found that classification certainty (e.g. the percentage of times a subject was correctly classified) correlated with severity of dyslexia (r = 0.47). Furthermore, various significant correlations were found between the three anatomical regions and behavioural measures of spelling, phonology and whole-word-reading. No correlations were found with behavioural measures of short-term memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology. In a second and independent sample of 876 young adults of a general population, the trained classifier of the first sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in classification performance resulted from a large percentage of false alarms. This study provided support for the use of machine learning in anatomical brain imaging.
Lin, Yi; Jiang, Miao; Pellikka, Petri; Heiskanen, Janne
2018-01-01
Mensuration of tree growth habits is of considerable importance for understanding forest ecosystem processes and forest biophysical responses to climate changes. However, the complexity of tree crown morphology that is typically formed after many years of growth tends to render it a non-trivial task, even for the state-of-the-art 3D forest mapping technology-light detection and ranging (LiDAR). Fortunately, botanists have deduced the large structural diversity of tree forms into only a limited number of tree architecture models, which can present a-priori knowledge about tree structure, growth, and other attributes for different species. This study attempted to recruit Hallé architecture models (HAMs) into LiDAR mapping to investigate tree growth habits in structure. First, following the HAM-characterized tree structure organization rules, we run the kernel procedure of tree species classification based on the LiDAR-collected point clouds using a support vector machine classifier in the leave-one-out-for-cross-validation mode. Then, the HAM corresponding to each of the classified tree species was identified based on expert knowledge, assisted by the comparison of the LiDAR-derived feature parameters. Next, the tree growth habits in structure for each of the tree species were derived from the determined HAM. In the case of four tree species growing in the boreal environment, the tests indicated that the classification accuracy reached 85.0%, and their growth habits could be derived by qualitative and quantitative means. Overall, the strategy of recruiting conventional HAMs into LiDAR mapping for investigating tree growth habits in structure was validated, thereby paving a new way for efficiently reflecting tree growth habits and projecting forest structure dynamics.
Lin, Yi; Jiang, Miao; Pellikka, Petri; Heiskanen, Janne
2018-01-01
Mensuration of tree growth habits is of considerable importance for understanding forest ecosystem processes and forest biophysical responses to climate changes. However, the complexity of tree crown morphology that is typically formed after many years of growth tends to render it a non-trivial task, even for the state-of-the-art 3D forest mapping technology—light detection and ranging (LiDAR). Fortunately, botanists have deduced the large structural diversity of tree forms into only a limited number of tree architecture models, which can present a-priori knowledge about tree structure, growth, and other attributes for different species. This study attempted to recruit Hallé architecture models (HAMs) into LiDAR mapping to investigate tree growth habits in structure. First, following the HAM-characterized tree structure organization rules, we run the kernel procedure of tree species classification based on the LiDAR-collected point clouds using a support vector machine classifier in the leave-one-out-for-cross-validation mode. Then, the HAM corresponding to each of the classified tree species was identified based on expert knowledge, assisted by the comparison of the LiDAR-derived feature parameters. Next, the tree growth habits in structure for each of the tree species were derived from the determined HAM. In the case of four tree species growing in the boreal environment, the tests indicated that the classification accuracy reached 85.0%, and their growth habits could be derived by qualitative and quantitative means. Overall, the strategy of recruiting conventional HAMs into LiDAR mapping for investigating tree growth habits in structure was validated, thereby paving a new way for efficiently reflecting tree growth habits and projecting forest structure dynamics. PMID:29515616
Janssen, Simone; Schmidt, Sabine
2009-07-01
The perception of prosodic cues in human speech may be rooted in mechanisms common to mammals. The present study explores to what extent bats use rhythm and frequency, typically carrying prosodic information in human speech, for the classification of communication call series. Using a two-alternative, forced choice procedure, we trained Megaderma lyra to discriminate between synthetic contact call series differing in frequency, rhythm on level of calls and rhythm on level of call series, and measured the classification performance for stimuli differing in only one, or two, of the above parameters. A comparison with predictions from models based on one, combinations of two, or all, parameters revealed that the bats based their decision predominantly on frequency and in addition on rhythm on the level of call series, whereas rhythm on level of calls was not taken into account in this paradigm. Moreover, frequency and rhythm on the level of call series were evaluated independently. Our results show that parameters corresponding to prosodic cues in human languages are perceived and evaluated by bats. Thus, these necessary prerequisites for a communication via prosodic structures in mammals have evolved far before human speech.
Sanderson, Hans; Thomsen, Marianne
2009-06-01
Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.
Construction of an Yucatec Maya soil classification and comparison with the WRB framework
2010-01-01
Background Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Methods Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. Results On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. Conclusions The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols. PMID:20152047
Construction of an Yucatec Maya soil classification and comparison with the WRB framework.
Bautista, Francisco; Zinck, J Alfred
2010-02-13
Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.
Inter-class sparsity based discriminative least square regression.
Wen, Jie; Xu, Yong; Li, Zuoyong; Ma, Zhongli; Xu, Yuanrong
2018-06-01
Least square regression is a very popular supervised classification method. However, two main issues greatly limit its performance. The first one is that it only focuses on fitting the input features to the corresponding output labels while ignoring the correlations among samples. The second one is that the used label matrix, i.e., zero-one label matrix is inappropriate for classification. To solve these problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity based discriminative least square regression (ICS_DLSR), for multi-class classification. Different from other methods, the proposed method pursues that the transformed samples have a common sparsity structure in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression model such that the margins of samples from the same class can be greatly reduced while those of samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint is introduced to relax the strict zero-one label matrix, which allows the method to be more flexible in learning the discriminative transformation matrix. These factors encourage the method to learn a more compact and discriminative transformation for regression and thus has the potential to perform better than other methods. Extensive experimental results show that the proposed method achieves the best performance in comparison with other methods for multi-class classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza
2017-04-01
Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.
2014-10-01
In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.
Gold, Nicola D; Jackson, Richard M
2006-02-03
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.
Atmospheric circulation classification comparison based on wildfires in Portugal
NASA Astrophysics Data System (ADS)
Pereira, M. G.; Trigo, R. M.
2009-04-01
Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological variables. To achieve these objectives we consider the main classifications for Iberia developed within the framework of COST action 733 (Radan Huth et al., 2008). This European project aims to provide a wide range of atmospheric circulation classifications for Europe and sub-regions (http://www.cost733.org/) with an ambitious objective of assessing, comparing and classifying all relevant weather situations in Europe. Pereira et al. (2005) "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology,129, 11-25. Radan Huth et al. (2008) "Classifications of Atmospheric circulation patterns. Recent advances and applications". Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 105-152. doi: 10.1196/annals.1446.019. Trigo R.M., DaCamara C. (2000) "Circulation Weather Types and their impact on the precipitation regime in Portugal". Int J of Climatology, 20, 1559-1581.
Shamim, Thorakkal
2013-09-01
Iatrogenic lesions can affect both hard and soft tissues in the oral cavity, induced by the dentist's activity, manner or therapy. There is no approved simple working classification for the iatrogenic lesions of teeth and associated structures in the oral cavity in the literature. A simple working classification is proposed here for iatrogenic lesions of teeth and associated structures in the oral cavity based on its relation with dental specialities. The dental specialities considered in this classification are conservative dentistry and endodontics, orthodontics, oral and maxillofacial surgery and prosthodontics. This classification will be useful for the dental clinician who is dealing with diseases of oral cavity.
Comparison of two target classification techniques
NASA Astrophysics Data System (ADS)
Chen, J. S.; Walton, E. K.
1986-01-01
Radar target classification techniques based on backscatter measurements in the resonance region (1.0-20.0 MHz) are discussed. Attention is given to two novel methods currently being tested at the radar range of Ohio State University. The methods include: (1) the nearest neighbor (NN) algorithm for determining the radar cross section (RCS) magnitude and range corrected phase at various operating frequencies; and (2) an inverse Fourier transformation of the complex multifrequency radar returns of the time domain, followed by cross correlation analysis. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise ratio for different types of processing. The results of the comparison are discussed in detail.
NASA Astrophysics Data System (ADS)
Jürgens, Björn; Herrero-Solana, Victor
2017-04-01
Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.
Testing Multilateral Comparisons in Africa.
ERIC Educational Resources Information Center
Bender, M. Lionel
In this paper, the multilateral comparison method of classifying languages is described and analyzed. It is suggested that while it is espoused as a simple and reasonable approach to language classification, the method has serious flaws. "Multilateral" or "mass" comparison (MC) is not a method of genetic language…
Comparison of different classification algorithms for underwater target discrimination.
Li, Donghui; Azimi-Sadjadi, Mahmood R; Robinson, Marc
2004-01-01
Classification of underwater targets from the acoustic backscattered signals is considered here. Several different classification algorithms are tested and benchmarked not only for their performance but also to gain insight to the properties of the feature space. Results on a wideband 80-kHz acoustic backscattered data set collected for six different objects are presented in terms of the receiver operating characteristic (ROC) and robustness of the classifiers wrt reverberation.
Post-treatment glenoid classification system for total shoulder arthroplasty.
Churchill, R Sean
2012-04-01
Over the past 10 years, numerous advancements in glenoid preparation and resurfacing have occurred. Current glenoid classification systems are either focused solely on the patient's preoperative glenoid bone configuration or on the available glenoid bone stock in revision arthroplasty cases. While these systems provide value in preoperative planning, they fail to properly classify the surgical reconstruction completed. A literature review of common bone preparation methods and sources of glenoid prosthetic failure was performed. Based upon this review, a classification system for grading the status of the glenoid after prosthetic implantation was developed. A 6 category, post-treatment, glenoid classification system is proposed: type 0: no reaming; type I: glenoid reaming into but not through the subchondral bone; type II: glenoid reaming which perforates through <50% of the subchondral bone surface area; type III: glenoid reaming which perforates through >50% of the subchondral bone surface area; type IV: use of structural bone graft; and type V: use of a posterior augmented glenoid prosthesis. Types I-III are further subdivided into subtype A which have 100% bone support of the prosthesis, and subtype B which have a region of unsupported prosthesis. The classification system proposed addresses the surgical management of the glenoid during prosthetic replacement. This unique approach to classifying the glenoid following surgical intervention will allow direct follow-up comparison of similarly treated glenoid replacements. Future multicenter studies, possibly through joint registry databases, could then determine the long-term efficacy of the various glenoid preparation methods. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.
2017-12-01
Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.
An Expert System for Classifying Stars on the MK Spectral Classification System
NASA Astrophysics Data System (ADS)
Corbally, Christopher J.; Gray, R. O.
2013-01-01
We will describe an expert computer system designed to classify stellar spectra on the MK Spectral Classification system employing methods similar to those of humans who make direct comparison with the MK classification standards. Like an expert human classifier, MKCLASS first comes up with a rough spectral type, and then refines that type by direct comparison with MK standards drawn from a standards library using spectral criteria appropriate to the spectral class. Certain common spectral-type peculiarities can also be detected by the program. The program is also capable of identifying WD spectra and carbon stars and giving appropriate (but currently approximate) spectral types on the relevant systems. We will show comparisons between spectral types (including luminosity types) performed by MKCLASS and humans. The program currently is capable of competent classifications in the violet-green region, but plans are underway to extend the spectral criteria into the red and near-infrared regions. Two standard libraries with resolutions of 1.8 and 3.6Å are now available, but a higher-resolution standard library, using the new spectrograph on the Vatican Advanced Technology Telescope, is currently under preparation. Once that library is available, MKCLASS and the spectral libraries will be made available to the astronomical community.
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
NASA Technical Reports Server (NTRS)
Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.
1982-01-01
Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.
Sevel, Landrew S; Boissoneault, Jeff; Letzen, Janelle E; Robinson, Michael E; Staud, Roland
2018-05-30
Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group classification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.
NASA Astrophysics Data System (ADS)
Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei
2016-06-01
Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
A structural classification for inland northwest forest vegetation.
Kevin L. O' Hara; Penelope A. Latham; Paul Hessburg; Bradley G. Smith
1996-01-01
Existing approaches to vegetation classification range from those bassed on potential vegetation to others based on existing vegetation composition, or existing structural or physiognomic characteristics. Examples of these classifications are numerous, and in some cases, date back hundreds of years (Mueller-Dumbois and Ellenberg 1974). Small-scale or stand level...
Towards a Collaborative Intelligent Tutoring System Classification Scheme
ERIC Educational Resources Information Center
Harsley, Rachel
2014-01-01
This paper presents a novel classification scheme for Collaborative Intelligent Tutoring Systems (CITS), an emergent research field. The three emergent classifications of CITS are unstructured, semi-structured, and fully structured. While all three types of CITS offer opportunities to improve student learning gains, the full extent to which these…
Classification of proteins with shared motifs and internal repeats in the ECOD database
Kinch, Lisa N.; Liao, Yuxing
2016-01-01
Abstract Proteins and their domains evolve by a set of events commonly including the duplication and divergence of small motifs. The presence of short repetitive regions in domains has generally constituted a difficult case for structural domain classifications and their hierarchies. We developed the Evolutionary Classification Of protein Domains (ECOD) in part to implement a new schema for the classification of these types of proteins. Here we document the ways in which ECOD classifies proteins with small internal repeats, widespread functional motifs, and assemblies of small domain‐like fragments in its evolutionary schema. We illustrate the ways in which the structural genomics project impacted the classification and characterization of new structural domains and sequence families over the decade. PMID:26833690
Capuano, G P; Capuano, C
2012-03-01
The objective of this work is to evaluate the usefulness of a standardized clinical classification of hydroceles in lymphatic filariasis endemic countries to guide their surgical management. 64 patients with hydroceles were operated in 2009-2010, in Level II hospitals (WHO classification), during two visits to Fiji, by the same mobile surgical team. The number of hydroceles treated was 83. We developed and evaluated a much needed clinical classification of hydroceles based on four criteria: Type (uni/bilateral); Side (left/right); Stage of enlargement of the scrotum rated from I to VI; Grade of burial of the penis rated from 0 to 4. It lead to the conclusion that 1) A Stage I or II hydrocele, associated with Grade 0 or 1 penis burial could be considered a "Simple Hydrocele". The surgical treatment is simple with no anticipated early complication. WHO Level II of health care structure seems adapted. 2) A Stage III or IV hydrocele associated with Grade 2, 3 or 4 penis burial could be considered a "Complicated Hydrocele". The operation is longer, more complicated and the possibility of occurrence of complications seems greater. A level III health care facility would be more adapted under the normal functioning of the health system. We conclude that a standardized clinical classification of hydroceles based on the Stage of enlargement of the scrotum and the Grade of burial of the penis appears to be a useful tool to guide the decision about the level of care and the surgical technique required. We use the same classification for penoscrotal lymphoedema. A decision tree is presented for the management of hydroceles in lymphatic filariasis endemic countries which could usefully complement the "Algorithm for management of scrotal swelling" proposed by WHO in 2002. An international classification system of hydroceles would also allow standardization and facilitate study design and comparisons of their results.
TIM Barrel Protein Structure Classification Using Alignment Approach and Best Hit Strategy
NASA Astrophysics Data System (ADS)
Chu, Jia-Han; Lin, Chun Yuan; Chang, Cheng-Wen; Lee, Chihan; Yang, Yuh-Shyong; Tang, Chuan Yi
2007-11-01
The classification of protein structures is essential for their function determination in bioinformatics. It has been estimated that around 10% of all known enzymes have TIM barrel domains from the Structural Classification of Proteins (SCOP) database. With its high sequence variation and diverse functionalities, TIM barrel protein becomes to be an attractive target for protein engineering and for the evolution study. Hence, in this paper, an alignment approach with the best hit strategy is proposed to classify the TIM barrel protein structure in terms of superfamily and family levels in the SCOP. This work is also used to do the classification for class level in the Enzyme nomenclature (ENZYME) database. Two testing data sets, TIM40D and TIM95D, both are used to evaluate this approach. The resulting classification has an overall prediction accuracy rate of 90.3% for the superfamily level in the SCOP, 89.5% for the family level in the SCOP and 70.1% for the class level in the ENZYME. These results demonstrate that the alignment approach with the best hit strategy is a simple and viable method for the TIM barrel protein structure classification, even only has the amino acid sequences information.
