Sample records for classification trees ct

  1. Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds.

    PubMed

    Zhao, Dehua; Jiang, Hao; Yang, Tangwu; Cai, Ying; Xu, Delin; An, Shuqing

    2012-03-01

    Classification trees (CT) have been used successfully in the past to classify aquatic vegetation from spectral indices (SI) obtained from remotely-sensed images. However, applying CT models developed for certain image dates to other time periods within the same year or among different years can reduce the classification accuracy. In this study, we developed CT models with modified thresholds using extreme SI values (CT(m)) to improve the stability of the models when applying them to different time periods. A total of 903 ground-truth samples were obtained in September of 2009 and 2010 and classified as emergent, floating-leaf, or submerged vegetation or other cover types. Classification trees were developed for 2009 (Model-09) and 2010 (Model-10) using field samples and a combination of two images from winter and summer. Overall accuracies of these models were 92.8% and 94.9%, respectively, which confirmed the ability of CT analysis to map aquatic vegetation in Taihu Lake. However, Model-10 had only 58.9-71.6% classification accuracy and 31.1-58.3% agreement (i.e., pixels classified the same in the two maps) for aquatic vegetation when it was applied to image pairs from both a different time period in 2010 and a similar time period in 2009. We developed a method to estimate the effects of extrinsic (EF) and intrinsic (IF) factors on model uncertainty using Modis images. Results indicated that 71.1% of the instability in classification between time periods was due to EF, which might include changes in atmospheric conditions, sun-view angle and water quality. The remainder was due to IF, such as phenological and growth status differences between time periods. The modified version of Model-10 (i.e. CT(m)) performed better than traditional CT with different image dates. When applied to 2009 images, the CT(m) version of Model-10 had very similar thresholds and performance as Model-09, with overall accuracies of 92.8% and 90.5% for Model-09 and the CT(m) version of Model-10, respectively. CT(m) decreased the variability related to EF and IF and thereby improved the applicability of the models to different time periods. In both practice and theory, our results suggested that CT(m) was more stable than traditional CT models and could be used to map aquatic vegetation in time periods other than the one for which the model was developed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A Method for Application of Classification Tree Models to Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates

    PubMed Central

    Jiang, Hao; Zhao, Dehua; Cai, Ying; An, Shuqing

    2012-01-01

    In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling) normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest that Method of 0.1% index scaling provides a feasible way to apply CT models directly to images from sensors or time periods that differ from those of the images used to develop the original models.

  3. Stratification of the severity of critically ill patients with classification trees

    PubMed Central

    2009-01-01

    Background Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69-75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients. PMID:20003229

  4. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  5. Comparison of Ordinal and Nominal Classification Trees to Predict Ordinal Expert-Based Occupational Exposure Estimates in a Case–Control Study

    PubMed Central

    Wheeler, David C.; Archer, Kellie J.; Burstyn, Igor; Yu, Kai; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla; Silverman, Debra T.; Friesen, Melissa C.

    2015-01-01

    Objectives: To evaluate occupational exposures in case–control studies, exposure assessors typically review each job individually to assign exposure estimates. This process lacks transparency and does not provide a mechanism for recreating the decision rules in other studies. In our previous work, nominal (unordered categorical) classification trees (CTs) generally successfully predicted expert-assessed ordinal exposure estimates (i.e. none, low, medium, high) derived from occupational questionnaire responses, but room for improvement remained. Our objective was to determine if using recently developed ordinal CTs would improve the performance of nominal trees in predicting ordinal occupational diesel exhaust exposure estimates in a case–control study. Methods: We used one nominal and four ordinal CT methods to predict expert-assessed probability, intensity, and frequency estimates of occupational diesel exhaust exposure (each categorized as none, low, medium, or high) derived from questionnaire responses for the 14983 jobs in the New England Bladder Cancer Study. To replicate the common use of a single tree, we applied each method to a single sample of 70% of the jobs, using 15% to test and 15% to validate each method. To characterize variability in performance, we conducted a resampling analysis that repeated the sample draws 100 times. We evaluated agreement between the tree predictions and expert estimates using Somers’ d, which measures differences in terms of ordinal association between predicted and observed scores and can be interpreted similarly to a correlation coefficient. Results: From the resampling analysis, compared with the nominal tree, an ordinal CT method that used a quadratic misclassification function and controlled tree size based on total misclassification cost had a slightly better predictive performance that was statistically significant for the frequency metric (Somers’ d: nominal tree = 0.61; ordinal tree = 0.63) and similar performance for the probability (nominal = 0.65; ordinal = 0.66) and intensity (nominal = 0.65; ordinal = 0.65) metrics. The best ordinal CT predicted fewer cases of large disagreement with the expert assessments (i.e. no exposure predicted for a job with high exposure and vice versa) compared with the nominal tree across all of the exposure metrics. For example, the percent of jobs with expert-assigned high intensity of exposure that the model predicted as no exposure was 29% for the nominal tree and 22% for the best ordinal tree. Conclusions: The overall agreements were similar across CT models; however, the use of ordinal models reduced the magnitude of the discrepancy when disagreements occurred. As the best performing model can vary by situation, researchers should consider evaluating multiple CT methods to maximize the predictive performance within their data. PMID:25433003

  6. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  7. Texture classification of normal tissues in computed tomography using Gabor filters

    NASA Astrophysics Data System (ADS)

    Dettori, Lucia; Bashir, Alia; Hasemann, Julie

    2007-03-01

    The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.

  8. Hybrid detection of lung nodules on CT scan images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithmsmore » were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.« less

  9. Effect of foot shape on the three-dimensional position of foot bones.

    PubMed

    Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J

    2006-12-01

    To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.

  10. Computer assisted detection of abnormal airway variation in CT scans related to paediatric tuberculosis.

    PubMed

    Irving, Benjamin J; Goussard, Pierre; Andronikou, Savvas; Gie, Robert; Douglas, Tania S; Todd-Pokropek, Andrew; Taylor, Paul

    2014-10-01

    Airway deformation and stenosis can be key signs of pathology such as lymphadenopathy. This study presents a local airway point distribution model (LA-PDM) to automatically analyse regions of the airway tree in CT scans and identify abnormal airway deformation. In our method, the airway tree is segmented and the centreline identified from each chest CT scan. Thin-plate splines, along with a local mesh alignment method for tubular meshes, are used to register the airways and develop point distribution models (PDM). Each PDM is then used to analyse and classify local regions of the airway. This LA-PDM method was developed using 89 training cases and evaluated on a 90 CT test set, where each set includes paediatric tuberculosis (TB) cases (with airway involvement) and non-TB cases (without airway involvement). The LA-PDM was able to accurately distinguish cases with airway involvement with an AUC of the ROC classification (and 95% confidence interval) of 0.87 (0.77-0.94) for the Trachea-LMB-RMB region and 0.81 (0.68-0.90) for the RMB-RUL-BI region - outperforming a comparison method based on airway cross-sectional features. This has the potential to assist and improve airway analysis from CT scans by detecting involved airways and visualising affected airway regions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Combining Decision Rules from Classification Tree Models and Expert Assessment to Estimate Occupational Exposure to Diesel Exhaust for a Case-Control Study

    PubMed Central

    Friesen, Melissa C.; Wheeler, David C.; Vermeulen, Roel; Locke, Sarah J.; Zaebst, Dennis D.; Koutros, Stella; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Malats, Nuria; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Rothman, Nathanial; Stewart, Patricia A.; Kogevinas, Manolis; Silverman, Debra T.

    2016-01-01

    Objectives: To efficiently and reproducibly assess occupational diesel exhaust exposure in a Spanish case-control study, we examined the utility of applying decision rules that had been extracted from expert estimates and questionnaire response patterns using classification tree (CT) models from a similar US study. Methods: First, previously extracted CT decision rules were used to obtain initial ordinal (0–3) estimates of the probability, intensity, and frequency of occupational exposure to diesel exhaust for the 10 182 jobs reported in a Spanish case-control study of bladder cancer. Second, two experts reviewed the CT estimates for 350 jobs randomly selected from strata based on each CT rule’s agreement with the expert ratings in the original study [agreement rate, from 0 (no agreement) to 1 (perfect agreement)]. Their agreement with each other and with the CT estimates was calculated using weighted kappa (κ w) and guided our choice of jobs for subsequent expert review. Third, an expert review comprised all jobs with lower confidence (low-to-moderate agreement rates or discordant assignments, n = 931) and a subset of jobs with a moderate to high CT probability rating and with moderately high agreement rates (n = 511). Logistic regression was used to examine the likelihood that an expert provided a different estimate than the CT estimate based on the CT rule agreement rates, the CT ordinal rating, and the availability of a module with diesel-related questions. Results: Agreement between estimates made by two experts and between estimates made by each of the experts and the CT estimates was very high for jobs with estimates that were determined by rules with high CT agreement rates (κ w: 0.81–0.90). For jobs with estimates based on rules with lower agreement rates, moderate agreement was observed between the two experts (κ w: 0.42–0.67) and poor-to-moderate agreement was observed between the experts and the CT estimates (κ w: 0.09–0.57). In total, the expert review of 1442 jobs changed 156 probability estimates, 128 intensity estimates, and 614 frequency estimates. The expert was more likely to provide a different estimate when the CT rule agreement rate was <0.8, when the CT ordinal ratings were low to moderate, or when a module with diesel questions was available. Conclusions: Our reliability assessment provided important insight into where to prioritize additional expert review; as a result, only 14% of the jobs underwent expert review, substantially reducing the exposure assessment burden. Overall, we found that we could efficiently, reproducibly, and reliably apply CT decision rules from one study to assess exposure in another study. PMID:26732820

  12. Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index

    NASA Astrophysics Data System (ADS)

    Köseoğlu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen

    2018-02-01

    The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25-derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.

  13. Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees

    PubMed Central

    Austin, Peter C; Lee, Douglas S

    2011-01-01

    Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181

  14. Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury.

    PubMed

    Yadav, Kabir; Sarioglu, Efsun; Choi, Hyeong Ah; Cartwright, Walter B; Hinds, Pamela S; Chamberlain, James M

    2016-02-01

    The authors have previously demonstrated highly reliable automated classification of free-text computed tomography (CT) imaging reports using a hybrid system that pairs linguistic (natural language processing) and statistical (machine learning) techniques. Previously performed for identifying the outcome of orbital fracture in unprocessed radiology reports from a clinical data repository, the performance has not been replicated for more complex outcomes. To validate automated outcome classification performance of a hybrid natural language processing (NLP) and machine learning system for brain CT imaging reports. The hypothesis was that our system has performance characteristics for identifying pediatric traumatic brain injury (TBI). This was a secondary analysis of a subset of 2,121 CT reports from the Pediatric Emergency Care Applied Research Network (PECARN) TBI study. For that project, radiologists dictated CT reports as free text, which were then deidentified and scanned as PDF documents. Trained data abstractors manually coded each report for TBI outcome. Text was extracted from the PDF files using optical character recognition. The data set was randomly split evenly for training and testing. Training patient reports were used as input to the Medical Language Extraction and Encoding (MedLEE) NLP tool to create structured output containing standardized medical terms and modifiers for negation, certainty, and temporal status. A random subset stratified by site was analyzed using descriptive quantitative content analysis to confirm identification of TBI findings based on the National Institute of Neurological Disorders and Stroke (NINDS) Common Data Elements project. Findings were coded for presence or absence, weighted by frequency of mentions, and past/future/indication modifiers were filtered. After combining with the manual reference standard, a decision tree classifier was created using data mining tools WEKA 3.7.5 and Salford Predictive Miner 7.0. Performance of the decision tree classifier was evaluated on the test patient reports. The prevalence of TBI in the sampled population was 159 of 2,217 (7.2%). The automated classification for pediatric TBI is comparable to our prior results, with the notable exception of lower positive predictive value. Manual review of misclassified reports, 95.5% of which were false-positives, revealed that a sizable number of false-positive errors were due to differing outcome definitions between NINDS TBI findings and PECARN clinical important TBI findings and report ambiguity not meeting definition criteria. A hybrid NLP and machine learning automated classification system continues to show promise in coding free-text electronic clinical data. For complex outcomes, it can reliably identify negative reports, but manual review of positive reports may be required. As such, it can still streamline data collection for clinical research and performance improvement. © 2016 by the Society for Academic Emergency Medicine.

  15. Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury

    PubMed Central

    Yadav, Kabir; Sarioglu, Efsun; Choi, Hyeong-Ah; Cartwright, Walter B.; Hinds, Pamela S.; Chamberlain, James M.

    2016-01-01

    Background The authors have previously demonstrated highly reliable automated classification of free text computed tomography (CT) imaging reports using a hybrid system that pairs linguistic (natural language processing) and statistical (machine learning) techniques. Previously performed for identifying the outcome of orbital fracture in unprocessed radiology reports from a clinical data repository, the performance has not been replicated for more complex outcomes. Objectives To validate automated outcome classification performance of a hybrid natural language processing (NLP) and machine learning system for brain CT imaging reports. The hypothesis was that our system has performance characteristics for identifying pediatric traumatic brain injury (TBI). Methods This was a secondary analysis of a subset of 2,121 CT reports from the Pediatric Emergency Care Applied Research Network (PECARN) TBI study. For that project, radiologists dictated CT reports as free text, which were then de-identified and scanned as PDF documents. Trained data abstractors manually coded each report for TBI outcome. Text was extracted from the PDF files using optical character recognition. The dataset was randomly split evenly for training and testing. Training patient reports were used as input to the Medical Language Extraction and Encoding (MedLEE) NLP tool to create structured output containing standardized medical terms and modifiers for negation, certainty, and temporal status. A random subset stratified by site was analyzed using descriptive quantitative content analysis to confirm identification of TBI findings based upon the National Institute of Neurological Disorders and Stroke Common Data Elements project. Findings were coded for presence or absence, weighted by frequency of mentions, and past/future/indication modifiers were filtered. After combining with the manual reference standard, a decision tree classifier was created using data mining tools WEKA 3.7.5 and Salford Predictive Miner 7.0. Performance of the decision tree classifier was evaluated on the test patient reports. Results The prevalence of TBI in the sampled population was 159 out of 2,217 (7.2%). The automated classification for pediatric TBI is comparable to our prior results, with the notable exception of lower positive predictive value (PPV). Manual review of misclassified reports, 95.5% of which were false positives, revealed that a sizable number of false-positive errors were due to differing outcome definitions between NINDS TBI findings and PECARN clinical important TBI findings, and report ambiguity not meeting definition criteria. Conclusions A hybrid NLP and machine learning automated classification system continues to show promise in coding free-text electronic clinical data. For complex outcomes, it can reliably identify negative reports, but manual review of positive reports may be required. As such, it can still streamline data collection for clinical research and performance improvement. PMID:26766600

  16. A Knowledge Discovery Approach to Diagnosing Intracranial Hematomas on Brain CT: Recognition, Measurement and Classification

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Chih; Xiao, Furen; Wong, Jau-Min; Chiang, I.-Jen

    Computed tomography (CT) of the brain is preferred study on neurological emergencies. Physicians use CT to diagnose various types of intracranial hematomas, including epidural, subdural and intracerebral hematomas according to their locations and shapes. We propose a novel method that can automatically diagnose intracranial hematomas by combining machine vision and knowledge discovery techniques. The skull on the CT slice is located and the depth of each intracranial pixel is labeled. After normalization of the pixel intensities by their depth, the hyperdense area of intracranial hematoma is segmented with multi-resolution thresholding and region-growing. We then apply C4.5 algorithm to construct a decision tree using the features of the segmented hematoma and the diagnoses made by physicians. The algorithm was evaluated on 48 pathological images treated in a single institute. The two discovered rules closely resemble those used by human experts, and are able to make correct diagnoses in all cases.

  17. Effect of symptom-based risk stratification on the costs of managing patients with chronic rhinosinusitis symptoms.

    PubMed

    Tan, Bruce K; Lu, Guanning; Kwasny, Mary J; Hsueh, Wayne D; Shintani-Smith, Stephanie; Conley, David B; Chandra, Rakesh K; Kern, Robert C; Leung, Randy

    2013-11-01

    Current symptom criteria poorly predict a diagnosis of chronic rhinosinusitis (CRS) resulting in excessive treatment of patients with presumed CRS. The objective of this study was analyze the positive predictive value of individual symptoms, or symptoms in combination, in patients with CRS symptoms and examine the costs of the subsequent diagnostic algorithm using a decision tree-based cost analysis. We analyzed previously collected patient-reported symptoms from a cross-sectional study of patients who had received a computed tomography (CT) scan of their sinuses at a tertiary care otolaryngology clinic for evaluation of CRS symptoms to calculate the positive predictive value of individual symptoms. Classification and regression tree (CART) analysis then optimized combinations of symptoms and thresholds to identify CRS patients. The calculated positive predictive values were applied to a previously developed decision tree that compared an upfront CT (uCT) algorithm against an empiric medical therapy (EMT) algorithm with further analysis that considered the availability of point of care (POC) imaging. The positive predictive value of individual symptoms ranged from 0.21 for patients reporting forehead pain and to 0.69 for patients reporting hyposmia. The CART model constructed a dichotomous model based on forehead pain, maxillary pain, hyposmia, nasal discharge, and facial pain (C-statistic 0.83). If POC CT were available, median costs ($64-$415) favored using the upfront CT for all individual symptoms. If POC CT was unavailable, median costs favored uCT for most symptoms except intercanthal pain (-$15), hyposmia (-$100), and discolored nasal discharge (-$24), although these symptoms became equivocal on cost sensitivity analysis. The three-tiered CART model could subcategorize patients into tiers where uCT was always favorable (median costs: $332-$504) and others for which EMT was always favorable (median costs -$121 to -$275). The uCT algorithm was always more costly if the nasal endoscopy was positive. Among patients with classic CRS symptoms, the frequency of individual symptoms varied the likelihood of a CRS diagnosis marginally. Only hyposmia, the absence of facial pain, and discolored discharge sufficiently increased the likelihood of diagnosis to potentially make EMT less costly. The development of an evidence-based, multisymptom-based risk stratification model could substantially affect the management costs of the subsequent diagnostic algorithm. © 2013 ARS-AAOA, LLC.

  18. Traversing and labeling interconnected vascular tree structures from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.; Govindarajan, Sindhuja Tirumalai; Salgia, Ankit; Hegde, Satyanarayan; Prabhakaran, Sreekala; Finol, Ender A.; White, R. James

    2014-03-01

    Purpose: Detailed characterization of pulmonary vascular anatomy has important applications for the diagnosis and management of a variety of vascular diseases. Prior efforts have emphasized using vessel segmentation to gather information on the number or branches, number of bifurcations, and branch length and volume, but accurate traversal of the vessel tree to identify and repair erroneous interconnections between adjacent branches and neighboring tree structures has not been carefully considered. In this study, we endeavor to develop and implement a successful approach to distinguishing and characterizing individual vascular trees from among a complex intermingling of trees. Methods: We developed strategies and parameters in which the algorithm identifies and repairs false branch inter-tree and intra-tree connections to traverse complicated vessel trees. A series of two-dimensional (2D) virtual datasets with a variety of interconnections were constructed for development, testing, and validation. To demonstrate the approach, a series of real 3D computed tomography (CT) lung datasets were obtained, including that of an anthropomorphic chest phantom; an adult human chest CT; a pediatric patient chest CT; and a micro-CT of an excised rat lung preparation. Results: Our method was correct in all 2D virtual test datasets. For each real 3D CT dataset, the resulting simulated vessel tree structures faithfully depicted the vessel tree structures that were originally extracted from the corresponding lung CT scans. Conclusion: We have developed a comprehensive strategy for traversing and labeling interconnected vascular trees and successfully implemented its application to pulmonary vessels observed using 3D CT images of the chest.

  19. The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy.

    PubMed

    Huang, Shaohui; Wang, Boliang; Cheng, Ming; Huang, Xiaoyang; Ju, Ying

    2008-12-01

    In living donor liver transplantation, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Couinaud divided the liver into 8 functionally independent segments. However, this method is not simple to perform in 3D space directly. Thus, we propose a rapid method to segment the liver based on the hepatic vessel tree. The most important step of this method is vascular projection. By carefully selecting a projection plane, a 3D point can be fixed in the projection plane. This greatly helps in rapid classification. This method was validated by applying it to a 3D liver depicted on CT images, and the result was in good agreement with Couinaud's classification.

  20. Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    PubMed Central

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894

  1. Tree classification with fused mobile laser scanning and hyperspectral data.

    PubMed

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin.

  2. Differentiation between Wegener's granulomatosis and microscopic polyangiitis by an artificial neural network and by traditional methods.

    PubMed

    Linder, Roland; Orth, Isabelle; Hagen, E Christian; van der Woude, Fokko J; Schmitt, Wilhelm H

    2011-06-01

    To investigate the operating characteristics of the American College of Rheumatology (ACR) traditional format criteria for Wegener's granulomatosis (WG), the Sørensen criteria for WG and microscopic polyangiitis (MPA), and the Chapel Hill nomenclature for WG and MPA. Further, to develop and validate improved criteria for distinguishing WG from MPA by an artificial neural network (ANN) and by traditional approaches [classification tree (CT), logistic regression (LR)]. All criteria were applied to 240 patients with WG and 78 patients with MPA recruited by a multicenter study. To generate new classification criteria (ANN, CT, LR), 23 clinical measurements were assessed. Validation was performed by applying the same approaches to an independent monocenter cohort of 46 patients with WG and 21 patients with MPA. A total of 70.8% of the patients with WG and 7.7% of the patients with MPA from the multicenter cohort fulfilled the ACR criteria for WG (accuracy 76.1%). The accuracy of the Chapel Hill criteria for WG and MPA was only 35.0% and 55.3% (Sørensen criteria: 67.2% and 92.4%). In contrast, the ANN and CT achieved an accuracy of 94.3%, based on 4 measurements (involvement of nose, sinus, ear, and pulmonary nodules), all associated with WG. LR led to an accuracy of 92.8%. Inclusion of antineutrophil cytoplasmic antibodies did not improve the allocation. Validation of methods resulted in accuracy of 91.0% (ANN and CT) and 88.1% (LR). The ACR, Sørensen, and Chapel Hill criteria did not reliably separate WG from MPA. In contrast, an appropriately trained ANN and a CT differentiated between these disorders and performed better than LR.

  3. Sensor-based fall risk assessment--an expert 'to go'.

    PubMed

    Marschollek, M; Rehwald, A; Wolf, K H; Gietzelt, M; Nemitz, G; Meyer Zu Schwabedissen, H; Haux, R

    2011-01-01

    Falls are a predominant problem in our aging society, often leading to severe somatic and psychological consequences, and having an incidence of about 30% in the group of persons aged 65 years or above. In order to identify persons at risk, many assessment tools and tests have been developed, but most of these have to be conducted in a supervised setting and are dependent on an expert rater. The overall aim of our research work is to develop an objective and unobtrusive method to determine individual fall risk based on the use of motion sensor data. The aims of our work for this paper are to derive a fall risk model based on sensor data that may potentially be measured during typical activities of daily life (aim #1), and to evaluate the resulting model with data from a one-year follow-up study (aim #2). A sample of n = 119 geriatric inpatients wore an accelerometer on the waist during a Timed 'Up & Go' test and a 20 m walk. Fifty patients were included in a one-year follow-up study, assessing fall events and scoring average physical activity at home in telephone interviews. The sensor data were processed to extract gait and dynamic balance parameters, from which four fall risk models--two classification trees and two logistic regression models--were computed: models CT#1 and SL#1 using accelerometer data only, models CT#2 and SL#2 including the physical activity score. The risk models were evaluated in a ten-times tenfold cross-validation procedure, calculating sensitivity (SENS), specificity (SPEC), positive and negative predictive values (PPV, NPV), classification accuracy, area under the curve (AUC) and the Brier score. Both classification trees show a fair to good performance (models CT#1/CT#2): SENS 74%/58%, SPEC 96%/82%, PPV 92%/ 74%, NPV 77%/82%, accuracy 80%/78%, AUC 0.83/0.87 and Brier scores 0.14/0.14. The logistic regression models (SL#1/SL#2) perform worse: SENS 42%/58%, SPEC 82%/ 78%, PPV 62%/65%, NPV 67%/72%, accuracy 65%/70%, AUC 0.65/0.72 and Brier scores 0.23/0.21. Our results suggest that accelerometer data may be used to predict falls in an unsupervised setting. Furthermore, the parameters used for prediction are measurable with an unobtrusive sensor device during normal activities of daily living. These promising results have to be validated in a larger, long-term prospective trial.

  4. Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans

    NASA Astrophysics Data System (ADS)

    Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun

    2016-12-01

    Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.

  5. Interobserver reliability of the young-burgess and tile classification systems for fractures of the pelvic ring.

    PubMed

    Koo, Henry; Leveridge, Mike; Thompson, Charles; Zdero, Rad; Bhandari, Mohit; Kreder, Hans J; Stephen, David; McKee, Michael D; Schemitsch, Emil H

    2008-07-01

    The purpose of this study was to measure interobserver reliability of 2 classification systems of pelvic ring fractures and to determine whether computed tomography (CT) improves reliability. The reliability of several radiographic findings was also tested. Thirty patients taken from a database at a Level I trauma facility were reviewed. For each patient, 3 radiographs (AP pelvis, inlet, and outlet) and CT scans were available. Six different reviewers (pelvic and acetabular specialist, orthopaedic traumatologist, or orthopaedic trainee) classified the injury according to Young-Burgess and Tile classification systems after reviewing plain radiographs and then after CT scans. The Kappa coefficient was used to determine interobserver reliability of these classification systems before and after CT scan. For plain radiographs, overall Kappa values for the Young-Burgess and Tile classification systems were 0.72 and 0.30, respectively. For CT scan and plain radiographs, the overall Kappa values for the Young-Burgess and Tile classification systems were 0.63 and 0.33, respectively. The pelvis/acetabular surgeons demonstrated the highest level of agreement using both classification systems. For individual questions, the addition of CT did significantly improve reviewer interpretation of fracture stability. The pre-CT and post-CT Kappa values for fracture stability were 0.59 and 0.93, respectively. The CT scan can improve the reliability of assessment of pelvic stability because of its ability to identify anatomical features of injury. The Young-Burgess system may be optimal for the learning surgeon. The Tile classification system is more beneficial for specialists in pelvic and acetabular surgery.

  6. DIF Trees: Using Classification Trees to Detect Differential Item Functioning

    ERIC Educational Resources Information Center

    Vaughn, Brandon K.; Wang, Qiu

    2010-01-01

    A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…

  7. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  8. Nodule Classification on Low-Dose Unenhanced CT and Standard-Dose Enhanced CT: Inter-Protocol Agreement and Analysis of Interchangeability.