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Li, Zuoyong; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. To date, TS is still misdiagnosed due to its varied presentation and lacking of obvious clinical symptoms. Therefore, studies of objective imaging biomarkers are of great importance for early TS diagnosis. As tic generation has been linked to disturbed structural networks, and many efforts have been made recently to investigate brain functional or structural networks using machine learning methods, for the purpose of disease diagnosis. However, few studies were related to TS and some drawbacks still existed in them. Therefore, we propose a novel classification framework integrating a multi-threshold strategy and a network fusion scheme to address the preexisting drawbacks. Here we used diffusion MRI probabilistic tractography to construct the structural networks of 44 TS children and 48 healthy children. We ameliorated the similarity network fusion algorithm specially to fuse the multi-threshold structural networks. Graph theoretical analysis was then implemented, and nodal degree, nodal efficiency and nodal betweenness centrality were selected as features. Finally, support vector machine recursive feature extraction (SVM-RFE) algorithm was used for feature selection, and then optimal features are fed into SVM to automatically discriminate TS children from controls. We achieved a high accuracy of 89.13% evaluated by a nested cross validation, demonstrated the superior performance of our framework over other comparison methods. The involved discriminative regions for classification primarily located in the basal ganglia and frontal cortico-cortical networks, all highly related to the pathology of TS. Together, our study may provide potential neuroimaging biomarkers for early-stage TS diagnosis.
Bioinformatics analyses of Shigella CRISPR structure and spacer classification.
Wang, Pengfei; Zhang, Bing; Duan, Guangcai; Wang, Yingfang; Hong, Lijuan; Wang, Linlin; Guo, Xiangjiao; Xi, Yuanlin; Yang, Haiyan
2016-03-01
Clustered regularly interspaced short palindromic repeats (CRISPR) are inheritable genetic elements of a variety of archaea and bacteria and indicative of the bacterial ecological adaptation, conferring acquired immunity against invading foreign nucleic acids. Shigella is an important pathogen for anthroponosis. This study aimed to analyze the features of Shigella CRISPR structure and classify the spacers through bioinformatics approach. Among 107 Shigella, 434 CRISPR structure loci were identified with two to seven loci in different strains. CRISPR-Q1, CRISPR-Q4 and CRISPR-Q5 were widely distributed in Shigella strains. Comparison of the first and last repeats of CRISPR1, CRISPR2 and CRISPR3 revealed several base variants and different stem-loop structures. A total of 259 cas genes were found among these 107 Shigella strains. The cas gene deletions were discovered in 88 strains. However, there is one strain that does not contain cas gene. Intact clusters of cas genes were found in 19 strains. From comprehensive analysis of sequence signature and BLAST and CRISPRTarget score, the 708 spacers were classified into three subtypes: Type I, Type II and Type III. Of them, Type I spacer referred to those linked with one gene segment, Type II spacer linked with two or more different gene segments, and Type III spacer undefined. This study examined the diversity of CRISPR/cas system in Shigella strains, demonstrated the main features of CRISPR structure and spacer classification, which provided critical information for elucidation of the mechanisms of spacer formation and exploration of the role the spacers play in the function of the CRISPR/cas system.
Bào, Yīmíng; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sina; Bukreyev, Alexander; Chandran, Kartik; Dolnik, Olga; Dye, John M; Ebihara, Hideki; Formenty, Pierre; Hewson, Roger; Kobinger, Gary P; Leroy, Eric M; Mühlberger, Elke; Netesov, Sergey V; Patterson, Jean L; Paweska, Janusz T; Smither, Sophie J; Takada, Ayato; Towner, Jonathan S; Volchkov, Viktor E; Wahl-Jensen, Victoria; Kuhn, Jens H
2017-05-11
The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.
Isolation of Signaling Molecules Involved in Angiogenic Pathways Mediated Alpha v Integrins
2004-05-01
67 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT OF REPORT OF THIS PAGE... comparison to the controls (Figure 7C). Penetratin or the VVISYSMPD peptide alone were used as negative controls and had no effect under identical...A., O’Connor, W., King , K., Overholser, J., Hooper, A., Pytowski, B., Witte, L. et al., 1999. Antivascular endothelial growth factor receptor (fetal
Poisoning by Herbs and Plants: Rapid Toxidromic Classification and Diagnosis.
Diaz, James H
2016-03-01
The American Association of Poison Control Centers has continued to report approximately 50,000 telephone calls or 8% of incoming calls annually related to plant exposures, mostly in children. Although the frequency of plant ingestions in children is related to the presence of popular species in households, adolescents may experiment with hallucinogenic plants; and trekkers and foragers may misidentify poisonous plants as edible. Since plant exposures have continued at a constant rate, the objectives of this review were (1) to review the epidemiology of plant poisonings; and (2) to propose a rapid toxidromic classification system for highly toxic plant ingestions for field use by first responders in comparison to current classification systems. Internet search engines were queried to identify and select peer-reviewed articles on plant poisonings using the key words in order to classify plant poisonings into four specific toxidromes: cardiotoxic, neurotoxic, cytotoxic, and gastrointestinal-hepatotoxic. A simple toxidromic classification system of plant poisonings may permit rapid diagnoses of highly toxic versus less toxic and nontoxic plant ingestions both in households and outdoors; direct earlier management of potentially serious poisonings; and reduce costly inpatient evaluations for inconsequential plant ingestions. The current textbook classification schemes for plant poisonings were complex in comparison to the rapid classification system; and were based on chemical nomenclatures and pharmacological effects, and not on clearly presenting toxidromes. Validation of the rapid toxidromic classification system as compared to existing chemical classification systems for plant poisonings will require future adoption and implementation of the toxidromic system by its intended users. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1994-01-01
Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.
Spectral embedding finds meaningful (relevant) structure in image and microarray data
Higgs, Brandon W; Weller, Jennifer; Solka, Jeffrey L
2006-01-01
Background Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented. Results We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison. Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons. Conclusion Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology. PMID:16483359
Comparison of wheat classification accuracy using different classifiers of the image-100 system
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.
1981-01-01
Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Jouhet, Vianney; Mougin, Fleur; Bréchat, Bérénice; Thiessard, Frantz
2017-02-07
Identifying incident cancer cases within a population remains essential for scientific research in oncology. Data produced within electronic health records can be useful for this purpose. Due to the multiplicity of providers, heterogeneous terminologies such as ICD-10 and ICD-O-3 are used for oncology diagnosis recording purpose. To enable disease identification based on these diagnoses, there is a need for integrating disease classifications in oncology. Our aim was to build a model integrating concepts involved in two disease classifications, namely ICD-10 (diagnosis) and ICD-O-3 (topography and morphology), despite their structural heterogeneity. Based on the NCIt, a "derivative" model for linking diagnosis and topography-morphology combinations was defined and built. ICD-O-3 and ICD-10 codes were then used to instantiate classes of the "derivative" model. Links between terminologies obtained through the model were then compared to mappings provided by the Surveillance, Epidemiology, and End Results (SEER) program. The model integrated 42% of neoplasm ICD-10 codes (excluding metastasis), 98% of ICD-O-3 morphology codes (excluding metastasis) and 68% of ICD-O-3 topography codes. For every codes instantiating at least a class in the "derivative" model, comparison with SEER mappings reveals that all mappings were actually available in the model as a link between the corresponding codes. We have proposed a method to automatically build a model for integrating ICD-10 and ICD-O-3 based on the NCIt. The resulting "derivative" model is a machine understandable resource that enables an integrated view of these heterogeneous terminologies. The NCIt structure and the available relationships can help to bridge disease classifications taking into account their structural and granular heterogeneities. However, (i) inconsistencies exist within the NCIt leading to misclassifications in the "derivative" model, (ii) the "derivative" model only integrates a part of ICD-10 and ICD-O-3. The NCIt is not sufficient for integration purpose and further work based on other termino-ontological resources is needed in order to enrich the model and avoid identified inconsistencies.
Low-rank network decomposition reveals structural characteristics of small-world networks
NASA Astrophysics Data System (ADS)
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-12-01
Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.
Application of Interactive Classification System in University Study Course Comparison
ERIC Educational Resources Information Center
Birzniece, Ilze; Rudzajs, Peteris; Kalibatiene, Diana; Vasilecas, Olegas; Rencis, Edgars
2015-01-01
The growing amount of information in the world has increased the need for computerized classification of different objects. This situation is present in higher education as well where the possibility of effortless detection of similarity between different study courses would give the opportunity to organize student exchange programmes effectively…
Site classification for northern forest species
Willard H. Carmean
1977-01-01
Summarizes the extensive literature for northern forest species covering site index curves, site index species comparisons, growth intercepts, soil-site studies, plant indicators, physiographic site classifications, and soil survey studies. The advantages and disadvantages of each are discussed, and suggestions are made for future research using each of these methods....
Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...
The quantification of pattern is a key element of landscape analyses. One aspect of this quantification of particular importance to landscape ecologists regards the classification of continuous variables to produce categorical variables such as land-cover type or elevation strat...
NASA Astrophysics Data System (ADS)
Dondeyne, Stefaan; Juilleret, Jérôme; Vancampenhout, Karen; Deckers, Jozef; Hissler, Christophe
2017-04-01
Classification of soils in both World Reference Base for soil resources (WRB) and Soil Taxonomy hinges on the identification of diagnostic horizons and characteristics. However as these features often occur within the first 100 cm, these classification systems convey little information on subsoil characteristics. An integrated knowledge of the soil, soil-to-substratum and deeper substratum continuum is required when dealing with environmental issues such as vegetation ecology, water quality or the Critical Zone in general. Therefore, we recently proposed a classification system of the subsolum complementing current soil classification systems. By reflecting on the structure of the subsoil classification system which is inspired by WRB, we aim at fostering a discussion on some potential future developments of WRB. For classifying the subsolum we define Regolite, Saprolite, Saprock and Bedrock as four Subsolum Reference Groups each corresponding to different weathering stages of the subsoil. Principal qualifiers can be used to categorize intergrades of these Subsoil Reference Groups while morphologic and lithologic characteristics can be presented with supplementary qualifiers. We argue that adopting a low hierarchical structure - akin to WRB and in contrast to a strong hierarchical structure as in Soil Taxonomy - offers the advantage of having an open classification system avoiding the need for a priori knowledge of all possible combinations which may be encountered in the field. Just as in WRB we also propose to use principal and supplementary qualifiers as a second level of classification. However, in contrast to WRB we propose to reserve the principal qualifiers for intergrades and to regroup the supplementary qualifiers into thematic categories (morphologic or lithologic). Structuring the qualifiers in this manner should facilitate the integration and handling of both soil and subsoil classification units into soil information systems and calls for paying attention to these structural issues in future developments of WRB.
Classification of user interfaces for graph-based online analytical processing
NASA Astrophysics Data System (ADS)
Michaelis, James R.
2016-05-01
In the domain of business intelligence, user-oriented software for conducting multidimensional analysis via Online- Analytical Processing (OLAP) is now commonplace. In this setting, datasets commonly have well-defined sets of dimensions and measures around which analysis tasks can be conducted. However, many forms of data used in intelligence operations - deriving from social networks, online communications, and text corpora - will consist of graphs with varying forms of potential dimensional structure. Hence, enabling OLAP over such data collections requires explicit definition and extraction of supporting dimensions and measures. Further, as Graph OLAP remains an emerging technique, limited research has been done on its user interface requirements. Namely, on effective pairing of interface designs to different types of graph-derived dimensions and measures. This paper presents a novel technique for pairing of user interface designs to Graph OLAP datasets, rooted in Analytic Hierarchy Process (AHP) driven comparisons. Attributes of the classification strategy are encoded through an AHP ontology, developed in our alternate work and extended to support pairwise comparison of interfaces. Specifically, according to their ability, as perceived by Subject Matter Experts, to support dimensions and measures corresponding to Graph OLAP dataset attributes. To frame this discussion, a survey is provided both on existing variations of Graph OLAP, as well as existing interface designs previously applied in multidimensional analysis settings. Following this, a review of our AHP ontology is provided, along with a listing of corresponding dataset and interface attributes applicable toward SME recommendation structuring. A walkthrough of AHP-based recommendation encoding via the ontology-based approach is then provided. The paper concludes with a short summary of proposed future directions seen as essential for this research area.
Efficiency of the spectral-spatial classification of hyperspectral imaging data
NASA Astrophysics Data System (ADS)
Borzov, S. M.; Potaturkin, O. I.
2017-01-01
The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.
Classification of polytype structures of zinc sulfide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laptev, V.I.
1994-12-31
It is suggested that the existing classification of polytype structures of zinc sulfide be supplemented with an additional criterion: the characteristic of regular point systems (Wyckoff positions) including their type, number, and multiplicity. The consideration of the Wyckoff positions allowed the establishment of construction principles of known polytype series of different symmetries and the systematization (for the first time) of the polytypes with the same number of differently packed layers. the classification suggested for polytype structures of zinc sulfide is compact and provides a basis for creating search systems. The classification table obtained can also be used for numerous siliconmore » carbide polytypes. 8 refs., 4 tabs.« less
[Surgical treatment of chronic pancreatitis based on classification of M. Buchler and coworkers].
Krivoruchko, I A; Boĭko, V V; Goncharova, N N; Andreeshchev, S A
2011-08-01
The results of surgical treatment of 452 patients, suffering chronic pancreatitis (CHP), were analyzed. The CHP classification, elaborated by M. Buchler and coworkers (2009), based on clinical signs, morphological peculiarities and pancreatic function analysis, contains scientifically substantiated recommendations for choice of diagnostic methods and complex treatment of the disease. The classification proposed is simple in application and constitutes an instrument for studying and comparison of the CHP course severity, the patients prognosis and treatment.
French, Robert M; Glady, Yannick; Thibaut, Jean-Pierre
2017-08-01
In recent years, eyetracking has begun to be used to study the dynamics of analogy making. Numerous scanpath-comparison algorithms and machine-learning techniques are available that can be applied to the raw eyetracking data. We show how scanpath-comparison algorithms, combined with multidimensional scaling and a classification algorithm, can be used to resolve an outstanding question in analogy making-namely, whether or not children's and adults' strategies in solving analogy problems are different. (They are.) We show which of these scanpath-comparison algorithms is best suited to the kinds of analogy problems that have formed the basis of much analogy-making research over the years. Furthermore, we use machine-learning classification algorithms to examine the item-to-item saccade vectors making up these scanpaths. We show which of these algorithms best predicts, from very early on in a trial, on the basis of the frequency of various item-to-item saccades, whether a child or an adult is doing the problem. This type of analysis can also be used to predict, on the basis of the item-to-item saccade dynamics in the first third of a trial, whether or not a problem will be solved correctly.
Krause, Fabian G; Di Silvestro, Matthew; Penner, Murray J; Wing, Kevin J; Glazebrook, Mark A; Daniels, Timothy R; Lau, Johnny T C; Younger, Alastair S E
2012-02-01
End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.
Towards an International Classification for Patient Safety: a Delphi survey.
Thomson, Richard; Lewalle, Pierre; Sherman, Heather; Hibbert, Peter; Runciman, William; Castro, Gerard
2009-02-01
Interpretation and comparison of patient safety information have been compromised by the lack of a common understanding of the concepts involved. The World Alliance set out to develop an International Classification for Patient Safety (ICPS) to address this, and to test the relevance and acceptability of the draft ICPS and progressively refine it prior to field testing. Two-stage Delphi survey. Quantitative and qualitative analyses informed the review of the ICPS. International web-based survey of expert opinion. Experts in the fields of patient safety, health policy, reporting systems, safety and quality control, classification theory and development, health informatics, consumer advocacy, law and medicine; 253 responded to the first round survey, 30% of whom responded to the second round. In the first round, 14% felt that the conceptual framework was missing at least one class, although it was apparent that most respondents were actually referring to concepts they felt should be included within the classes rather than the classes themselves. There was a need for clarification of several components of the classification, particularly its purpose, structure and depth. After revision and feedback, round 2 results were more positive, but further significant changes were made to the conceptual framework and to the major classes in response to concerns about terminology and relationships between classes. The Delphi approach proved invaluable, as both a consensus-building exercise and consultation process, in engaging stakeholders to support completion of the final draft version of the ICPS. Further refinement will occur.