    PubMed

    Lee, Kyung Hee; Lee, Kyung Won; Park, Ji Hoon; Han, Kyunghwa; Kim, Jihang; Lee, Sang Min; Park, Chang Min

    2018-01-01

    To measure inter-protocol agreement and analyze interchangeability on nodule classification between low-dose unenhanced CT and standard-dose enhanced CT. From nodule libraries containing both low-dose unenhanced and standard-dose enhanced CT, 80 solid and 80 subsolid (40 part-solid, 40 non-solid) nodules of 135 patients were selected. Five thoracic radiologists categorized each nodule into solid, part-solid or non-solid. Inter-protocol agreement between low-dose unenhanced and standard-dose enhanced images was measured by pooling κ values for classification into two (solid, subsolid) and three (solid, part-solid, non-solid) categories. Interchangeability between low-dose unenhanced and standard-dose enhanced CT for the classification into two categories was assessed using a pre-defined equivalence limit of 8 percent. Inter-protocol agreement for the classification into two categories {κ, 0.96 (95% confidence interval [CI], 0.94-0.98)} and that into three categories (κ, 0.88 [95% CI, 0.85-0.92]) was considerably high. The probability of agreement between readers with standard-dose enhanced CT was 95.6% (95% CI, 94.5-96.6%), and that between low-dose unenhanced and standard-dose enhanced CT was 95.4% (95% CI, 94.7-96.0%). The difference between the two proportions was 0.25% (95% CI, -0.85-1.5%), wherein the upper bound CI was markedly below 8 percent. Inter-protocol agreement for nodule classification was considerably high. Low-dose unenhanced CT can be used interchangeably with standard-dose enhanced CT for nodule classification.

  9. A new tree classification system for southern hardwoods

    Treesearch

    James S. Meadows; Daniel A. Jr. Skojac

    2008-01-01

    A new tree classification system for southern hardwoods is described. The new system is based on the Putnam tree classification system, originally developed by Putnam et al., 1960, Management ond inventory of southern hardwoods, Agriculture Handbook 181, US For. Sew., Washington, DC, which consists of four tree classes: (1) preferred growing stock, (2) reserve growing...

  10. Automated segmentation of hepatic vessel trees in non-contrast x-ray CT images

    NASA Astrophysics Data System (ADS)

    Kawajiri, Suguru; Zhou, Xiangrong; Zhang, Xuejin; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Kanematsu, Masayuki; Hoshi, Hiroaki

    2007-03-01

    Hepatic vessel trees are the key structures in the liver. Knowledge of the hepatic vessel trees is important for liver surgery planning and hepatic disease diagnosis such as portal hypertension. However, hepatic vessels cannot be easily distinguished from other liver tissues in non-contrast CT images. Automated segmentation of hepatic vessels in non-contrast CT images is a challenging issue. In this paper, an approach for automated segmentation of hepatic vessels trees in non-contrast X-ray CT images is proposed. Enhancement of hepatic vessels is performed using two techniques: (1) histogram transformation based on a Gaussian window function; (2) multi-scale line filtering based on eigenvalues of Hessian matrix. After the enhancement of hepatic vessels, candidate of hepatic vessels are extracted by thresholding. Small connected regions of size less than 100 voxels are considered as false-positives and are removed from the process. This approach is applied to 20 cases of non-contrast CT images. Hepatic vessel trees segmented from the contrast-enhanced CT images of the same patient are used as the ground truth in evaluating the performance of the proposed segmentation method. Results show that the proposed method can enhance and segment the hepatic vessel regions in non-contrast CT images correctly.

  11. An Innovative Model to Predict Pediatric Emergency Department Return Visits.

    PubMed

    Bergese, Ilaria; Frigerio, Simona; Clari, Marco; Castagno, Emanuele; De Clemente, Antonietta; Ponticelli, Elena; Scavino, Enrica; Berchialla, Paola

    2016-10-06

    Return visit (RV) to the emergency department (ED) is considered a benchmarking clinical indicator for health care quality. The purpose of this study was to develop a predictive model for early readmission risk in pediatric EDs comparing the performances of 2 learning machine algorithms. A retrospective study based on all children younger than 15 years spontaneously returning within 120 hours after discharge was conducted in an Italian university children's hospital between October 2012 and April 2013. Two predictive models, artificial neural network (ANN) and classification tree (CT), were used. Accuracy, specificity, and sensitivity were assessed. A total of 28,341 patient records were evaluated. Among them, 626 patients returned to the ED within 120 hours after their initial visit. Comparing ANN and CT, our analysis has shown that CT is the best model to predict RVs. The CT model showed an overall accuracy of 81%, slightly lower than the one achieved by the ANN (91.3%), but CT outperformed ANN with regard to sensitivity (79.8% vs 6.9%, respectively). The specificity was similar for the 2 models (CT, 97% vs ANN, 98.3%). In addition, the time of arrival and discharge along with the priority code assigned in triage, age, and diagnosis play a pivotal role to identify patients at high risk of RVs. These models provide a promising predictive tool for supporting the ED staff in preventing unnecessary RVs.

  12. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  13. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images.

    PubMed

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-10-01

    To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.

  14. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images

    PubMed Central

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-01-01

    Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675

  15. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  16. Guide to the measurement of tree characteristics important to the quality classification for young hardwood trees

    Treesearch

    David L. Sonderman

    1979-01-01

    A procedure is shown for measuring external tree characteristics that are important in determining the current and future quality of young hardwood trees. This guide supplements a precious study which describes the quality classification system for young hardwood trees

  17. Comprehensible knowledge model creation for cancer treatment decision making.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Ali Khan, Wajahat; Ali, Taqdir; Lee, Sungyoung; Huh, Eui-Nam; Farooq Ahmad, Hafiz; Jamshed, Arif; Iqbal, Hassan; Irfan, Muhammad; Abbas Hydari, Manzar

    2017-03-01

    A wealth of clinical data exists in clinical documents in the form of electronic health records (EHRs). This data can be used for developing knowledge-based recommendation systems that can assist clinicians in clinical decision making and education. One of the big hurdles in developing such systems is the lack of automated mechanisms for knowledge acquisition to enable and educate clinicians in informed decision making. An automated knowledge acquisition methodology with a comprehensible knowledge model for cancer treatment (CKM-CT) is proposed. With the CKM-CT, clinical data are acquired automatically from documents. Quality of data is ensured by correcting errors and transforming various formats into a standard data format. Data preprocessing involves dimensionality reduction and missing value imputation. Predictive algorithm selection is performed on the basis of the ranking score of the weighted sum model. The knowledge builder prepares knowledge for knowledge-based services: clinical decisions and education support. Data is acquired from 13,788 head and neck cancer (HNC) documents for 3447 patients, including 1526 patients of the oral cavity site. In the data quality task, 160 staging values are corrected. In the preprocessing task, 20 attributes and 106 records are eliminated from the dataset. The Classification and Regression Trees (CRT) algorithm is selected and provides 69.0% classification accuracy in predicting HNC treatment plans, consisting of 11 decision paths that yield 11 decision rules. Our proposed methodology, CKM-CT, is helpful to find hidden knowledge in clinical documents. In CKM-CT, the prediction models are developed to assist and educate clinicians for informed decision making. The proposed methodology is generalizable to apply to data of other domains such as breast cancer with a similar objective to assist clinicians in decision making and education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Automated segmentation of thyroid gland on CT images with multi-atlas label fusion and random classification forest

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chang, Kevin; Kim, Lauren; Turkbey, Evrim; Lu, Le; Yao, Jianhua; Summers, Ronald

    2015-03-01

    The thyroid gland plays an important role in clinical practice, especially for radiation therapy treatment planning. For patients with head and neck cancer, radiation therapy requires a precise delineation of the thyroid gland to be spared on the pre-treatment planning CT images to avoid thyroid dysfunction. In the current clinical workflow, the thyroid gland is normally manually delineated by radiologists or radiation oncologists, which is time consuming and error prone. Therefore, a system for automated segmentation of the thyroid is desirable. However, automated segmentation of the thyroid is challenging because the thyroid is inhomogeneous and surrounded by structures that have similar intensities. In this work, the thyroid gland segmentation is initially estimated by multi-atlas label fusion algorithm. The segmentation is refined by supervised statistical learning based voxel labeling with a random forest algorithm. Multiatlas label fusion (MALF) transfers expert-labeled thyroids from atlases to a target image using deformable registration. Errors produced by label transfer are reduced by label fusion that combines the results produced by all atlases into a consensus solution. Then, random forest (RF) employs an ensemble of decision trees that are trained on labeled thyroids to recognize features. The trained forest classifier is then applied to the thyroid estimated from the MALF by voxel scanning to assign the class-conditional probability. Voxels from the expert-labeled thyroids in CT volumes are treated as positive classes; background non-thyroid voxels as negatives. We applied this automated thyroid segmentation system to CT scans of 20 patients. The results showed that the MALF achieved an overall 0.75 Dice Similarity Coefficient (DSC) and the RF classification further improved the DSC to 0.81.

  19. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  20. Automated Decision Tree Classification of Corneal Shape

    PubMed Central

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645

  1. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  2. Optimizing spectral CT parameters for material classification tasks

    NASA Astrophysics Data System (ADS)

    Rigie, D. S.; La Rivière, P. J.

    2016-06-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.

  3. Optimizing Spectral CT Parameters for Material Classification Tasks

    PubMed Central

    Rigie, D. S.; La Rivière, P. J.

    2017-01-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430

  4. Bosniak classification system: a prospective comparison of CT, contrast-enhanced US, and MR for categorizing complex renal cystic masses.

    PubMed

    Graumann, Ole; Osther, Susanne Sloth; Karstoft, Jens; Hørlyck, Arne; Osther, Palle Jörn Sloth

    2016-11-01

    Background The Bosniak classification was originally based on computed tomographic (CT) findings. Magnetic resonance (MR) and contrast-enhanced ultrasonography (CEUS) imaging may demonstrate findings that are not depicted at CT, and there may not always be a clear correlation between the findings at MR and CEUS imaging and those at CT. Purpose To compare diagnostic accuracy of MR, CEUS, and CT when categorizing complex renal cystic masses according to the Bosniak classification. Material and Methods From February 2011 to June 2012, 46 complex renal cysts were prospectively evaluated by three readers. Each mass was categorized according to the Bosniak classification and CT was chosen as gold standard. Kappa was calculated for diagnostic accuracy and data was compared with pathological results. Results CT images found 27 BII, six BIIF, seven BIII, and six BIV. Forty-three cysts could be characterized by CEUS, 79% were in agreement with CT (κ = 0.86). Five BII lesions were upgraded to BIIF and four lesions were categorized lower with CEUS. Forty-one lesions were examined with MR; 78% were in agreement with CT (κ = 0.91). Three BII lesions were upgraded to BIIF and six lesions were categorized one category lower. Pathologic correlation in six lesions revealed four malignant and two benign lesions. Conclusion CEUS and MR both up- and downgraded renal cysts compared to CT, and until these non-radiation modalities have been refined and adjusted, CT should remain the gold standard of the Bosniak classification.

  5. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  6. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  7. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  8. A minimum spanning forest based classification method for dedicated breast CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei, E-mail: bfei@emory.edu

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting modelmore » used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.« less

  9. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    PubMed

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  10. Learning accurate very fast decision trees from uncertain data streams

    NASA Astrophysics Data System (ADS)

    Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo

    2015-12-01

    Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

  11. Toward extending terrestrial laser scanning applications in forestry: a case study of broad- and needle-leaf tree classification

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Jiang, Miao

    2017-01-01

    Tree species information is essential for forest research and management purposes, which in turn require approaches for accurate and precise classification of tree species. One such remote sensing technology, terrestrial laser scanning (TLS), has proved to be capable of characterizing detailed tree structures, such as tree stem geometry. Can TLS further differentiate between broad- and needle-leaves? If the answer is positive, TLS data can be used for classification of taxonomic tree groups by directly examining their differences in leaf morphology. An analysis was proposed to assess TLS-represented broad- and needle-leaf structures, followed by a Bayes classifier to perform the classification. Tests indicated that the proposed method can basically implement the task, with an overall accuracy of 77.78%. This study indicates a way of implementing the classification of the two major broad- and needle-leaf taxonomies measured by TLS in accordance to their literal definitions, and manifests the potential of extending TLS applications in forestry.

  12. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  13. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning.

    PubMed

    Yu, Huan; Caldwell, Curtis; Mah, Katherine; Mozeg, Daniel

    2009-03-01

    Coregistered fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has shown potential to improve the accuracy of radiation targeting of head and neck cancer (HNC) when compared to the use of CT simulation alone. The objective of this study was to identify textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18F-FDG PET and CT images. Abnormal and typical normal tissues were manually segmented from PET/CT images of 20 patients with HNC and 20 patients with lung cancer. Texture features including some derived from spatial grey-level dependence matrices (SGLDM) and neighborhood gray-tone-difference matrices (NGTDM) were selected for characterization of these segmented regions of interest (ROIs). Both K nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers were employed to discriminate images of abnormal and normal tissues. The area under the curve (AZ) of receiver operating characteristics (ROC) was used to evaluate the discrimination performance of features in comparison to an expert observer. The leave-one-out and bootstrap techniques were used to validate the results. The AZ of DT-based KNN classifier was 0.95. Sensitivity and specificity for normal and abnormal tissue classification were 89% and 99%, respectively. In summary, NGTDM features such as PET Coarseness, PET Contrast, and CT Coarseness extracted from FDG PET/CT images provided good discrimination performance. The clinical use of such features may lead to improvement in the accuracy of radiation targeting of HNC.

  14. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.

  15. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515

  16. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  17. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  18. Tree Classification Software

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1993-01-01

    This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.

  19. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  20. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach

    NASA Astrophysics Data System (ADS)

    Liu, Haijian; Wu, Changshan

    2018-06-01

    Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.

  1. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    PubMed

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  2. A Mixtures-of-Trees Framework for Multi-Label Classification

    PubMed Central

    Hong, Charmgil; Batal, Iyad; Hauskrecht, Milos

    2015-01-01

    We propose a new probabilistic approach for multi-label classification that aims to represent the class posterior distribution P(Y|X). Our approach uses a mixture of tree-structured Bayesian networks, which can leverage the computational advantages of conditional tree-structured models and the abilities of mixtures to compensate for tree-structured restrictions. We develop algorithms for learning the model from data and for performing multi-label predictions using the learned model. Experiments on multiple datasets demonstrate that our approach outperforms several state-of-the-art multi-label classification methods. PMID:25927011

  3. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    NASA Astrophysics Data System (ADS)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  4. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    DTIC Science & Technology

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  5. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    NASA Astrophysics Data System (ADS)

    Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong

    2013-01-01

    Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples.We performed classification using random forest (RF) and support vector machines (SVM) based on EnMap box. The overall accuracies for classifying the five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in semiarid environments when integrated with other standard bands. Similarly, we observed that where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated that the two accuracy measures of quantity and allocation disagreement are simpler and more helpful for the vast majority of remote sensing classification process than the kappa coefficient. Overall, high species classification can be achieved using strategically located RapidEye bands integrated with advanced processing algorithms.

  6. Lidar-based individual tree species classification using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  7. Discriminant forest classification method and system

    DOEpatents

    Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.

    2012-11-06

    A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.

  8. Coding of procedures documented by general practitioners in Swedish primary care-an explorative study using two procedure coding systems

    PubMed Central

    2012-01-01

    Background Procedures documented by general practitioners in primary care have not been studied in relation to procedure coding systems. We aimed to describe procedures documented by Swedish general practitioners in electronic patient records and to compare them to the Swedish Classification of Health Interventions (KVÅ) and SNOMED CT. Methods Procedures in 200 record entries were identified, coded, assessed in relation to two procedure coding systems and analysed. Results 417 procedures found in the 200 electronic patient record entries were coded with 36 different Classification of Health Interventions categories and 148 different SNOMED CT concepts. 22.8% of the procedures could not be coded with any Classification of Health Interventions category and 4.3% could not be coded with any SNOMED CT concept. 206 procedure-concept/category pairs were assessed as a complete match in SNOMED CT compared to 10 in the Classification of Health Interventions. Conclusions Procedures documented by general practitioners were present in nearly all electronic patient record entries. Almost all procedures could be coded using SNOMED CT. Classification of Health Interventions covered the procedures to a lesser extent and with a much lower degree of concordance. SNOMED CT is a more flexible terminology system that can be used for different purposes for procedure coding in primary care. PMID:22230095

  9. [CT morphometry for calcaneal fractures and comparison of the Zwipp and Sanders classifications].

    PubMed

    Andermahr, J; Jesch, A B; Helling, H J; Jubel, A; Fischbach, R; Rehm, K E

    2002-01-01

    The aim of the study is to correlate the CT-morphological changes of fractured calcaneus and the classifications of Zwipp and Sanders with the clinical outcome. In a retrospective clinical study, the preoperative CT scans of 75 calcaneal fractures were analysed. The morphometry of the fractures was determined by measuring height, length diameter and calcaneo-cuboidal angle in comparison to the intact contralateral side. At a mean of 38 months after trauma 44 patients were clinically followed-up. The data of CT image morphometry were correlated with the severity of fracture classified by Zwipp or Sanders as well as with the functional outcome. There was a good correlation between the fracture classifications and the morphometric data. Both fracture classifying systems have a predictive impact for functional outcome. The more exacting and accurate Zwipp classification considers the most important cofactors like involvement of the calcaneo-cuboidal joint, soft tissue damage, additional fractures etc. The Sanders classification is easier to use during clinical routine. The Zwipp classification includes more relevant cofactors (fracture of the calcaneo-cuboidal-joint, soft tissue swelling, etc.) and presents a higher correlation to the choice of therapy. Both classification systems present a prognostic impact concerning the clinical outcome.

  10. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  11. Crown-Level Tree Species Classification Using Integrated Airborne Hyperspectral and LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.

    2018-05-01

    Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79.86 %, Kc = 0.81) and spectral-metircs method (OA = 71.26, Kc = 0.69) in terms of classification accuracy, which indicated that the advanced method of data processing and sensitive feature selection are critical for improving the accuracy of crown-level tree species classification.

  12. Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography.

    PubMed

    Kakio, Tomoko; Yoshida, Naoko; Macha, Susan; Moriguchi, Kazunobu; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2017-09-01

    Analytical methods for the detection of substandard and falsified medical products (SFs) are important for public health and patient safety. Research to understand how the physical and chemical properties of SFs can be most effectively applied to distinguish the SFs from authentic products has not yet been investigated enough. Here, we investigated the usefulness of two analytical methods, handheld Raman spectroscopy (handheld Raman) and X-ray computed tomography (X-ray CT), for detecting SFs among oral solid antihypertensive pharmaceutical products containing candesartan cilexetil as an active pharmaceutical ingredient (API). X-ray CT visualized at least two different types of falsified tablets, one containing many cracks and voids and the other containing aggregates with high electron density, such as from the presence of the heavy elements. Generic products that purported to contain equivalent amounts of API to the authentic products were discriminated from the authentic products by the handheld Raman and the different physical structure on X-ray CT. Approach to investigate both the chemical and physical properties with handheld Raman and X-ray CT, respectively, promise the accurate discrimination of the SFs, even if their visual appearance is similar with authentic products. We present a decision tree for investigating the authenticity of samples purporting to be authentic commercial tablets. Our results indicate that the combination approach of visual observation, handheld Raman and X-ray CT is a powerful strategy for nondestructive discrimination of suspect samples.

  13. Automated anatomical labeling of bronchial branches using multiple classifiers and its application to bronchoscopy guidance based on fusion of virtual and real bronchoscopy

    NASA Astrophysics Data System (ADS)

    Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Hasegawa, Yoshinori; Imaizumi, Kazuyoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2008-03-01

    This paper presents a method for automated anatomical labeling of bronchial branches (ALBB) extracted from 3D CT datasets. The proposed method constructs classifiers that output anatomical names of bronchial branches by employing the machine-learning approach. We also present its application to a bronchoscopy guidance system. Since the bronchus has a complex tree structure, bronchoscopists easily tend to get disoriented and lose the way to a target location. A bronchoscopy guidance system is strongly expected to be developed to assist bronchoscopists. In such guidance system, automated presentation of anatomical names is quite useful information for bronchoscopy. Although several methods for automated ALBB were reported, most of them constructed models taking only variations of branching patterns into account and did not consider those of running directions. Since the running directions of bronchial branches differ greatly in individuals, they could not perform ALBB accurately when running directions of bronchial branches were different from those of models. Our method tries to solve such problems by utilizing the machine-learning approach. Actual procedure consists of three steps: (a) extraction of bronchial tree structures from 3D CT datasets, (b) construction of classifiers using the multi-class AdaBoost technique, and (c) automated classification of bronchial branches by using the constructed classifiers. We applied the proposed method to 51 cases of 3D CT datasets. The constructed classifiers were evaluated by leave-one-out scheme. The experimental results showed that the proposed method could assign correct anatomical names to bronchial branches of 89.1% up to segmental lobe branches. Also, we confirmed that it was quite useful to assist the bronchoscopy by presenting anatomical names of bronchial branches on real bronchoscopic views.

  14. Semantic similarity measures in the biomedical domain by leveraging a web search engine.

    PubMed

    Hsieh, Sheau-Ling; Chang, Wen-Yung; Chen, Chi-Huang; Weng, Yung-Ching

    2013-07-01

    Various researches in web related semantic similarity measures have been deployed. However, measuring semantic similarity between two terms remains a challenging task. The traditional ontology-based methodologies have a limitation that both concepts must be resided in the same ontology tree(s). Unfortunately, in practice, the assumption is not always applicable. On the other hand, if the corpus is sufficiently adequate, the corpus-based methodologies can overcome the limitation. Now, the web is a continuous and enormous growth corpus. Therefore, a method of estimating semantic similarity is proposed via exploiting the page counts of two biomedical concepts returned by Google AJAX web search engine. The features are extracted as the co-occurrence patterns of two given terms P and Q, by querying P, Q, as well as P AND Q, and the web search hit counts of the defined lexico-syntactic patterns. These similarity scores of different patterns are evaluated, by adapting support vector machines for classification, to leverage the robustness of semantic similarity measures. Experimental results validating against two datasets: dataset 1 provided by A. Hliaoutakis; dataset 2 provided by T. Pedersen, are presented and discussed. In dataset 1, the proposed approach achieves the best correlation coefficient (0.802) under SNOMED-CT. In dataset 2, the proposed method obtains the best correlation coefficient (SNOMED-CT: 0.705; MeSH: 0.723) with physician scores comparing with measures of other methods. However, the correlation coefficients (SNOMED-CT: 0.496; MeSH: 0.539) with coder scores received opposite outcomes. In conclusion, the semantic similarity findings of the proposed method are close to those of physicians' ratings. Furthermore, the study provides a cornerstone investigation for extracting fully relevant information from digitizing, free-text medical records in the National Taiwan University Hospital database.

  15. Comparison of Single and Multi-Scale Method for Leaf and Wood Points Classification from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie

    2018-04-01

    The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.

  16. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  17. Vlsi implementation of flexible architecture for decision tree classification in data mining

    NASA Astrophysics Data System (ADS)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  18. Preoperative classification assessment reliability and influence on the length of intertrochanteric fracture operations.

    PubMed

    Shen, Jing; Hu, FangKe; Zhang, LiHai; Tang, PeiFu; Bi, ZhengGang

    2013-04-01

    The accuracy of intertrochanteric fracture classification is important; indeed, the patient outcomes are dependent on their classification. The aim of this study was to use the AO classification system to evaluate the variation in classification between X-ray and computed tomography (CT)/3D CT images. Then, differences in the length of surgery were evaluated based on two examinations. Intertrochanteric fractures were reviewed and surgeons were interviewed. The rates of correct discrimination and misclassification (overestimates and underestimates) probabilities were determined. The impact of misclassification on length of surgery was also evaluated. In total, 370 patents and four surgeons were included in the study. All patients had X-ray images and 210 patients had CT/3D CT images. Of them, 214 and 156 patients were treated by intramedullary and extramedullary fixation systems, respectively. The mean length of surgery was 62.1 ± 17.7 min. The overall rate of correct discrimination was 83.8 % and in the classification of A1, A2 and A3 were 80.0, 85.7 and 82.4 %, respectively. The rate of misclassification showed no significant difference between stable and unstable fractures (21.3 vs 13.1 %, P = 0.173). The overall rates of overestimates and underestimates were significantly different (5 vs 11.25 %, P = 0.041). Subtracting the rate of overestimates from underestimates had a positive correlation with prolonged surgery and showed a significant difference with intramedullary fixation (P < 0.001). Classification based on the AO system was good in terms of consistency. CT/3D CT examination was more reliable and more helpful for preoperative assessment, especially for performance of an intramedullary fixation.

  19. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    NASA Astrophysics Data System (ADS)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  20. Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?

    NASA Astrophysics Data System (ADS)

    Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.

    2018-05-01

    Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.

  1. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    NASA Astrophysics Data System (ADS)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  2. Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.

    2015-01-01

    An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.

  3. Pulmonary airways tree segmentation from CT examinations using adaptive volume of interest

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Kim, Won Pil; Zheng, Bin; Leader, Joseph K.; Pu, Jiantao; Tan, Jun; Gur, David

    2009-02-01

    Airways tree segmentation is an important step in quantitatively assessing the severity of and changes in several lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. It can also be used in guiding bronchoscopy. The purpose of this study is to develop an automated scheme for segmenting the airways tree structure depicted on chest CT examinations. After lung volume segmentation, the scheme defines the first cylinder-like volume of interest (VOI) using a series of images depicting the trachea. The scheme then iteratively defines and adds subsequent VOIs using a region growing algorithm combined with adaptively determined thresholds in order to trace possible sections of airways located inside the combined VOI in question. The airway tree segmentation process is automatically terminated after the scheme assesses all defined VOIs in the iteratively assembled VOI list. In this preliminary study, ten CT examinations with 1.25mm section thickness and two different CT image reconstruction kernels ("bone" and "standard") were selected and used to test the proposed airways tree segmentation scheme. The experiment results showed that (1) adopting this approach affectively prevented the scheme from infiltrating into the parenchyma, (2) the proposed method reasonably accurately segmented the airways trees with lower false positive identification rate as compared with other previously reported schemes that are based on 2-D image segmentation and data analyses, and (3) the proposed adaptive, iterative threshold selection method for the region growing step in each identified VOI enables the scheme to segment the airways trees reliably to the 4th generation in this limited dataset with successful segmentation up to the 5th generation in a fraction of the airways tree branches.

  4. Indicators of Terrorism Vulnerability in Africa

    DTIC Science & Technology

    2015-03-26

    the terror threat and vulnerabilities across Africa. Key words: Terrorism, Africa, Negative Binomial Regression, Classification Tree iv I would like...31 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Log -likelihood...70 viii Page 5.3 Classification Tree Description

  5. [An object-based information extraction technology for dominant tree species group types].

    PubMed

    Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang

    2015-06-01

    Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.

  6. Instruction-matrix-based genetic programming.

    PubMed

    Li, Gang; Wang, Jin Feng; Lee, Kin Hong; Leung, Kwong-Sak

    2008-08-01

    In genetic programming (GP), evolving tree nodes separately would reduce the huge solution space. However, tree nodes are highly interdependent with respect to their fitness. In this paper, we propose a new GP framework, namely, instruction-matrix (IM)-based GP (IMGP), to handle their interactions. IMGP maintains an IM to evolve tree nodes and subtrees separately. IMGP extracts program trees from an IM and updates the IM with the information of the extracted program trees. As the IM actually keeps most of the information of the schemata of GP and evolves the schemata directly, IMGP is effective and efficient. Our experimental results on benchmark problems have verified that IMGP is not only better than those of canonical GP in terms of the qualities of the solutions and the number of program evaluations, but they are also better than some of the related GP algorithms. IMGP can also be used to evolve programs for classification problems. The classifiers obtained have higher classification accuracies than four other GP classification algorithms on four benchmark classification problems. The testing errors are also comparable to or better than those obtained with well-known classifiers. Furthermore, an extended version, called condition matrix for rule learning, has been used successfully to handle multiclass classification problems.

  7. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.

    PubMed

    Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A

    2013-08-01

    In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.

  8. A proposal for a CT driven classification of left colon acute diverticulitis.

    PubMed

    Sartelli, Massimo; Moore, Frederick A; Ansaloni, Luca; Di Saverio, Salomone; Coccolini, Federico; Griffiths, Ewen A; Coimbra, Raul; Agresta, Ferdinando; Sakakushev, Boris; Ordoñez, Carlos A; Abu-Zidan, Fikri M; Karamarkovic, Aleksandar; Augustin, Goran; Costa Navarro, David; Ulrych, Jan; Demetrashvili, Zaza; Melo, Renato B; Marwah, Sanjay; Zachariah, Sanoop K; Wani, Imtiaz; Shelat, Vishal G; Kim, Jae Il; McFarlane, Michael; Pintar, Tadaja; Rems, Miran; Bala, Miklosh; Ben-Ishay, Offir; Gomes, Carlos Augusto; Faro, Mario Paulo; Pereira, Gerson Alves; Catani, Marco; Baiocchi, Gianluca; Bini, Roberto; Anania, Gabriele; Negoi, Ionut; Kecbaja, Zurabs; Omari, Abdelkarim H; Cui, Yunfeng; Kenig, Jakub; Sato, Norio; Vereczkei, Andras; Skrovina, Matej; Das, Koray; Bellanova, Giovanni; Di Carlo, Isidoro; Segovia Lohse, Helmut A; Kong, Victor; Kok, Kenneth Y; Massalou, Damien; Smirnov, Dmitry; Gachabayov, Mahir; Gkiokas, Georgios; Marinis, Athanasios; Spyropoulos, Charalampos; Nikolopoulos, Ioannis; Bouliaris, Konstantinos; Tepp, Jaan; Lohsiriwat, Varut; Çolak, Elif; Isik, Arda; Rios-Cruz, Daniel; Soto, Rodolfo; Abbas, Ashraf; Tranà, Cristian; Caproli, Emanuele; Soldatenkova, Darija; Corcione, Francesco; Piazza, Diego; Catena, Fausto

    2015-01-01

    Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice.

  9. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted textures occurring due to branches and twigs. As a result from the inverse wavelet transform, the tree crown boundary is enhanced while the unwanted textures are suppressed. Based on the enhanced image, an improvement is achieved when applying the two-stage methods to a high resolution aerial photograph. To improve tree species classification, we develop a new method to choose the optimal scale parameter with the aid of Bhattacharya Distance (BD), a well-known index of class separability in traditional pixel-based classification. The optimal scale parameter is then fed in the process of a region-growing-based segmentation as a break-off value. Our object classification achieves a better accuracy in separating tree species when compared to the conventional Maximum Likelihood Classification (MLC). In summary, we develop two object-based methods for identifying individual trees and classifying tree species from high-spatial resolution imagery. Both methods achieve promising results and will promote integration of Remote Sensing and GIS in forest applications.

  10. Topological leakage detection and freeze-and-grow propagation for improved CT-based airway segmentation

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Hoffman, Eric A.; Sieren, Jered P.; Saha, Punam K.

    2018-03-01

    Numerous large multi-center studies are incorporating the use of computed tomography (CT)-based characterization of the lung parenchyma and bronchial tree to understand chronic obstructive pulmonary disease status and progression. To the best of our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. A failure in even a fraction of segmentation results necessitates manual revision of all segmentation masks which is laborious considering the thousands of image data sets evaluated in large studies. In this paper, we present a novel CT-based airway tree segmentation algorithm using topological leakage detection and freeze-and-grow propagation. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity-based connectivity and a freeze-and-grow propagation algorithm to iteratively grow the airway tree starting from an initial seed inside the trachea. It begins with a conservative parameter and then, gradually shifts toward more generous parameter values. The method was applied on chest CT scans of fifteen subjects at total lung capacity. Airway segmentation results were qualitatively assessed and performed comparably to established airway segmentation method with no major visual leakages.

  11. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters.

    PubMed

    Zhou, Qian-Jun; Zheng, Zhi-Chun; Zhu, Yong-Qiao; Lu, Pei-Ji; Huang, Jia; Ye, Jian-Ding; Zhang, Jie; Lu, Shun; Luo, Qing-Quan

    2017-05-01

    To investigate the potential value of CT parameters to differentiate ground-glass nodules between noninvasive adenocarcinoma and invasive pulmonary adenocarcinoma (IPA) as defined by IASLC/ATS/ERS classification. We retrospectively reviewed 211 patients with pathologically proved stage 0-IA lung adenocarcinoma which appeared as subsolid nodules, from January 2012 to January 2013 including 137 pure ground glass nodules (pGGNs) and 74 part-solid nodules (PSNs). Pathological data was classified under the 2011 IASLC/ATS/ERS classification. Both quantitative and qualitative CT parameters were used to determine the tumor invasiveness between noninvasive adenocarcinomas and IPAs. There were 154 noninvasive adenocarcinomas and 57 IPAs. In pGGNs, CT size and area, one-dimensional mean CT value and bubble lucency were significantly different between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate regression and ROC analysis revealed that CT size and one-dimensional mean CT value were predictive of noninvasive adenocarcinomas compared to IPAs. Optimal cutoff value was 13.60 mm (sensitivity, 75.0%; specificity, 99.6%), and -583.60 HU (sensitivity, 68.8%; specificity, 66.9%). In PSNs, there were significant differences in CT size and area, solid component area, solid proportion, one-dimensional mean and maximum CT value, three-dimensional (3D) mean CT value between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate and ROC analysis showed that CT size and 3D mean CT value were significantly differentiators. Optimal cutoff value was 19.64 mm (sensitivity, 53.7%; specificity, 93.9%), -571.63 HU (sensitivity, 85.4%; specificity, 75.8%). For pGGNs, CT size and one-dimensional mean CT value are determinants for tumor invasiveness. For PSNs, tumor invasiveness can be predicted by CT size and 3D mean CT value.

  12. New Tree-Classification System Used by the Southern Forest Inventory and Analysis Unit

    Treesearch

    Dennis M. May; John S. Vissage; D. Vince Few

    1990-01-01

    Trees at USDA Forest Service, Southern Forest Inventory and Analysis, sample locations are classified as growing stock or cull based on their ability to produce sawlogs. The old and new classification systems are compared, and the impacts of the new system on the reporting of tree volumes are illustrated with inventory data from north Alabama.

  13. The value of CT and MRI in the classification and surgical decision-making among spine surgeons in thoracolumbar spinal injuries.

    PubMed

    Rajasekaran, Shanmuganathan; Vaccaro, Alexander R; Kanna, Rishi Mugesh; Schroeder, Gregory D; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Maheshwaran, Anupama; Kandziora, Frank

    2017-05-01

    Although imaging has a major role in evaluation and management of thoracolumbar spinal trauma by spine surgeons, the exact role of computed tomography (CT) and magnetic resonance imaging (MRI) in addition to radiographs for fracture classification and surgical decision-making is unclear. Spine surgeons (n = 41) from around the world classified 30 thoracolumbar fractures. The cases were presented in a three-step approach: first plain radiographs, followed by CT and MRI images. Surgeons were asked to classify according to the AOSpine classification system and choose management in each of the three steps. Surgeons correctly classified 43.4 % of fractures with plain radiographs alone; after, additionally, evaluating CT and MRI images, this percentage increased by further 18.2 and 2.2 %, respectively. AO type A fractures were identified in 51.7 % of fractures with radiographs, while the number of type B fractures increased after CT and MRI. The number of type C fractures diagnosed was constant across the three steps. Agreement between radiographs and CT was fair for A-type (k = 0.31), poor for B-type (k = 0.19), but it was excellent between CT and MRI (k > 0.87). CT and MRI had similar sensitivity in identifying fracture subtypes except that MRI had a higher sensitivity (56.5 %) for B2 fractures (p < 0.001). The need for surgical fixation was deemed present in 72 % based on radiographs alone and increased to 81.7 % with CT images (p < 0.0001). The assessment for need of surgery did not change after an MRI (p = 0.77). For accurate classification, radiographs alone were insufficient except for C-type injuries. CT is mandatory for accurately classifying thoracolumbar fractures. Though MRI did confer a modest gain in sensitivity in B2 injuries, the study does not support the need for routine MRI in patients for classification, assessing instability or need for surgery.

  14. A classification tree for the prediction of benign versus malignant disease in patients with small renal masses.

    PubMed

    Rendon, Ricardo A; Mason, Ross J; Kirkland, Susan; Lawen, Joseph G; Abdolell, Mohamed

    2014-08-01

    To develop a classification tree for the preoperative prediction of benign versus malignant disease in patients with small renal masses. This is a retrospective study including 395 consecutive patients who underwent surgical treatment for a renal mass < 5 cm in maximum diameter between July 1st 2001 and June 30th 2010. A classification tree to predict the risk of having a benign renal mass preoperatively was developed using recursive partitioning analysis for repeated measures outcomes. Age, sex, volume on preoperative imaging, tumor location (central/peripheral), degree of endophytic component (1%-100%), and tumor axis position were used as potential predictors to develop the model. Forty-five patients (11.4%) were found to have a benign mass postoperatively. A classification tree has been developed which can predict the risk of benign disease with an accuracy of 88.9% (95% CI: 85.3 to 91.8). The significant prognostic factors in the classification tree are tumor volume, degree of endophytic component and symptoms at diagnosis. As an example of its utilization, a renal mass with a volume of < 5.67 cm3 that is < 45% endophytic has a 52.6% chance of having benign pathology. Conversely, a renal mass with a volume ≥ 5.67 cm3 that is ≥ 35% endophytic has only a 5.3% possibility of being benign. A classification tree to predict the risk of benign disease in small renal masses has been developed to aid the clinician when deciding on treatment strategies for small renal masses.

  15. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  16. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    PubMed Central

    Säynäjoki, Raita; Packalén, Petteri; Maltamo, Matti; Vehmas, Mikko; Eerikäinen, Kalle

    2008-01-01

    The aim was to use high resolution Aerial Laser Scanning (ALS) data and aerial images to detect European aspen (Populus tremula L.) from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM) was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF) and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species. PMID:27873799

  17. Contrast-enhanced computed tomography plus gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging for gross classification of hepatocellular carcinoma.

    PubMed

    Chen, Chuang; Zhao, Hui; Fu, Xu; Huang, LuoShun; Tang, Min; Yan, XiaoPeng; Sun, ShiQuan; Jia, WenJun; Mao, Liang; Shi, Jiong; Chen, Jun; He, Jian; Zhu, Jin; Qiu, YuDong

    2017-05-02

    Accurate gross classification through imaging is critical for determination of hepatocellular carcinoma (HCC) patient prognoses and treatment strategies. The present retrospective study evaluated the utility of contrast-enhanced computed tomography (CE-CT) combined with gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) for diagnosis and classification of HCCs prior to surgery. Ninety-four surgically resected HCC nodules were classified as simple nodular (SN), SN with extranodular growth (SN-EG), confluent multinodular (CMN), or infiltrative (IF) types. SN-EG, CMN and IF samples were grouped as non-SN. The abilities of the two imaging modalities to differentiate non-SN from SN HCCs were assessed using the EOB-MRI hepatobiliary phase and CE-CT arterial, portal, and equilibrium phases. Areas under the ROC curves for non-SN diagnoses were 0.765 (95% confidence interval [CI]: 0.666-0.846) for CE-CT, 0.877 (95% CI: 0.793-0.936) for EOB-MRI, and 0.908 (95% CI: 0.830-0.958) for CE-CT plus EOB-MRI. Sensitivities, specificities, and accuracies with respect to identification of non-SN tumors of all sizes were 71.4%, 81.6%, and 75.5% for CE-CT; 96.4%, 78.9%, and 89.3% for EOB-MRI; and 98.2%, 84.2%, and 92.5% for CE-CT plus EOB-MRI. These results show that CE-CT combined with EOB-MRI offers a more accurate imaging evaluation for HCC gross classification than either modality alone.

  18. Estimating probabilities of infestation and extent of damage by the roundheaded pine beetle in ponderosa pine in the Sacramento Mountains, New Mexico

    Treesearch

    Jose Negron

    1997-01-01

    Classification trees and linear regression analysis were used to build models to predict probabilities of infestation and amount of tree mortality in terms of basal area resulting from roundheaded pine beetle, Dendroctonus adjunctus Blandford, activity in ponderosa pine, Pinus ponderosa Laws., in the Sacramento Mountains, New Mexico. Classification trees were built for...

  19. Intrathoracic airway wall detection using graph search and scanner PSF information

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Park, Wonkyu; Hoffman, Eric A.; Sonka, Milan

    1997-05-01

    Measurements of the in vivo bronchial tree can be used to assess regional airway physiology. High-resolution CT (HRCT) provides detailed images of the lungs and has been used to evaluate bronchial airway geometry. Such measurements have been sued to assess diseases affecting the airways, such as asthma and cystic fibrosis, to measure airway response to external stimuli, and to evaluate the mechanics of airway collapse in sleep apnea. To routinely use CT imaging in a clinical setting to evaluate the in vivo airway tree, there is a need for an objective, automatic technique for identifying the airway tree in the CT images and measuring airway geometry parameters. Manual or semi-automatic segmentation and measurement of the airway tree from a 3D data set may require several man-hours of work, and the manual approaches suffer from inter-observer and intra- observer variabilities. This paper describes a method for automatic airway tree analysis that combines accurate airway wall location estimation with a technique for optimal airway border smoothing. A fuzzy logic, rule-based system is used to identify the branches of the 3D airway tree in thin-slice HRCT images. Raycasting is combined with a model-based parameter estimation technique to identify the approximate inner and outer airway wall borders in 2D cross-sections through the image data set. Finally, a 2D graph search is used to optimize the estimated airway wall locations and obtain accurate airway borders. We demonstrate this technique using CT images of a plexiglass tube phantom.

  20. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  1. Identification and Mapping of Tree Species in Urban Areas Using WORLDVIEW-2 Imagery

    NASA Astrophysics Data System (ADS)

    Mustafa, Y. T.; Habeeb, H. N.; Stein, A.; Sulaiman, F. Y.

    2015-10-01

    Monitoring and mapping of urban trees are essential to provide urban forestry authorities with timely and consistent information. Modern techniques increasingly facilitate these tasks, but require the development of semi-automatic tree detection and classification methods. In this article, we propose an approach to delineate and map the crown of 15 tree species in the city of Duhok, Kurdistan Region of Iraq using WorldView-2 (WV-2) imagery. A tree crown object is identified first and is subsequently delineated as an image object (IO) using vegetation indices and texture measurements. Next, three classification methods: Maximum Likelihood, Neural Network, and Support Vector Machine were used to classify IOs using selected IO features. The best results are obtained with Support Vector Machine classification that gives the best map of urban tree species in Duhok. The overall accuracy was between 60.93% to 88.92% and κ-coefficient was between 0.57 to 0.75. We conclude that fifteen tree species were identified and mapped at a satisfactory accuracy in urban areas of this study.

  2. A novel approach to internal crown characterization for coniferous tree species classification

    NASA Astrophysics Data System (ADS)

    Harikumar, A.; Bovolo, F.; Bruzzone, L.

    2016-10-01

    The knowledge about individual trees in forest is highly beneficial in forest management. High density small foot- print multi-return airborne Light Detection and Ranging (LiDAR) data can provide a very accurate information about the structural properties of individual trees in forests. Every tree species has a unique set of crown structural characteristics that can be used for tree species classification. In this paper, we use both the internal and external crown structural information of a conifer tree crown, derived from a high density small foot-print multi-return LiDAR data acquisition for species classification. Considering the fact that branches are the major building blocks of a conifer tree crown, we obtain the internal crown structural information using a branch level analysis. The structure of each conifer branch is represented using clusters in the LiDAR point cloud. We propose the joint use of the k-means clustering and geometric shape fitting, on the LiDAR data projected onto a novel 3-dimensional space, to identify branch clusters. After mapping the identified clusters back to the original space, six internal geometric features are estimated using a branch-level analysis. The external crown characteristics are modeled by using six least correlated features based on cone fitting and convex hull. Species classification is performed using a sparse Support Vector Machines (sparse SVM) classifier.

  3. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    NASA Astrophysics Data System (ADS)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.

  4. Three-dimensional murine airway segmentation in micro-CT images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.

    2007-03-01

    Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.

  5. Time Series of Images to Improve Tree Species Classification

    NASA Astrophysics Data System (ADS)

    Miyoshi, G. T.; Imai, N. N.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.

    2017-10-01

    Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26 %.

  6. Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

    NASA Astrophysics Data System (ADS)

    Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko

    2015-01-01

    Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.

  7. Classification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B.

    PubMed

    Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang

    2013-01-01

    Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.

  8. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  9. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  10. Classification of CT examinations for COPD visual severity analysis

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Wang, Xingwei; Pu, Jiantao; Gur, David; Sciurba, Frank C.; Leader, J. Ken

    2012-03-01

    In this study we present a computational method of CT examination classification into visual assessed emphysema severity. The visual severity categories ranged from 0 to 5 and were rated by an experienced radiologist. The six categories were none, trace, mild, moderate, severe and very severe. Lung segmentation was performed for every input image and all image features are extracted from the segmented lung only. We adopted a two-level feature representation method for the classification. Five gray level distribution statistics, six gray level co-occurrence matrix (GLCM), and eleven gray level run-length (GLRL) features were computed for each CT image depicted segment lung. Then we used wavelets decomposition to obtain the low- and high-frequency components of the input image, and again extract from the lung region six GLCM features and eleven GLRL features. Therefore our feature vector length is 56. The CT examinations were classified using the support vector machine (SVM) and k-nearest neighbors (KNN) and the traditional threshold (density mask) approach. The SVM classifier had the highest classification performance of all the methods with an overall sensitivity of 54.4% and a 69.6% sensitivity to discriminate "no" and "trace visually assessed emphysema. We believe this work may lead to an automated, objective method to categorically classify emphysema severity on CT exam.

  11. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  12. Systematization method for distinguishing plastic groups by using NIR spectroscopy.

    PubMed

    Kaihara, Mikio; Satoh, Minami; Satoh, Minoru

    2007-07-01

    A systematic classification method for polymers is not yet available in case of using near infrared spectra (NIR). That is why we have been searching for a systematic method. Because raw NIR spectra usually have few obvious peaks, NIR spectra have been pretreated by 2nd derivation for taking well modulated spectra. After the pretreatment, we applied classification and regression trees (CART) to the discrimination between the spectra and the species of polymers. As a result, we obtained a relatively simple classification tree. Judging from the obtained splitting conditions and the classified polymers, we concluded that obtained knowledge on the chemical function groups estimated by the important wavelength regions is not always applicable to this classification tree. However, we clarified the splitting rules for polymer species from the NIR spectral point of view.

  13. Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery

    USGS Publications Warehouse

    Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael

    2013-01-01

    Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas experiencing wildfire and management activity. -Our results demonstrate that unsupervised clustering of bi-temporal NDVI and RGI differences can be used to detect tree mortality resulting from numerous causes and in several forest cover types.

  14. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    PubMed

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  15. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    PubMed Central

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  16. Dictionary learning-based CT detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong

    2016-10-01

    Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.

  17. Diagnosis and classification of pancreatic and duodenal injuries in emergency radiology.

    PubMed

    Linsenmaier, Ulrich; Wirth, Stefan; Reiser, Maximilian; Körner, Markus

    2008-10-01

    Pancreatic and duodenal injuries after blunt abdominal trauma are rare; however, delays in diagnosis and treatment can significantly increase morbidity and mortality. Multidetector computed tomography (CT) has a major role in early diagnosis of pancreatic and duodenal injuries. Detecting the often subtle signs of injury with whole-body CT can be difficult because this technique usually does not include a dedicated protocol for scanning the pancreas. Specific injury patterns in the pancreas and duodenum often have variable expression at early posttraumatic multidetector CT: They may be hardly visible, or there may be considerable exudate, hematomas, organ ruptures, or active bleeding. An accurate multidetector CT technique allows optimized detection of subtle abnormalities. In duodenal injuries, differentiation between a contusion of the duodenal wall or mural hematoma and a duodenal perforation is vital. In pancreatic injuries, determination of involvement of the pancreatic duct is essential. The latter conditions require immediate surgical intervention. Use of organ injury scales and a surgical classification adapted for multidetector CT enables classification of organ injuries for trauma scoring, treatment planning, and outcome control. In addition, multidetector CT reliably demonstrates potential complications of duodenal and pancreatic injuries, such as posttraumatic pancreatitis, pseudocysts, fistulas, exudates, and abscesses. (c) RSNA, 2008.

  18. SU-F-J-218: Predicting Radiation-Induced Xerostomia by Dosimetrically Accounting for Daily Setup Uncertainty During Head and Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Quon, H; McNutt, T

    2016-06-15

    Purpose: To determine if the accumulated parotid dosimetry using planning CT to daily CBCT deformation and dose re-calculation can predict for radiation-induced xerostomia. Methods: To track and dosimetrically account for the effects of anatomical changes on the parotid glands, we propagated physicians’ contours from planning CT to daily CBCT using a deformable registration with iterative CBCT intensity correction. A surface mesh for each OAR was created with the deformation applied to the mesh to obtain the deformed parotid volumes. Daily dose was computed on the deformed CT and accumulated to the last fraction. For both the accumulated and the plannedmore » parotid dosimetry, we tested the prediction power of different dosimetric parameters including D90, D50, D10, mean, standard deviation, min/max dose to the combined parotids and patient age to severe xerostomia (NCI-CTCAE grade≥2 at 6 mo follow-up). We also tested the dosimetry to parotid sub-volumes. Three classification algorithms, random tree, support vector machine, and logistic regression were tested to predict severe xerostomia using a leave-one-out validation approach. Results: We tested our prediction model on 35 HN IMRT cases. Parameters from the accumulated dosimetry model demonstrated an 89% accuracy for predicting severe xerostomia. Compared to the planning dosimetry, the accumulated dose consistently demonstrated higher prediction power with all three classification algorithms, including 11%, 5% and 30% higher accuracy, sensitivity and specificity, respectively. Geometric division of the combined parotid glands into superior-inferior regions demonstrated ∼5% increased accuracy than the whole volume. The most influential ranked features include age, mean accumulated dose of the submandibular glands and the accumulated D90 of the superior parotid glands. Conclusion: We demonstrated that the accumulated parotid dosimetry using CT-CBCT registration and dose re-calculation more accurately predicts for severe xerostomia and that the superior portion of the parotid glands may be particularly important in predicting for severe xerostomia. This work was supported in part by NIH/NCI under grant R42CA137886 and in part by Toshiba big data research project funds.« less

  19. Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.

    PubMed

    Malehi, Amal Saki

    2014-01-01

    The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.

  20. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  1. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te

    2018-03-01

    Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p  =  0.002 518), sigma (p  =  0.002 781), uniformity (p  =  0.032 41), and entropy (p  =  0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining truly malignant nodules and therefore reduce problems in lung cancer screening.

  2. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening.

    PubMed

    Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te

    2018-03-14

    Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p  =  0.002 518), sigma (p  =  0.002 781), uniformity (p  =  0.032 41), and entropy (p  =  0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining truly malignant nodules and therefore reduce problems in lung cancer screening.

  3. Variations of the superficial middle cerebral vein: classification using three-dimensional CT angiography.

    PubMed

    Suzuki, Y; Matsumoto, K

    2000-05-01

    Classification of variations of the superficial middle cerebral vein (SMCV) remains ambiguous. We propose a new classification system based on embryologic development for preoperative examination. Three-dimensional CT angiography was used to evaluate 500 SMCVs (in 250 patients). The outflow vessels from the SMCV were classified into seven types on the basis of embryologic development. The 3D CT angiograms in axial stereoscopic and oblique views and multiple intensity projection images were evaluated by the same neurosurgeon on two occasions. Inconsistent interpretations were regarded as equivocal. Three-dimensional CT angiography clearly depicted the SMCV running along the lesser wing or the middle cranial fossa. However, the outflow vessel could not be confirmed as the sphenoparietal, cavernous, or emissary type in 39 (8%) of the sides. SMCVs running in the middle cranial fossa to join the transverse sinus or superior petrosal sinus were accurately identified. SMCVs were present in 456 sides: 62% entered the sphenoparietal sinus or the cavernous sinus and 12% joined the emissary vein. Nine vessels were the superior petrosal type, 10 the basal type, 12 the squamosal type, and 44 the undeveloped type. Three-dimensional CT angiography can depict the vessels and their anatomic relationship to the bone structure, allowing identification of the SMCV variant in individual patients. Preoperative planning for skull base surgery requires such information to reduce the invasiveness of the procedure. With the use of our classification system, 3D CT angiography can provide exact and practical information concerning the SMCV.

  4. Rule-driven defect detection in CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2000-01-01

    This paper deals with automated detection and identification of internal defects in hardwood logs using computed tomography (CT) images. We have developed a system that employs artificial neural networks to perform tentative classification of logs on a pixel-by-pixel basis. This approach achieves a high level of classification accuracy for several hardwood species (...

  5. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  6. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui

    2016-07-01

    The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.

  7. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H; Barbee, D; Wang, W

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CTmore » for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.« less

  8. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  9. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    NASA Astrophysics Data System (ADS)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  10. Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: An observational, multicenter study

    PubMed Central

    Kivisaari, Riku; Svensson, Mikael; Skrifvars, Markus B.

    2017-01-01

    Background Traumatic brain injury (TBI) is a major contributor to morbidity and mortality. Computerized tomography (CT) scanning of the brain is essential for diagnostic screening of intracranial injuries in need of neurosurgical intervention, but may also provide information concerning patient prognosis and enable baseline risk stratification in clinical trials. Novel CT scoring systems have been developed to improve current prognostic models, including the Stockholm and Helsinki CT scores, but so far have not been extensively validated. The primary aim of this study was to evaluate the Stockholm and Helsinki CT scores for predicting functional outcome, in comparison with the Rotterdam CT score and Marshall CT classification. The secondary aims were to assess which individual components of the CT scores best predict outcome and what additional prognostic value the CT scoring systems contribute to a clinical prognostic model. Methods and findings TBI patients requiring neuro-intensive care and not included in the initial creation of the Stockholm and Helsinki CT scoring systems were retrospectively included from prospectively collected data at the Karolinska University Hospital (n = 720 from 1 January 2005 to 31 December 2014) and Helsinki University Hospital (n = 395 from 1 January 2013 to 31 December 2014), totaling 1,115 patients. The Marshall CT classification and the Rotterdam, Stockholm, and Helsinki CT scores were assessed using the admission CT scans. Known outcome predictors at admission were acquired (age, pupil responsiveness, admission Glasgow Coma Scale, glucose level, and hemoglobin level) and used in univariate, and multivariable, regression models to predict long-term functional outcome (dichotomizations of the Glasgow Outcome Scale [GOS]). In total, 478 patients (43%) had an unfavorable outcome (GOS 1–3). In the combined cohort, overall prognostic performance was more accurate for the Stockholm CT score (Nagelkerke’s pseudo-R2 range 0.24–0.28) and the Helsinki CT score (0.18–0.22) than for the Rotterdam CT score (0.13–0.15) and Marshall CT classification (0.03–0.05). Moreover, the Stockholm and Helsinki CT scores added the most independent prognostic value in the presence of other known clinical outcome predictors in TBI (6% and 4%, respectively). The aggregate traumatic subarachnoid hemorrhage (tSAH) component of the Stockholm CT score was the strongest predictor of unfavorable outcome. The main limitations were the retrospective nature of the study, missing patient information, and the varying follow-up time between the centers. Conclusions The Stockholm and Helsinki CT scores provide more information on the damage sustained, and give a more accurate outcome prediction, than earlier classification systems. The strong independent predictive value of tSAH may reflect an underrated component of TBI pathophysiology. A change to these newer CT scoring systems may be warranted. PMID:28771476

  11. Try Fault Tree Analysis, a Step-by-Step Way to Improve Organization Development.

    ERIC Educational Resources Information Center

    Spitzer, Dean

    1980-01-01

    Fault Tree Analysis, a systems safety engineering technology used to analyze organizational systems, is described. Explains the use of logic gates to represent the relationship between failure events, qualitative analysis, quantitative analysis, and effective use of Fault Tree Analysis. (CT)

  12. Phylogenetic classification and the universal tree.

    PubMed

    Doolittle, W F

    1999-06-25

    From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a "universal tree of life," taking it as the basis for a "natural" hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If "chimerism" or "lateral gene transfer" cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the "true tree," not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished.