Zhang, Daoqiang; Tu, Liyang; Zhang, Long-Jiang; Jie, Biao; Lu, Guang-Ming
2018-06-01
Hepatic encephalopathy (HE), as a complication of cirrhosis, is a serious brain disease, which may lead to death. Accurate diagnosis of HE and its intermediate stage, i.e., minimal HE (MHE), is very important for possibly early diagnosis and treatment. Brain connectivity network, as a simple representation of brain interaction, has been widely used for the brain disease (e.g., HE and MHE) analysis. However, those studies mainly focus on finding disease-related abnormal connectivity between brain regions, although a large number of studies have indicated that some brain diseases are usually related to local structure of brain connectivity network (i.e., subnetwork), rather than solely on some single brain regions or connectivities. Also, mining such disease-related subnetwork is a challenging task because of the complexity of brain network. To address this problem, we proposed a novel frequent-subnetwork-based method to mine disease-related subnetworks for MHE classification. Specifically, we first mine frequent subnetworks from both groups, i.e., MHE patients and non-HE (NHE) patients, respectively. Then we used the graph-kernel based method to select the most discriminative subnetworks for subsequent classification. We evaluate our proposed method on a MHE dataset with 77 cirrhosis patients, including 38 MHE patients and 39 NHE patients. The results demonstrate that our proposed method can not only obtain the improved classification performance in comparison with state-of-the-art network-based methods, but also identify disease-related subnetworks which can help us better understand the pathology of the brain diseases.
Low complexity feature extraction for classification of harmonic signals
NASA Astrophysics Data System (ADS)
William, Peter E.
In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.
Towards an International Classification for Patient Safety: a Delphi survey
Thomson, Richard; Lewalle, Pierre; Sherman, Heather; Hibbert, Peter; Runciman, William; Castro, Gerard
2009-01-01
Objective Interpretation and comparison of patient safety information have been compromised by the lack of a common understanding of the concepts involved. The World Alliance set out to develop an International Classification for Patient Safety (ICPS) to address this, and to test the relevance and acceptability of the draft ICPS and progressively refine it prior to field testing. Design Two-stage Delphi survey. Quantitative and qualitative analyses informed the review of the ICPS. Setting International web-based survey of expert opinion. Participants Experts in the fields of patient safety, health policy, reporting systems, safety and quality control, classification theory and development, health informatics, consumer advocacy, law and medicine; 253 responded to the first round survey, 30% of whom responded to the second round. Results In the first round, 14% felt that the conceptual framework was missing at least one class, although it was apparent that most respondents were actually referring to concepts they felt should be included within the classes rather than the classes themselves. There was a need for clarification of several components of the classification, particularly its purpose, structure and depth. After revision and feedback, round 2 results were more positive, but further significant changes were made to the conceptual framework and to the major classes in response to concerns about terminology and relationships between classes. Conclusions The Delphi approach proved invaluable, as both a consensus-building exercise and consultation process, in engaging stakeholders to support completion of the final draft version of the ICPS. Further refinement will occur. PMID:19147596
Torrens, Francisco; Castellano, Gloria
2014-06-05
Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.
Schneider, Bruce A.; Avivi-Reich, Meital; Mozuraitis, Mindaugas
2015-01-01
A number of statistical textbooks recommend using an analysis of covariance (ANCOVA) to control for the effects of extraneous factors that might influence the dependent measure of interest. However, it is not generally recognized that serious problems of interpretation can arise when the design contains comparisons of participants sampled from different populations (classification designs). Designs that include a comparison of younger and older adults, or a comparison of musicians and non-musicians are examples of classification designs. In such cases, estimates of differences among groups can be contaminated by differences in the covariate population means across groups. A second problem of interpretation will arise if the experimenter fails to center the covariate measures (subtracting the mean covariate score from each covariate score) whenever the design contains within-subject factors. Unless the covariate measures on the participants are centered, estimates of within-subject factors are distorted, and significant increases in Type I error rates, and/or losses in power can occur when evaluating the effects of within-subject factors. This paper: (1) alerts potential users of ANCOVA of the need to center the covariate measures when the design contains within-subject factors, and (2) indicates how they can avoid biases when one cannot assume that the expected value of the covariate measure is the same for all of the groups in a classification design. PMID:25954230
Rutzinger, Martin; Höfle, Bernhard; Hollaus, Markus; Pfeifer, Norbert
2008-01-01
Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (>20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements directly, i.e. the acquired points. Gridding of the data is not necessary, a process which is inherently coupled to loss of data and precision. The 3D properties provide especially a good separability of buildings and terrain points respectively, if they are occluded by vegetation. PMID:27873771
NASA Astrophysics Data System (ADS)
Cohen, Martin; Green, Anne J.
2001-08-01
We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.
The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks
Kasprak, Alan; Hough-Snee, Nate
2016-01-01
Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment’s dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a) spatial scale of input data used, (b) the requisite metrics and their order in completing a framework’s decision tree and/or, (c) whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These form-based criticisms may also ignore the geomorphic tenet that channel form reflects formative hydrogeomorphic processes across a given landscape. PMID:26982076
Texture-Based Automated Lithological Classification Using Aeromagenetic Anomaly Images
Shankar, Vivek
2009-01-01
This report consists of a thesis submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Master of Science, Graduate College, The University of Arizona, 2004 Aeromagnetic anomaly images are geophysical prospecting tools frequently used in the exploration of metalliferous minerals and hydrocarbons. The amplitude and texture content of these images provide a wealth of information to geophysicists who attempt to delineate the nature of the Earth's upper crust. These images prove to be extremely useful in remote areas and locations where the minerals of interest are concealed by basin fill. Typically, geophysicists compile a suite of aeromagnetic anomaly images, derived from amplitude and texture measurement operations, in order to obtain a qualitative interpretation of the lithological (rock) structure. Texture measures have proven to be especially capable of capturing the magnetic anomaly signature of unique lithological units. We performed a quantitative study to explore the possibility of using texture measures as input to a machine vision system in order to achieve automated classification of lithological units. This work demonstrated a significant improvement in classification accuracy over random guessing based on a priori probabilities. Additionally, a quantitative comparison between the performances of five classes of texture measures in their ability to discriminate lithological units was achieved.
Target Scattering Metrics: Model-Model and Model-Data Comparisons
2017-12-13
measured synthetic aperture sonar (SAS) data or from numerical models is investigated. Metrics are needed for quantitative comparisons for signals...candidate metrics for model-model comparisons are examined here with a goal to consider raw data prior to its reduction to data products, which may...be suitable for input to classification schemes. The investigated metrics are then applied to model-data comparisons. INTRODUCTION Metrics for
Target Scattering Metrics: Model-Model and Model Data comparisons
2017-12-13
measured synthetic aperture sonar (SAS) data or from numerical models is investigated. Metrics are needed for quantitative comparisons for signals...candidate metrics for model-model comparisons are examined here with a goal to consider raw data prior to its reduction to data products, which may...be suitable for input to classification schemes. The investigated metrics are then applied to model-data comparisons. INTRODUCTION Metrics for
Spectroscopic classification of icy satellites of Saturn II: Identification of terrain units on Rhea
NASA Astrophysics Data System (ADS)
Scipioni, F.; Tosi, F.; Stephan, K.; Filacchione, G.; Ciarniello, M.; Capaccioni, F.; Cerroni, P.
2014-05-01
Rhea is the second largest icy satellites of Saturn and it is mainly composed of water ice. Its surface is characterized by a leading hemisphere slightly brighter than the trailing side. The main goal of this work is to identify homogeneous compositional units on Rhea by applying the Spectral Angle Mapper (SAM) classification technique to Rhea’s hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Orbiter in the infrared range (0.88-5.12 μm). The first step of the classification is dedicated to the identification of Rhea’s spectral endmembers by applying the k-means unsupervised clustering technique to four hyperspectral images representative of a limited portion of the surface, imaged at relatively high spatial resolution. We then identified eight spectral endmembers, corresponding to as many terrain units, which mostly distinguish for water ice abundance and ice grain size. In the second step, endmembers are used as reference spectra in SAM classification method to achieve a comprehensive classification of the entire surface. From our analysis of the infrared spectra returned by VIMS, it clearly emerges that Rhea’ surface units shows differences in terms of water ice bands depths, average ice grain size, and concentration of contaminants, particularly CO2 and hydrocarbons. The spectral units that classify optically dark terrains are those showing suppressed water ice bands, a finer ice grain size and a higher concentration of carbon dioxide. Conversely, spectral units labeling brighter regions have deeper water ice absorption bands, higher albedo and a smaller concentration of contaminants. All these variations reflect surface’s morphological and geological structures. Finally, we performed a comparison between Rhea and Dione, to highlight different magnitudes of space weathering effects in the icy satellites as a function of the distance from Saturn.
NASA Astrophysics Data System (ADS)
Garcia-Vila, Margarita; Corselli, Rocco; Bonet, María Teresa; Lopapa, Giuseppe; Pillitteri, Valentina; Fereres, Elias
2017-04-01
In the past, the lack of technologies (e.g. synthetic fertilizers) to overcome biophysical limitations has played a central role in land use planning. Thus, landscape management and agronomic practices are reactions to local knowledge and perceptions on natural resources, particularly soil. In the framework of the European research project MEMOLA (FP7), the role of local farmers knowledge and perceptions on soil for the historical land use through the spatial distribution of crops and the various management practices have been assessed in three different areas of Monti di Trapani region (Sicily). The identification of the soil classification systems of farmers and the criteria on which it is based, linked to the evaluation of the farmers' ability to identify and map the different soil types, was a key step. Nevertheless, beyond the comparison of the ethnopedological classification approach versus standard soil classification systems, the study also aims at understanding local soil management and land use decisions. The applied methodology was based on an interdisciplinary approach, combining soil science methods and participatory appraisal tools, particularly: i) semi-structured interviews; ii) soil sampling and analysis; iii) discussion groups; and iv) a workshop with local edafologists and agronomists. A rich local glossary of terms associated with the soil conditions and an own soil classification system have been identified in the region. Also, a detailed soil map, including process of soil degradation and soil capability, has been generated. This traditional soil knowledge has conditioned the management and the spatial distribution of the crops, and therefore the configuration of the landscape, until the 1990s. Acknowledgements This work has been funded by the European Union project MEMOLA (Grant agreement no: 613265).
Cost-effectiveness of a classification-based system for sub-acute and chronic low back pain.
Apeldoorn, Adri T; Bosmans, Judith E; Ostelo, Raymond W; de Vet, Henrica C W; van Tulder, Maurits W
2012-07-01
Identifying relevant subgroups in patients with low back pain (LBP) is considered important to guide physical therapy practice and to improve outcomes. The aim of the present study was to assess the cost-effectiveness of a modified version of Delitto's classification-based treatment approach compared with usual physical therapy care in patients with sub-acute and chronic LBP with 1 year follow-up. All patients were classified using the modified version of Delitto's classification-based system and then randomly assigned to receive either classification-based treatment or usual physical therapy care. The main clinical outcomes measured were; global perceived effect, intensity of pain, functional disability and quality of life. Costs were measured from a societal perspective. Multiple imputations were used for missing data. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios was estimated using bootstrapping. Cost-effectiveness planes and cost-effectiveness acceptability curves were estimated. In total, 156 patients were included. The outcome analyses showed a significantly better outcome on global perceived effect favoring the classification-based approach, and no differences between the groups on pain, disability and quality-adjusted life-years. Mean total societal costs for the classification-based group were
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa
2018-07-01
Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.
2015-11-01
The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.
Joint Standing Committee on Education: Update on Higher Education Personnel Study
ERIC Educational Resources Information Center
West Virginia Higher Education Policy Commission, 2006
2006-01-01
The following topics are included in this update: (1) Comparison of West Virginia classification and compensation systems to those of the University of Michigan, the University system of Maryland, and the University of North Carolina; (2) Classification and Compensation System Training, including an agenda and summary of a two-day seminar devoted…
ERIC Educational Resources Information Center
Mattison, Richard E.
2015-01-01
This study of 182 secondary special education students with emotional and/or behavioral disorders investigated their classification by their school districts, in particular how well they were distinguished and represented by their federal categories. The districts used four classification groups (emotional disturbance, other health impairment…
NASA Technical Reports Server (NTRS)
Divinskaya, B. S.; Salman, Y. M.
1975-01-01
Peculiarities of the radar information about clouds are examined in comparison with visual data. An objective radar classification is presented and the relation of it to the meteorological classification is shown. The advisability of storage and summarization of the primary radar data for regime purposes is substantiated.
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to evaluate obesity classifications from body fat percentage (BF%), body mass index (BMI), and waist circumference (WC). A total of 451 overweight/obese active duty military personnel completed all three assessments. Most were obese (men, 81%; women, 98%) using National...
Comparisons and Selections of Features and Classifiers for Short Text Classification
NASA Astrophysics Data System (ADS)
Wang, Ye; Zhou, Zhi; Jin, Shan; Liu, Debin; Lu, Mi
2017-10-01
Short text is considerably different from traditional long text documents due to its shortness and conciseness, which somehow hinders the applications of conventional machine learning and data mining algorithms in short text classification. According to traditional artificial intelligence methods, we divide short text classification into three steps, namely preprocessing, feature selection and classifier comparison. In this paper, we have illustrated step-by-step how we approach our goals. Specifically, in feature selection, we compared the performance and robustness of the four methods of one-hot encoding, tf-idf weighting, word2vec and paragraph2vec, and in the classification part, we deliberately chose and compared Naive Bayes, Logistic Regression, Support Vector Machine, K-nearest Neighbor and Decision Tree as our classifiers. Then, we compared and analysed the classifiers horizontally with each other and vertically with feature selections. Regarding the datasets, we crawled more than 400,000 short text files from Shanghai and Shenzhen Stock Exchanges and manually labeled them into two classes, the big and the small. There are eight labels in the big class, and 59 labels in the small class.
A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification
NASA Astrophysics Data System (ADS)
He, Hui; Yu, Xianchuan
2005-10-01
In this paper a performance comparison of a variety of data preprocessing algorithms in remote sensing image classification is presented. These selected algorithms are principal component analysis (PCA) and three different independent component analyses, ICA (Fast-ICA (Aapo Hyvarinen, 1999), Kernel-ICA (KCCA and KGV (Bach & Jordan, 2002), EFFICA (Aiyou Chen & Peter Bickel, 2003). These algorithms were applied to a remote sensing imagery (1600×1197), obtained from Shunyi, Beijing. For classification, a MLC method is used for the raw and preprocessed data. The results show that classification with the preprocessed data have more confident results than that with raw data and among the preprocessing algorithms, ICA algorithms improve on PCA and EFFICA performs better than the others. The convergence of these ICA algorithms (for data points more than a million) are also studied, the result shows EFFICA converges much faster than the others. Furthermore, because EFFICA is a one-step maximum likelihood estimate (MLE) which reaches asymptotic Fisher efficiency (EFFICA), it computers quite small so that its demand of memory come down greatly, which settled the "out of memory" problem occurred in the other algorithms.
Schomburg, Ida; Chang, Antje; Placzek, Sandra; Söhngen, Carola; Rother, Michael; Lang, Maren; Munaretto, Cornelia; Ulas, Susanne; Stelzer, Michael; Grote, Andreas; Scheer, Maurice; Schomburg, Dietmar
2013-01-01
The BRENDA (BRaunschweig ENzyme DAtabase) enzyme portal (http://www.brenda-enzymes.org) is the main information system of functional biochemical and molecular enzyme data and provides access to seven interconnected databases. BRENDA contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalysed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models.
Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.
Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming
2016-07-01
Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.
Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á
2018-03-01
This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.
A Contribution to the Built Heritage Environmental Impact Assessment
NASA Astrophysics Data System (ADS)
Žarnić, R.; Rajčić, V.; Skordaki, N.
2015-08-01
The understanding and assessment of environmental impact on heritage assets is of the highest importance for heritage preservation through well-organized maintenance based on proper decision-making. The effort towards development of protocol that would enable comparison of data on heritage assets in Europe and Mediterranean countries was done through EU Project European Cultural Heritage Identity Card. The special attention was paid to classification of environmental and man-induced risks to heritage. In the present paper the idea of EU CHIC is presented. Environmental risks are discussed in context of their influence on structure of heritage buildings that are exposed to sudden environmental impacts.
Solomon, Nadia; Fields, Paul J.; Tamarozzi, Francesca; Brunetti, Enrico; Macpherson, Calum N. L.