  13. Dissimilarity representations in lung parenchyma classification

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; de Bruijne, Marleen

    2009-02-01

    A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).

  14. Comparing ecoregional classifications for natural areas management in the Klamath Region, USA

    USGS Publications Warehouse

    Sarr, Daniel A.; Duff, Andrew; Dinger, Eric C.; Shafer, Sarah L.; Wing, Michael; Seavy, Nathaniel E.; Alexander, John D.

    2015-01-01

    We compared three existing ecoregional classification schemes (Bailey, Omernik, and World Wildlife Fund) with two derived schemes (Omernik Revised and Climate Zones) to explore their effectiveness in explaining species distributions and to better understand natural resource geography in the Klamath Region, USA. We analyzed presence/absence data derived from digital distribution maps for trees, amphibians, large mammals, small mammals, migrant birds, and resident birds using three statistical analyses of classification accuracy (Analysis of Similarity, Canonical Analysis of Principal Coordinates, and Classification Strength). The classifications were roughly comparable in classification accuracy, with Omernik Revised showing the best overall performance. Trees showed the strongest fidelity to the classifications, and large mammals showed the weakest fidelity. We discuss the implications for regional biogeography and describe how intermediate resolution ecoregional classifications may be appropriate for use as natural areas management domains.

  15. Classification and Compression of Multi-Resolution Vectors: A Tree Structured Vector Quantizer Approach

    DTIC Science & Technology

    2002-01-01

    their expression profile and for classification of cells into tumerous and non- tumerous classes. Then we will present a parallel tree method for... cancerous cells. We will use the same dataset and use tree structured classifiers with multi-resolution analysis for classifying cancerous from non- cancerous ...cells. We have the expressions of 4096 genes from 98 different cell types. Of these 98, 72 are cancerous while 26 are non- cancerous . We are interested

  16. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  17. Forest tree species clssification based on airborne hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  18. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm.

    PubMed

    Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib

    2008-10-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.

  19. The Interrater and Intrarater Agreement of a Modified Neer Classification System and Associated Treatment Choice for Lateral Clavicle Fractures.

    PubMed

    Cho, Chul-Hyun; Oh, Joo Han; Jung, Gu-Hee; Moon, Gi-Hyuk; Rhyou, In Hyeok; Yoon, Jong Pil; Lee, Ho Min

    2015-10-01

    As there is substantial variation in the classification and diagnosis of lateral clavicle fractures, proper management can be challenging. Although the Neer classification system modified by Craig has been widely used, no study has assessed its validity through inter- and intrarater agreement. To determine the inter- and intrarater agreement of the modified Neer classification system and associated treatment choice for lateral clavicle fractures and to assess whether 3-dimensional computed tomography (3D CT) improves the level of agreement. Cohort study (diagnosis); Level of evidence, 3. Nine experienced shoulder specialists and 9 orthopaedic fellows evaluated 52 patients with lateral clavicle fractures, completing fracture typing according to the modified Neer classification system and selecting a treatment choice for each case. Web-based assessment was performed using plain radiographs only, followed by the addition of 3D CT images 2 weeks later. This procedure was repeated 4 weeks later. Fleiss κ values were calculated to estimate the inter- and intrarater agreement. Based on plain radiographs only, the inter- and intrarater agreement of the modified Neer classification system was regarded as fair (κ = 0.344) and moderate (κ = 0.496), respectively; the inter- and intrarater agreement of treatment choice was both regarded as moderate (κ = 0.465 and 0.555, respectively). Based on the plain radiographs and 3D CT images, the inter- and intrarater agreement of the classification system was regarded as fair (κ = 0.317) and moderate (κ = 0.508), respectively; the inter- and intrarater agreement of treatment choice was regarded as moderate (κ = 0.463) and substantial (κ = 0.623), respectively. There were no significant differences in the level of agreement between the plain radiographs only and plain radiographs plus 3D CT images for any κ values (all P > .05). The level of interrater agreement of the modified Neer classification system for lateral clavicle fractures was fair. Additional 3D CT did not improve the overall level of interrater or intrarater agreement of the modified Neer classification system or associated treatment choice. To eliminate a common source of disagreement among surgeons, a new classification system to focus on unclassifiable fracture types is needed. © 2015 The Author(s).

  20. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.

    PubMed

    Koziol, James A; Feng, Anne C; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors.

  1. Mapping of taiga forest units using AIRSAR data and/or optical data, and retrieval of forest parameters

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Williams, Cynthia; Way, Jobea; Viereck, Leslie

    1993-01-01

    A maximum a posteriori Bayesian classifier for multifrequency polarimetric SAR data is used to perform a supervised classification of forest types in the floodplains of Alaska. The image classes include white spruce, balsam poplar, black spruce, alder, non-forests, and open water. The authors investigate the effect on classification accuracy of changing environmental conditions, and of frequency and polarization of the signal. The highest classification accuracy (86 percent correctly classified forest pixels, and 91 percent overall) is obtained combining L- and C-band frequencies fully polarimetric on a date where the forest is just recovering from flooding. The forest map compares favorably with a vegetation map assembled from digitized aerial photos which took five years for completion, and address the state of the forest in 1978, ignoring subsequent fires, changes in the course of the river, clear-cutting of trees, and tree growth. HV-polarization is the most useful polarization at L- and C-band for classification. C-band VV (ERS-1 mode) and L-band HH (J-ERS-1 mode) alone or combined yield unsatisfactory classification accuracies. Additional data acquired in the winter season during thawed and frozen days yield classification accuracies respectively 20 percent and 30 percent lower due to a greater confusion between conifers and deciduous trees. Data acquired at the peak of flooding in May 1991 also yield classification accuracies 10 percent lower because of dominant trunk-ground interactions which mask out finer differences in radar backscatter between tree species. Combination of several of these dates does not improve classification accuracy. For comparison, panchromatic optical data acquired by SPOT in the summer season of 1991 are used to classify the same area. The classification accuracy (78 percent for the forest types and 90 percent if open water is included) is lower than that obtained with AIRSAR although conifers and deciduous trees are better separated due to the presence of leaves on the deciduous trees. Optical data do not separate black spruce and white spruce as well as SAR data, cannot separate alder from balsam poplar, and are of course limited by the frequent cloud cover in the polar regions. Yet, combining SPOT and AIRSAR offers better chances to identify vegetation types independent of ground truth information using a combination of NDVI indexes from SPOT, biomass numbers from AIRSAR, and a segmentation map from either one.

  2. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    PubMed

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  3. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  4. Online adaptive decision trees: pattern classification and function approximation.

    PubMed

    Basak, Jayanta

    2006-09-01

    Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.

  5. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  6. Using SRμCT to define water transport capacity in Picea abies

    NASA Astrophysics Data System (ADS)

    Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix

    2017-10-01

    Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.

  7. Automatic liver volume segmentation and fibrosis classification

    NASA Astrophysics Data System (ADS)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  8. Using Classification Trees to Predict Alumni Giving for Higher Education

    ERIC Educational Resources Information Center

    Weerts, David J.; Ronca, Justin M.

    2009-01-01

    As the relative level of public support for higher education declines, colleges and universities aim to maximize alumni-giving to keep their programs competitive. Anchored in a utility maximization framework, this study employs the classification and regression tree methodology to examine characteristics of alumni donors and non-donors at a…

  9. Using classification tree analysis to predict oak wilt distribution in Minnesota and Texas

    Treesearch

    Marla c. Downing; Vernon L. Thomas; Jennifer Juzwik; David N. Appel; Robin M. Reich; Kim Camilli

    2008-01-01

    We developed a methodology and compared results for predicting the potential distribution of Ceratocystis fagacearum (causal agent of oak wilt), in both Anoka County, MN, and Fort Hood, TX. The Potential Distribution of Oak Wilt (PDOW) utilizes a binary classification tree statistical technique that incorporates: geographical information systems (GIS...

  10. A Quality Classification System for Young Hardwood Trees - The First Step in Predicting Future Products

    Treesearch

    David L. Sonderman; Robert L. Brisbin

    1978-01-01

    Forest managers have no objective way to determine the relative value of culturally treated forest stands in terms of product potential. This paper describes the first step in the development of a quality classification system based on the measurement of individual tree characteristics for young hardwood stands.

  11. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, P.; Beaudet, P.

    1980-01-01

    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.

  12. Prediction of high-risk areas for visceral leishmaniasis using socioeconomic indicators and remote sensing data

    PubMed Central

    2014-01-01

    Spatial heterogeneity in the incidence of visceral leishmaniasis (VL) is an important aspect to be considered in planning control actions for the disease. The objective of this study was to predict areas at high risk for visceral leishmaniasis (VL) based on socioeconomic indicators and remote sensing data. We applied classification and regression trees to develop and validate prediction models. Performance of the models was assessed by means of sensitivity, specificity and area under the ROC curve. The model developed was able to discriminate 15 subsets of census tracts (CT) with different probabilities of containing CT with high risk of VL occurrence. The model presented, respectively, in the validation and learning samples, sensitivity of 79% and 52%, specificity of 75% and 66%, and area under the ROC curve of 83% and 66%. Considering the complex network of factors involved in the occurrence of VL in urban areas, the results of this study showed that the development of a predictive model for VL might be feasible and useful for guiding interventions against the disease, but it is still a challenge as demonstrated by the unsatisfactory predictive performance of the model developed. PMID:24885128

  13. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  14. Characterisation of Feature Points in Eye Fundus Images

    NASA Astrophysics Data System (ADS)

    Calvo, D.; Ortega, M.; Penedo, M. G.; Rouco, J.

    The retinal vessel tree adds decisive knowledge in the diagnosis of numerous opthalmologic pathologies such as hypertension or diabetes. One of the problems in the analysis of the retinal vessel tree is the lack of information in terms of vessels depth as the image acquisition usually leads to a 2D image. This situation provokes a scenario where two different vessels coinciding in a point could be interpreted as a vessel forking into a bifurcation. That is why, for traking and labelling the retinal vascular tree, bifurcations and crossovers of vessels are considered feature points. In this work a novel method for these retinal vessel tree feature points detection and classification is introduced. The method applies image techniques such as filters or thinning to obtain the adequate structure to detect the points and sets a classification of these points studying its environment. The methodology is tested using a standard database and the results show high classification capabilities.

  15. Utility of CT classifications to predict unfavorable outcomes in children with acute pancreatitis.

    PubMed

    Izquierdo, Yojhan E; Fonseca, Eileen V; Moreno, Luz-Ángela; Montoya, Rubén D; Guerrero Lozano, Rafael

    2018-02-21

    Computed tomography (CT) is useful for the diagnosis of local complications in children with acute pancreatitis but its role as a prognostic tool remains controversial. To establish the correlation between the CT Severity Index and the Revised Atlanta Classification regarding unfavorable outcomes such as severe acute pancreatitis and need for Pediatric Special Care Unit attention in children with acute pancreatitis. We conducted a retrospective and concordance cohort study in which we obtained abdominal CT scans from 30 patients ages 0 to 18 years with acute pancreatitis. Two pediatric radiologists interpreted the results using the CT Severity Index and the Revised Atlanta Classification. The kappa coefficient was determined for each scale. The association among severe acute pancreatitis, need for admission to the Pediatric Special Care Unit and CT systems were established using chi-square or Mann-Whitney U tests. The best CT Severity Index value to predict the need for admission to the Pediatric Special Care Unit was estimated through a receiver operating characteristic (ROC) curve. Mean CT Severity Index was 5.1±2.8 (mean ± standard deviation on a scale of 0 to 10) for the severe acute pancreatitis group vs. 3.8±2.7 for the mild acute pancreatitis group (P=0.230). The CT Severity Index for the children who were not hospitalized at the Pediatric Special Care Unit was 2.2±2.2 vs. 5.6±2.4 for the group hospitalized at the Pediatric Special Care Unit (P=0.001). Only parenchymal necrosis >30% was associated with severe acute pancreatitis (P=0.021). A CT Severity Index ≥3 has a sensitivity of 89% and specificity of 72% to predict need for admission to the Pediatric Special Care Unit. None of the Revised Atlanta Classification categories was associated with severe acute pancreatitis or admission to the Pediatric Special Care Unit. A CT Severity Index ≥3 in children with acute pancreatitis who require CT assessment based on clinical criteria is associated with the need for admission to the Pediatric Special Care Unit. We found that pancreatic necrosis greater than 30% is the only tomographic parameter related to severe acute pancreatitis. New studies with a greater sample size are necessary to confirm this result.

  16. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment

    NASA Astrophysics Data System (ADS)

    Naidoo, L.; Cho, M. A.; Mathieu, R.; Asner, G.

    2012-04-01

    The accurate classification and mapping of individual trees at species level in the savanna ecosystem can provide numerous benefits for the managerial authorities. Such benefits include the mapping of economically useful tree species, which are a key source of food production and fuel wood for the local communities, and of problematic alien invasive and bush encroaching species, which can threaten the integrity of the environment and livelihoods of the local communities. Species level mapping is particularly challenging in African savannas which are complex, heterogeneous, and open environments with high intra-species spectral variability due to differences in geology, topography, rainfall, herbivory and human impacts within relatively short distances. Savanna vegetation are also highly irregular in canopy and crown shape, height and other structural dimensions with a combination of open grassland patches and dense woody thicket - a stark contrast to the more homogeneous forest vegetation. This study classified eight common savanna tree species in the Greater Kruger National Park region, South Africa, using a combination of hyperspectral and Light Detection and Ranging (LiDAR)-derived structural parameters, in the form of seven predictor datasets, in an automated Random Forest modelling approach. The most important predictors, which were found to play an important role in the different classification models and contributed to the success of the hybrid dataset model when combined, were species tree height; NDVI; the chlorophyll b wavelength (466 nm) and a selection of raw, continuum removed and Spectral Angle Mapper (SAM) bands. It was also concluded that the hybrid predictor dataset Random Forest model yielded the highest classification accuracy and prediction success for the eight savanna tree species with an overall classification accuracy of 87.68% and KHAT value of 0.843.

  17. Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging.

    PubMed

    Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H

    2011-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.

  18. Towards a formal genealogical classification of the Lezgian languages (North Caucasus): testing various phylogenetic methods on lexical data.

    PubMed

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies.

  19. Towards a Formal Genealogical Classification of the Lezgian Languages (North Caucasus): Testing Various Phylogenetic Methods on Lexical Data

    PubMed Central

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies. PMID:25719456

  20. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    PubMed

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  1. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  2. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  3. Interoperability of Medication Classification Systems: Lessons Learned Mapping Established Pharmacologic Classes (EPCs) to SNOMED CT

    PubMed Central

    Nelson, Scott D; Parker, Jaqui; Lario, Robert; Winnenburg, Rainer; Erlbaum, Mark S.; Lincoln, Michael J.; Bodenreider, Olivier

    2018-01-01

    Interoperability among medication classification systems is known to be limited. We investigated the mapping of the Established Pharmacologic Classes (EPCs) to SNOMED CT. We compared lexical and instance-based methods to an expert-reviewed reference standard to evaluate contributions of these methods. Of the 543 EPCs, 284 had an equivalent SNOMED CT class, 205 were more specific, and 54 could not be mapped. Precision, recall, and F1 score were 0.416, 0.620, and 0.498 for lexical mapping and 0.616, 0.504, and 0.554 for instance-based mapping. Each automatic method has strengths, weaknesses, and unique contributions in mapping between medication classification systems. In our experience, it was beneficial to consider the mapping provided by both automated methods for identifying potential matches, gaps, inconsistencies, and opportunities for quality improvement between classifications. However, manual review by subject matter experts is still needed to select the most relevant mappings. PMID:29295234

  4. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis

    PubMed Central

    Koziol, James A.; Feng, Anne C.; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Motivation: Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Results: Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors. Contact: dmercola@uci.edu PMID:18628288

  5. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  6. Identification of Sexually Abused Female Adolescents at Risk for Suicidal Ideations: A Classification and Regression Tree Analysis

    ERIC Educational Resources Information Center

    Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…

  7. Using the PDD Behavior Inventory as a Level 2 Screener: A Classification and Regression Trees Analysis

    ERIC Educational Resources Information Center

    Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.

    2016-01-01

    In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…

  8. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  9. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    PubMed

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  10. Ensemble Classification of Alzheimer's Disease and Mild Cognitive Impairment Based on Complex Graph Measures from Diffusion Tensor Images

    PubMed Central

    Ebadi, Ashkan; Dalboni da Rocha, Josué L.; Nagaraju, Dushyanth B.; Tovar-Moll, Fernanda; Bramati, Ivanei; Coutinho, Gabriel; Sitaram, Ranganatha; Rashidi, Parisa

    2017-01-01

    The human brain is a complex network of interacting regions. The gray matter regions of brain are interconnected by white matter tracts, together forming one integrative complex network. In this article, we report our investigation about the potential of applying brain connectivity patterns as an aid in diagnosing Alzheimer's disease and Mild Cognitive Impairment (MCI). We performed pattern analysis of graph theoretical measures derived from Diffusion Tensor Imaging (DTI) data representing structural brain networks of 45 subjects, consisting of 15 patients of Alzheimer's disease (AD), 15 patients of MCI, and 15 healthy subjects (CT). We considered pair-wise class combinations of subjects, defining three separate classification tasks, i.e., AD-CT, AD-MCI, and CT-MCI, and used an ensemble classification module to perform the classification tasks. Our ensemble framework with feature selection shows a promising performance with classification accuracy of 83.3% for AD vs. MCI, 80% for AD vs. CT, and 70% for MCI vs. CT. Moreover, our findings suggest that AD can be related to graph measures abnormalities at Brodmann areas in the sensorimotor cortex and piriform cortex. In this way, node redundancy coefficient and load centrality in the primary motor cortex were recognized as good indicators of AD in contrast to MCI. In general, load centrality, betweenness centrality, and closeness centrality were found to be the most relevant network measures, as they were the top identified features at different nodes. The present study can be regarded as a “proof of concept” about a procedure for the classification of MRI markers between AD dementia, MCI, and normal old individuals, due to the small and not well-defined groups of AD and MCI patients. Future studies with larger samples of subjects and more sophisticated patient exclusion criteria are necessary toward the development of a more precise technique for clinical diagnosis. PMID:28293162

  11. Industrial and occupational ergonomics in the petrochemical process industry: a regression trees approach.

    PubMed

    Bevilacqua, M; Ciarapica, F E; Giacchetta, G

    2008-07-01

    This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.

  12. Biomechanical deformable image registration of longitudinal lung CT images using vessel information

    NASA Astrophysics Data System (ADS)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.

    2016-07-01

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable future plan adaptation strategies.

  13. Tree Species Classification of Broadleaved Forests in Nagano, Central Japan, Using Airborne Laser Data and Multispectral Images

    NASA Astrophysics Data System (ADS)

    Deng, S.; Katoh, M.; Takenaka, Y.; Cheung, K.; Ishii, A.; Fujii, N.; Gao, T.

    2017-10-01

    This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.

  14. Characterization of Escherichia coli isolates from different fecal sources by means of classification tree analysis of fatty acid methyl ester (FAME) profiles.

    PubMed

    Seurinck, Sylvie; Deschepper, Ellen; Deboch, Bishaw; Verstraete, Willy; Siciliano, Steven

    2006-03-01

    Microbial source tracking (MST) methods need to be rapid, inexpensive and accurate. Unfortunately, many MST methods provide a wealth of information that is difficult to interpret by the regulators who use this information to make decisions. This paper describes the use of classification tree analysis to interpret the results of a MST method based on fatty acid methyl ester (FAME) profiles of Escherichia coli isolates, and to present results in a format readily interpretable by water quality managers. Raw sewage E. coli isolates and animal E. coli isolates from cow, dog, gull, and horse were isolated and their FAME profiles collected. Correct classification rates determined with leaveone-out cross-validation resulted in an overall low correct classification rate of 61%. A higher overall correct classification rate of 85% was obtained when the animal isolates were pooled together and compared to the raw sewage isolates. Bootstrap aggregation or adaptive resampling and combining of the FAME profile data increased correct classification rates substantially. Other MST methods may be better suited to differentiate between different fecal sources but classification tree analysis has enabled us to distinguish raw sewage from animal E. coli isolates, which previously had not been possible with other multivariate methods such as principal component analysis and cluster analysis.

  15. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    PubMed

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  16. A fuzzy decision tree for fault classification.

    PubMed

    Zio, Enrico; Baraldi, Piero; Popescu, Irina C

    2008-02-01

    In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.

  17. [Detection of tibial condylar fractures using 3D imaging with a mobile image amplifier (Siemens ISO-C-3D): Comparison with plain films and spiral CT].

    PubMed

    Kotsianos, D; Rock, C; Wirth, S; Linsenmaier, U; Brandl, R; Fischer, T; Euler, E; Mutschler, W; Pfeifer, K J; Reiser, M

    2002-01-01

    To analyze a prototype mobile C-arm 3D image amplifier in the detection and classification of experimental tibial condylar fractures with multiplanar reconstructions (MPR). Human knee specimens (n = 22) with tibial condylar fractures were examined with a prototype C-arm (ISO-C-3D, Siemens AG), plain films (CR) and spiral CT (CT). The motorized C-arm provides fluoroscopic images during a 190 degrees orbital rotation computing a 119 mm data cube. From these 3D data sets MP reconstructions were obtained. All images were evaluated by four independent readers for the detection and assessment of fracture lines. All fractures were classified according to the Müller AO classification. To confirm the results, the specimens were finally surgically dissected. 97 % of the tibial condylar fractures were easily seen and correctly classified according to the Müller AO classification on MP reconstruction of the ISO-C-3D. There is no significant difference between ISO-C and CT in detection and correct classification of fractures, but ISO-CD-3D is significant by better than CR. The evaluation of fractures with the ISO-C is better than with plain films alone and comparable to CT scans. The three-dimensional reconstruction of the ISO-C can provide important information which cannot be obtained from plain films. The ISO-C-3D may be useful in planning operative reconstructions and evaluating surgical results in orthopaedic surgery of the limbs.

  18. Prostate segmentation by sparse representation based classification

    PubMed Central

    Gao, Yaozong; Liao, Shu; Shen, Dinggang

    2012-01-01

    Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673

  19. Prostate segmentation by sparse representation based classification.

    PubMed

    Gao, Yaozong; Liao, Shu; Shen, Dinggang

    2012-10-01

    The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.

  20. Comparative Issues and Methods in Organizational Diagnosis. Report II. The Decision Tree Approach.

    DTIC Science & Technology

    organizational diagnosis . The advantages and disadvantages of the decision-tree approach generally, and in this study specifically, are examined. A pre-test, using a civilian sample of 174 work groups with Survey of Organizations data, was conducted to assess various decision-tree classification criteria, in terms of their similarity to the distance function used by Bowers and Hausser (1977). The results suggested the use of a large developmental sample, which should result in more distinctly defined boundary lines between classification profiles. Also, the decision matrix

  1. Prospective identification of adolescent suicide ideation using classification tree analysis: Models for community-based screening.

    PubMed

    Hill, Ryan M; Oosterhoff, Benjamin; Kaplow, Julie B

    2017-07-01

    Although a large number of risk markers for suicide ideation have been identified, little guidance has been provided to prospectively identify adolescents at risk for suicide ideation within community settings. The current study addressed this gap in the literature by utilizing classification tree analysis (CTA) to provide a decision-making model for screening adolescents at risk for suicide ideation. Participants were N = 4,799 youth (Mage = 16.15 years, SD = 1.63) who completed both Waves 1 and 2 of the National Longitudinal Study of Adolescent to Adult Health. CTA was used to generate a series of decision rules for identifying adolescents at risk for reporting suicide ideation at Wave 2. Findings revealed 3 distinct solutions with varying sensitivity and specificity for identifying adolescents who reported suicide ideation. Sensitivity of the classification trees ranged from 44.6% to 77.6%. The tree with greatest specificity and lowest sensitivity was based on a history of suicide ideation. The tree with moderate sensitivity and high specificity was based on depressive symptoms, suicide attempts or suicide among family and friends, and social support. The most sensitive but least specific tree utilized these factors and gender, ethnicity, hours of sleep, school-related factors, and future orientation. These classification trees offer community organizations options for instituting large-scale screenings for suicide ideation risk depending on the available resources and modality of services to be provided. This study provides a theoretically and empirically driven model for prospectively identifying adolescents at risk for suicide ideation and has implications for preventive interventions among at-risk youth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    USGS Publications Warehouse

    Edwards, T.C.; Cutler, D.R.; Zimmermann, N.E.; Geiser, L.; Moisen, Gretchen G.

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by resubstitution rates were similar for each lichen species irrespective of the underlying sample survey form. Cross-validation estimates of prediction accuracies were lower than resubstitution accuracies for all species and both design types, and in all cases were closer to the true prediction accuracies based on the EVALUATION data set. We argue that greater emphasis should be placed on calculating and reporting cross-validation accuracy rates rather than simple resubstitution accuracy rates. Evaluation of the DESIGN and PURPOSIVE tree models on the EVALUATION data set shows significantly lower prediction accuracy for the PURPOSIVE tree models relative to the DESIGN models, indicating that non-probabilistic sample surveys may generate models with limited predictive capability. These differences were consistent across all four lichen species, with 11 of the 12 possible species and sample survey type comparisons having significantly lower accuracy rates. Some differences in accuracy were as large as 50%. The classification tree structures also differed considerably both among and within the modelled species, depending on the sample survey form. Overlap in the predictor variables selected by the DESIGN and PURPOSIVE tree models ranged from only 20% to 38%, indicating the classification trees fit the two evaluated survey forms on different sets of predictor variables. The magnitude of these differences in predictor variables throws doubt on ecological interpretation derived from prediction models based on non-probabilistic sample surveys. ?? 2006 Elsevier B.V. All rights reserved.

  3. A universal hybrid decision tree classifier design for human activity classification.

    PubMed

    Chien, Chieh; Pottie, Gregory J

    2012-01-01

    A system that reliably classifies daily life activities can contribute to more effective and economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can flexibly implement different decision rules at its internal nodes, and can be adapted from a population-based model when supplemented by training data for individuals. The system was tested using seven subjects each monitored by 14 triaxial accelerometers. Each subject performed fourteen different activities typical of daily life. Using leave-one-out cross validation, our decision tree produced average classification accuracies of 89.9%. In contrast, the MATLAB personalized tree classifiers using Gini's diversity index as the split criterion followed by optimally tuning the thresholds for each subject yielded 69.2%.

  4. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    Treesearch

    Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...

  5. Cascade of convolutional neural networks for lung texture classification: overcoming ontological overlapping

    NASA Astrophysics Data System (ADS)

    Tarando, Sebastian Roberto; Fetita, Catalin; Brillet, Pierre-Yves

    2017-03-01

    The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. Traditionally, such classification relies on a two-dimensional analysis of axial CT images. This paper proposes a cascade of the existing CNN based CAD system, specifically tuned-up. The advantage of using a deep learning approach is a better regularization of the classification output. In a preliminary evaluation, the combined approach was tested on a 13 patient database of various lung pathologies, showing an increase of 10% in True Positive Rate (TPR) with respect to the best suited state of the art CNN for this task.

  6. Differences in Risk Factors for Rotator Cuff Tears between Elderly Patients and Young Patients.

    PubMed

    Watanabe, Akihisa; Ono, Qana; Nishigami, Tomohiko; Hirooka, Takahiko; Machida, Hirohisa

    2018-02-01

    It has been unclear whether the risk factors for rotator cuff tears are the same at all ages or differ between young and older populations. In this study, we examined the risk factors for rotator cuff tears using classification and regression tree analysis as methods of nonlinear regression analysis. There were 65 patients in the rotator cuff tears group and 45 patients in the intact rotator cuff group. Classification and regression tree analysis was performed to predict rotator cuff tears. The target factor was rotator cuff tears; explanatory variables were age, sex, trauma, and critical shoulder angle≥35°. In the results of classification and regression tree analysis, the tree was divided at age 64. For patients aged≥64, the tree was divided at trauma. For patients aged<64, the tree was divided at critical shoulder angle≥35°. The odds ratio for critical shoulder angle≥35° was significant for all ages (5.89), and for patients aged<64 (10.3) while trauma was only a significant factor for patients aged≥64 (5.13). Age, trauma, and critical shoulder angle≥35° were related to rotator cuff tears in this study. However, these risk factors showed different trends according to age group, not a linear relationship.

  7. Predicting Tillage Patterns in the Tiffin River Watershed Using Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Brooks, C.; McCarty, J. L.; Dean, D. B.; Mann, B. F.

    2012-12-01

    Previous research in tillage mapping has focused primarily on utilizing low to no-cost, moderate (30 m to 15 m) resolution satellite data. Successful data processing techniques published in the scientific literature have focused on extracting and/or classifying tillage patterns through manipulation of spectral bands. For instance, Daughtry et al. (2005) evaluated several spectral indices for crop residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields. A weak to moderate relationship between Landsat Thematic Mapper (TM) indices and crop residue cover was found; similar results were reported in Minnesota. Building on the findings from the scientific literature and previous work done by MTRI in the heavily agricultural Tiffin watershed of northwest Ohio and southeast Michigan, a decision tree classifier approach (also referred to as a classification tree) was used, linking several satellite data to on-the-ground tillage information in order to boost classification results. This approach included five tillage indices and derived products. A decision tree methodology enabled the development of statistically optimized (i.e., minimizing misclassification rates) classification algorithms at various desired time steps: monthly, seasonally, and annual over the 2006-2010 time period. Due to their flexibility, processing speed, and availability within all major remote sensing and statistical software packages, decision trees can ingest several data inputs from multiple sensors and satellite products, selecting only the bands, band ratios, indices, and products that further reduce misclassification errors. The project team created crop-specific tillage pattern classification trees whereby a training data set (~ 50% of available ground data) was created for production of the actual decision tree and a validation data set was set aside (~ 50% of available ground data) in order to assess the accuracy of the classification. A seasonal time step was used, optimizing a decision tree based on seasonal ground data for tillage patterns and satellite data and products for years 2006 through 2010. Annual crop type maps derived by the project team and the USDA Cropland Data Layer project was used an input to understand locations of corn, soybeans, wheat, etc. on a yearly basis. As previously stated, the robustness of the decision tree approach is the ability to implement various satellite data and products across temporal, spectral, and spatial resolutions, thereby improving the resulting classification and providing a reliable method that is not sensor-dependent. Tillage pattern classification from satellite imagery is not a simple task and has proven a challenge to previous researchers investigating this remote sensing topic. The team's decision tree method produced a practical, usable output within a focused project time period. Daughtry, C.S.T., Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey III, J.E. 2005. Remote sensing the spatial distribution of crop residues. Agron. J. 97, 864-871.

  8. A renewed perspective on agroforestry concepts and classification.

    PubMed

    Torquebiau, E F

    2000-11-01

    Agroforestry, the association of trees with farming practices, is progressively becoming a recognized land-use discipline. However, it is still perceived by some scientists, technicians and farmers as a sort of environmental fashion which does not deserve credit. The peculiar history of agroforestry and the complex relationships between agriculture and forestry explain some misunderstandings about the concepts and classification of agroforestry and reveal that, contrarily to common perception, agroforestry is closer to agriculture than to forestry. Based on field experience from several countries, a structural classification of agroforestry into six simple categories is proposed: crops under tree cover, agroforests, agroforestry in a linear arrangement, animal agroforestry, sequential agroforestry and minor agroforestry techniques. It is argued that this pragmatic classification encompasses all major agroforestry associations and allows simultaneous agroforestry to be clearly differentiated from sequential agroforestry, two categories showing contrasting ecological tree-crop interactions. It can also contribute to a betterment of the image of agroforestry and lead to a simplification of its definition.

  9. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.

    PubMed

    Higano, Nara S; Fleck, Robert J; Spielberg, David R; Walkup, Laura L; Hahn, Andrew D; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Tkach, Jean A; Fain, Sean B; Woods, Jason C

    2017-10-01

    To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm 3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm 3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm 3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:992-1000. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Assessing College Student Interest in Math and/or Computer Science in a Cross-National Sample Using Classification and Regression Trees

    ERIC Educational Resources Information Center

    Kitsantas, Anastasia; Kitsantas, Panagiota; Kitsantas, Thomas

    2012-01-01

    The purpose of this exploratory study was to assess the relative importance of a number of variables in predicting students' interest in math and/or computer science. Classification and regression trees (CART) were employed in the analysis of survey data collected from 276 college students enrolled in two U.S. and Greek universities. The results…

  11. Comparison of Hyperspectral and Multispectral Satellites for Forest Alliance Classification in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Clark, M. L.

    2016-12-01

    The goal of this study was to assess multi-temporal, Hyperspectral Infrared Imager (HyspIRI) satellite imagery for improved forest class mapping relative to multispectral satellites. The study area was the western San Francisco Bay Area, California and forest alliances (e.g., forest communities defined by dominant or co-dominant trees) were defined using the U.S. National Vegetation Classification System. Simulated 30-m HyspIRI, Landsat 8 and Sentinel-2 imagery were processed from image data acquired by NASA's AVIRIS airborne sensor in year 2015, with summer and multi-temporal (spring, summer, fall) data analyzed separately. HyspIRI reflectance was used to generate a suite of hyperspectral metrics that targeted key spectral features related to chemical and structural properties. The Random Forests classifier was applied to the simulated images and overall accuracies (OA) were compared to those from real Landsat 8 images. For each image group, broad land cover (e.g., Needle-leaf Trees, Broad-leaf Trees, Annual agriculture, Herbaceous, Built-up) was classified first, followed by a finer-detail forest alliance classification for pixels mapped as closed-canopy forest. There were 5 needle-leaf tree alliances and 16 broad-leaf tree alliances, including 7 Quercus (oak) alliance types. No forest alliance classification exceeded 50% OA, indicating that there was broad spectral similarity among alliances, most of which were not spectrally pure but rather a mix of tree species. In general, needle-leaf (Pine, Redwood, Douglas Fir) alliances had better class accuracies than broad-leaf alliances (Oaks, Madrone, Bay Laurel, Buckeye, etc). Multi-temporal data classifications all had 5-6% greater OA than with comparable summer data. For simulated data, HyspIRI metrics had 4-5% greater OA than Landsat 8 and Sentinel-2 multispectral imagery and 3-4% greater OA than HyspIRI reflectance. Finally, HyspIRI metrics had 8% greater OA than real Landsat 8 imagery. In conclusion, forest alliance classification was found to be a difficult remote sensing application with moderate resolution (30 m) satellite imagery; however, of the data tested, HyspIRI spectral metrics had the best performance relative to multispectral satellites.

  12. Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers.

    PubMed

    Ohno, Yoshiharu; Fujisawa, Yasuko; Takenaka, Daisuke; Kaminaga, Shigeo; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2018-02-01

    The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81m Kr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV 1 ) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. Multivariate logistic regression showed that %FEV 1 was significantly affected (r = 0.77, r 2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). Xenon-enhanced ADCT is more effective than 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.

  13. Deep Multi-Task Learning for Tree Genera Classification

    NASA Astrophysics Data System (ADS)

    Ko, C.; Kang, J.; Sohn, G.

    2018-05-01

    The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.

  14. Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset

    PubMed Central

    Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926

  15. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    PubMed

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  16. Validating automatic semantic annotation of anatomy in DICOM CT images

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Criminisi, Antonio; Shotton, Jamie; White, Steve; Robertson, Duncan; Sparks, Bobbi; Munasinghe, Indeera; Siddiqui, Khan

    2011-03-01

    In the current health-care environment, the time available for physicians to browse patients' scans is shrinking due to the rapid increase in the sheer number of images. This is further aggravated by mounting pressure to become more productive in the face of decreasing reimbursement. Hence, there is an urgent need to deliver technology which enables faster and effortless navigation through sub-volume image visualizations. Annotating image regions with semantic labels such as those derived from the RADLEX ontology can vastly enhance image navigation and sub-volume visualization. This paper uses random regression forests for efficient, automatic detection and localization of anatomical structures within DICOM 3D CT scans. A regression forest is a collection of decision trees which are trained to achieve direct mapping from voxels to organ location and size in a single pass. This paper focuses on comparing automated labeling with expert-annotated ground-truth results on a database of 50 highly variable CT scans. Initial investigations show that regression forest derived localization errors are smaller and more robust than those achieved by state-of-the-art global registration approaches. The simplicity of the algorithm's context-rich visual features yield typical runtimes of less than 10 seconds for a 5123 voxel DICOM CT series on a single-threaded, single-core machine running multiple trees; each tree taking less than a second. Furthermore, qualitative evaluation demonstrates that using the detected organs' locations as index into the image volume improves the efficiency of the navigational workflow in all the CT studies.

  17. Development of a tree classifier for discrimination of surface mine activity from Landsat digital data

    NASA Technical Reports Server (NTRS)

    Solomon, J. L.; Miller, W. F.; Quattrochi, D. A.

    1979-01-01

    In a cooperative project with the Geological Survey of Alabama, the Mississippi State Remote Sensing Applications Program has developed a single purpose, decision-tree classifier using band-ratioing techniques to discriminate various stages of surface mining activity. The tree classifier has four levels and employs only two channels in classification at each level. An accurate computation of the amount of disturbed land resulting from the mining activity can be made as a product of the classification output. The utilization of Landsat data provides a cost-efficient, rapid, and accurate means of monitoring surface mining activities.

  18. A decision tree model for predicting mediastinal lymph node metastasis in non-small cell lung cancer with F-18 FDG PET/CT.

    PubMed

    Pak, Kyoungjune; Kim, Keunyoung; Kim, Mi-Hyun; Eom, Jung Seop; Lee, Min Ki; Cho, Jeong Su; Kim, Yun Seong; Kim, Bum Soo; Kim, Seong Jang; Kim, In Joo

    2018-01-01

    We aimed to develop a decision tree model to improve diagnostic performance of positron emission tomography/computed tomography (PET/CT) to detect metastatic lymph nodes (LN) in non-small cell lung cancer (NSCLC). 115 patients with NSCLC were included in this study. The training dataset included 66 patients. A decision tree model was developed with 9 variables, and validated with 49 patients: short and long diameters of LNs, ratio of short and long diameters, maximum standardized uptake value (SUVmax) of LN, mean hounsfield unit, ratio of LN SUVmax and ascending aorta SUVmax (LN/AA), and ratio of LN SUVmax and superior vena cava SUVmax. A total of 301 LNs of 115 patients were evaluated in this study. Nodular calcification was applied as the initial imaging parameter, and LN SUVmax (≥3.95) was assessed as the second. LN/AA (≥2.92) was required to high LN SUVmax. Sensitivity was 50% for training dataset, and 40% for validation dataset. However, specificity was 99.28% for training dataset, and 96.23% for validation dataset. In conclusion, we have developed a new decision tree model for interpreting mediastinal LNs. All LNs with nodular calcification were benign, and LNs with high LN SUVmax and high LN/AA were metastatic Further studies are needed to incorporate subjective parameters and pathologic evaluations into a decision tree model to improve the test performance of PET/CT.

  19. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, David V.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas; Tucker, Susan L.

    2014-11-15

    Purpose: To determine whether pretreatment CT texture features can improve patient risk stratification beyond conventional prognostic factors (CPFs) in stage III non-small cell lung cancer (NSCLC). Methods and Materials: We retrospectively reviewed 91 cases with stage III NSCLC treated with definitive chemoradiation therapy. All patients underwent pretreatment diagnostic contrast enhanced computed tomography (CE-CT) followed by 4-dimensional CT (4D-CT) for treatment simulation. We used the average-CT and expiratory (T50-CT) images from the 4D-CT along with the CE-CT for texture extraction. Histogram, gradient, co-occurrence, gray tone difference, and filtration-based techniques were used for texture feature extraction. Penalized Cox regression implementing cross-validation wasmore » used for covariate selection and modeling. Models incorporating texture features from the 33 image types and CPFs were compared to those with models incorporating CPFs alone for overall survival (OS), local-regional control (LRC), and freedom from distant metastases (FFDM). Predictive Kaplan-Meier curves were generated using leave-one-out cross-validation. Patients were stratified based on whether their predicted outcome was above or below the median. Reproducibility of texture features was evaluated using test-retest scans from independent patients and quantified using concordance correlation coefficients (CCC). We compared models incorporating the reproducibility seen on test-retest scans to our original models and determined the classification reproducibility. Results: Models incorporating both texture features and CPFs demonstrated a significant improvement in risk stratification compared to models using CPFs alone for OS (P=.046), LRC (P=.01), and FFDM (P=.005). The average CCCs were 0.89, 0.91, and 0.67 for texture features extracted from the average-CT, T50-CT, and CE-CT, respectively. Incorporating reproducibility within our models yielded 80.4% (±3.7% SD), 78.3% (±4.0% SD), and 78.8% (±3.9% SD) classification reproducibility in terms of OS, LRC, and FFDM, respectively. Conclusions: Pretreatment tumor texture may provide prognostic information beyond that obtained from CPFs. Models incorporating feature reproducibility achieved classification rates of ∼80%. External validation would be required to establish texture as a prognostic factor.« less

  20. Presence of indicator plant species as a predictor of wetland vegetation integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Adams, Jean V.; Gara, Brian

    2013-01-01

    We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.

  1. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark.

    PubMed

    Bou Kheir, Rania; Greve, Mogens H; Bøcher, Peder K; Greve, Mette B; Larsen, René; McCloy, Keith

    2010-05-01

    Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME=29.5%; N=54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME=31.5%; N=14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME=30%; N=39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1/Map T2), 95% (Map T1/Map T3) and 91% (Map T2/Map T3). The overall accuracies of these maps once compared with field observations were estimated to be 69.54% (Map T1), 68.87% (Map T2) and 69.41% (Map T3). The proposed tree models are relatively simple, and may be also applied to other areas. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Forest Stand Segmentation Using Airborne LIDAR Data and Very High Resolution Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Dechesne, Clément; Mallet, Clément; Le Bris, Arnaud; Gouet, Valérie; Hervieu, Alexandre

    2016-06-01

    Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., ≥ 2 ha) of homogeneous tree species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In this paper, a method based on the fusion of airborne laser scanning data (or lidar) and very high resolution multispectral imagery for automatic forest stand delineation and forest land-cover database update is proposed. The multispectral images give access to the tree species whereas 3D lidar point clouds provide geometric information on the trees. Therefore, multi-modal features are computed, both at pixel and object levels. The objects are individual trees extracted from lidar data. A supervised classification is performed at the object level on the computed features in order to coarsely discriminate the existing tree species in the area of interest. The analysis at tree level is particularly relevant since it significantly improves the tree species classification. A probability map is generated through the tree species classification and inserted with the pixel-based features map in an energetical framework. The proposed energy is then minimized using a standard graph-cut method (namely QPBO with α-expansion) in order to produce a segmentation map with a controlled level of details. Comparison with an existing forest land cover database shows that our method provides satisfactory results both in terms of stand labelling and delineation (matching ranges between 94% and 99%).

  3. Semi-supervised SVM for individual tree crown species classification

    NASA Astrophysics Data System (ADS)

    Dalponte, Michele; Ene, Liviu Theodor; Marconcini, Mattia; Gobakken, Terje; Næsset, Erik

    2015-12-01

    In this paper a novel semi-supervised SVM classifier is presented, specifically developed for tree species classification at individual tree crown (ITC) level. In ITC tree species classification, all the pixels belonging to an ITC should have the same label. This assumption is used in the learning of the proposed semi-supervised SVM classifier (ITC-S3VM). This method exploits the information contained in the unlabeled ITC samples in order to improve the classification accuracy of a standard SVM. The ITC-S3VM method can be easily implemented using freely available software libraries. The datasets used in this study include hyperspectral imagery and laser scanning data acquired over two boreal forest areas characterized by the presence of three information classes (Pine, Spruce, and Broadleaves). The experimental results quantify the effectiveness of the proposed approach, which provides classification accuracies significantly higher (from 2% to above 27%) than those obtained by the standard supervised SVM and by a state-of-the-art semi-supervised SVM (S3VM). Particularly, by reducing the number of training samples (i.e. from 100% to 25%, and from 100% to 5% for the two datasets, respectively) the proposed method still exhibits results comparable to the ones of a supervised SVM trained with the full available training set. This property of the method makes it particularly suitable for practical forest inventory applications in which collection of in situ information can be very expensive both in terms of cost and time.

  4. Deep Phylogeny—How a Tree Can Help Characterize Early Life on Earth

    PubMed Central

    Gaucher, Eric A.; Kratzer, James T.; Randall, Ryan N.

    2010-01-01

    The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history. “You know, a tree is a tree.  How many more do you need to look at?” –Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966 PMID:20182607

  5. Deep phylogeny--how a tree can help characterize early life on Earth.

    PubMed

    Gaucher, Eric A; Kratzer, James T; Randall, Ryan N

    2010-01-01

    The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history."You know, a tree is a tree. How many more do you need to look at?"--Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966.

  6. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    NASA Astrophysics Data System (ADS)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  7. CT imaging-based determination and classification of anatomic variations of left gastric vein.

    PubMed

    Wu, Yongyou; Chen, Guangqiang; Wu, Pengfei; Zhu, Jianbin; Peng, Wei; Xing, Chungen

    2017-03-01

    Precise determination and classification of left gastric vein (LGV) anatomy are helpful in planning for gastric surgery, in particular, for resection of gastric cancer. However, the anatomy of LGV is highly variable. A systematic classification of its variations is still to be proposed. We aimed to investigate the anatomical variations in LGV using CT imaging and develop a new nomenclature system. We reviewed CT images and tracked the course of LGV in 825 adults. The frequencies of common and variable LGV anatomical courses were recorded. Anatomic variations of LGV were proposed and classified into different types mainly based on its courses. The inflow sites of LGV into the portal system were also considered if common hepatic artery (CHA) or splenic artery (SA) could not be used as a frame of reference due to variations. Detailed anatomy and courses of LGV were depicted on CT images. Using CHA and SA as the frames of reference, the routes of LGV were divided into six types (i.e., PreS, RetroS, Mid, PreCH, RetroCH, and Supra). The inflow sites were classified into four types (i.e., PV, SV, PSV, and LPV). The new classification was mainly based on the courses of LGV, which was validated with MDCT in the 805 cases with an identifiable LGV, namely type I, RetroCH, 49.8 % (401/805); type II, PreS, 20.6 % (166/805); type III, Mid, 20.0 % (161/805); type IV, RetroS, 7.3 % (59/805); type V, Supra, 1.5 % (12/805); and type VI, PreCH, 0.7 % (6/805). Type VII, designated to the cases in which SA and CHA could not be used as frames of reference, was not observed in this series. Detailed depiction of the anatomy and courses of LGV on CT images allowed us to evaluate and develop a new classification and nomenclature system for the anatomical variations of LGV.

  8. SU-F-R-22: Malignancy Classification for Small Pulmonary Nodules with Radiomics and Logistic Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, W; Tu, S

    Purpose: We conducted a retrospective study of Radiomics research for classifying malignancy of small pulmonary nodules. A machine learning algorithm of logistic regression and open research platform of Radiomics, IBEX (Imaging Biomarker Explorer), were used to evaluate the classification accuracy. Methods: The training set included 100 CT image series from cancer patients with small pulmonary nodules where the average diameter is 1.10 cm. These patients registered at Chang Gung Memorial Hospital and received a CT-guided operation of lung cancer lobectomy. The specimens were classified by experienced pathologists with a B (benign) or M (malignant). CT images with slice thickness ofmore » 0.625 mm were acquired from a GE BrightSpeed 16 scanner. The study was formally approved by our institutional internal review board. Nodules were delineated and 374 feature parameters were extracted from IBEX. We first used the t-test and p-value criteria to study which feature can differentiate between group B and M. Then we implemented a logistic regression algorithm to perform nodule malignancy classification. 10-fold cross-validation and the receiver operating characteristic curve (ROC) were used to evaluate the classification accuracy. Finally hierarchical clustering analysis, Spearman rank correlation coefficient, and clustering heat map were used to further study correlation characteristics among different features. Results: 238 features were found differentiable between group B and M based on whether their statistical p-values were less than 0.05. A forward search algorithm was used to select an optimal combination of features for the best classification and 9 features were identified. Our study found the best accuracy of classifying malignancy was 0.79±0.01 with the 10-fold cross-validation. The area under the ROC curve was 0.81±0.02. Conclusion: Benign nodules may be treated as a malignant tumor in low-dose CT and patients may undergo unnecessary surgeries or treatments. Our study may help radiologists to differentiate nodule malignancy for low-dose CT.« less

  9. Classification of teeth in cone-beam CT using deep convolutional neural network.

    PubMed

    Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2017-01-01

    Dental records play an important role in forensic identification. To this end, postmortem dental findings and teeth conditions are recorded in a dental chart and compared with those of antemortem records. However, most dentists are inexperienced at recording the dental chart for corpses, and it is a physically and mentally laborious task, especially in large scale disasters. Our goal is to automate the dental filing process by using dental x-ray images. In this study, we investigated the application of a deep convolutional neural network (DCNN) for classifying tooth types on dental cone-beam computed tomography (CT) images. Regions of interest (ROIs) including single teeth were extracted from CT slices. Fifty two CT volumes were randomly divided into 42 training and 10 test cases, and the ROIs obtained from the training cases were used for training the DCNN. For examining the sampling effect, random sampling was performed 3 times, and training and testing were repeated. We used the AlexNet network architecture provided in the Caffe framework, which consists of 5 convolution layers, 3 pooling layers, and 2 full connection layers. For reducing the overtraining effect, we augmented the data by image rotation and intensity transformation. The test ROIs were classified into 7 tooth types by the trained network. The average classification accuracy using the augmented training data by image rotation and intensity transformation was 88.8%. Compared with the result without data augmentation, data augmentation resulted in an approximately 5% improvement in classification accuracy. This indicates that the further improvement can be expected by expanding the CT dataset. Unlike the conventional methods, the proposed method is advantageous in obtaining high classification accuracy without the need for precise tooth segmentation. The proposed tooth classification method can be useful in automatic filing of dental charts for forensic identification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Distribution of cavity trees in midwestern old-growth and second-growth forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R. Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  11. Distribution of cavity trees in midwesternold-growth and second-growth forests

    Treesearch

    Zhaofei Fan; Stephen R. Shifley; Martin A. Spetich; Frank R., III Thompson; David R. Larsen

    2003-01-01

    We used classification and regression tree analysis to determine the primary variables associated with the occurrence of cavity trees and the hierarchical structure among those variables. We applied that information to develop logistic models predicting cavity tree probability as a function of diameter, species group, and decay class. Inventories of cavity abundance in...

  12. Emerald ash borer (Agrilus planipennis): Towards a classification of tree health and early detection

    Treesearch

    Matthew P. Peters; Louis R. Iverson; T. Davis Sydnor

    2009-01-01

    Forty-five green ash (Fraxinus pennsylvanica) street trees in Toledo, Ohio were photographed, measured, and visually rated for conditions related to emerald ash borer (Agrilus planipennis) (EAB) attacks. These trees were later removed, and sections were examined from each tree to determine the length of time that growth rates had...

  13. Clinical impact of 18 F-FDG positron emission tomography/CT on adenoid cystic carcinoma of the head and neck.

    PubMed

    Jung, Ji-Hoon; Lee, Sang-Woo; Son, Seung Hyun; Kim, Choon-Young; Lee, Chang-Hee; Jeong, Ju Hye; Jeong, Shin Young; Ahn, Byeong-Cheol; Lee, Jaetae

    2017-03-01

    The purpose of this retrospective study was to assess the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT and the prognostic value of metabolic PET parameters in patients with adenoid cystic carcinoma of the head and neck (ACCHN). Forty patients with newly diagnosed ACCHN were enrolled in this study. We investigated the diagnostic value of 18 F-FDG PET/CT for detecting and staging compared to conventional CT. Kaplan-Meier survival analysis for progression-free survival (PFS) was performed with clinicopathological factors and metabolic PET parameters. The 18 F-FDG PET/CT showed comparable sensitivity (92.3%) to conventional CT for lesion detection, and changed staging and management plan in 6 patients (15.0%). Lower PFS rates were associated with advanced T classification, advanced TNM classification, high maximum standardized uptake value (SUVmax; >5.1), and high total lesion glycolysis (>40.1) of the primary tumor. The 18 F-FDG PET/CT can provide additional information for initial staging, and metabolic PET parameters may serve as prognostic factors of ACCHN. © 2016 Wiley Periodicals, Inc. Head Neck 39: 447-455, 2017. © 2016 Wiley Periodicals, Inc.

  14. The relationship between tree growth patterns and likelihood of mortality: A study of two tree species in the Sierra Nevada

    USGS Publications Warehouse

    Das, A.J.; Battles, J.J.; Stephenson, N.L.; van Mantgem, P.J.

    2007-01-01

    We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl. (sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified) compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with DBH ???20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and 71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that they functioned well at stands not used in model development, and the development of size-specific models demonstrated important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a more comprehensive use of the growth record yields a more robust assessment of mortality risk. ?? 2007 NRC.