2017-01-01
Cystic echinococcosis (CE), a parasitic zoonosis, results in cyst formation in the viscera. Cyst morphology depends on developmental stage. In 2003, the World Health Organization (WHO) published a standardized ultrasound (US) classification for CE, for use among experts as a standard of comparison. This study examined the reliability of this classification. Eleven international CE and US experts completed an assessment of eight WHO classification images and 88 test images representing cyst stages. Inter- and intraobserver reliability and observer performance were assessed using Fleiss' and Cohen's kappa. Interobserver reliability was moderate for WHO images (κ = 0.600, P < 0.0001) and substantial for test images (κ = 0.644, P < 0.0001), with substantial to almost perfect interobserver reliability for stages with pathognomonic signs (CE1, CE2, and CE3) for WHO (0.618 < κ < 0.904) and test images (0.642 < κ < 0.768). Comparisons of expert performances against the majority classification for each image were significant for WHO (0.413 < κ < 1.000, P < 0.005) and test images (0.718 < κ < 0.905, P < 0.0001); and intraobserver reliability was significant for WHO (0.520 < κ < 1.000, P < 0.005) and test images (0.690 < κ < 0.896, P < 0.0001). Findings demonstrate moderate to substantial interobserver and substantial to almost perfect intraobserver reliability for the WHO classification, with substantial to almost perfect interobserver reliability for pathognomonic stages. This confirms experts' abilities to reliably identify WHO-defined pathognomonic signs of CE, demonstrating that the WHO classification provides a reproducible way of staging CE. PMID:28070008
Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples
NASA Astrophysics Data System (ADS)
Masood, Khalid
2008-08-01
Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.
Impact of Growth in the Universe of Subjects on Classification.
ERIC Educational Resources Information Center
Ranganathan, Shiyali Ramamritam
The development of the removal of rigidity in library classification is traced from the Enumerative Classification of DC (1876) through the Nearly-Faceted Classification of UDC (1896), the rigidly, though fully faceted version of CC (1933), the generalized faceted structure of version 2 of CC (1949), down to the Freely Faceted Classification of…
NASA Astrophysics Data System (ADS)
Geelen, Christopher D.; Wijnhoven, Rob G. J.; Dubbelman, Gijs; de With, Peter H. N.
2015-03-01
This research considers gender classification in surveillance environments, typically involving low-resolution images and a large amount of viewpoint variations and occlusions. Gender classification is inherently difficult due to the large intra-class variation and interclass correlation. We have developed a gender classification system, which is successfully evaluated on two novel datasets, which realistically consider the above conditions, typical for surveillance. The system reaches a mean accuracy of up to 90% and approaches our human baseline of 92.6%, proving a high-quality gender classification system. We also present an in-depth discussion of the fundamental differences between SVM and RF classifiers. We conclude that balancing the degree of randomization in any classifier is required for the highest classification accuracy. For our problem, an RF-SVM hybrid classifier exploiting the combination of HSV and LBP features results in the highest classification accuracy of 89.9 0.2%, while classification computation time is negligible compared to the detection time of pedestrians.
Spatial-spectral blood cell classification with microscopic hyperspectral imagery
NASA Astrophysics Data System (ADS)
Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng
2017-10-01
Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.
33 CFR 67.01-15 - Classification of structures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Classification of structures. 67.01-15 Section 67.01-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements...
Bolivian satellite technology program on ERTS natural resources
NASA Technical Reports Server (NTRS)
Brockmann, H. C. (Principal Investigator); Bartoluccic C., L.; Hoffer, R. M.; Levandowski, D. W.; Ugarte, I.; Valenzuela, R. R.; Urena E., M.; Oros, R.
1977-01-01
The author has identified the following significant results. Application of digital classification for mapping land use permitted the separation of units at more specific levels in less time. A correct classification of data in the computer has a positive effect on the accuracy of the final products. Land use unit comparison with types of soils as represented by the colors of the coded map showed a class relation. Soil types in relation to land cover and land use demonstrated that vegetation was a positive factor in soils classification. Groupings of image resolution elements (pixels) permit studies of land use at different levels, thereby forming parameters for the classification of soils.
NASA Technical Reports Server (NTRS)
Dixon, C. M.
1981-01-01
Land cover information derived from LANDSAT is being utilized by Piedmont Planning District Commission located in the State of Virginia. Progress to date is reported on a level one land cover classification map being produced with nine categories. The nine categories of classification are defined. The computer compatible tape selection is presented. Two unsupervised classifications were done, with 50 and 70 classes respectively. Twenty-eight spectral classes were developed using the supervised technique, employing actual ground truth training sites. The accuracy of the unsupervised classifications are estimated through comparison with local county statistics and with an actual pixel count of LANDSAT information compared to ground truth.
Chandonia, John-Marc; Fox, Naomi K; Brenner, Steven E
2017-02-03
SCOPe (Structural Classification of Proteins-extended, http://scop.berkeley.edu) is a database of relationships between protein structures that extends the Structural Classification of Proteins (SCOP) database. SCOP is an expert-curated ordering of domains from the majority of proteins of known structure in a hierarchy according to structural and evolutionary relationships. SCOPe classifies the majority of protein structures released since SCOP development concluded in 2009, using a combination of manual curation and highly precise automated tools, aiming to have the same accuracy as fully hand-curated SCOP releases. SCOPe also incorporates and updates the ASTRAL compendium, which provides several databases and tools to aid in the analysis of the sequences and structures of proteins classified in SCOPe. SCOPe continues high-quality manual classification of new superfamilies, a key feature of SCOP. Artifacts such as expression tags are now separated into their own class, in order to distinguish them from the homology-based annotations in the remainder of the SCOPe hierarchy. SCOPe 2.06 contains 77,439 Protein Data Bank entries, double the 38,221 structures classified in SCOP. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Tamboer, P.; Vorst, H.C.M.; Ghebreab, S.; Scholte, H.S.
2016-01-01
Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique – support vector machine – to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18–21 years), a classification performance of 80% (p < 0.001; d-prime = 1.67) was achieved on the basis of differences in gray matter (sensitivity 82%, specificity 78%). The voxels that were most reliable for classification were found in the left occipital fusiform gyrus (LOFG), in the right occipital fusiform gyrus (ROFG), and in the left inferior parietal lobule (LIPL). Additionally, we found that classification certainty (e.g. the percentage of times a subject was correctly classified) correlated with severity of dyslexia (r = 0.47). Furthermore, various significant correlations were found between the three anatomical regions and behavioural measures of spelling, phonology and whole-word-reading. No correlations were found with behavioural measures of short-term memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology. In a second and independent sample of 876 young adults of a general population, the trained classifier of the first sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in classification performance resulted from a large percentage of false alarms. This study provided support for the use of machine learning in anatomical brain imaging. PMID:27114899
webPIPSA: a web server for the comparison of protein interaction properties
Richter, Stefan; Wenzel, Anne; Stein, Matthias; Gabdoulline, Razif R.; Wade, Rebecca C.
2008-01-01
Protein molecular interaction fields are key determinants of protein functionality. PIPSA (Protein Interaction Property Similarity Analysis) is a procedure to compare and analyze protein molecular interaction fields, such as the electrostatic potential. PIPSA may assist in protein functional assignment, classification of proteins, the comparison of binding properties and the estimation of enzyme kinetic parameters. webPIPSA is a web server that enables the use of PIPSA to compare and analyze protein electrostatic potentials. While PIPSA can be run with downloadable software (see http://projects.eml.org/mcm/software/pipsa), webPIPSA extends and simplifies a PIPSA run. This allows non-expert users to perform PIPSA for their protein datasets. With input protein coordinates, the superposition of protein structures, as well as the computation and analysis of electrostatic potentials, is automated. The results are provided as electrostatic similarity matrices from an all-pairwise comparison of the proteins which can be subjected to clustering and visualized as epograms (tree-like diagrams showing electrostatic potential differences) or heat maps. webPIPSA is freely available at: http://pipsa.eml.org. PMID:18420653
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. PMID:24550865
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
NASA Astrophysics Data System (ADS)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.
Semantic Structures of One-Step Word Problems Involving Multiplication or Division.
ERIC Educational Resources Information Center
Schmidt, Siegbert; Weiser, Werner
1995-01-01
Proposes a four-category classification of semantic structures of one-step word problems involving multiplication and division: forming the n-th multiple of measures, combinatorial multiplication, composition of operators, and multiplication by formula. This classification is compatible with semantic structures of addition and subtraction word…
NASA Astrophysics Data System (ADS)
Omenzetter, Piotr; de Lautour, Oliver R.
2010-04-01
Developed for studying long, periodic records of various measured quantities, time series analysis methods are inherently suited and offer interesting possibilities for Structural Health Monitoring (SHM) applications. However, their use in SHM can still be regarded as an emerging application and deserves more studies. In this research, Autoregressive (AR) models were used to fit experimental acceleration time histories from two experimental structural systems, a 3- storey bookshelf-type laboratory structure and the ASCE Phase II SHM Benchmark Structure, in healthy and several damaged states. The coefficients of the AR models were chosen as damage sensitive features. Preliminary visual inspection of the large, multidimensional sets of AR coefficients to check the presence of clusters corresponding to different damage severities was achieved using Sammon mapping - an efficient nonlinear data compression technique. Systematic classification of damage into states based on the analysis of the AR coefficients was achieved using two supervised classification techniques: Nearest Neighbor Classification (NNC) and Learning Vector Quantization (LVQ), and one unsupervised technique: Self-organizing Maps (SOM). This paper discusses the performance of AR coefficients as damage sensitive features and compares the efficiency of the three classification techniques using experimental data.
San, Phyo Phyo; Ling, Sai Ho; Nuryani; Nguyen, Hung
2014-08-01
This paper focuses on the hybridization technology using rough sets concepts and neural computing for decision and classification purposes. Based on the rough set properties, the lower region and boundary region are defined to partition the input signal to a consistent (predictable) part and an inconsistent (random) part. In this way, the neural network is designed to deal only with the boundary region, which mainly consists of an inconsistent part of applied input signal causing inaccurate modeling of the data set. Owing to different characteristics of neural network (NN) applications, the same structure of conventional NN might not give the optimal solution. Based on the knowledge of application in this paper, a block-based neural network (BBNN) is selected as a suitable classifier due to its ability to evolve internal structures and adaptability in dynamic environments. This architecture will systematically incorporate the characteristics of application to the structure of hybrid rough-block-based neural network (R-BBNN). A global training algorithm, hybrid particle swarm optimization with wavelet mutation is introduced for parameter optimization of proposed R-BBNN. The performance of the proposed R-BBNN algorithm was evaluated by an application to the field of medical diagnosis using real hypoglycemia episodes in patients with Type 1 diabetes mellitus. The performance of the proposed hybrid system has been compared with some of the existing neural networks. The comparison results indicated that the proposed method has improved classification performance and results in early convergence of the network.
Siskind, Dan; Harris, Meredith; Pirkis, Jane; Whiteford, Harvey
2013-06-01
A lack of definitional clarity in supported accommodation and the absence of a widely accepted system for classifying supported accommodation models creates barriers to service planning and evaluation. We undertook a systematic review of existing supported accommodation classification systems. Using a structured system for qualitative data analysis, we reviewed the stratification features in these classification systems, identified the key elements of supported accommodation and arranged them into domains and dimensions to create a new taxonomy. The existing classification systems were mapped onto the new taxonomy to verify the domains and dimensions. Existing classification systems used either a service-level characteristic or programmatic approach. We proposed a taxonomy based around four domains: duration of tenure; patient characteristics; housing characteristics; and service characteristics. All of the domains in the taxonomy were drawn from the existing classification structures; however, none of the existing classification structures covered all of the domains in the taxonomy. Existing classification systems are regionally based, limited in scope and lack flexibility. A domains-based taxonomy can allow more accurate description of supported accommodation services, aid in identifying the service elements likely to improve outcomes for specific patient populations, and assist in service planning.
NASA Astrophysics Data System (ADS)
Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.
2016-08-01
Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.
What's in a Name? A Comparison of Methods for Classifying Predominant Type of Maltreatment
ERIC Educational Resources Information Center
Lau, A.S.; Leeb, R.T.; English, D.; Graham, J.C.; Briggs, E.C.; Brody, K.E.; Marshall, J.M.
2005-01-01
Objective:: The primary aim of the study was to identify a classification scheme, for determining the predominant type of maltreatment in a child's history that best predicts differences in developmental outcomes. Method:: Three different predominant type classification schemes were examined in a sample of 519 children with a history of alleged…
A Mixtures-of-Trees Framework for Multi-Label Classification
Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos
2015-01-01
We propose a new probabilistic approach for multi-label classification that aims to represent the class posterior distribution P(Y|X). Our approach uses a mixture of tree-structured Bayesian networks, which can leverage the computational advantages of conditional tree-structured models and the abilities of mixtures to compensate for tree-structured restrictions. We develop algorithms for learning the model from data and for performing multi-label predictions using the learned model. Experiments on multiple datasets demonstrate that our approach outperforms several state-of-the-art multi-label classification methods. PMID:25927011
Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F
1990-06-12
The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.
The P600 in Implicit Artificial Grammar Learning.
Silva, Susana; Folia, Vasiliki; Hagoort, Peter; Petersson, Karl Magnus
2017-01-01
The suitability of the artificial grammar learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. After exposure, a typical, centroparietal P600 effect was elicited by grammatical violations and not by unfamiliar subsequences, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere-exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test. Copyright © 2016 Cognitive Science Society, Inc.
Automated compound classification using a chemical ontology.
Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz
2012-12-29
Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.
Automated compound classification using a chemical ontology
2012-01-01
Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification.
Sinclair, Robert M; Ravantti, Janne J; Bamford, Dennis H
2017-04-15
Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. Copyright © 2017 Sinclair et al.
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification
Sinclair, Robert M.; Ravantti, Janne J.
2017-01-01
ABSTRACT Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. PMID:28122979
An updated version of NPIDB includes new classifications of DNA–protein complexes and their families
Zanegina, Olga; Kirsanov, Dmitriy; Baulin, Eugene; Karyagina, Anna; Alexeevski, Andrei; Spirin, Sergey
2016-01-01
The recent upgrade of nucleic acid–protein interaction database (NPIDB, http://npidb.belozersky.msu.ru/) includes a newly elaborated classification of complexes of protein domains with double-stranded DNA and a classification of families of related complexes. Our classifications are based on contacting structural elements of both DNA: the major groove, the minor groove and the backbone; and protein: helices, beta-strands and unstructured segments. We took into account both hydrogen bonds and hydrophobic interaction. The analyzed material contains 1942 structures of protein domains from 748 PDB entries. We have identified 97 interaction modes of individual protein domain–DNA complexes and 17 DNA–protein interaction classes of protein domain families. We analyzed the sources of diversity of DNA–protein interaction modes in different complexes of one protein domain family. The observed interaction mode is sometimes influenced by artifacts of crystallization or diversity in secondary structure assignment. The interaction classes of domain families are more stable and thus possess more biological sense than a classification of single complexes. Integration of the classification into NPIDB allows the user to browse the database according to the interacting structural elements of DNA and protein molecules. For each family, we present average DNA shape parameters in contact zones with domains of the family. PMID:26656949
Younghak Shin; Balasingham, Ilangko
2017-07-01
Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.
1982-01-01
An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Behavior Based Social Dimensions Extraction for Multi-Label Classification
Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin
2016-01-01
Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849
Novel chromatin texture features for the classification of pap smears
NASA Astrophysics Data System (ADS)
Bejnordi, Babak E.; Moshavegh, Ramin; Sujathan, K.; Malm, Patrik; Bengtsson, Ewert; Mehnert, Andrew
2013-03-01
This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into bloblike texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed structural texture features and a range of different cytology features drawn from the literature, show that two of the four top ranking features are structural texture features. They also show that a combination of structural and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment, using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy associated changes (MACs) in Papanicoloau stain.
Multi-label literature classification based on the Gene Ontology graph.
Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua
2008-12-08
The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.
Fesharaki, Nooshin Jafari; Pourghassem, Hossein
2013-07-01
Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
Schilder, Michael
2005-03-01
Nursing diagnoses represent individual reactions to existing or potential changes in one's state of health. They are result of a diagnostic process, which is part of the dynamic nursing care process in its whole. Thus, as a basis of nursing interventions diagnoses have to be proved continuously. The classification of the North American Nursing Diagnosis Association (NANDA) as well as the International Classification for Nursing Practice (ICNP) can be account to the international well-known classifications of nursing diagnoses. Comparing their structures, some fundamental differences between both classifications become obvious. While the NANDA classification represents a systematic structured body of nursing knowledge with regard to human health reactions patterns, the ICNP reflects a more comprehensive part of the nursing reality, since it also contains nursing interventions and outcomes. Until the latest changes by establishing the taxonomy II, NANDA diagnoses have primarily focused deficits. But in contrast to the diagnoses of the ICNP they also comprise etiological factors. To prove the applicability of both classifications to nursing practice, they have been applied to a case study of a female resident living in a nursing home. The results of analysis show that because of their different structures the NANDA classification and ICNP have their own possibilities and limitations in covering the resident's individual needs of nursing care. These characteristic potentials and restrictions have to be taken into account when one of the classification systems is going to be implemented into nursing practice.
NASA Astrophysics Data System (ADS)
Sridhar, J.
2015-12-01
The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.
Höller, Yvonne; Bergmann, Jürgen; Thomschewski, Aljoscha; Kronbichler, Martin; Höller, Peter; Crone, Julia S.; Schmid, Elisabeth V.; Butz, Kevin; Nardone, Raffaele; Trinka, Eugen
2013-01-01
Current research aims at identifying voluntary brain activation in patients who are behaviorally diagnosed as being unconscious, but are able to perform commands by modulating their brain activity patterns. This involves machine learning techniques and feature extraction methods such as applied in brain computer interfaces. In this study, we try to answer the question if features/classification methods which show advantages in healthy participants are also accurate when applied to data of patients with disorders of consciousness. A sample of healthy participants (N = 22), patients in a minimally conscious state (MCS; N = 5), and with unresponsive wakefulness syndrome (UWS; N = 9) was examined with a motor imagery task which involved imagery of moving both hands and an instruction to hold both hands firm. We extracted a set of 20 features from the electroencephalogram and used linear discriminant analysis, k-nearest neighbor classification, and support vector machines (SVM) as classification methods. In healthy participants, the best classification accuracies were seen with coherences (mean = .79; range = .53−.94) and power spectra (mean = .69; range = .40−.85). The coherence patterns in healthy participants did not match the expectation of central modulated -rhythm. Instead, coherence involved mainly frontal regions. In healthy participants, the best classification tool was SVM. Five patients had at least one feature-classifier outcome with p0.05 (none of which were coherence or power spectra), though none remained significant after false-discovery rate correction for multiple comparisons. The present work suggests the use of coherences in patients with disorders of consciousness because they show high reliability among healthy subjects and patient groups. However, feature extraction and classification is a challenging task in unresponsive patients because there is no ground truth to validate the results. PMID:24282545
ERIC Educational Resources Information Center
McIlwaine, I. C.
1997-01-01
Discusses the history and development of the Universal Decimal Classification (UDC). Topics include the relationship with Dewey Decimal Classification; revision process; structure; facet analysis; lack of standard rules for application; application in automated systems; influence of UDC on classification development; links with thesauri; and use…
A new PUB-working group on SLope InterComparison Experiments (SLICE)
NASA Astrophysics Data System (ADS)
McGuire, K.; Retter, M.; Freer, J.; Troch, P.; McDonnell, J.
2006-05-01
The International Association of Hydrological Sciences (IAHS) decade on Prediction in Ungauged Basins (PUB) has the scientific goal to shift hydrology from calibration reliant models to new and rich understanding- based models. To support this, six PUB science themes have been developed under the PUB Science Steering group. Theme 1 covers basin inter-comparison and classification. The SLope InterComparison Experiment (SLICE) is a newly-formed working group aligned with theme 1. Its 2- year target is to promote the improved understanding of regional hydrological characteristics via hillslope inter- comparison studies and top-down analysis of data from hillslope experiments from around the world. It will further deliver the major building blocks of a catchment classification system. A first workshop of SLICE took place 26-28 September 2005 at the HJ Andrews Experimental Forest, Oregon, USA. 40 participants from seven countries were in attendance. The program consisted of keynote presentations on the state-of-the-art of hillslope hydrology, outlining a hillslope classification system, and through small group discussion, a focus on the following questions: a.) How can we capture flow path heterogeneity at the hillslope scale with residence time distributions? b.) Can networks help characterize hillslope subsurface systems? c.) What patterns are useful to characterize in a hillslope comparison context? d.) How does bedrock permeability condition hillslope response? e.) Can we actually observe pressure waves in the field and/or how likely are they to exist at the hillslope continuum scale? The poster presents an overview of the workshop outcomes and directions of future work.
The search for structure - Object classification in large data sets. [for astronomers
NASA Technical Reports Server (NTRS)
Kurtz, Michael J.
1988-01-01
Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.
Comparisons of neural networks to standard techniques for image classification and correlation
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1994-01-01
Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.
Ensemble methods with simple features for document zone classification
NASA Astrophysics Data System (ADS)
Obafemi-Ajayi, Tayo; Agam, Gady; Xie, Bingqing
2012-01-01
Document layout analysis is of fundamental importance for document image understanding and information retrieval. It requires the identification of blocks extracted from a document image via features extraction and block classification. In this paper, we focus on the classification of the extracted blocks into five classes: text (machine printed), handwriting, graphics, images, and noise. We propose a new set of features for efficient classifications of these blocks. We present a comparative evaluation of three ensemble based classification algorithms (boosting, bagging, and combined model trees) in addition to other known learning algorithms. Experimental results are demonstrated for a set of 36503 zones extracted from 416 document images which were randomly selected from the tobacco legacy document collection. The results obtained verify the robustness and effectiveness of the proposed set of features in comparison to the commonly used Ocropus recognition features. When used in conjunction with the Ocropus feature set, we further improve the performance of the block classification system to obtain a classification accuracy of 99.21%.
Comparison of Program Effects: The Use of Mastery Scores.
ERIC Educational Resources Information Center
Yeh, Jennie P.; Moy, Raymond
The setting of a cut-off score on a mastery test usually involves a consideration of one or more of the following elements: (1) the distribution of observed test scores; (2) the type of mastery criterion used; (3) the level of acceptable risks of mis-classification; (4) the loss of functions of mis-classifications; and (5) the distribution of true…
Using New Models to Analyze Complex Regularities of the World: Commentary on Musso et al. (2013)
ERIC Educational Resources Information Center
Nokelainen, Petri; Silander, Tomi
2014-01-01
This commentary to the recent article by Musso et al. (2013) discusses issues related to model fitting, comparison of classification accuracy of generative and discriminative models, and two (or more) cultures of data modeling. We start by questioning the extremely high classification accuracy with an empirical data from a complex domain. There is…
ERIC Educational Resources Information Center
Kocakaya, Serhat; Kotluk, Nihat
2016-01-01
The aim of this study is (a) to investigate the usefulness of Bloom's revised taxonomy (RBT) for classification of standards, (b) to examine the differences and similarities between pre-service teachers' and in-service teachers' classification of the same standards and (c) to determine which standards are vague and broad. The 45 standards, in the…
ERIC Educational Resources Information Center
Miyake, Kazuo
In a longitudinal study of 29 middle-class Japanese infants, an attempt was made to identify early temperamental dispositions that predict later attachment classification. Specifically, Ainsworth Strange Situation observations at 12 months of age were preceded by, among others, observation of distress evident in newborns when a nipple was removed;…
Pilania, G.; Gubernatis, J. E.; Lookman, T.
2015-12-03
The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Lastly, we compare the out-of-samplemore » classification accuracy achieved by our feature pair with those reported previously.« less
Alternative temporal classification of long Gamma Ray Bursts
NASA Astrophysics Data System (ADS)
Alejandro Vasquez, Nicolas; Baquero, Andres; Andrade, David
2015-08-01
In order to increase the understanding on Gamma Ray Bursts, many attempts of classification have been proposed. Starting with the canonical classification into long and short GRBs, alternative classifications taking into account the cosmological origin of GRBs have been analyzed. In the present work we propose an alternative classification based on two temporal estimators, the Auto Correlation Function (ACF) of the light curves and the emission time which considered the time where the bursts engine is active. The time estimators chosen reflects the internal evolution of the GRB and the internal structure. Using a sample of 61 bright GRBs detected by SWIFT satellite with known redshift, we proposed a bimodal distribution of long bursts. The two types of bursts have different internal structure suggesting different progenitors.
Sobol-Shikler, Tal; Robinson, Peter
2010-07-01
We present a classification algorithm for inferring affective states (emotions, mental states, attitudes, and the like) from their nonverbal expressions in speech. It is based on the observations that affective states can occur simultaneously and different sets of vocal features, such as intonation and speech rate, distinguish between nonverbal expressions of different affective states. The input to the inference system was a large set of vocal features and metrics that were extracted from each utterance. The classification algorithm conducted independent pairwise comparisons between nine affective-state groups. The classifier used various subsets of metrics of the vocal features and various classification algorithms for different pairs of affective-state groups. Average classification accuracy of the 36 pairwise machines was 75 percent, using 10-fold cross validation. The comparison results were consolidated into a single ranked list of the nine affective-state groups. This list was the output of the system and represented the inferred combination of co-occurring affective states for the analyzed utterance. The inference accuracy of the combined machine was 83 percent. The system automatically characterized over 500 affective state concepts from the Mind Reading database. The inference of co-occurring affective states was validated by comparing the inferred combinations to the lexical definitions of the labels of the analyzed sentences. The distinguishing capabilities of the system were comparable to human performance.
Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures
Natsoulis, Georges; El Ghaoui, Laurent; Lanckriet, Gert R.G.; Tolley, Alexander M.; Leroy, Fabrice; Dunlea, Shane; Eynon, Barrett P.; Pearson, Cecelia I.; Tugendreich, Stuart; Jarnagin, Kurt
2005-01-01
A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as “rewards” for the class-of-interest) while others have a negative contribution (act as “penalties”) to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class. PMID:15867433
NASA Astrophysics Data System (ADS)
Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher
2012-10-01
Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.
Protein classification using sequential pattern mining.
Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I
2006-01-01
Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.
Structural texture similarity metrics for image analysis and retrieval.
Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L
2013-07-01
We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.
NASA Astrophysics Data System (ADS)
Gonçalves, Ítalo Gomes; Kumaira, Sissa; Guadagnin, Felipe
2017-06-01
Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package.
Online adaptive decision trees: pattern classification and function approximation.
Basak, Jayanta
2006-09-01
Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.
NASA Astrophysics Data System (ADS)
Mikhailenko, Anna V.; Nazarenko, Olesya V.; Ruban, Dmitry A.; Zayats, Pavel P.
2017-03-01
The current growth in geotourism requires an urgent development of classifications of geological features on the basis of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e., non-geological) classifications are necessary to take into account visions and attitudes of visitors.
NASA Astrophysics Data System (ADS)
Buta, Ronald J.
2017-11-01
Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.
Machine learning for the assessment of Alzheimer's disease through DTI
NASA Astrophysics Data System (ADS)
Lella, Eufemia; Amoroso, Nicola; Bellotti, Roberto; Diacono, Domenico; La Rocca, Marianna; Maggipinto, Tommaso; Monaco, Alfonso; Tangaro, Sabina
2017-09-01
Digital imaging techniques have found several medical applications in the development of computer aided detection systems, especially in neuroimaging. Recent advances in Diffusion Tensor Imaging (DTI) aim to discover biological markers for the early diagnosis of Alzheimer's disease (AD), one of the most widespread neurodegenerative disorders. We explore here how different supervised classification models provide a robust support to the diagnosis of AD patients. We use DTI measures, assessing the structural integrity of white matter (WM) fiber tracts, to reveal patterns of disrupted brain connectivity. In particular, we provide a voxel-wise measure of fractional anisotropy (FA) and mean diffusivity (MD), thus identifying the regions of the brain mostly affected by neurodegeneration, and then computing intensity features to feed supervised classification algorithms. In particular, we evaluate the accuracy of discrimination of AD patients from healthy controls (HC) with a dataset of 80 subjects (40 HC, 40 AD), from the Alzheimer's Disease Neurodegenerative Initiative (ADNI). In this study, we compare three state-of-the-art classification models: Random Forests, Naive Bayes and Support Vector Machines (SVMs). We use a repeated five-fold cross validation framework with nested feature selection to perform a fair comparison between these algorithms and evaluate the information content they provide. Results show that AD patterns are well localized within the brain, thus DTI features can support the AD diagnosis.
Towards catchment classification in data-scarce regions
Auerbach, Daniel A.; Buchanan, Brian P.; Alexiades, Alex V.; ...
2016-01-29
Assessing spatial variation in hydrologic processes can help to inform freshwater management and advance ecological understanding, yet many areas lack sufficient flow records on which to base classifications. Seeking to address this challenge, we apply concepts developed in data-rich settings to public, global data in order to demonstrate a broadly replicable approach to characterizing hydrologic variation. The proposed approach groups the basins associated with reaches in a river network according to key environmental drivers of hydrologic conditions. This initial study examines Colorado (USA), where long-term streamflow records permit comparison to previously distinguished flow regime types, and the Republic of Ecuador,more » where data limitations preclude such analysis. The flow regime types assigned to gages in Colorado corresponded reasonably well to the classes distinguished from environmental features. The divisions in Ecuador reflected major known biophysical gradients while also providing a higher resolution supplement to an existing depiction of freshwater ecoregions. Although freshwater policy and management decisions occur amidst uncertainty and imperfect knowledge, this classification framework offers a rigorous and transferrable means to distinguish catchments in data-scarce regions. The maps and attributes of the resulting ecohydrologic classes offer a departure point for additional study and data collection programs such as the placement of stations in under-monitored classes, and the divisions may serve as a preliminary template with which to structure conservation efforts such as environmental flow assessments.« less
Dyrba, Martin; Barkhof, Frederik; Fellgiebel, Andreas; Filippi, Massimo; Hausner, Lucrezia; Hauenstein, Karlheinz; Kirste, Thomas; Teipel, Stefan J
2015-01-01
Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume. We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality. Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD. Copyright © 2015 by the American Society of Neuroimaging.
Discrimination of crop types with TerraSAR-X-derived information
NASA Astrophysics Data System (ADS)
Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki
Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.
Andreev, Victor P; Gillespie, Brenda W; Helfand, Brian T; Merion, Robert M
2016-01-01
Unsupervised classification methods are gaining acceptance in omics studies of complex common diseases, which are often vaguely defined and are likely the collections of disease subtypes. Unsupervised classification based on the molecular signatures identified in omics studies have the potential to reflect molecular mechanisms of the subtypes of the disease and to lead to more targeted and successful interventions for the identified subtypes. Multiple classification algorithms exist but none is ideal for all types of data. Importantly, there are no established methods to estimate sample size in unsupervised classification (unlike power analysis in hypothesis testing). Therefore, we developed a simulation approach allowing comparison of misclassification errors and estimating the required sample size for a given effect size, number, and correlation matrix of the differentially abundant proteins in targeted proteomics studies. All the experiments were performed in silico. The simulated data imitated the expected one from the study of the plasma of patients with lower urinary tract dysfunction with the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), which targeted 1129 proteins, including 330 involved in inflammation, 180 in stress response, 80 in aging, etc. Three popular clustering methods (hierarchical, k-means, and k-medoids) were compared. K-means clustering performed much better for the simulated data than the other two methods and enabled classification with misclassification error below 5% in the simulated cohort of 100 patients based on the molecular signatures of 40 differentially abundant proteins (effect size 1.5) from among the 1129-protein panel. PMID:27524871
Tree Testing of Hierarchical Menu Structures for Health Applications
Le, Thai; Chaudhuri, Shomir; Chung, Jane; Thompson, Hilaire J; Demiris, George
2014-01-01
To address the need for greater evidence-based evaluation of Health Information Technology (HIT) systems we introduce a method of usability testing termed tree testing. In a tree test, participants are presented with an abstract hierarchical tree of the system taxonomy and asked to navigate through the tree in completing representative tasks. We apply tree testing to a commercially available health application, demonstrating a use case and providing a comparison with more traditional in-person usability testing methods. Online tree tests (N=54) and in-person usability tests (N=15) were conducted from August to September 2013. Tree testing provided a method to quantitatively evaluate the information structure of a system using various navigational metrics including completion time, task accuracy, and path length. The results of the analyses compared favorably to the results seen from the traditional usability test. Tree testing provides a flexible, evidence-based approach for researchers to evaluate the information structure of HITs. In addition, remote tree testing provides a quick, flexible, and high volume method of acquiring feedback in a structured format that allows for quantitative comparisons. With the diverse nature and often large quantities of health information available, addressing issues of terminology and concept classifications during the early development process of a health information system will improve navigation through the system and save future resources. Tree testing is a usability method that can be used to quickly and easily assess information hierarchy of health information systems. PMID:24582924
Falk, Joakim; Björvell, Catrin
2012-01-01
The Swedish health care system stands before an implementation of standardized language. The first classification of nursing diagnoses translated into Swedish, The NANDA, was released in January 2011. The aim of the present study was to examine whether the usage of the NANDA classification affected nursing students’ choice of nursing interventions. Thirty-three nursing students in a clinical setting were divided into two groups. The intervention group had access to the NANDA classification text book, while the comparison group did not. In total 78 nursing assessments were performed and 218 nursing interventions initiated. The principle findings show that there were no statistical significant differences between the groups regarding the amount, quality or category of nursing interventions when using the NANDA classification compared to free text format nursing diagnoses. PMID:24199065
NASA Astrophysics Data System (ADS)
Borodinov, A. A.; Myasnikov, V. V.