  15. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  16. The introduction of capillary structures in 4D simulated vascular tree for ART 3.5D algorithm further validation

    NASA Astrophysics Data System (ADS)

    Barra, Beatrice; El Hadji, Sara; De Momi, Elena; Ferrigno, Giancarlo; Cardinale, Francesco; Baselli, Giuseppe

    2017-03-01

    Several neurosurgical procedures, such as Artero Venous Malformations (AVMs), aneurysm embolizations and StereoElectroEncephaloGraphy (SEEG) require accurate reconstruction of the cerebral vascular tree, as well as the classification of arteries and veins, in order to increase the safety of the intervention. Segmentation of arteries and veins from 4D CT perfusion scans has already been proposed in different studies. Nonetheless, such procedures require long acquisition protocols and the radiation dose given to the patient is not negligible. Hence, space is open to approaches attempting to recover the dynamic information from standard Contrast Enhanced Cone Beam Computed Tomography (CE-CBCT) scans. The algorithm proposed by our team is called ART 3.5 D. It is a novel algorithm based on the postprocessing of both the angiogram and the raw data of a standard Digital Subtraction Angiography from a CBCT (DSACBCT) allowing arteries and veins segmentation and labeling without requiring any additional radiation exposure for the patient and neither lowering the resolution. In addition, while in previous versions of the algorithm just the distinction of arteries and veins was considered, here the capillary phase simulation and identification is introduced, in order to increase further information useful for more precise vasculature segmentation.

  17. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data

    USGS Publications Warehouse

    Wright, C.; Gallant, Alisa L.

    2007-01-01

    The U.S. Fish and Wildlife Service uses the term palustrine wetland to describe vegetated wetlands traditionally identified as marsh, bog, fen, swamp, or wet meadow. Landsat TM imagery was combined with image texture and ancillary environmental data to model probabilities of palustrine wetland occurrence in Yellowstone National Park using classification trees. Model training and test locations were identified from National Wetlands Inventory maps, and classification trees were built for seven years spanning a range of annual precipitation. At a coarse level, palustrine wetland was separated from upland. At a finer level, five palustrine wetland types were discriminated: aquatic bed (PAB), emergent (PEM), forested (PFO), scrub–shrub (PSS), and unconsolidated shore (PUS). TM-derived variables alone were relatively accurate at separating wetland from upland, but model error rates dropped incrementally as image texture, DEM-derived terrain variables, and other ancillary GIS layers were added. For classification trees making use of all available predictors, average overall test error rates were 7.8% for palustrine wetland/upland models and 17.0% for palustrine wetland type models, with consistent accuracies across years. However, models were prone to wetland over-prediction. While the predominant PEM class was classified with omission and commission error rates less than 14%, we had difficulty identifying the PAB and PSS classes. Ancillary vegetation information greatly improved PSS classification and moderately improved PFO discrimination. Association with geothermal areas distinguished PUS wetlands. Wetland over-prediction was exacerbated by class imbalance in likely combination with spatial and spectral limitations of the TM sensor. Wetland probability surfaces may be more informative than hard classification, and appear to respond to climate-driven wetland variability. The developed method is portable, relatively easy to implement, and should be applicable in other settings and over larger extents.

  18. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  19. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry.

    PubMed

    Engwegen, Judith Y M N; Helgason, Helgi H; Cats, Annemieke; Harris, Nathan; Bonfrer, Johannes M G; Schellens, Jan H M; Beijnen, Jos H

    2006-03-14

    To detect the new serum biomarkers for colorectal cancer (CRC) by serum protein profiling with surface-enhanced laser desorption ionisation--time of flight mass spectrometry (SELDI-TOF MS). Two independent serum sample sets were analysed separately with the ProteinChip technology (set A: 40 CRC+49 healthy controls; set B: 37 CRC+31 healthy controls), using chips with a weak cation exchange moiety and buffer pH 5. Discriminative power of differentially expressed proteins was assessed with a classification tree algorithm. Sensitivities and specificities of the generated classification trees were obtained by blindly applying data from set A to the generated trees from set B and vice versa. CRC serum protein profiles were also compared with those from breast, ovarian, prostate, and non-small cell lung cancer. Mass-to-charge ratios (m/z) 3.1x10(3), 3.3x10(3), 4.5x10(3), 6.6x10(3) and 28x10(3) were used as classifiers in the best-performing classification trees. Tree sensitivities and specificities were between 65% and 90%. Most of these discriminative m/z values were also different in the other tumour types investigated. M/z 3.3x10(3), main classifier in most trees, was a doubly charged form of the 6.6x10(3)-Da protein. The latter was identified as apolipoprotein C-I. M/z 3.1x10(3) was identified as an N-terminal fragment of albumin, and m/z 28x10(3) as apolipoprotein A-I. SELDI-TOF MS followed by classification tree pattern analysis is a suitable technique for finding new serum markers for CRC. Biomarkers can be identified and reproducibly detected in independent sample sets with high sensitivities and specificities. Although not specific for CRC, these biomarkers have a potential role in disease and treatment monitoring.

  20. Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds.

    PubMed

    Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert

    2018-02-03

    This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.

  1. Use of multi-frequency, multi-polarization, multi-angle airborne radars for class discrimination in a southern temperature forest

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1984-01-01

    The utility of radar scatterometers for discrimination and characterization of natural vegetation was investigated. Backscatter measurements were acquired with airborne multi-frequency, multi-polarization, multi-angle radar scatterometers over a test site in a southern temperate forest. Separability between ground cover classes was studied using a two-class separability measure. Very good separability is achieved between most classes. Longer wavelength is useful in separating trees from non-tree classes, while shorter wavelength and cross polarization are helpful for discrimination among tree classes. Using the maximum likelihood classifier, 50% overall classification accuracy is achieved using a single, short-wavelength scatterometer channel. Addition of multiple incidence angles and another radar band improves classification accuracy by 20% and 50%, respectively, over the single channel accuracy. Incorporation of a third radar band seems redundant for vegetation classification. Vertical transmit polarization is critically important for all classes.

  2. Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.

    PubMed

    Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I

    2015-01-01

    This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.

  3. Agile convolutional neural network for pulmonary nodule classification using CT images.

    PubMed

    Zhao, Xinzhuo; Liu, Liyao; Qi, Shouliang; Teng, Yueyang; Li, Jianhua; Qian, Wei

    2018-04-01

    To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule classification using CT images. A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the CNN is obtained finally. After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822 and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to [Formula: see text], the learning rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used. This competitive performance demonstrates that our proposed CNN framework and the optimization strategy of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small targets. The classification model might help diagnose and treat pulmonary nodules effectively.

  4. Classification of intertrochanteric fractures with computed tomography: a study of intraobserver and interobserver variability and prognostic value.

    PubMed

    Chapman, Cary B; Herrera, Mauricio F; Binenbaum, Gil; Schweppe, Michael; Staron, Ronald B; Feldman, Frieda; Rosenwasser, Melvin P

    2003-09-01

    The purpose of this prospective study was to determine the level of interobserver and intraobserver agreement among orthopedic surgeons and radiologists when computed tomography (CT) scans are used with plain radiographs to evaluate intertrochanteric fractures. In addition, the prognostic value of current classifications systems concerning quality of life was evaluated. Sixty-one patients who presented with intertrochanteric fractures received open reduction and internal fixation with compression hip screw. Three orthopedic surgeons and 2 radiologists independently classified the fractures according to 2 systems: Evans-Jensen and AO (Arbeitsgemeinschaft für Osteo-synthesefragen). Fractures were initially graded with plain radiographs and then again in conjunction with CT. Results were analyzed using the (kappa) kappa coefficient. The 36-item Short-Form Health Survey was administered at baseline, 3 months, and 1 year, and results were correlated with fracture grade. Mean kappa coefficients when comparing radiography alone with radiography and CT scan were 0.63 for the AO system and 0.59 for the Evans-Jensen system. Both represent "fair" agreements. Mean overall interobserver kappa coefficients were 0.67 for radiologists and 0.57 for orthopedic surgeons. Radiologists also had higher intraobserver kappa coefficients. No significant relationships were found between follow-up Short Form Health Survey results and intraoperative grading of fractures. When these classification schemes are compared, interobserver agreement does not appear to change dramatically when information from CT scans is added. This may suggest that (1) more data have been provided by CT with greater possibilities for misinterpretation and (2) these classification schemes may not be comprehensive in describing fracture pattern and displacement. Finally, both systems failed to provide any prognostic value.

  5. Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data

    NASA Astrophysics Data System (ADS)

    Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd

    2016-04-01

    This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.

  6. The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, Y. L.

    2017-02-01

    The production of Gannan oranges is the largest in China, which occupied an important part in the world. The extraction of citrus orchard quickly and effectively has important significance for fruit pathogen defense, fruit production and industrial planning. The traditional spectra extraction method of citrus orchard based on pixel has a lower classification accuracy, difficult to avoid the “pepper phenomenon”. In the influence of noise, the phenomenon that different spectrums of objects have the same spectrum is graveness. Taking Xunwu County citrus fruit planting area of Ganzhou as the research object, aiming at the disadvantage of the lower accuracy of the traditional method based on image element classification method, a decision tree classification method based on object-oriented rule set is proposed. Firstly, multi-scale segmentation is performed on the GF-1 remote sensing image data of the study area. Subsequently the sample objects are selected for statistical analysis of spectral features and geometric features. Finally, combined with the concept of decision tree classification, a variety of empirical values of single band threshold, NDVI, band combination and object geometry characteristics are used hierarchically to execute the information extraction of the research area, and multi-scale segmentation and hierarchical decision tree classification is implemented. The classification results are verified with the confusion matrix, and the overall Kappa index is 87.91%.

  7. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review.

    PubMed

    Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  8. Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh

    2004-05-01

    The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.

  9. Single-accelerometer-based daily physical activity classification.

    PubMed

    Long, Xi; Yin, Bin; Aarts, Ronald M

    2009-01-01

    In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.

  10. Female pelvic synthetic CT generation based on joint intensity and shape analysis

    NASA Astrophysics Data System (ADS)

    Liu, Lianli; Jolly, Shruti; Cao, Yue; Vineberg, Karen; Fessler, Jeffrey A.; Balter, James M.

    2017-04-01

    Using MRI for radiotherapy treatment planning and image guidance is appealing as it provides superior soft tissue information over CT scans and avoids possible systematic errors introduced by aligning MR to CT images. This study presents a method that generates Synthetic CT (MRCT) volumes by performing probabilistic tissue classification of voxels from MRI data using a single imaging sequence (T1 Dixon). The intensity overlap between different tissues on MR images, a major challenge for voxel-based MRCT generation methods, is addressed by adding bone shape information to an intensity-based classification scheme. A simple pelvic bone shape model, built from principal component analysis of pelvis shape from 30 CT image volumes, is fitted to the MR volumes. The shape model generates a rough bone mask that excludes air and covers bone along with some surrounding soft tissues. Air regions are identified and masked out from the tissue classification process by intensity thresholding outside the bone mask. A regularization term is added to the fuzzy c-means classification scheme that constrains voxels outside the bone mask from being assigned memberships in the bone class. MRCT image volumes are generated by multiplying the probability of each voxel being represented in each class with assigned attenuation values of the corresponding class and summing the result across all classes. The MRCT images presented intensity distributions similar to CT images with a mean absolute error of 13.7 HU for muscle, 15.9 HU for fat, 49.1 HU for intra-pelvic soft tissues, 129.1 HU for marrow and 274.4 HU for bony tissues across 9 patients. Volumetric modulated arc therapy (VMAT) plans were optimized using MRCT-derived electron densities, and doses were recalculated using corresponding CT-derived density grids. Dose differences to planning target volumes were small with mean/standard deviation of 0.21/0.42 Gy for D0.5cc and 0.29/0.33 Gy for D99%. The results demonstrate the accuracy of the method and its potential in supporting MRI only radiotherapy treatment planning.

  11. Mastectomy or breast conserving surgery? Factors affecting type of surgical treatment for breast cancer--a classification tree approach.

    PubMed

    Martin, Michael A; Meyricke, Ramona; O'Neill, Terry; Roberts, Steven

    2006-04-20

    A critical choice facing breast cancer patients is which surgical treatment--mastectomy or breast conserving surgery (BCS)--is most appropriate. Several studies have investigated factors that impact the type of surgery chosen, identifying features such as place of residence, age at diagnosis, tumor size, socio-economic and racial/ethnic elements as relevant. Such assessment of "propensity" is important in understanding issues such as a reported under-utilisation of BCS among women for whom such treatment was not contraindicated. Using Western Australian (WA) data, we further examine the factors associated with the type of surgical treatment for breast cancer using a classification tree approach. This approach deals naturally with complicated interactions between factors, and so allows flexible and interpretable models for treatment choice to be built that add to the current understanding of this complex decision process. Data was extracted from the WA Cancer Registry on women diagnosed with breast cancer in WA from 1990 to 2000. Subjects' treatment preferences were predicted from covariates using both classification trees and logistic regression. Tumor size was the primary determinant of patient choice, subjects with tumors smaller than 20 mm in diameter preferring BCS. For subjects with tumors greater than 20 mm in diameter factors such as patient age, nodal status, and tumor histology become relevant as predictors of patient choice. Classification trees perform as well as logistic regression for predicting patient choice, but are much easier to interpret for clinical use. The selected tree can inform clinicians' advice to patients.

  12. Tree planting in the Allegheny section

    Treesearch

    Northeastern Forest Experiment Station

    1961-01-01

    Tree planting involves many considerations - site classification, selection of species, planting practices, and protection from fire, insects, and diseases. The information about many of these aspects of planting is scattered and fragmentary.

  13. Feature Relevance Assessment of Multispectral Airborne LIDAR Data for Tree Species Classification

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Heurich, M.; Krzystek, P.; Skidmore, A. K.

    2018-04-01

    The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavelngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37 points/m2. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with L1 regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4-10 pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping.

  14. Contextual convolutional neural networks for lung nodule classification using Gaussian-weighted average image patches

    NASA Astrophysics Data System (ADS)

    Lee, Haeil; Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    Lung cancer is the most common cause of cancer-related death. To diagnose lung cancers in early stages, numerous studies and approaches have been developed for cancer screening with computed tomography (CT) imaging. In recent years, convolutional neural networks (CNN) have become one of the most common and reliable techniques in computer aided detection (CADe) and diagnosis (CADx) by achieving state-of-the-art-level performances for various tasks. In this study, we propose a CNN classification system for false positive reduction of initially detected lung nodule candidates. First, image patches of lung nodule candidates are extracted from CT scans to train a CNN classifier. To reflect the volumetric contextual information of lung nodules to 2D image patch, we propose a weighted average image patch (WAIP) generation by averaging multiple slice images of lung nodule candidates. Moreover, to emphasize central slices of lung nodules, slice images are locally weighted according to Gaussian distribution and averaged to generate the 2D WAIP. With these extracted patches, 2D CNN is trained to achieve the classification of WAIPs of lung nodule candidates into positive and negative labels. We used LUNA 2016 public challenge database to validate the performance of our approach for false positive reduction in lung CT nodule classification. Experiments show our approach improves the classification accuracy of lung nodules compared to the baseline 2D CNN with patches from single slice image.

  15. Unrealistic phylogenetic trees may improve phylogenetic footprinting.

    PubMed

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-06-01

    The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  16. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears

    USGS Publications Warehouse

    Laufenberg, Jared S.; Clark, Joseph D.; Chandler, Richard B.

    2018-01-01

    Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years () was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when , suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  17. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears.

    PubMed

    Laufenberg, Jared S; Clark, Joseph D; Chandler, Richard B

    2018-01-01

    Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  18. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object based classification approaches

    Treesearch

    Dacia M. Meneguzzo; Greg C. Liknes; Mark D. Nelson

    2013-01-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics....

  19. A modified tree classification for use in growth studies and timber marking in Black Hills ponderosa pine

    Treesearch

    E. M. Hornibrook

    1939-01-01

    A satisfactory silvicultural management of ponderosa pine stands requires a judicious selection of trees to be left in the reserve stand. The timber marker must know what type of tree has the greatest growth potentialities and what type of tree will respond but slightly upon being released. The silvicultural problem in marking therefore is one of recognizing the...

  20. Relationship between solitary pulmonary nodule lung cancer and CT image features based on gradual clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Weipeng

    2017-06-01

    The relationship between the medical characteristics of lung cancers and computer tomography (CT) images are explored so as to improve the early diagnosis rate of lung cancers. This research collected CT images of patients with solitary pulmonary nodule lung cancer, and used gradual clustering methodology to classify them. Preliminary classifications were made, followed by continuous modification and iteration to determine the optimal condensation point, until iteration stability was achieved. Reasonable classification results were obtained. the clustering results fell into 3 categories. The first type of patients was mostly female, with ages between 50 and 65 years. CT images of solitary pulmonary nodule lung cancer for this group contain complete lobulation and burr, with pleural indentation; The second type of patients was mostly male with ages between 50 and 80 years. CT images of solitary pulmonary nodule lung cancer for this group contain complete lobulation and burr, but with no pleural indentation; The third type of patients was also mostly male with ages between 50 and 80 years. CT images for this group showed no abnormalities. the application of gradual clustering methodology can scientifically classify CT image features of patients with lung cancer in the initial lesion stage. These findings provide the basis for early detection and treatment of malignant lesions in patients with lung cancer.

  1. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Categorization of allergic disorders in the new World Health Organization International Classification of Diseases.

    PubMed

    Tanno, Luciana Kase; Calderon, Moises A; Goldberg, Bruce J; Akdis, Cezmi A; Papadopoulos, Nikolaos G; Demoly, Pascal

    2014-01-01

    Although efforts to improve the classification of hypersensitivity/allergic diseases have been made, they have not been considered a top-level category in the International Classification of Diseases (ICD)-10 and still are not in the ICD-11 beta phase linearization. ICD-10 is the most used classification system by the allergy community worldwide but it is not considered as appropriate for clinical practice. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) on the other hand contains a tightly integrated classification of hypersensitivity/allergic disorders based on the EAACI/WAO nomenclature and the World Health Organization (WHO) may plan to align ICD-11 with SNOMED CT so that they share a common ontological basis. With the aim of actively supporting the ongoing ICD-11 revision and the optimal practice of Allergology, we performed a careful comparison of ICD-10 and 11 beta phase linearization codes to identify gaps, areas of regression in allergy coding and possibly reach solutions, in collaboration with committees in charge of the ICD-11 revision. We have found a significant degree of misclassification of terms in the allergy-related hierarchies. This stems not only from unclear definitions of these conditions but also the use of common names that falsely imply allergy. The lack of understanding of the immune mechanisms underlying some of the conditions contributes to the difficulty in classification. More than providing data to support specific changes into the ongoing linearization, these results highlight the need for either a new chapter entitled Hypersensitivity/Allergic Disorders as in SNOMED CT or a high level structure in the Immunology chapter in order to make classification more appropriate and usable.

  3. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species

    NASA Astrophysics Data System (ADS)

    Madonsela, Sabelo; Cho, Moses Azong; Mathieu, Renaud; Mutanga, Onisimo; Ramoelo, Abel; Kaszta, Żaneta; Kerchove, Ruben Van De; Wolff, Eléonore

    2017-06-01

    Biodiversity mapping in African savannah is important for monitoring changes and ensuring sustainable use of ecosystem resources. Biodiversity mapping can benefit from multi-spectral instruments such as WorldView-2 with very high spatial resolution and a spectral configuration encompassing important spectral regions not previously available for vegetation mapping. This study investigated i) the benefits of the eight-band WorldView-2 (WV-2) spectral configuration for discriminating tree species in Southern African savannah and ii) if multiple-images acquired at key points of the typical phenological development of savannahs (peak productivity, transition to senescence) improve on tree species classifications. We first assessed the discriminatory power of WV-2 bands using interspecies-Spectral Angle Mapper (SAM) via Band Add-On procedure and tested the spectral capability of WorldView-2 against simulated IKONOS for tree species classification. The results from interspecies-SAM procedure identified the yellow and red bands as the most statistically significant bands (p = 0.000251 and p = 0.000039 respectively) in the discriminatory power of WV-2 during the transition from wet to dry season (April). Using Random Forest classifier, the classification scenarios investigated showed that i) the 8-bands of the WV-2 sensor achieved higher classification accuracy for the April date (transition from wet to dry season, senescence) compared to the March date (peak productivity season) ii) the WV-2 spectral configuration systematically outperformed the IKONOS sensor spectral configuration and iii) the multi-temporal approach (March and April combined) improved the discrimination of tress species and produced the highest overall accuracy results at 80.4%. Consistent with the interspecies-SAM procedure, the yellow (605 nm) band also showed a statistically significant contribution in the improved classification accuracy from WV-2. These results highlight the mapping opportunities presented by WV-2 data for monitoring the distribution status of e.g. species often harvested by local communities (e.g. Sclerocharya birrea), encroaching species, or species-specific tree losses induced by elephants.

  4. Hierarchical classification with a competitive evolutionary neural tree.

    PubMed

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  5. Differences in forest area classification based on tree tally from variable- and fixed-radius plots

    Treesearch

    David Azuma; Vicente J. Monleon

    2011-01-01

    In forest inventory, it is not enough to formulate a definition; it is also necessary to define the "measurement procedure." In the classification of forestland by dominant cover type, the measurement design (the plot) can affect the outcome of the classification. We present results of a simulation study comparing classification of the dominant cover type...

  6. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers.

    PubMed

    Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis

    2013-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.

  7. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers

    PubMed Central

    Skoura, Angeliki; Bakic, Predrag R.; Megalooikonomou, Vasilis

    2014-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis. PMID:25414850

  8. Statistical analysis of texture in trunk images for biometric identification of tree species.

    PubMed

    Bressane, Adriano; Roveda, José A F; Martins, Antônio C G

    2015-04-01

    The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year. Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.

  9. Object based technique for delineating and mapping 15 tree species using VHR WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Mustafa, Yaseen T.; Habeeb, Hindav N.

    2014-10-01

    Monitoring and analyzing forests and trees are required task to manage and establish a good plan for the forest sustainability. To achieve such a task, information and data collection of the trees are requested. The fastest way and relatively low cost technique is by using satellite remote sensing. In this study, we proposed an approach to identify and map 15 tree species in the Mangish sub-district, Kurdistan Region-Iraq. Image-objects (IOs) were used as the tree species mapping unit. This is achieved using the shadow index, normalized difference vegetation index and texture measurements. Four classification methods (Maximum Likelihood, Mahalanobis Distance, Neural Network, and Spectral Angel Mapper) were used to classify IOs using selected IO features derived from WorldView-2 imagery. Results showed that overall accuracy was increased 5-8% using the Neural Network method compared with other methods with a Kappa coefficient of 69%. This technique gives reasonable results of various tree species classifications by means of applying the Neural Network method with IOs techniques on WorldView-2 imagery.

  10. Classification of stroke disease using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Marbun, J. T.; Seniman; Andayani, U.

    2018-03-01

    Stroke is a condition that occurs when the blood supply stop flowing to the brain because of a blockage or a broken blood vessel. A symptoms that happen when experiencing stroke, some of them is a dropped consciousness, disrupted vision and paralyzed body. The general examination is being done to get a picture of the brain part that have stroke using Computerized Tomography (CT) Scan. The image produced from CT will be manually checked and need a proper lighting by doctor to get a type of stroke. That is why it needs a method to classify stroke from CT image automatically. A method proposed in this research is Convolutional Neural Network. CT image of the brain is used as the input for image processing. The stage before classification are image processing (Grayscaling, Scaling, Contrast Limited Adaptive Histogram Equalization, then the image being classified with Convolutional Neural Network. The result then showed that the method significantly conducted was able to be used as a tool to classify stroke disease in order to distinguish the type of stroke from CT image.

  11. Image patch-based method for automated classification and detection of focal liver lesions on CT

    NASA Astrophysics Data System (ADS)

    Safdari, Mustafa; Pasari, Raghav; Rubin, Daniel; Greenspan, Hayit

    2013-03-01

    We developed a method for automated classification and detection of liver lesions in CT images based on image patch representation and bag-of-visual-words (BoVW). BoVW analysis has been extensively used in the computer vision domain to analyze scenery images. In the current work we discuss how it can be used for liver lesion classification and detection. The methodology includes building a dictionary for a training set using local descriptors and representing a region in the image using a visual word histogram. Two tasks are described: a classification task, for lesion characterization, and a detection task in which a scan window moves across the image and is determined to be normal liver tissue or a lesion. Data: In the classification task 73 CT images of liver lesions were used, 25 images having cysts, 24 having metastasis and 24 having hemangiomas. A radiologist circumscribed the lesions, creating a region of interest (ROI), in each of the images. He then provided the diagnosis, which was established either by biopsy or clinical follow-up. Thus our data set comprises 73 images and 73 ROIs. In the detection task, a radiologist drew ROIs around each liver lesion and two regions of normal liver, for a total of 159 liver lesion ROIs and 146 normal liver ROIs. The radiologist also demarcated the liver boundary. Results: Classification results of more than 95% were obtained. In the detection task, F1 results obtained is 0.76. Recall is 84%, with precision of 73%. Results show the ability to detect lesions, regardless of shape.

  12. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  13. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.

    2018-04-01

    Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

  14. Metabolic impact of partial volume correction of [18F]FDG PET-CT oncological studies on the assessment of tumor response to treatment.

    PubMed

    Stefano, A; Gallivanone, F; Messa, C; Gilardi, M C; Gastiglioni, I

    2014-12-01

    The aim of this work is to evaluate the metabolic impact of Partial Volume Correction (PVC) on the measurement of the Standard Uptake Value (SUV) from [18F]FDG PET-CT oncological studies for treatment monitoring purpose. Twenty-nine breast cancer patients with bone lesions (42 lesions in total) underwent [18F]FDG PET-CT studies after surgical resection of breast cancer primitives, and before (PET-II) chemotherapy and hormone treatment. PVC of bone lesion uptake was performed on the two [18F]FDG PET-CT studies, using a method based on Recovery Coefficients (RC) and on an automatic measurement of lesion metabolic volume. Body-weight average SUV was calculated for each lesion, with and without PVC. The accuracy, reproducibility, clinical feasibility and the metabolic impact on treatment response of the considered PVC method was evaluated. The PVC method was found clinically feasible in bone lesions, with an accuracy of 93% for lesion sphere-equivalent diameter >1 cm. Applying PVC, average SUV values increased, from 7% up to 154% considering both PET-I and PET-II studies, proving the need of the correction. As main finding, PVC modified the therapy response classification in 6 cases according to EORTC 1999 classification and in 5 cases according to PERCIST 1.0 classification. PVC has an important metabolic impact on the assessment of tumor response to treatment by [18F]FDG PET-CT oncological studies.

  15. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  16. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  17. Recruiting Conventional Tree Architecture Models into State-of-the-Art LiDAR Mapping for Investigating Tree Growth Habits in Structure.