2018-04-01
The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.
NASA Astrophysics Data System (ADS)
Al-Doasari, Ahmad E.
The 1991 Gulf War caused massive environmental damage in Kuwait. Deposition of oil and soot droplets from hundreds of burning oil-wells created a layer of tarcrete on the desert surface covering over 900 km2. This research investigates the spatial change in the tarcrete extent from 1991 to 1998 using Landsat Thematic Mapper (TM) imagery and statistical modeling techniques. The pixel structure of TM data allows the spatial analysis of the change in tarcrete extent to be conducted at the pixel (cell) level within a geographical information system (GIS). There are two components to this research. The first is a comparison of three remote sensing classification techniques used to map the tarcrete layer. The second is a spatial-temporal analysis and simulation of tarcrete changes through time. The analysis focuses on an area of 389 km2 located south of the Al-Burgan oil field. Five TM images acquired in 1991, 1993, 1994, 1995, and 1998 were geometrically and atmospherically corrected. These images were classified into six classes: oil lakes; heavy, intermediate, light, and traces of tarcrete; and sand. The classification methods tested were unsupervised, supervised, and neural network supervised (fuzzy ARTMAP). Field data of tarcrete characteristics were collected to support the classification process and to evaluate the classification accuracies. Overall, the neural network method is more accurate (60 percent) than the other two methods; both the unsupervised and the supervised classification accuracy assessments resulted in 46 percent accuracy. The five classifications were used in a lagged autologistic model to analyze the spatial changes of the tarcrete through time. The autologistic model correctly identified overall tarcrete contraction between 1991--1993 and 1995--1998. However, tarcrete contraction between 1993--1994 and 1994--1995 was less well marked, in part because of classification errors in the maps from these time periods. Initial simulations of tarcrete contraction with a cellular automaton model were not very successful. However, more accurate classifications could improve the simulations. This study illustrates how an empirical investigation using satellite images, field data, GIS, and spatial statistics can simulate dynamic land-cover change through the use of a discrete statistical and cellular automaton model.
Audio Classification in Speech and Music: A Comparison between a Statistical and a Neural Approach
NASA Astrophysics Data System (ADS)
Bugatti, Alessandro; Flammini, Alessandra; Migliorati, Pierangelo
2002-12-01
We focus the attention on the problem of audio classification in speech and music for multimedia applications. In particular, we present a comparison between two different techniques for speech/music discrimination. The first method is based on Zero crossing rate and Bayesian classification. It is very simple from a computational point of view, and gives good results in case of pure music or speech. The simulation results show that some performance degradation arises when the music segment contains also some speech superimposed on music, or strong rhythmic components. To overcome these problems, we propose a second method, that uses more features, and is based on neural networks (specifically a multi-layer Perceptron). In this case we obtain better performance, at the expense of a limited growth in the computational complexity. In practice, the proposed neural network is simple to be implemented if a suitable polynomial is used as the activation function, and a real-time implementation is possible even if low-cost embedded systems are used.
Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon
2014-03-01
Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Automated structural classification of lipids by machine learning.
Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T
2015-03-01
Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A novel method to guide classification of para swimmers with limb deficiency.
Hogarth, Luke; Payton, Carl; Van de Vliet, Peter; Connick, Mark; Burkett, Brendan
2018-05-30
The International Paralympic Committee has directed International Federations that govern Para sports to develop evidence-based classification systems. This study defined the impact of limb deficiency impairment on 100 m freestyle performance to guide an evidence-based classification system in Para Swimming, which will be implemented following the 2020 Tokyo Paralympic games. Impairment data and competitive race performances of 90 international swimmers with limb deficiency were collected. Ensemble partial least squares regression established the relationship between relative limb length measures and competitive 100 m freestyle performance. The model explained 80% of the variance in 100 m freestyle performance, and found hand length and forearm length to be the most important predictors of performance. Based on the results of this model, Para swimmers were clustered into four-, five-, six- and seven-class structures using nonparametric kernel density estimations. The validity of these classification structures, and effectiveness against the current classification system, were examined by establishing within-class variations in 100 m freestyle performance and differences between adjacent classes. The derived classification structures were found to be more effective than current classification based on these criteria. This study provides a novel method that can be used to improve the objectivity and transparency of decision-making in Para sport classification. Expert consensus from experienced coaches, Para swimmers, classifiers and sport science and medicine personnel will benefit the translation of these findings into a revised classification system that is accepted by the Para swimming community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Tesei, A.; Maguer, A.; Fox, W. L. J.; Lim, R.; Schmidt, H.
2002-11-01
The use of low-frequency sonars (2-15 kHz) is explored to better exploit scattering features of buried targets that can contribute to their detection and classification. Compared to conventional mine countermeasure sonars, sound penetrates better into the sediment at these frequencies, and the excitation of structural waves in the targets is enhanced. The main contributions to target echo are the specular reflection, geometric diffraction effects, and the structural response, with the latter being particularly important for man-made elastic objects possessing particular symmetries such as bodies of revolution. The resonance response derives from elastic periodic phenomena such as surface circumferential waves revolving around the target. The GOATS'98 experiment, conducted jointly by SACLANTCEN and MIT off the island of Elba, involved controlled monostatic measurements of scattering by spherical shells which were partially and completely buried in sand, and suspended in the water column. The analysis mainly addresses a study of the effect of burial on the dynamics of backscattered elastic waves, which can be clearly identified in the target responses, and is based on the comparison of measurements with appropriate scattering models. Data interpretation results are in good agreement with theory. This positive result demonstrates the applicability of low-frequency methodologies based on resonance analysis to the classification of buried objects. copyright 2002 Acoustical Society of America.
The vocal repertoire of Tibetan macaques (Macaca thibetana): A quantitative classification.
Bernstein, Sofia K; Sheeran, Lori K; Wagner, R Steven; Li, Jin-Hua; Koda, Hiroki
2016-09-01
Vocal repertoires are basic and essential components for describing vocal communication in animals. Studying the entire suite of vocal signals aids investigations on the variation of acoustic structure across social contexts, comparisons on the complexity of communication systems across taxa, and in exploration of the evolutionary origins of species-specific vocalizations. Here, we describe the vocal repertoire of the largest species in the macaque genus, Macaca thibetana. We extracted thirty acoustic parameters from call recordings. Post hoc validation through quantitative analyses of the a priori repertoire classified eleven call types: coo, squawk, squeal, noisy scream, growl, bark, compound squeak, leap coo, weeping, modulated tonal scream, and pant. In comparison to the rest of the genus, Tibetan macaques uttered a wider array of vocalizations in the context of copulations. Previous reports did not include modulated tonal screams and pants during harassment of copulatory dyads. Furthermore, in comparison to the rest of the genus, Tibetan macaque females emit acoustically distinct copulation calls. The vocal repertoire of Tibetan macaques contributes to the literature on the emergence of species-specific calls in the genus Macaca with potential insights from social, reproductive, and ecological comparisons across species. Am. J. Primatol. 78:937-949, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ebi, Masahide; Shimura, Takaya; Murakami, Kenji; Yamada, Tomonori; Hirata, Yoshikazu; Tsukamoto, Hironobu; Mizoshita, Tsutomu; Tanida, Satoshi; Kataoka, Hiromi; Kamiya, Takeshi; Joh, Takashi
2012-11-01
Due to the possibility of lymph node metastasis, surgical resection is indicated for superficial oesophageal cancer with invasion to a depth greater than the muscularis mucosa. Although two magnifying endoscopy classifications are currently used to diagnose the depth of invasion, which classification is more suitable remains controversial. To compare and evaluate the clinical outcomes of two classifications for superficial oesophageal squamous cell carcinoma. This cross-sectional study consists of 44 superficial oesophageal squamous cell carcinoma lesions with magnification image-enhanced endoscopy images. Only magnifying endoscopic images were displayed to two experienced endoscopists who independently diagnosed the depth of invasion according to both classifications. The sensitivity of invasion greater than the muscularis mucosa tended to be higher in Inoue's classification than Arima's classification (78.3±6.2% vs. 50.0±3.0%; P=0.144), whereas the specificity was significantly lower in Inoue's classification than in Arima's classification (61.9±0.0% vs. 97.6±3.4%; P=0.043). For both classifications, rates of concordance were 90.9% and 84.4%, and κ statistics were 0.81 and 0.66, respectively. Our results suggest that Arima's classification is suitable for general screening before treatment to avoid unnecessary surgery. Inoue's classification is appropriate for assessing wide lesion. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus
2008-09-01
Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.
Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein
Umate, Pavan; Tuteja, Renu
2010-01-01
Homology-based three-dimensional model for Pisum sativum sieve element occlusion 1 (Ps.SEO1) (forisomes) protein was constructed. A stretch of amino acids (residues 320 to 456) which is well conserved in all known members of forisomes proteins was used to model the 3D structure of Ps.SEO1. The structural prediction was done using Protein Homology/analogY Recognition Engine (PHYRE) web server. Based on studies of local sequence alignment, the thioredoxin-fold containing protein [Structural Classification of Proteins (SCOP) code d1o73a_], a member of the glutathione peroxidase family was selected as a template for modeling the spatial structure of Ps.SEO1. Selection was based on comparison of primary sequence, higher match quality and alignment accuracy. Motif 1 (EVF) is conserved in Ps.SEO1, Vicia faba (Vf.For1) and Medicago truncatula (MT.SEO3); motif 2 (KKED) is well conserved across all forisomes proteins and motif 3 (IGYIGNP) is conserved in Ps.SEO1 and Vf.For1. PMID:20404566
The Classification of Protein Domains.
Dawson, Natalie; Sillitoe, Ian; Marsden, Russell L; Orengo, Christine A
2017-01-01
The significant expansion in protein sequence and structure data that we are now witnessing brings with it a pressing need to bring order to the protein world. Such order enables us to gain insights into the evolution of proteins, their function and the extent to which the functional repertoire can vary across the three kingdoms of life. This has lead to the creation of a wide range of protein family classifications that aim to group proteins based upon their evolutionary relationships.In this chapter we discuss the approaches and methods that are frequently used in the classification of proteins, with a specific emphasis on the classification of protein domains. The construction of both domain sequence and domain structure databases is considered and we show how the use of domain family annotations to assign structural and functional information is enhancing our understanding of genomes.
ERIC Educational Resources Information Center
Lee, Eunjoo; Park, Hyejin; Nam, Mihwa; Whyte, James
2011-01-01
The purpose of the study was to identify Nursing Interventions Classification (NIC) interventions performed by Korean school nurses. The Korean data were then compared to U.S. data from other studies in order to identify differences and similarities between Korean and U.S. school nurse practice. Of the 542 available NIC interventions, 180 were…
Maximizing the Predictive Value of Production Rules
1988-08-31
Clancev, 1985] Clancey, W. "Heuristic Classification." Artifcial Intelligence . 27 (1985) 289-350. [Crawford, 19881 Crawford, S. "Extensions to the CART...Optimality 16 6.1.2. Comparative Analysis for Normally Distributed Data 17 6.2. Comparison with Alternative Machine Learning Methods 18 6.2.1. Alternative...are reported on data sets previously analyzed in the Al literature using alternative classification techniques. 1. Introduction MIanv decision-making
Minimum Expected Risk Estimation for Near-neighbor Classification
2006-04-01
We consider the problems of class probability estimation and classification when using near-neighbor classifiers, such as k-nearest neighbors ( kNN ...estimate for weighted kNN classifiers with different prior information, for a broad class of risk functions. Theory and simulations show how significant...the difference is compared to the standard maximum likelihood weighted kNN estimates. Comparisons are made with uniform weights, symmetric weights
Vituri, Dagmar Willamowius; Inoue, Kelly Cristina; Bellucci Júnior, José Aparecido; de Oliveira, Carlos Aparecido; Rossi, Robson Marcelo; Matsuda, Laura Misue
2013-01-01
To assess, from the worker's viewpoint, the structure, the process and the results of the Emergency Hospital Services that have taken up the guideline of "Welcoming with Risk Classification" in two teaching hospitals of the state of Paraná. Quantitative and descriptive research, exploratory and prospective, using random sampling stratified by professional category, comprising a universe of 216 professional people. They found some points of agreement regarding the promotion of a welcoming and humane environment; privacy and security; welcome and shelter of the companion and also the sheltering and classification of all patients; however, there was disagreement about the comfort of the environment, reference system and counter-reference, prioritisation of seriously ill patients in post-classification service, communication between the members of the multi-professional team and reassessment of the guideline. The workers assess the development of the guideline as being precarious, due mainly to the lack of physical structure, due to the lack of physical structure and shortcomings in the service process.
Unsupervised classification of remote multispectral sensing data
NASA Technical Reports Server (NTRS)
Su, M. Y.
1972-01-01
The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.
Ekstrand, Jan; Askling, Carl; Magnusson, Henrik; Mithoefer, Kai
2013-01-01
Background Owing to the complexity and heterogeneity of muscle injuries, a generally accepted classification system is still lacking. Aims To prospectively implement and validate a novel muscle injury classification and to evaluate its predictive value for return to professional football. Methods The recently described Munich muscle injury classification was prospectively evaluated in 31 European professional male football teams during the 2011/2012 season. Thigh muscle injury types were recorded by team medical staff and correlated to individual player exposure and resultant time-loss. Results In total, 393 thigh muscle injuries occurred. The muscle classification system was well received with a 100% response rate. Two-thirds of thigh muscle injuries were classified as structural and were associated with longer lay-off times compared to functional muscle disorders (p<0.001). Significant differences were observed between structural injury subgroups (minor partial, moderate partial and complete injuries) with increasing lay-off time associated with more severe structural injury. Median lay-off time of functional disorders was 5–8 days without significant differences between subgroups. There was no significant difference in the absence time between anterior and posterior thigh injuries. Conclusions The Munich muscle classification demonstrates a positive prognostic validity for return to play after thigh muscle injury in professional male football players. Structural injuries are associated with longer average lay-off times than functional muscle disorders. Subclassification of structural injuries correlates with return to play, while subgrouping of functional disorders shows less prognostic relevance. Functional disorders are often underestimated clinically and require further systematic study. PMID:23645834
NASA Astrophysics Data System (ADS)
Leviandier, Thierry; Alber, A.; Le Ber, F.; Piégay, H.
2012-02-01
Seven methods designed to delineate homogeneous river segments, belonging to four families, namely — tests of homogeneity, contrast enhancing, spatially constrained classification, and hidden Markov models — are compared, firstly on their principles, then on a case study, and on theoretical templates. These templates contain patterns found in the case study but not considered in the standard assumptions of statistical methods, such as gradients and curvilinear structures. The influence of data resolution, noise and weak satisfaction of the assumptions underlying the methods is investigated. The control of the number of reaches obtained in order to achieve meaningful comparisons is discussed. No method is found that outperforms all the others on all trials. However, the methods with sequential algorithms (keeping at order n + 1 all breakpoints found at order n) fail more often than those running complete optimisation at any order. The Hubert-Kehagias method and Hidden Markov Models are the most successful at identifying subpatterns encapsulated within the templates. Ergodic Hidden Markov Models are, moreover, liable to exhibit transition areas.
DORS: DDC Online Retrieval System.
ERIC Educational Resources Information Center
Liu, Songqiao; Svenonius, Elaine
1991-01-01
Describes the Dewey Online Retrieval System (DORS), which was developed at the University of California, Los Angeles (UCLA), to experiment with classification-based search strategies in online catalogs. Classification structures in automated information retrieval are discussed; and specifications for a classification retrieval interface are…
Unveiling a spinor field classification with non-Abelian gauge symmetries
NASA Astrophysics Data System (ADS)
Fabbri, Luca; da Rocha, Roldão
2018-05-01
A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.
Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Oh, Soram; Gu, Yu; Lee, Seung-Pyo; Chang, Seok Woo; Lee, Woocheol; Baek, Seung-Ho; Zhu, Qiang; Kum, Kee-Yeon
2015-08-01
Micro-computed tomography (MCT) with alternative image reformatting techniques shows complex and detailed root canal anatomy. This study compared two-dimensional (2D) and 3D MCT image reformatting with standard tooth clearing for studying mandibular first molar mesial root canal morphology. Extracted human mandibular first molar mesial roots (n=31) were scanned by MCT (Skyscan 1172). 2D thin-slab minimum intensity projection (TS-MinIP) and 3D volume rendered images were constructed. The same teeth were then processed by clearing and staining. For each root, images obtained from clearing, 2D, 3D and combined 2D and 3D techniques were examined independently by four endodontists and categorized according to Vertucci's classification. Fine anatomical structures such as accessory canals, intercanal communications and loops were also identified. Agreement among the four techniques for Vertucci's classification was 45.2% (14/31). The most frequent were Vertucci's type IV and then type II, although many had complex configurations that were non-classifiable. Generally, complex canal systems were more clearly visible in MCT images than with standard clearing and staining. Fine anatomical structures such as intercanal communications, accessory canals and loops were mostly detected with a combination of 2D TS-MinIP and 3D volume-rendering MCT images. Canal configurations and fine anatomic structures were more clearly observed in the combined 2D and 3D MCT images than the clearing technique. The frequency of non-classifiable configurations demonstrated the complexity of mandibular first molar mesial root canal anatomy.
Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.
Peng, Yong; Lu, Bao-Liang; Wang, Suhang
2015-05-01
Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.
49 CFR 25.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 25.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 229.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 229.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 229.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 229.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 146.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 146.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 146.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-04-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 146.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 229.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 229.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
49 CFR 25.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 25.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 146.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-04-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 146.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
28 CFR 54.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 54.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 229.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 229.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
10 CFR 1042.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1042.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
22 CFR 229.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 229.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
10 CFR 1042.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1042.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
28 CFR 54.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 54.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
28 CFR 54.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 54.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
22 CFR 146.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 146.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
28 CFR 54.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 54.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
49 CFR 25.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 25.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
49 CFR 25.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 25.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
10 CFR 1042.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1042.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
10 CFR 1042.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1042.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
22 CFR 146.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-04-01
... IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 146.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
Heuristic Classification. Technical Report Number 12.
ERIC Educational Resources Information Center
Clancey, William J.
A broad range of well-structured problems--embracing forms of diagnosis, catalog selection, and skeletal planning--are solved in expert computer systems by the method of heuristic classification. These programs have a characteristic inference structure that systematically relates data to a pre-enumerated set of solutions by abstraction, heuristic…
NASA Astrophysics Data System (ADS)
Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo
2008-11-01
This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.
NASA Astrophysics Data System (ADS)
Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie
2017-03-01
It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.
Padula, Maria C; Scariati, Elisa; Schaer, Marie; Sandini, Corrado; Ottet, Marie Christine; Schneider, Maude; Van De Ville, Dimitri; Eliez, Stephan
2017-01-01
22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS. However, the relationships between connectivity changes in patients with different symptomatic profiles are still largely unknown and warrant further investigations. In this study, we used structural connectivity to discriminate patients with 22q11DS with ( N = 31) and without ( N = 31) attenuated positive psychotic symptoms. Different structural connectivity measures were used, including the number of streamlines connecting pairs of brain regions, graph theoretical measures, and diffusion measures. We used univariate group comparisons as well as predictive multivariate approaches. The univariate comparison of connectivity measures between patients with or without attenuated positive psychotic symptoms did not give significant results. However, the multivariate prediction revealed that altered structural network architecture discriminates patient subtypes (accuracy = 67.7%). Among the regions contributing to the classification we found the anterior cingulate cortex, which is known to be associated to the presence of psychotic symptoms in patients with 22q11DS. Furthermore, a significant discrimination (accuracy = 64%) was obtained with fractional anisotropy and radial diffusivity in the left inferior longitudinal fasciculus and the right cingulate gyrus. Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.
NASA Astrophysics Data System (ADS)
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
Comparison of Classifier Architectures for Online Neural Spike Sorting.
Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood
2017-04-01
High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.
USDA-ARS?s Scientific Manuscript database
The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...
ERIC Educational Resources Information Center
Frankel, Karen A.; Boyum, Lisa A.; Harmon, Robert J.
2004-01-01
Objective: To present data from a general infant psychiatry clinic, including range and frequency of presenting symptoms, relationship between symptoms and diagnoses, and comparison of two diagnostic systems, DSM-IV and Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood (DC: 0-3). Method: A…
ERIC Educational Resources Information Center
Dimitropoulos, Anastasia; Ho, Alan Y.; Klaiman, Cheryl; Koenig, Kathy; Schultz, Robert T.
2009-01-01
In order to investigate unique and shared characteristics and to determine factors predictive of group classification, quantitative comparisons of behavioral and emotional problems were assessed using the Developmental Behavior Checklist (DBC-P) and the Vineland Adaptive Behavior Scales in autistic disorder, Williams syndrome (WS), and…
An Ensemble Multilabel Classification for Disease Risk Prediction
Liu, Wei; Zhao, Hongling; Zhang, Chaoyang
2017-01-01
It is important to identify and prevent disease risk as early as possible through regular physical examinations. We formulate the disease risk prediction into a multilabel classification problem. A novel Ensemble Label Power-set Pruned datasets Joint Decomposition (ELPPJD) method is proposed in this work. First, we transform the multilabel classification into a multiclass classification. Then, we propose the pruned datasets and joint decomposition methods to deal with the imbalance learning problem. Two strategies size balanced (SB) and label similarity (LS) are designed to decompose the training dataset. In the experiments, the dataset is from the real physical examination records. We contrast the performance of the ELPPJD method with two different decomposition strategies. Moreover, the comparison between ELPPJD and the classic multilabel classification methods RAkEL and HOMER is carried out. The experimental results show that the ELPPJD method with label similarity strategy has outstanding performance. PMID:29065647
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
Assessments of SENTINEL-2 Vegetation Red-Edge Spectral Bands for Improving Land Cover Classification
NASA Astrophysics Data System (ADS)
Qiu, S.; He, B.; Yin, C.; Liao, Z.
2017-09-01
The Multi Spectral Instrument (MSI) onboard Sentinel-2 can record the information in Vegetation Red-Edge (VRE) spectral domains. In this study, the performance of the VRE bands on improving land cover classification was evaluated based on a Sentinel-2A MSI image in East Texas, USA. Two classification scenarios were designed by excluding and including the VRE bands. A Random Forest (RF) classifier was used to generate land cover maps and evaluate the contributions of different spectral bands. The combination of VRE bands increased the overall classification accuracy by 1.40 %, which was statistically significant. Both confusion matrices and land cover maps indicated that the most beneficial increase was from vegetation-related land cover types, especially agriculture. Comparison of the relative importance of each band showed that the most beneficial VRE bands were Band 5 and Band 6. These results demonstrated the value of VRE bands for land cover classification.
Hierarchic Agglomerative Clustering Methods for Automatic Document Classification.
ERIC Educational Resources Information Center
Griffiths, Alan; And Others
1984-01-01
Considers classifications produced by application of single linkage, complete linkage, group average, and word clustering methods to Keen and Cranfield document test collections, and studies structure of hierarchies produced, extent to which methods distort input similarity matrices during classification generation, and retrieval effectiveness…
NASA Astrophysics Data System (ADS)
Muszynski, G.; Kashinath, K.; Wehner, M. F.; Prabhat, M.; Kurlin, V.
2017-12-01
We investigate novel approaches to detecting, classifying and characterizing extreme weather events, such as atmospheric rivers (ARs), in large high-dimensional climate datasets. ARs are narrow filaments of concentrated water vapour in the atmosphere that bring much of the precipitation in many mid-latitude regions. The precipitation associated with ARs is also responsible for major flooding events in many coastal regions of the world, including the west coast of the United States and western Europe. In this study we combine ideas from Topological Data Analysis (TDA) with Machine Learning (ML) for detecting, classifying and characterizing extreme weather events, like ARs. TDA is a new field that sits at the interface between topology and computer science, that studies "shape" - hidden topological structure - in raw data. It has been applied successfully in many areas of applied sciences, including complex networks, signal processing and image recognition. Using TDA we provide ARs with a shape characteristic as a new feature descriptor for the task of AR classification. In particular, we track the change in topology in precipitable water (integrated water vapour) fields using the Union-Find algorithm. We use the generated feature descriptors with ML classifiers to establish reliability and classification performance of our approach. We utilize the parallel toolkit for extreme climate events analysis (TECA: Petascale Pattern Recognition for Climate Science, Prabhat et al., Computer Analysis of Images and Patterns, 2015) for comparison (it is assumed that events identified by TECA is ground truth). Preliminary results indicate that our approach brings new insight into the study of ARs and provides quantitative information about the relevance of topological feature descriptors in analyses of a large climate datasets. We illustrate this method on climate model output and NCEP reanalysis datasets. Further, our method outperforms existing methods on detection and classification of ARs. This work illustrates that TDA combined with ML may provide a uniquely powerful approach for detection, classification and characterization of extreme weather phenomena.
Design and update of a classification system: the UCSD map of science.
Börner, Katy; Klavans, Richard; Patek, Michael; Zoss, Angela M; Biberstine, Joseph R; Light, Robert P; Larivière, Vincent; Boyack, Kevin W
2012-01-01
Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier's Scopus (about 15,000 source titles, 2001-2005) and Thomson Reuters' Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001-2004)-about 16,000 unique source titles. The updated map and classification adds six years (2005-2010) of WoS data and three years (2006-2008) from Scopus to the existing category structure-increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others.
Trends and concepts in fern classification.
Christenhusz, Maarten J M; Chase, Mark W
2014-03-01
Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called 'fern allies' (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called 'monilophytes'), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities. Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns.
Detecting similarities among distant homologous proteins by comparison of domain flexibilities.
Pandini, Alessandro; Mauri, Giancarlo; Bordogna, Annalisa; Bonati, Laura
2007-06-01
Aim of this work is to assess the informativeness of protein dynamics in the detection of similarities among distant homologous proteins. To this end, an approach to perform large-scale comparisons of protein domain flexibilities is proposed. CONCOORD is confirmed as a reliable method for fast conformational sampling. The root mean square fluctuation of alpha carbon positions in the essential dynamics subspace is employed as a measure of local flexibility and a synthetic index of similarity is presented. The dynamics of a large collection of protein domains from ASTRAL/SCOP40 is analyzed and the possibility to identify relationships, at both the family and the superfamily levels, on the basis of the dynamical features is discussed. The obtained picture is in agreement with the SCOP classification, and furthermore suggests the presence of a distinguishable familiar trend in the flexibility profiles. The results support the complementarity of the dynamical and the structural information, suggesting that information from dynamics analysis can arise from functional similarities, often partially hidden by a static comparison. On the basis of this first test, flexibility annotation can be expected to help in automatically detecting functional similarities otherwise unrecoverable.
Queering the Catalog: Queer Theory and the Politics of Correction
ERIC Educational Resources Information Center
Drabinski, Emily
2013-01-01
Critiques of hegemonic library classification structures and controlled vocabularies have a rich history in information studies. This project has pointed out the trouble with classification and cataloging decisions that are framed as objective and neutral but are always ideological and worked to correct bias in library structures. Viewing…
6 CFR 17.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 17.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
43 CFR 41.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 41.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
41 CFR 101-4.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 101-4.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
43 CFR 41.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 41.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
10 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
29 CFR 36.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 36.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
6 CFR 17.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 17.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
41 CFR 101-4.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 101-4.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
44 CFR 19.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 19.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
43 CFR 41.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 41.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
10 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
14 CFR 1253.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1253.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
14 CFR 1253.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1253.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
29 CFR 36.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 36.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
6 CFR 17.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 17.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
41 CFR 101-4.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 101-4.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
44 CFR 19.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 19.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
29 CFR 36.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 36.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
6 CFR 17.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 17.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
45 CFR 86.55 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.55 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
45 CFR 86.55 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.55 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
34 CFR 106.55 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 1 2012-07-01 2012-07-01 false Job classification and structure. 106.55 Section 106.55 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL...
41 CFR 101-4.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 101-4.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
10 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
40 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
34 CFR 106.55 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Job classification and structure. 106.55 Section 106.55 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL...
43 CFR 41.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 41.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
41 CFR 101-4.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 101-4.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or...
40 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
45 CFR 86.55 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.55 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
43 CFR 41.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 41.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
10 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
45 CFR 86.55 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.55 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
34 CFR 106.55 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 1 2014-07-01 2014-07-01 false Job classification and structure. 106.55 Section 106.55 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL...
14 CFR 1253.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1253.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
45 CFR 86.55 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.55 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
44 CFR 19.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 19.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
14 CFR 1253.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1253.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
44 CFR 19.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 19.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
40 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
44 CFR 19.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY GENERAL NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 19.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
40 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
34 CFR 106.55 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 1 2011-07-01 2011-07-01 false Job classification and structure. 106.55 Section 106.55 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL...
10 CFR 5.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy NUCLEAR REGULATORY COMMISSION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR... Education Programs or Activities Prohibited § 5.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b) Maintain or establish separate lines of...
34 CFR 106.55 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 1 2013-07-01 2013-07-01 false Job classification and structure. 106.55 Section 106.55 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL...
6 CFR 17.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 17.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
ERIC Educational Resources Information Center
Hamel, B. Remmo; Van Der Veer, M. A. A.
1972-01-01
A significant positive correlation between multiple classification was found, in testing 65 children aged 6 to 8 years, at the stage of concrete operations. This is interpreted as support for the existence of a structure d'ensemble of operational schemes in the period of concrete operations. (Authors)
2013-09-01
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington...of MASTER OF SCIENCE IN HUMAN SYSTEMS INTEGRATION from the NAVAL POSTGRADUATE SCHOOL September 2013 Author: Jason Bilbro...22 Figure 9. Training slide example with speaker notes ......................................... 31
2016-05-01
large but correlated noise and signal interference (i.e., low -rank interference). Another contribution is the implementation of deep learning...representation, low rank, deep learning 52 Tung-Duong Tran-Luu 301-394-3082Unclassified Unclassified Unclassified UU ii Approved for public release; distribution...Classification of Acoustic Transients 6 3.2 Joint Sparse Representation with Low -Rank Interference 7 3.3 Simultaneous Group-and-Joint Sparse Representation
NASA Technical Reports Server (NTRS)
Instrella, Ron; Chirayath, Ved
2016-01-01
In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.
Sheets, H David; Covino, Kristen M; Panasiewicz, Joanna M; Morris, Sara R
2006-01-01
Background Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. Results Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. Conclusion Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein. PMID:16978414
NASA Astrophysics Data System (ADS)
Instrella, R.; Chirayath, V.
2015-12-01
In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.
Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.
2006-01-01
We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.
An automated cirrus classification
NASA Astrophysics Data System (ADS)
Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias
2018-05-01
Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.
Designing and Implementation of River Classification Assistant Management System
NASA Astrophysics Data System (ADS)
Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan
2018-03-01
In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.