    PubMed

    Lin, Yi; Jiang, Miao; Pellikka, Petri; Heiskanen, Janne

    2018-01-01

    Mensuration of tree growth habits is of considerable importance for understanding forest ecosystem processes and forest biophysical responses to climate changes. However, the complexity of tree crown morphology that is typically formed after many years of growth tends to render it a non-trivial task, even for the state-of-the-art 3D forest mapping technology-light detection and ranging (LiDAR). Fortunately, botanists have deduced the large structural diversity of tree forms into only a limited number of tree architecture models, which can present a-priori knowledge about tree structure, growth, and other attributes for different species. This study attempted to recruit Hallé architecture models (HAMs) into LiDAR mapping to investigate tree growth habits in structure. First, following the HAM-characterized tree structure organization rules, we run the kernel procedure of tree species classification based on the LiDAR-collected point clouds using a support vector machine classifier in the leave-one-out-for-cross-validation mode. Then, the HAM corresponding to each of the classified tree species was identified based on expert knowledge, assisted by the comparison of the LiDAR-derived feature parameters. Next, the tree growth habits in structure for each of the tree species were derived from the determined HAM. In the case of four tree species growing in the boreal environment, the tests indicated that the classification accuracy reached 85.0%, and their growth habits could be derived by qualitative and quantitative means. Overall, the strategy of recruiting conventional HAMs into LiDAR mapping for investigating tree growth habits in structure was validated, thereby paving a new way for efficiently reflecting tree growth habits and projecting forest structure dynamics.

  18. Recruiting Conventional Tree Architecture Models into State-of-the-Art LiDAR Mapping for Investigating Tree Growth Habits in Structure

    PubMed Central

    Lin, Yi; Jiang, Miao; Pellikka, Petri; Heiskanen, Janne

    2018-01-01

    Mensuration of tree growth habits is of considerable importance for understanding forest ecosystem processes and forest biophysical responses to climate changes. However, the complexity of tree crown morphology that is typically formed after many years of growth tends to render it a non-trivial task, even for the state-of-the-art 3D forest mapping technology—light detection and ranging (LiDAR). Fortunately, botanists have deduced the large structural diversity of tree forms into only a limited number of tree architecture models, which can present a-priori knowledge about tree structure, growth, and other attributes for different species. This study attempted to recruit Hallé architecture models (HAMs) into LiDAR mapping to investigate tree growth habits in structure. First, following the HAM-characterized tree structure organization rules, we run the kernel procedure of tree species classification based on the LiDAR-collected point clouds using a support vector machine classifier in the leave-one-out-for-cross-validation mode. Then, the HAM corresponding to each of the classified tree species was identified based on expert knowledge, assisted by the comparison of the LiDAR-derived feature parameters. Next, the tree growth habits in structure for each of the tree species were derived from the determined HAM. In the case of four tree species growing in the boreal environment, the tests indicated that the classification accuracy reached 85.0%, and their growth habits could be derived by qualitative and quantitative means. Overall, the strategy of recruiting conventional HAMs into LiDAR mapping for investigating tree growth habits in structure was validated, thereby paving a new way for efficiently reflecting tree growth habits and projecting forest structure dynamics. PMID:29515616

  19. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy.

    PubMed

    Baldeck, Claire A; Asner, Gregory P; Martin, Robin E; Anderson, Christopher B; Knapp, David E; Kellner, James R; Wright, S Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods--binary support vector machine (SVM) and biased SVM--for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer's accuracies of 94-97% for the three focal species, and field validation of the predicted crown objects indicated that these had user's accuracies of 94-100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems.

  20. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  1. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Nishikawa, R; Reiser, I

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification performance. The best segmentation Result does not necessarily lead to the best classification Result. This work has been supported in part by grants from the NIH R21-EB015053. R Nishikawa is receives royalties form Hologic, Inc.« less

  2. Three-column classification and Schatzker classification: a three- and two-dimensional computed tomography characterisation and analysis of tibial plateau fractures.

    PubMed

    Patange Subba Rao, Sheethal Prasad; Lewis, James; Haddad, Ziad; Paringe, Vishal; Mohanty, Khitish

    2014-10-01

    The aim of the study was to evaluate inter-observer reliability and intra-observer reproducibility between the three-column classification and Schatzker classification systems using 2D and 3D CT models. Fifty-two consecutive patients with tibial plateau fractures were evaluated by five orthopaedic surgeons. All patients were classified into Schatzker and three-column classification systems using x-rays and 2D and 3D CT images. The inter-observer reliability was evaluated in the first round and the intra-observer reliability was determined during the second round 2 weeks later. The average intra-observer reproducibility for the three-column classification was from substantial to excellent in all sub classifications, as compared with Schatzker classification. The inter-observer kappa values increased from substantial to excellent in three-column classification and to moderate in Schatzker classification The average values for three-column classification for all the categories are as follows: (I-III) k2D = 0.718, 95% CI 0.554-0.864, p < 0.0001 and average 3D = 0.874, 95% CI 0.754-0.890, p < 0.0001. For Schatzker classification system, the average values for all six categories are as follows: (I-VI) k2D = 0.536, 95% CI 0.365-0.685, p < 0.0001 and average k3D = 0.552 95% CI 0.405-0.700, p < 0.0001. The values are statistically significant. Statistically significant inter-observer values in both rounds were noted with the three-column classification, making it statistically an excellent agreement. The intra-observer reproducibility for the three-column classification improved as compared with the Schatzker classification. The three-column classification seems to be an effective way to characterise and classify fractures of tibial plateau.

  3. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  4. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    USGS Publications Warehouse

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  5. Pulmonary effects of synthetic marijuana: chest radiography and CT findings.

    PubMed

    Berkowitz, Eugene A; Henry, Travis S; Veeraraghavan, Srihari; Staton, Gerald W; Gal, Anthony A

    2015-04-01

    The purpose of this article is to present the first chest radiographic and CT descriptions of organizing pneumonia in response to smoking synthetic marijuana. Chest radiographs showed a diffuse miliary-micronodular pattern. Chest CT images showed diffuse centrilobular nodules and tree-in-bud pattern and a histopathologic pattern of organizing pneumonia with or without patchy acute alveolar damage. This distinct imaging pattern should alert radiologists to include synthetic marijuana abuse in the differential diagnosis.

  6. Emergency Department Triage of Traumatic Head Injury Using a Brain Electrical Activity Biomarker: A Multisite Prospective Observational Validation Trial.

    PubMed

    Hanley, Daniel; Prichep, Leslie S; Bazarian, Jeffrey; Huff, J Stephen; Naunheim, Rosanne; Garrett, John; Jones, Elizabeth B; Wright, David W; O'Neill, John; Badjatia, Neeraj; Gandhi, Dheeraj; Curley, Kenneth C; Chiacchierini, Richard; O'Neil, Brian; Hack, Dallas C

    2017-05-01

    A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state. Adult patients admitted to the ED for evaluation within 72 hours of sustaining a closed head injury with GCS 12 to 15 were candidates for study. A total of 720 patients (18-85 years) meeting inclusion/exclusion criteria were enrolled in this observational, prospective validation trial, at 11 U.S. EDs. GCS was 15 in 97%, with the first and third quartiles being 15 (interquartile range = 0) in the study population at the time of the evaluation. Standard clinical evaluations were conducted and 5 to 10 minutes of electroencephalogram (EEG) was acquired from frontal and frontal-temporal scalp locations. Using an a priori derived EEG-based classification algorithm developed on an independent population and applied to this validation population prospectively, the likelihood of each subject being CT+ was determined, and performance metrics were computed relative to adjudicated CT findings. Sensitivity of the binary classifier (likely CT+ or CT-) was 92.3% (95% confidence interval [CI] = 87.8%-95.5%) for detection of any intracranial injury visible on CT (CT+), with specificity of 51.6% (95% CI = 48.1%-55.1%) and negative predictive value (NPV) of 96.0% (95% CI = 93.2%-97.9%). Using ternary classification (likely CT+, equivocal, likely CT-) demonstrated enhanced sensitivity to traumatic hematomas (≥1 mL of blood), 98.6% (95% CI = 92.6%-100.0%), and NPV of 98.2% (95% CI = 95.5%-99.5%). Using an EEG-based biomarker high accuracy of predicting the likelihood of being CT+ was obtained, with high NPV and sensitivity to any traumatic bleeding and to hematomas. Specificity was significantly higher than standard CT decision rules. The short time to acquire results and the ease of use in the ED environment suggests that EEG-based classifier algorithms have potential to impact triage and clinical management of head-injured patients. © 2017 by the Society for Academic Emergency Medicine.

  7. SVM-based tree-type neural networks as a critic in adaptive critic designs for control.

    PubMed

    Deb, Alok Kanti; Jayadeva; Gopal, Madan; Chandra, Suresh

    2007-07-01

    In this paper, we use the approach of adaptive critic design (ACD) for control, specifically, the action-dependent heuristic dynamic programming (ADHDP) method. A least squares support vector machine (SVM) regressor has been used for generating the control actions, while an SVM-based tree-type neural network (NN) is used as the critic. After a failure occurs, the critic and action are retrained in tandem using the failure data. Failure data is binary classification data, where the number of failure states are very few as compared to the number of no-failure states. The difficulty of conventional multilayer feedforward NNs in learning this type of classification data has been overcome by using the SVM-based tree-type NN, which due to its feature to add neurons to learn misclassified data, has the capability to learn any binary classification data without a priori choice of the number of neurons or the structure of the network. The capability of the trained controller to handle unforeseen situations is demonstrated.

  8. Integrating dimension reduction and out-of-sample extension in automated classification of ex vivo human patellar cartilage on phase contrast X-ray computed tomography.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns.

  9. Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees.

    PubMed

    Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit

    2015-01-01

    The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.

  10. Ensemble classification of individual Pinus crowns from multispectral satellite imagery and airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Kukunda, Collins B.; Duque-Lazo, Joaquín; González-Ferreiro, Eduardo; Thaden, Hauke; Kleinn, Christoph

    2018-03-01

    Distinguishing tree species is relevant in many contexts of remote sensing assisted forest inventory. Accurate tree species maps support management and conservation planning, pest and disease control and biomass estimation. This study evaluated the performance of applying ensemble techniques with the goal of automatically distinguishing Pinus sylvestris L. and Pinus uncinata Mill. Ex Mirb within a 1.3 km2 mountainous area in Barcelonnette (France). Three modelling schemes were examined, based on: (1) high-density LiDAR data (160 returns m-2), (2) Worldview-2 multispectral imagery, and (3) Worldview-2 and LiDAR in combination. Variables related to the crown structure and height of individual trees were extracted from the normalized LiDAR point cloud at individual-tree level, after performing individual tree crown (ITC) delineation. Vegetation indices and the Haralick texture indices were derived from Worldview-2 images and served as independent spectral variables. Selection of the best predictor subset was done after a comparison of three variable selection procedures: (1) Random Forests with cross validation (AUCRFcv), (2) Akaike Information Criterion (AIC) and (3) Bayesian Information Criterion (BIC). To classify the species, 9 regression techniques were combined using ensemble models. Predictions were evaluated using cross validation and an independent dataset. Integration of datasets and models improved individual tree species classification (True Skills Statistic, TSS; from 0.67 to 0.81) over individual techniques and maintained strong predictive power (Relative Operating Characteristic, ROC = 0.91). Assemblage of regression models and integration of the datasets provided more reliable species distribution maps and associated tree-scale mapping uncertainties. Our study highlights the potential of model and data assemblage at improving species classifications needed in present-day forest planning and management.

  11. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    NASA Astrophysics Data System (ADS)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  12. Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree.

    PubMed

    Erdoğan, Onur; Aydin Son, Yeşim

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.

  13. Classification of malignant and benign lung nodules using taxonomic diversity index and phylogenetic distance.

    PubMed

    de Sousa Costa, Robherson Wector; da Silva, Giovanni Lucca França; de Carvalho Filho, Antonio Oseas; Silva, Aristófanes Corrêa; de Paiva, Anselmo Cardoso; Gattass, Marcelo

    2018-05-23

    Lung cancer presents the highest cause of death among patients around the world, in addition of being one of the smallest survival rates after diagnosis. Therefore, this study proposes a methodology for diagnosis of lung nodules in benign and malignant tumors based on image processing and pattern recognition techniques. Mean phylogenetic distance (MPD) and taxonomic diversity index (Δ) were used as texture descriptors. Finally, the genetic algorithm in conjunction with the support vector machine were applied to select the best training model. The proposed methodology was tested on computed tomography (CT) images from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), with the best sensitivity of 93.42%, specificity of 91.21%, accuracy of 91.81%, and area under the ROC curve of 0.94. The results demonstrate the promising performance of texture extraction techniques using mean phylogenetic distance and taxonomic diversity index combined with phylogenetic trees. Graphical Abstract Stages of the proposed methodology.

  14. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data

    NASA Astrophysics Data System (ADS)

    Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.

    2014-08-01

    This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.

  15. Classification of ground glass opacity lesion characteristic based on texture feature using lung CT image

    NASA Astrophysics Data System (ADS)

    Sebatubun, M. M.; Haryawan, C.; Windarta, B.

    2018-03-01

    Lung cancer causes a high mortality rate in the world than any other cancers. That can be minimised if the symptoms and cancer cells have been detected early. One of the techniques used to detect lung cancer is by computed tomography (CT) scan. CT scan images have been used in this study to identify one of the lesion characteristics named ground glass opacity (GGO). It has been used to determine the level of malignancy of the lesion. There were three phases in identifying GGO: image cropping, feature extraction using grey level co-occurrence matrices (GLCM) and classification using Naïve Bayes Classifier. In order to improve the classification results, the most significant feature was sought by feature selection using gain ratio evaluation. Based on the results obtained, the most significant features could be identified by using feature selection method used in this research. The accuracy rate increased from 83.33% to 91.67%, the sensitivity from 82.35% to 94.11% and the specificity from 84.21% to 89.47%.

  16. A tree classification for the selection forests of the Sierra Nevada

    Treesearch

    Duncan Dunning

    1928-01-01

    Individuality in man is accepted without question. In domestic animals, also, good and bad individuals are generally recognized. Even in some cultivated plants —orange trees and rubber trees— the poor producers are searched out and eliminated. Indeed, individual variability is a normal condition in all groups of organisms. Yet forest trees are...

  17. The CERAD Neuropsychological Assessment Battery Is Sensitive to Alcohol-Related Cognitive Deficiencies in Elderly Patients: A Retrospective Matched Case-Control Study.

    PubMed

    Kaufmann, Liane; Huber, Stefan; Mayer, Daniel; Moeller, Korbinian; Marksteiner, Josef

    2018-04-01

    Adverse effects of heavy drinking on cognition have frequently been reported. In the present study, we systematically examined for the first time whether clinical neuropsychological assessments may be sensitive to alcohol abuse in elderly patients with suspected minor neurocognitive disorder. A total of 144 elderly with and without alcohol abuse (each group n=72; mean age 66.7 years) were selected from a patient pool of n=738 by applying propensity score matching (a statistical method allowing to match participants in experimental and control group by balancing various covariates to reduce selection bias). Accordingly, study groups were almost perfectly matched regarding age, education, gender, and Mini Mental State Examination score. Neuropsychological performance was measured using the CERAD (Consortium to Establish a Registry for Alzheimer's Disease). Classification analyses (i.e., decision tree and boosted trees models) were conducted to examine whether CERAD variables or total score contributed to group classification. Decision tree models disclosed that groups could be reliably classified based on the CERAD variables "Word List Discriminability" (tapping verbal recognition memory, 64% classification accuracy) and "Trail Making Test A" (measuring visuo-motor speed, 59% classification accuracy). Boosted tree analyses further indicated the sensitivity of "Word List Recall" (measuring free verbal recall) for discriminating elderly with versus without a history of alcohol abuse. This indicates that specific CERAD variables seem to be sensitive to alcohol-related cognitive dysfunctions in elderly patients with suspected minor neurocognitive disorder. (JINS, 2018, 24, 360-371).

  18. Application of classification tree and logistic regression for the management and health intervention plans in a community-based study.

    PubMed

    Teng, Ju-Hsi; Lin, Kuan-Chia; Ho, Bin-Shenq

    2007-10-01

    A community-based aboriginal study was conducted and analysed to explore the application of classification tree and logistic regression. A total of 1066 aboriginal residents in Yilan County were screened during 2003-2004. The independent variables include demographic characteristics, physical examinations, geographic location, health behaviours, dietary habits and family hereditary diseases history. Risk factors of cardiovascular diseases were selected as the dependent variables in further analysis. The completion rate for heath interview is 88.9%. The classification tree results find that if body mass index is higher than 25.72 kg m(-2) and the age is above 51 years, the predicted probability for number of cardiovascular risk factors > or =3 is 73.6% and the population is 322. If body mass index is higher than 26.35 kg m(-2) and geographical latitude of the village is lower than 24 degrees 22.8', the predicted probability for number of cardiovascular risk factors > or =4 is 60.8% and the population is 74. As the logistic regression results indicate that body mass index, drinking habit and menopause are the top three significant independent variables. The classification tree model specifically shows the discrimination paths and interactions between the risk groups. The logistic regression model presents and analyses the statistical independent factors of cardiovascular risks. Applying both models to specific situations will provide a different angle for the design and management of future health intervention plans after community-based study.

  19. An ecological classification system for the central hardwoods region: The Hoosier National Forest

    Treesearch

    James E. Van Kley; George R. Parker

    1993-01-01

    This study, a multifactor ecological classification system, using vegetation, soil characteristics, and physiography, was developed for the landscape of the Hoosier National Forest in Southern Indiana. Measurements of ground flora, saplings, and canopy trees from selected stands older than 80 years were subjected to TWINSPAN classification and DECORANA ordination....

  20. Assessing the Effectiveness of Statistical Classification Techniques in Predicting Future Employment of Participants in the Temporary Assistance for Needy Families Program

    ERIC Educational Resources Information Center

    Montoya, Isaac D.

    2008-01-01

    Three classification techniques (Chi-square Automatic Interaction Detection [CHAID], Classification and Regression Tree [CART], and discriminant analysis) were tested to determine their accuracy in predicting Temporary Assistance for Needy Families program recipients' future employment. Technique evaluation was based on proportion of correctly…

  1. Evaluating multimedia chemical persistence: Classification and regression tree analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D.H.; McKone, T.E.; Kastenberg, W.E.

    2000-04-01

    For the thousands of chemicals continuously released into the environment, it is desirable to make prospective assessments of those likely to be persistent. Widely distributed persistent chemicals are impossible to remove from the environment and remediation by natural processes may take decades, which is problematic if adverse health or ecological effects are discovered after prolonged release into the environment. A tiered approach using a classification scheme and a multimedia model for determining persistence is presented. Using specific criteria for persistence, a classification tree is developed to classify a chemical as persistent or nonpersistent based on the chemical properties. In thismore » approach, the classification is derived from the results of a standardized unit world multimedia model. Thus, the classifications are more robust for multimedia pollutants than classifications using a single medium half-life. The method can be readily implemented and provides insight without requiring extensive and often unavailable data. This method can be used to classify chemicals when only a few properties are known and can be used to direct further data collection. Case studies are presented to demonstrate the advantages of the approach.« less

  2. Classification of ASASSN-16ct as a Type Ia supernova near maximum

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, I. A.

    2016-03-01

    We conducted a spectroscopic observation of transient ASASSN-16ct (AT 2016aud) at 2016-03-10T04:38:37 UT. This transient was identified in ATel #8796 by the All Sky Automated Survey for SuperNovae (ASAS-SN).

  3. Association of genetic variations in the serotonin and dopamine systems with aggressive behavior in the Chinese adolescent population: Single- and multiple-risk genetic variants.

    PubMed

    Chang, Hongjuan; Yan, Qiuge; Tang, Lina; Huang, Juan; Ma, Yuqiao; Ye, Xiaozhou; Wu, Chunxia; Wu, Linguo; Yu, Yizhen

    2018-01-01

    Genetic predisposition is an important factor leading to aggressive behavior. However, the relationship between genetic polymorphisms and aggressive behavior has not been elucidated. We identified candidate genes located in the dopaminergic and serotonin system (DRD3, DRD4, and FEV) that had been previously reported to be associated with aggressive behavior. We investigated 14 tag single-nucleotide polymorphisms (SNPs) using a multi-analytic strategy combining logistic regression (LR) and classification and regression tree (CART) to explore higher-order interactions between these SNPs and aggressive behavior in 318 patients and 558 controls. Both LR and CART analyses suggested that the rs16859448 polymorphism is the strongest individual factor associated with aggressive behavior risk. In CART analysis, individuals carrying the combined genotypes of rs16859448TT/GT-rs11246228CT/TT-rs3773679TT had the highest risk, while rs16859448GG-rs2134655CT had the lowest risk (OR = 5.25, 95% CI: 2.53-10.86). This study adds to the growing evidence on the association of single- and multiple-risk variants in DRD3, DRD4, and FEV with aggressive behavior in Chinese adolescents. However, the aggressive behavior scale used to diagnose aggression in this study did not account for comorbid conditions; therefore, further studies are needed to confirm our observations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Use of the color trails test as an embedded measure of performance validity.

    PubMed

    Henry, George K; Algina, James

    2013-01-01

    One hundred personal injury litigants and disability claimants referred for a forensic neuropsychological evaluation were administered both portions of the Color Trails Test (CTT) as part of a more comprehensive battery of standardized tests. Subjects who failed two or more free-standing tests of cognitive performance validity formed the Failed Performance Validity (FPV) group, while subjects who passed all free-standing performance validity measures were assigned to the Passed Performance Validity (PPV) group. A cutscore of ≥45 seconds to complete Color Trails 1 (CT1) was associated with a classification accuracy of 78%, good sensitivity (66%) and high specificity (90%), while a cutscore of ≥84 seconds to complete Color Trails 2 (CT2) was associated with a classification accuracy of 82%, good sensitivity (74%) and high specificity (90%). A CT1 cutscore of ≥58 seconds, and a CT2 cutscore ≥100 seconds was associated with 100% positive predictive power at base rates from 20 to 50%.

  5. Classification images for localization performance in ramp-spectrum noise.

    PubMed

    Abbey, Craig K; Samuelson, Frank W; Zeng, Rongping; Boone, John M; Eckstein, Miguel P; Myers, Kyle

    2018-05-01

    This study investigates forced localization of targets in simulated images with statistical properties similar to trans-axial sections of x-ray computed tomography (CT) volumes. A total of 24 imaging conditions are considered, comprising two target sizes, three levels of background variability, and four levels of frequency apodization. The goal of the study is to better understand how human observers perform forced-localization tasks in images with CT-like statistical properties. The transfer properties of CT systems are modeled by a shift-invariant transfer function in addition to apodization filters that modulate high spatial frequencies. The images contain noise that is the combination of a ramp-spectrum component, simulating the effect of acquisition noise in CT, and a power-law component, simulating the effect of normal anatomy in the background, which are modulated by the apodization filter as well. Observer performance is characterized using two psychophysical techniques: efficiency analysis and classification image analysis. Observer efficiency quantifies how much diagnostic information is being used by observers to perform a task, and classification images show how that information is being accessed in the form of a perceptual filter. Psychophysical studies from five subjects form the basis of the results. Observer efficiency ranges from 29% to 77% across the different conditions. The lowest efficiency is observed in conditions with uniform backgrounds, where significant effects of apodization are found. The classification images, estimated using smoothing windows, suggest that human observers use center-surround filters to perform the task, and these are subjected to a number of subsequent analyses. When implemented as a scanning linear filter, the classification images appear to capture most of the observer variability in efficiency (r 2 = 0.86). The frequency spectra of the classification images show that frequency weights generally appear bandpass in nature, with peak frequency and bandwidth that vary with statistical properties of the images. In these experiments, the classification images appear to capture important features of human-observer performance. Frequency apodization only appears to have a significant effect on performance in the absence of anatomical variability, where the observers appear to underweight low spatial frequencies that have relatively little noise. Frequency weights derived from the classification images generally have a bandpass structure, with adaptation to different conditions seen in the peak frequency and bandwidth. The classification image spectra show relatively modest changes in response to different levels of apodization, with some evidence that observers are attempting to rebalance the apodized spectrum presented to them. © 2018 American Association of Physicists in Medicine.

  6. Picture grammars in classification and semantic interpretation of 3D coronary vessels visualisations

    NASA Astrophysics Data System (ADS)

    Ogiela, M. R.; Tadeusiewicz, R.; Trzupek, M.

    2009-09-01

    The work presents the new opportunity for making semantic descriptions and analysis of medical structures, especially coronary vessels CT spatial reconstructions, with the use of AI graph-based linguistic formalisms. In the paper there will be discussed the manners of applying methods of computational intelligence to the development of a syntactic semantic description of spatial visualisations of the heart's coronary vessels. Such descriptions may be used for both smart ordering of images while archiving them and for their semantic searches in medical multimedia databases. Presented methodology of analysis can furthermore be used for attaining other goals related performance of computer-assisted semantic interpretation of selected elements and/or the entire 3D structure of the coronary vascular tree. These goals are achieved through the use of graph-based image formalisms based on IE graphs generating grammars that allow discovering and automatic semantic interpretation of irregularities visualised on the images obtained during diagnostic examinations of the heart muscle. The basis for the construction of 3D reconstructions of biological objects used in this work are visualisations obtained from helical CT scans, yet the method itself may be applied also for other methods of medical 3D images acquisition. The obtained semantic information makes it possible to make a description of the structure focused on the semantics of various morphological forms of the visualised vessels from the point of view of the operation of coronary circulation and the blood supply of the heart muscle. Thanks to these, the analysis conducted allows fast and — to a great degree — automated interpretation of the semantics of various morphological changes in the coronary vascular tree, and especially makes it possible to detect these stenoses in the lumen of the vessels that can cause critical decrease in blood supply to extensive or especially important fragments of the heart muscle.

  7. Improvement of portable computed tomography system for on-field applications

    NASA Astrophysics Data System (ADS)

    Sukrod, K.; Khoonkamjorn, P.; Tippayakul, C.

    2015-05-01

    In 2010, Thailand Institute of Nuclear Technology (TINT) received a portable Computed Tomography (CT) system from the IAEA as part of the Regional Cooperative Agreement (RCA) program. This portable CT system has been used as the prototype for development of portable CT system intended for industrial applications since then. This paper discusses the improvements in the attempt to utilize the CT system for on-field applications. The system is foreseen to visualize the amount of agarwood in the live tree trunk. The experiments adopting Am-241 as the radiation source were conducted. The Am-241 source was selected since it emits low energy gamma which should better distinguish small density differences of wood types. Test specimens made of timbers with different densities were prepared and used in the experiments. The cross sectional views of the test specimens were obtained from the CT system using different scanning parameters. It is found from the experiments that the results are promising as the picture can clearly differentiate wood types according to their densities. Also, the optimum scanning parameters were determined from the experiments. The results from this work encourage the research team to advance into the next phase which is to experiment with the real tree on the field.

  8. Land Cover Mapping using GEOBIA to Estimate Loss of Salacca zalacca Trees in Landslide Area of Clapar, Madukara District of Banjarnegara

    NASA Astrophysics Data System (ADS)

    Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad

    2016-11-01

    Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.

  9. Phylogenetic classification of bony fishes.

    PubMed

    Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo

    2017-07-06

    Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.

  10. Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, X.; Xiao, W.

    2018-05-01

    The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.