Stinchfield, Randy; McCready, John; Turner, Nigel E; Jimenez-Murcia, Susana; Petry, Nancy M; Grant, Jon; Welte, John; Chapman, Heather; Winters, Ken C
2016-09-01
The DSM-5 was published in 2013 and it included two substantive revisions for gambling disorder (GD). These changes are the reduction in the threshold from five to four criteria and elimination of the illegal activities criterion. The purpose of this study was to twofold. First, to assess the reliability, validity and classification accuracy of the DSM-5 diagnostic criteria for GD. Second, to compare the DSM-5-DSM-IV on reliability, validity, and classification accuracy, including an examination of the effect of the elimination of the illegal acts criterion on diagnostic accuracy. To compare DSM-5 and DSM-IV, eight datasets from three different countries (Canada, USA, and Spain; total N = 3247) were used. All datasets were based on similar research methods. Participants were recruited from outpatient gambling treatment services to represent the group with a GD and from the community to represent the group without a GD. All participants were administered a standardized measure of diagnostic criteria. The DSM-5 yielded satisfactory reliability, validity and classification accuracy. In comparing the DSM-5 to the DSM-IV, most comparisons of reliability, validity and classification accuracy showed more similarities than differences. There was evidence of modest improvements in classification accuracy for DSM-5 over DSM-IV, particularly in reduction of false negative errors. This reduction in false negative errors was largely a function of lowering the cut score from five to four and this revision is an improvement over DSM-IV. From a statistical standpoint, eliminating the illegal acts criterion did not make a significant impact on diagnostic accuracy. From a clinical standpoint, illegal acts can still be addressed in the context of the DSM-5 criterion of lying to others.
de Araujo, Georgia Véras; Leite, Débora F B; Rizzo, José A; Sarinho, Emanuel S C
2016-08-01
The aim of this study was to identify a possible association between the assessment of clinical asthma control using the Asthma Control Test (ACT) and the Global Initiative for Asthma (GINA) classification and to perform comparisons with values of spirometry. Through this cross-sectional study, 103 pregnant women with asthma were assessed in the period from October 2010 to October 2013 in the asthma pregnancy clinic at the Clinical Hospital of the Federal University of Pernambuco. Questionnaires concerning the level of asthma control were administered using the Global Initiative for Asthma classification, the Asthma Control Test validated for asthmatic expectant mothers and spirometry; all three methods of assessing asthma control were performed during the same visit between the twenty-first and twenty-seventh weeks of pregnancy. There was a significant association between clinical asthma control assessment using the Asthma Control Test and the Global Initiative for Asthma classification (p<0.001). There were also significant associations between the results of the subjective instruments of asthma (the GINA classification and the ACT) and evidence of lung function by spirometry. This study shows that both the Global Initiative for Asthma classification and the Asthma Control Test can be used for asthmatic expectant mothers to assess the clinical control of asthma, especially at the end of the second trimester, which is assumed to be the period of worsening asthma exacerbations during pregnancy. We highlight the importance of the Asthma Control Test as a subjective instrument with easy application, easy interpretation and good reproducibility that does not require spirometry to assess the level of asthma control and can be used in the primary care of asthmatic expectant mothers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Classifying diseases and remedies in ethnomedicine and ethnopharmacology.
Staub, Peter O; Geck, Matthias S; Weckerle, Caroline S; Casu, Laura; Leonti, Marco
2015-11-04
Ethnopharmacology focuses on the understanding of local and indigenous use of medicines and therefore an emic approach is inevitable. Often, however, standard biomedical disease classifications are used to describe and analyse local diseases and remedies. Standard classifications might be a valid tool for cross-cultural comparisons and bioprospecting purposes but are not suitable to understand the local perception of disease and use of remedies. Different standard disease classification systems exist but their suitability for cross-cultural comparisons of ethnomedical data has never been assessed. Depending on the research focus, (I) ethnomedical, (II) cross-cultural, and (III) bioprospecting, we provide suggestions for the use of specific classification systems. We analyse three different standard biomedical classification systems (the International Classification of Diseases (ICD); the Economic Botany Data Collection Standard (EBDCS); and the International Classification of Primary Care (ICPC)), and discuss their value for categorizing diseases of ethnomedical systems and their suitability for cross-cultural research in ethnopharmacology. Moreover, based on the biomedical uses of all approved plant derived biomedical drugs, we propose a biomedical therapy-based classification system as a guide for the discovery of drugs from ethnopharmacological sources. Widely used standards, such as the International Classification of Diseases (ICD) by the WHO and the Economic Botany Data Collection Standard (EBDCS) are either technically challenging due to a categorisation system based on clinical examinations, which are usually not possible during field research (ICD) or lack clear biomedical criteria combining disorders and medical effects in an imprecise and confusing way (EBDCS). The International Classification of Primary Care (ICPC), also accepted by the WHO, has more in common with ethnomedical reality than the ICD or the EBDCS, as the categories are designed according to patient's perceptions and are less influenced by clinical medicine. Since diagnostic tools are not required, medical ethnobotanists and ethnopharmacologists can easily classify reported symptoms and complaints with the ICPC in one of the "chapters" based on 17 body systems, psychological and social problems. Also the biomedical uses of plant-derived drugs are classifiable into 17 broad organ- and therapy-based use-categories but can easily be divided into more specific subcategories. Depending on the research focus (I-III) we propose the following classification systems: I. Ethnomedicine: Ethnomedicine is culture-bound and local classifications have to be understood from an emic perspective. Consequently, the application of prefabricated, "one-size fits all" biomedical classification schemes is of limited value. II. Cross-cultural analysis: The ICPC is a suitable standard that can be applied but modified as required. III. Bioprospecting: We suggest a biomedical therapy-driven classification system with currently 17 use-categories based on biomedical uses of all approved plant derived natural product drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Automatic adventitious respiratory sound analysis: A systematic review.
Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther
2017-01-01
Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases.
Automatic adventitious respiratory sound analysis: A systematic review
Bowyer, Stuart; Rodriguez-Villegas, Esther
2017-01-01
Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Limitations Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. Conclusion A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases. PMID:28552969
Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins
Kinjo, Akira R.; Nakamura, Haruki
2012-01-01
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478
Nestor, Adrian; Vettel, Jean M; Tarr, Michael J
2013-11-01
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Clark, M. L.
2016-12-01
The goal of this study was to assess multi-temporal, Hyperspectral Infrared Imager (HyspIRI) satellite imagery for improved forest class mapping relative to multispectral satellites. The study area was the western San Francisco Bay Area, California and forest alliances (e.g., forest communities defined by dominant or co-dominant trees) were defined using the U.S. National Vegetation Classification System. Simulated 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery were processed from image data acquired by NASA's AVIRIS airborne sensor in year 2015, with summer and multi-temporal (spring, summer, fall) data analyzed separately. HyspIRI reflectance was used to generate a suite of hyperspectral metrics that targeted key spectral features related to chemical and structural properties. The Random Forests classifier was applied to the simulated images and overall accuracies (OA) were compared to those from real Landsat 8 images. For each image group, broad land cover (e.g., Needle-leaf Trees, Broad-leaf Trees, Annual agriculture, Herbaceous, Built-up) was classified first, followed by a finer-detail forest alliance classification for pixels mapped as closed-canopy forest. There were 5 needle-leaf tree alliances and 16 broad-leaf tree alliances, including 7 Quercus (oak) alliance types. No forest alliance classification exceeded 50% OA, indicating that there was broad spectral similarity among alliances, most of which were not spectrally pure but rather a mix of tree species. In general, needle-leaf (Pine, Redwood, Douglas Fir) alliances had better class accuracies than broad-leaf alliances (Oaks, Madrone, Bay Laurel, Buckeye, etc). Multi-temporal data classifications all had 5-6% greater OA than with comparable summer data. For simulated data, HyspIRI metrics had 4-5% greater OA than Landsat 8 and Sentinel-2 multispectral imagery and 3-4% greater OA than HyspIRI reflectance. Finally, HyspIRI metrics had 8% greater OA than real Landsat 8 imagery. In conclusion, forest alliance classification was found to be a difficult remote sensing application with moderate resolution (30 m) satellite imagery; however, of the data tested, HyspIRI spectral metrics had the best performance relative to multispectral satellites.
Comparison of Danish dichotomous and BI-RADS classifications of mammographic density.
Hodge, Rebecca; Hellmann, Sophie Sell; von Euler-Chelpin, My; Vejborg, Ilse; Andersen, Zorana Jovanovic
2014-06-01
In the Copenhagen mammography screening program from 1991 to 2001, mammographic density was classified either as fatty or mixed/dense. This dichotomous mammographic density classification system is unique internationally, and has not been validated before. To compare the Danish dichotomous mammographic density classification system from 1991 to 2001 with the density BI-RADS classifications, in an attempt to validate the Danish classification system. The study sample consisted of 120 mammograms taken in Copenhagen in 1991-2001, which tested false positive, and which were in 2012 re-assessed and classified according to the BI-RADS classification system. We calculated inter-rater agreement between the Danish dichotomous mammographic classification as fatty or mixed/dense and the four-level BI-RADS classification by the linear weighted Kappa statistic. Of the 120 women, 32 (26.7%) were classified as having fatty and 88 (73.3%) as mixed/dense mammographic density, according to Danish dichotomous classification. According to BI-RADS density classification, 12 (10.0%) women were classified as having predominantly fatty (BI-RADS code 1), 46 (38.3%) as having scattered fibroglandular (BI-RADS code 2), 57 (47.5%) as having heterogeneously dense (BI-RADS 3), and five (4.2%) as having extremely dense (BI-RADS code 4) mammographic density. The inter-rater variability assessed by weighted kappa statistic showed a substantial agreement (0.75). The dichotomous mammographic density classification system utilized in early years of Copenhagen's mammographic screening program (1991-2001) agreed well with the BI-RADS density classification system.
2007-09-01
AD_________________ Award Number: W81XWH-04-1-0817 TITLE: Pilot Comparison of Stromal Gene ...COVERED 30 Sep 2006 – 31 Aug 2007 4. TITLE AND SUBTITLE Pilot Comparison of Stromal Gene Expression among Normal Prostate Tissues and 5a. CONTRACT...subject to formal hypothesis testing. 15. SUBJECT TERMS Prostate Stromal Gene Expression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2016-01-01
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640
Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2016-01-01
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.
Kavianpour, Hamidreza; Vasighi, Mahdi
2017-02-01
Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.
NASA Astrophysics Data System (ADS)
Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.
A Wavelet Polarization Decomposition Net Model for Polarimetric SAR Image Classification
NASA Astrophysics Data System (ADS)
He, Chu; Ou, Dan; Yang, Teng; Wu, Kun; Liao, Mingsheng; Chen, Erxue
2014-11-01
In this paper, a deep model based on wavelet texture has been proposed for Polarimetric Synthetic Aperture Radar (PolSAR) image classification inspired by recent successful deep learning method. Our model is supposed to learn powerful and informative representations to improve the generalization ability for the complex scene classification tasks. Given the influence of speckle noise in Polarimetric SAR image, wavelet polarization decomposition is applied first to obtain basic and discriminative texture features which are then embedded into a Deep Neural Network (DNN) in order to compose multi-layer higher representations. We demonstrate that the model can produce a powerful representation which can capture some untraceable information from Polarimetric SAR images and show a promising achievement in comparison with other traditional SAR image classification methods for the SAR image dataset.
Topological Classification of Crystalline Insulators through Band Structure Combinatorics
NASA Astrophysics Data System (ADS)
Kruthoff, Jorrit; de Boer, Jan; van Wezel, Jasper; Kane, Charles L.; Slager, Robert-Jan
2017-10-01
We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries. The results presented match the mathematical structure underlying the topological classification of these crystals in terms of K -theory and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological phases of spinless particles in crystals in class A . Employing this classification, we study transitions between topological phases within class A that are driven by band inversions at high-symmetry points in the first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.
Boyd, Theonia K.; Wright, Colleen A.; Odendaal, Hein J.; Elliott, Amy J.; Sens, Mary Ann; Folkerth, Rebecca D.; Roberts, Drucilla J.; Kinney, Hannah C.
2017-01-01
OBJECTIVE Describe the classification system for the assignment of the cause of death for stillbirth in the Safe Passage Study, an international, multi-institutional, prospective analysis conducted by the NIAAA/NICHD funded PASS Network (The Prenatal Alcohol in SIDS and Stillbirth (PASS) Research Network). The study mission is to determine the role of prenatal alcohol and/or cigarette smoke exposure in adverse pregnancy outcomes, including stillbirth, in a high-risk cohort of 12,000 maternal/fetal dyads. METHODS The PASS Network classification system is based upon 5 ‘sites of origin’ for cause of stillbirth (Fetal, Placental, Maternal, External/Environmental, or Undetermined), further subdivided into mechanism subcategories (e.g., Placental Perfusion Failure). Both site of origin and mechanism stratification are employed to assign an ultimate cause of death. Each PASS stillbirth (n=19) in the feasibility study was assigned a cause of death, and status of sporadic versus recurrent. Adjudication involved review of the maternal and obstetrical records, and fetal autopsy and placental findings, with complete consensus in each case. Two published classification systems, i.e., INCODE and ReCoDe, were used for comparison. RESULTS Causes of stillbirth classified were: fetal (n=5, 26%), placental (n=10, 53%), external (n=1, 5%), and undetermined (n=3, 16%). Nine cases (47%) had placental causes of death due to maternal disorders that carry recurrence risks. There was complete agreement for the cause of death across the three classification systems in 26% of cases, and a combination of partial or complete agreement in 68% of cases. Complete vs. partial agreements were predicated upon the classification schemes used for comparison. CONCLUSIONS The proposed PASS system is a user-friendly classification system that provides comparable information to previously published systems. Advantages include its simplicity, mechanistic formulations, tight clinicopathologic integration, provision for an undetermined category, and its wide applicability for use by perinatal mortality review boards with access to information routinely collected during clinicopathologic evaluations. PMID:27116324
Classification and description of world formation types
D. Faber-Langendoen; T. Keeler-Wolf; D. Meidinger; C. Josse; A. Weakley; D. Tart; G. Navarro; B. Hoagland; S. Ponomarenko; G. Fults; Eileen Helmer
2016-01-01
An ecological vegetation classification approach has been developed in which a combination of vegetation attributes (physiognomy, structure, and floristics) and their response to ecological and biogeographic factors are used as the basis for classifying vegetation types. This approach can help support international, national, and subnational classification efforts. The...
Tsai, Yu Hsin; Stow, Douglas; Weeks, John
2013-01-01
The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change. PMID:24415810
Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston
2014-11-01
Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data.
Classification of the Pospiviroidae based on their structural hallmarks.
Giguère, Tamara; Perreault, Jean-Pierre
2017-01-01
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed.
Classification of the Pospiviroidae based on their structural hallmarks
Giguère, Tamara
2017-01-01
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed. PMID:28783761
Lee, Yun Jin; Kim, Jung Yoon
2016-03-01
The objective of this study was to evaluate the effect of pressure ulcer classification system education on clinical nurses' knowledge and visual differential diagnostic ability of pressure ulcer (PU) classification and incontinence-associated dermatitis (IAD). One group pre and post-test was used. A convenience sample of 407 nurses, participating in PU classification education programme of continuing education, were enrolled. The education programme was composed of a 50-minute lecture on PU classification and case-studies. The PU Classification system and IAD knowledge test (PUCS-KT) and visual differential diagnostic ability tool (VDDAT), consisting of 21 photographs including clinical information were used. Paired t-test was performed using SPSS/WIN 20.0. The overall mean difference of PUCS-KT (t = -11·437, P<0·001) and VDDAT (t = -21·113, P<0·001) was significantly increased after PU classification education. Overall understanding of six PU classification and IAD after education programme was increased, but lacked visual differential diagnostic ability regarding Stage III PU, suspected deep tissue injury (SDTI), and Unstageable. Continuous differentiated education based on clinical practice is needed to improve knowledge and visual differential diagnostic ability for PU classification, and comparison experiment study is required to examine effects of education programmes. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Acar, Tu¨lin
2014-01-01
In literature, it has been observed that many enhanced criteria are limited by factor analysis techniques. Besides examinations of statistical structure and/or psychological structure, such validity studies as cross validation and classification-sequencing studies should be performed frequently. The purpose of this study is to examine cross…
18 CFR 1317.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-04-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1317.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
45 CFR 618.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 618.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
18 CFR 1317.520 - Job classification and structure.
Code of Federal Regulations, 2013 CFR
2013-04-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 1317.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
15 CFR 8a.520 - Job classification and structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 8a.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
31 CFR 28.520 - Job classification and structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
31 CFR 28.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...
45 CFR 618.520 - Job classification and structure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 618.520 Job classification and structure. A recipient shall not: (a) Classify a job as being for males or for females; (b...