  11. Query Expansion Using SNOMED-CT and Weighing Schemes

    DTIC Science & Technology

    2014-11-01

    For this research, we have used SNOMED-CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. General Terms...CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...University of the Basque country discuss their finding on query expansion using external sources headlined by Unified Medical Language System ( UMLS

  12. Multicentre, Prospective Observational Study of Pegfilgrastim Primary Prophylaxis in Patients at High Risk of Febrile Neutropenia in Poland: PROFIL Study

    PubMed Central

    Jurczak, Wojciech; Kalinka-Warzocha, Ewa; Chmielowska, Ewa; Duchnowska, Renata; Wojciechowska-Lampka, Elzbieta

    2015-01-01

    Aim of the study PROFIL was a prospective observational study conducted to investigate physicians’ evaluation of febrile neutropenia (FN) risk and reasons for giving pegfilgrastim primary prophylaxis (PP) in routine clinical practice in Poland. Material and methods Adult cancer patients treated with chemotherapy (CT), assessed by investigators as having high overall FN risk, and who received pegfilgrastim in cycle 1 were enrolled between 03/2009 and 09/2010. Investigators assessed FN risk of the CT regimen, individual risk factors, and overall FN risk, and were asked to provide the most important reasons for providing pegfilgrastim PP. Investigator-assessed CT FN risk was compared with guideline classification. Results Data were analysed from 1006 breast, ovarian, and lung cancer, and non-Hodgkin (NHL) and Hodgkin lymphoma (HL) patients. The most important reasons for using pegfilgrastim PP were high CT FN risk and advanced disease; these were consistent across tumour types and treatment intent. The investigators generally assessed high CT FN risk in agreement with guideline classification. Febrile neutropenia occurred in 4% of patients, most commonly in HL, NHL, and patients with advanced disease. Conclusions High CT FN risk and advanced stage of disease were found to be the most important reasons for providing pegfilgrastim PP by physicians in Poland. PMID:26557762

  13. Computed tomography synthesis from magnetic resonance images in the pelvis using multiple random forests and auto-context features

    NASA Astrophysics Data System (ADS)

    Andreasen, Daniel; Edmund, Jens M.; Zografos, Vasileios; Menze, Bjoern H.; Van Leemput, Koen

    2016-03-01

    In radiotherapy treatment planning that is only based on magnetic resonance imaging (MRI), the electron density information usually obtained from computed tomography (CT) must be derived from the MRI by synthesizing a so-called pseudo CT (pCT). This is a non-trivial task since MRI intensities are neither uniquely nor quantitatively related to electron density. Typical approaches involve either a classification or regression model requiring specialized MRI sequences to solve intensity ambiguities, or an atlas-based model necessitating multiple registrations between atlases and subject scans. In this work, we explore a machine learning approach for creating a pCT of the pelvic region from conventional MRI sequences without using atlases. We use a random forest provided with information about local texture, edges and spatial features derived from the MRI. This helps to solve intensity ambiguities. Furthermore, we use the concept of auto-context by sequentially training a number of classification forests to create and improve context features, which are finally used to train a regression forest for pCT prediction. We evaluate the pCT quality in terms of the voxel-wise error and the radiologic accuracy as measured by water-equivalent path lengths. We compare the performance of our method against two baseline pCT strategies, which either set all MRI voxels in the subject equal to the CT value of water, or in addition transfer the bone volume from the real CT. We show an improved performance compared to both baseline pCTs suggesting that our method may be useful for MRI-only radiotherapy.

  14. [Thoracic manifestation of tuberculosis].

    PubMed

    Kienzl-Palma, D; Prosch, H

    2016-10-01

    Tuberculosis (TB) is a granulomatous disease caused by Mycobacterium tuberculosis and transmission is via an airborne route by droplet infection. In the majority of cases patients have thoracic TB, which most frequently presents with hilar lymphadenopathy and pulmonary manifestation. Due to the rise in incidence of TB in central Europe to be expected over the coming years, it is essential to be acquainted with the radiological manifestations of pulmonary TB, particularly to be able to discriminate active from inactive TB. Due to the use of molecular techniques entailing DNA fingerprinting, the traditional classification of TB in primary and postprimary TB is being challenged. These genetic studies have revealed that variations in the clinical and radiographic appearance of TB are mainly affected by the immune status of the patients. Due to the low prevalence of TB in central Europe and the wide variation of radiological presentations, the diagnosis and therapy of TB is often delayed. In this article, the radiographic manifestations of thoracic TB are summarized and discussed. Together with the medical history and bacteriological tests, chest X‑ray imaging and computed tomography (CT) play a major role not only in the detection of TB but also in the follow-up during and after therapy. Chest X‑radiographs should be the primary diagnostic method in patients with suspected TB in screening as well as for diagnosis and therapy monitoring. The use of CT is more sensitive than chest radiographs and is frequently performed after chest radiographs to obtain detailed information about subtle parenchymal changes or lymph node manifestation. When active TB is suspected CT should be performed. Tree in bud, lobular consolidations, centrilobular nodules, cavities and ground-glass opacification are typical changes in active TB.

  15. Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range

    NASA Astrophysics Data System (ADS)

    Dibb, S. D.; Ustin, S.; Grigsby, S.

    2015-12-01

    Air- and space-borne remote sensing instruments allow for rapid and precise study of the diversity of the Earth's ecosystems. After atmospheric correction and ground validation are performed, the gathered hyperspectral and topographic data can be assembled into a stack of layers for land cover classification. Data for this project were collected in multiple field campaigns, including the 2013 NSF NEON California campaign and 2015 NASA SARP campaign. Using hyperspectral and high resolution topography data, 25 discriminatory attributes were processed in Exelis' ENVI software and collected for use in a decision forest to classify the four major tree species (Blue Oak, Live Oak, California Buckeye, and Foothill Pine) at the San Joaquin Experimental Range near Fresno, CA. These attributes include 21 classic vegetation indices and a number of other spectral characteristics, such as color and albedo, and four topographic layers, including slope, aspect, elevation, and tree height. Additionally, a number of nearby terrain classes, including bare earth, asphalt, water, rock, shadow, structures, and grass were created. Fifty training pixels were used for each class. The training pixels for each tree species came from collected GPS points in the field. Ensemble bootstrap aggregation of decision trees was performed in MATLAB, and an arbitrary number of 500 trees were selected to be grown. The tree that produced the minimum out-of-bag classification error (4.65%) was selected to classify the entire scene. Classification results accurately distinguished between oak species, but was suboptimal in dense areas. The entire San Joaquin Experimental Range was mapped with an overall accuracy of 94.7% and a Kappa coefficient 0.94. Finally, the Commission and Omission percentage averages were 5.3% each. A highly accurate map of tree species at this scale supports studies on drought effects, disease, and species-specific growth traits.

  16. Simulation of land use change in the three gorges reservoir area based on CART-CA

    NASA Astrophysics Data System (ADS)

    Yuan, Min

    2018-05-01

    This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.

  17. Predictors of condom use and refusal among the population of Free State province in South Africa

    PubMed Central

    2012-01-01

    Background This study investigated the extent and predictors of condom use and condom refusal in the Free State province in South Africa. Methods Through a household survey conducted in the Free Sate province of South Africa, 5,837 adults were interviewed. Univariate and multivariate survey logistic regressions and classification trees (CT) were used for analysing two response variables ‘ever used condom’ and ‘ever refused condom’. Results Eighty-three per cent of the respondents had ever used condoms, of which 38% always used them; 61% used them during the last sexual intercourse and 9% had ever refused to use them. The univariate logistic regression models and CT analysis indicated that a strong predictor of condom use was its perceived need. In the CT analysis, this variable was followed in importance by ‘knowledge of correct use of condom’, condom availability, young age, being single and higher education. ‘Perceived need’ for condoms did not remain significant in the multivariate analysis after controlling for other variables. The strongest predictor of condom refusal, as shown by the CT, was shame associated with condoms followed by the presence of sexual risk behaviour, knowing one’s HIV status, older age and lacking knowledge of condoms (i.e., ability to prevent sexually transmitted diseases and pregnancy, availability, correct and consistent use and existence of female condoms). In the multivariate logistic regression, age was not significant for condom refusal while affordability and perceived need were additional significant variables. Conclusions The use of complementary modelling techniques such as CT in addition to logistic regressions adds to a better understanding of condom use and refusal. Further improvement in correct and consistent use of condoms will require targeted interventions. In addition to existing social marketing campaigns, tailored approaches should focus on establishing the perceived need for condom-use and improving skills for correct use. They should also incorporate interventions to reduce the shame associated with condoms and individual counselling of those likely to refuse condoms. PMID:22639964

  18. Transient Dynamics Simulation of Airflow in a CT-Scanned Human Airway Tree: More or Fewer Terminal Bronchi?

    PubMed Central

    Zhang, Baihua; Li, Jianhua; Yue, Yong; Qian, Wei

    2017-01-01

    Using computational fluid dynamics (CFD) method, the feasibility of simulating transient airflow in a CT-based airway tree with more than 100 outlets for a whole respiratory period is studied, and the influence of truncations of terminal bronchi on CFD characteristics is investigated. After an airway model with 122 outlets is extracted from CT images, the transient airflow is simulated. Spatial and temporal variations of flow velocity, wall pressure, and wall shear stress are presented; the flow pattern and lobar distribution of air are gotten as well. All results are compared with those of a truncated model with 22 outlets. It is found that the flow pattern shows lobar heterogeneity that the near-wall air in the trachea is inhaled into the upper lobe while the center flow enters the other lobes, and the lobar distribution of air is significantly correlated with the outlet area ratio. The truncation decreases airflow to right and left upper lobes and increases the deviation of airflow distributions between inspiration and expiration. Simulating the transient airflow in an airway tree model with 122 bronchi using CFD is feasible. The model with more terminal bronchi decreases the difference between the lobar distributions at inspiration and at expiration. PMID:29333194

  19. PET Index of Bone Glucose Metabolism (PIBGM) Classification of PET/CT Data for Fever of Unknown Origin Diagnosis

    PubMed Central

    Yang, Jian; Liu, Xinxin; Ai, Danni; Fan, Jingfan; Zheng, Youjing; Li, Fang; Huo, Li; Wang, Yongtian

    2015-01-01

    Objectives Fever of unknown origin (FUO) remains a challenge in clinical practice. Fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is helpful in diagnosing the etiology of FUO. This paper aims to develop a completely automatic classification method based on PET/CT data for the computer-assisted diagnosis of FUO. Methods We retrospectively analyzed the FDG PET/CT scan of 175 FUO patients, 79 males and 96 females. The final diagnosis of all FUO patients was achieved through pathology or clinical evaluation, including 108 normal patients and 67 FUO patients. CT anatomic information was used to acquire bone functional information from PET images. The skeletal system of FUO patients was classified by analyzing the standardized uptake value (SUV) and the PET index of bone glucose metabolism (PIBGM). The SUV distributions in the bone marrow and the bone cortex were also studied in detail. Results The SUV and PIBGM of the bone marrow only slightly differed between the FUO patients and normal people, whereas the SUV of whole bone structures and the PIBGM of the bone cortex significantly differed between the normal people and FUO patients. The method detected 43 patients from 67 FUO patients, with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 64.18%, 95%, 93.48%, 72.73%, and 83.33%, respectively. Conclusion The experimental results demonstrate that the study can achieve automatic classification of FUO patients by the proposed novel biomarker of PIBGM, which has the potential to be utilized in clinical practice. PMID:26076139

  20. Mapping and detecting bark beetle-caused tree mortality in the western United States

    NASA Astrophysics Data System (ADS)

    Meddens, Arjan J. H.

    Recently, insect outbreaks across North America have dramatically increased and the forest area affected by bark beetles is similar to that affected by fire. Remote sensing offers the potential to detect insect outbreaks with high accuracy. Chapter one involved detection of insect-caused tree mortality on the tree level for a 90km2 area in northcentral Colorado. Classes of interest included green trees, multiple stages of post-insect attack tree mortality including dead trees with red needles ("red-attack") and dead trees without needles ("gray-attack"), and non-forest. The results illustrated that classification of an image with a spatial resolution similar to the area of a tree crown outperformed that from finer and coarser resolution imagery for mapping tree mortality and non-forest classes. I also demonstrated that multispectral imagery could be used to separate multiple postoutbreak attack stages (i.e., red-attack and gray-attack) from other classes in the image. In Chapter 2, I compared and improved methods for detecting bark beetle-caused tree mortality using medium-resolution satellite data. I found that overall classification accuracy was similar between single-date and multi-date classification methods. I developed regression models to predict percent red attack within a 30-m grid cell and these models explained >75% of the variance using three Landsat spectral explanatory variables. Results of the final product showed that approximately 24% of the forest within the Landsat scene was comprised of tree mortality caused by bark beetles. In Chapter 3, I developed a gridded data set with 1-km2 resolution using aerial survey data and improved estimates of tree mortality across the western US and British Columbia. In the US, I also produced an upper estimate by forcing the mortality area to match that from high-resolution imagery in Idaho, Colorado, and New Mexico. Cumulative mortality area from all bark beetles was 5.46 Mha in British Columbia in 2001-2010 and 0.47-5.37 Mha (lower and upper estimate) in the western conterminous US during 1997-2010. Improved methods for detection and mapping of insect outbreak areas will lead to improved assessments of the effects of these forest disturbances on the economy, carbon cycle (and feedback to climate change), fuel loads, hydrology and forest ecology.

  1. Relating FIA data to habitat classifications via tree-based models of canopy cover

    Treesearch

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters

    2012-01-01

    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  2. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range

    Treesearch

    Jose F. Negron

    1998-01-01

    Infested and uninfested areas within Douglas fir, Pseudotsuga menziesii Mirb.. Franco, stands affected by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. were sampled in the Colorado Front Range, CO. Classification tree models were built to predict probabilities of infestation. Regression trees and linear regression analysis were used to model amount of tree...

  3. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  4. Electric Trees and Pond Creatures.

    ERIC Educational Resources Information Center

    Weaver, Helen; Hounshell, Paul B.

    1978-01-01

    Two learning activities are presented to develop observation and classification skills at the elementary level. The first is an electric box that associates tree names with leaf and bark specimens, and the second is a pond water observation and slide preparation activity. (BB)

  5. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  6. Investigating the limitations of tree species classification using the Combined Cluster and Discriminant Analysis method for low density ALS data from a dense forest region in Aggtelek (Hungary)

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Deák, Márton; Kovács, József; Székely, Balázs; Kelemen, Kristóf; Standovár, Tibor

    2016-04-01

    Airborne Laser Scanning (ALS) is a widely used technology for forestry classification applications. However, single tree detection and species classification from low density ALS point cloud is limited in a dense forest region. In this study we investigate the division of a forest into homogenous groups at stand level. The study area is located in the Aggtelek karst region (Northeast Hungary) with a complex relief topography. The ALS dataset contained only 4 discrete echoes (at 2-4 pt/m2 density) from the study area during leaf-on season. Ground-truth measurements about canopy closure and proportion of tree species cover are available for every 70 meter in 500 square meter circular plots. In the first step, ALS data were processed and geometrical and intensity based features were calculated into a 5×5 meter raster based grid. The derived features contained: basic statistics of relative height, canopy RMS, echo ratio, openness, pulse penetration ratio, basic statistics of radiometric feature. In the second step the data were investigated using Combined Cluster and Discriminant Analysis (CCDA, Kovács et al., 2014). The CCDA method first determines a basic grouping for the multiple circle shaped sampling locations using hierarchical clustering and then for the arising grouping possibilities a core cycle is executed comparing the goodness of the investigated groupings with random ones. Out of these comparisons difference values arise, yielding information about the optimal grouping out of the investigated ones. If sub-groups are then further investigated, one might even find homogeneous groups. We found that low density ALS data classification into homogeneous groups are highly dependent on canopy closure, and the proportion of the dominant tree species. The presented results show high potential using CCDA for determination of homogenous separable groups in LiDAR based tree species classification. Aggtelek Karst/Slovakian Karst Caves" (HUSK/1101/221/0180, Aggtelek NP), data evaluation: 'Multipurpose assessment serving forest biodiversity conservation in the Carpathian region of Hungary', Swiss-Hungarian Cooperation Programme (SH/4/13 Project). BS contributed as an Alexander von Humboldt Research Fellow. J. Kovács, S. Kovács, N. Magyar, P. Tanos, I. G. Hatvani, and A. Anda (2014), Classification into homogeneous groups using combined cluster and discriminant analysis, Environmental Modelling & Software, 57, 52-59.

  7. Comparison of digital tomosynthesis and computed tomography for lung nodule detection in SOS screening program.

    PubMed

    Grosso, Maurizio; Priotto, Roberto; Ghirardo, Donatella; Talenti, Alberto; Roberto, Emanuele; Bertolaccini, Luca; Terzi, Alberto; Chauvie, Stéphane

    2017-08-01

    To compare the lung nodules' detection of digital tomosynthesis (DTS) and computed tomography (CT) in the context of the SOS (Studio OSservazionale) prospective screening program for lung cancer detection. One hundred and thirty-two of the 1843 subjects enrolled in the SOS study underwent CT because non-calcified nodules with diameters larger than 5 mm and/or multiple nodules were present in DTS. Two expert radiologists reviewed the exams classifying the nodules based on their radiological appearance and their dimension. LUNG-RADS classification was applied to compare receiver operator characteristics curve between CT and DTS with respect to final diagnosis. CT was used as gold standard. DTS and CT detected 208 and 179 nodules in the 132 subjects, respectively. Of these 208 nodules, 189 (91%) were solid, partially solid, and ground glass opacity. CT confirmed 140/189 (74%) of these nodules but found 4 nodules that were not detected by DTS. DTS and CT were concordant in 62% of the cases applying the 5-point LUNG-RADS scale. The concordance rose to 86% on a suspicious/non-suspicious binary scale. The areas under the curve in receiver operator characteristics were 0.89 (95% CI 0.83-0.94) and 0.80 (95% CI 0.72-0.89) for CT and DTS, respectively. The mean effective dose was 0.09 ± 0.04 mSv for DTS and 4.90 ± 1.20 mSv for CT. The use of a common classification for nodule detection in DTS and CT helps in comparing the two technologies. DTS detected and correctly classified 74% of the nodules seen by CT but lost 4 nodules identified by CT. Concordance between DTS and CT rose to 86% of the nodules when considering LUNG-RADS on a binary scale.

  8. Terrain Classification and Identification of Tree Stems Using Ground-Based Lidar

    DTIC Science & Technology

    2012-12-01

    hailing from North America and Eastern Asia. Stands are mixed age and very diverse, making this an appealing test site in terms of tree variety...sparse scene in Fig. 3(b) contains several deciduous trees and shrubs, but is largely open. The moderate scene, shown in Fig. 3(c), is cluttered with...numerous deciduous trees and shrubs, and significant ground cover. The remaining two data sets, dense1 and dense2 were collected at Breakheart

  9. An Efficient Pipeline for Abdomen Segmentation in CT Images.

    PubMed

    Koyuncu, Hasan; Ceylan, Rahime; Sivri, Mesut; Erdogan, Hasan

    2018-04-01

    Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation. Discontinuous abdomen edges, bed section of CT, patient information, closeness between the edges of the abdomen and CT, poor contrast, and a narrow histogram can be regarded as the most important handicaps that occur in abdominal CT scans. Currently, one or more handicaps can arise and prevent technicians obtaining abdomen images through simple segmentation techniques. In other words, CT scans can include the bed section of CT, a patient's diagnostic information, low-quality abdomen edges, low-level contrast, and narrow histogram, all in one scan. These phenomena constitute a challenge, and an efficient pipeline that is unaffected by handicaps is required. In addition, analysis such as segmentation, feature selection, and classification has meaning for a real-time diagnosis system in cases where the abdomen section is directly used with a specific size. A statistical pipeline is designed in this study that is unaffected by the handicaps mentioned above. Intensity-based approaches, morphological processes, and histogram-based procedures are utilized to design an efficient structure. Performance evaluation is realized in experiments on 58 CT images (16 training, 16 test, and 26 validation) that include the abdomen and one or more disadvantage(s). The first part of the data (16 training images) is used to detect the pipeline's optimum parameters, while the second and third parts are utilized to evaluate and to confirm the segmentation performance. The segmentation results are presented as the means of six performance metrics. Thus, the proposed method achieves remarkable average rates for training/test/validation of 98.95/99.36/99.57% (jaccard), 99.47/99.67/99.79% (dice), 100/99.91/99.91% (sensitivity), 98.47/99.23/99.85% (specificity), 99.38/99.63/99.87% (classification accuracy), and 98.98/99.45/99.66% (precision). In summary, a statistical pipeline performing the task of abdomen segmentation is achieved that is not affected by the disadvantages, and the most detailed abdomen segmentation study is performed for the use before organ and tumor segmentation, feature extraction, and classification.

  10. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soner Yorgun, M.; Rood, Richard B.

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  11. A decision tree algorithm for investigation of model biases related to dynamical cores and physical parameterizations: CESM/CAM EVALUATION BY DECISION TREES

    DOE PAGES

    Soner Yorgun, M.; Rood, Richard B.

    2016-11-11

    An object-based evaluation method using a pattern recognition algorithm (i.e., classification trees) is applied to the simulated orographic precipitation for idealized experimental setups using the National Center of Atmospheric Research (NCAR) Community Atmosphere Model (CAM) with the finite volume (FV) and the Eulerian spectral transform dynamical cores with varying resolutions. Daily simulations were analyzed and three different types of precipitation features were identified by the classification tree algorithm. The statistical characteristics of these features (i.e., maximum value, mean value, and variance) were calculated to quantify the difference between the dynamical cores and changing resolutions. Even with the simple and smoothmore » topography in the idealized setups, complexity in the precipitation fields simulated by the models develops quickly. The classification tree algorithm using objective thresholding successfully detected different types of precipitation features even as the complexity of the precipitation field increased. The results show that the complexity and the bias introduced in small-scale phenomena due to the spectral transform method of CAM Eulerian spectral dynamical core is prominent, and is an important reason for its dissimilarity from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions, have significant effect on the simulation of precipitation. The results of this study also suggest that an efficient and informative study about the biases produced by GCMs should involve daily (or even hourly) output (rather than monthly mean) analysis over local scales.« less

  12. Automated noninvasive classification of renal cancer on multiphase CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linguraru, Marius George; Wang, Shijun; Shah, Furhawn

    2011-10-15

    Purpose: To explore the added value of the shape of renal lesions for classifying renal neoplasms. To investigate the potential of computer-aided analysis of contrast-enhanced computed-tomography (CT) to quantify and classify renal lesions. Methods: A computer-aided clinical tool based on adaptive level sets was employed to analyze 125 renal lesions from contrast-enhanced abdominal CT studies of 43 patients. There were 47 cysts and 78 neoplasms: 22 Von Hippel-Lindau (VHL), 16 Birt-Hogg-Dube (BHD), 19 hereditary papillary renal carcinomas (HPRC), and 21 hereditary leiomyomatosis and renal cell cancers (HLRCC). The technique quantified the three-dimensional size and enhancement of lesions. Intrapatient and interphasemore » registration facilitated the study of lesion serial enhancement. The histograms of curvature-related features were used to classify the lesion types. The areas under the curve (AUC) were calculated for receiver operating characteristic curves. Results: Tumors were robustly segmented with 0.80 overlap (0.98 correlation) between manual and semi-automated quantifications. The method further identified morphological discrepancies between the types of lesions. The classification based on lesion appearance, enhancement and morphology between cysts and cancers showed AUC = 0.98; for BHD + VHL (solid cancers) vs. HPRC + HLRCC AUC = 0.99; for VHL vs. BHD AUC = 0.82; and for HPRC vs. HLRCC AUC = 0.84. All semi-automated classifications were statistically significant (p < 0.05) and superior to the analyses based solely on serial enhancement. Conclusions: The computer-aided clinical tool allowed the accurate quantification of cystic, solid, and mixed renal tumors. Cancer types were classified into four categories using their shape and enhancement. Comprehensive imaging biomarkers of renal neoplasms on abdominal CT may facilitate their noninvasive classification, guide clinical management, and monitor responses to drugs or interventions.« less

  13. Integrating Dimension Reduction and Out-of-Sample Extension in Automated Classification of Ex Vivo Human Patellar Cartilage on Phase Contrast X-Ray Computed Tomography

    PubMed Central

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2015-01-01

    Phase contrast X-ray computed tomography (PCI-CT) has been demonstrated as a novel imaging technique that can visualize human cartilage with high spatial resolution and soft tissue contrast. Different textural approaches have been previously investigated for characterizing chondrocyte organization on PCI-CT to enable classification of healthy and osteoarthritic cartilage. However, the large size of feature sets extracted in such studies motivates an investigation into algorithmic feature reduction for computing efficient feature representations without compromising their discriminatory power. For this purpose, geometrical feature sets derived from the scaling index method (SIM) were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. The extracted feature sets were subject to linear and non-linear dimension reduction techniques as well as feature selection based on evaluation of mutual information criteria. The reduced feature set was subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic (ROC) curve (AUC). Our results show that the classification performance achieved by 9-D SIM-derived geometric feature sets (AUC: 0.96 ± 0.02) can be maintained with 2-D representations computed from both dimension reduction and feature selection (AUC values as high as 0.97 ± 0.02). Thus, such feature reduction techniques can offer a high degree of compaction to large feature sets extracted from PCI-CT images while maintaining their ability to characterize the underlying chondrocyte patterns. PMID:25710875

  14. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data.

    PubMed

    Havla, Lukas; Schneider, Moritz J; Thierfelder, Kolja M; Beyer, Sebastian E; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H; Dietrich, Olaf

    2016-02-01

    The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets. Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated. The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters. A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

  15. EEG channels reduction using PCA to increase XGBoost's accuracy for stroke detection

    NASA Astrophysics Data System (ADS)

    Fitriah, N.; Wijaya, S. K.; Fanany, M. I.; Badri, C.; Rezal, M.

    2017-07-01

    In Indonesia, based on the result of Basic Health Research 2013, the number of stroke patients had increased from 8.3 ‰ (2007) to 12.1 ‰ (2013). These days, some researchers are using electroencephalography (EEG) result as another option to detect the stroke disease besides CT Scan image as the gold standard. A previous study on the data of stroke and healthy patients in National Brain Center Hospital (RS PON) used Brain Symmetry Index (BSI), Delta-Alpha Ratio (DAR), and Delta-Theta-Alpha-Beta Ratio (DTABR) as the features for classification by an Extreme Learning Machine (ELM). The study got 85% accuracy with sensitivity above 86 % for acute ischemic stroke detection. Using EEG data means dealing with many data dimensions, and it can reduce the accuracy of classifier (the curse of dimensionality). Principal Component Analysis (PCA) could reduce dimensionality and computation cost without decreasing classification accuracy. XGBoost, as the scalable tree boosting classifier, can solve real-world scale problems (Higgs Boson and Allstate dataset) with using a minimal amount of resources. This paper reuses the same data from RS PON and features from previous research, preprocessed with PCA and classified with XGBoost, to increase the accuracy with fewer electrodes. The specific fewer electrodes improved the accuracy of stroke detection. Our future work will examine the other algorithm besides PCA to get higher accuracy with less number of channels.

  16. Spatial modeling and classification of corneal shape.

    PubMed

    Marsolo, Keith; Twa, Michael; Bullimore, Mark A; Parthasarathy, Srinivasan

    2007-03-01

    One of the most promising applications of data mining is in biomedical data used in patient diagnosis. Any method of data analysis intended to support the clinical decision-making process should meet several criteria: it should capture clinically relevant features, be computationally feasible, and provide easily interpretable results. In an initial study, we examined the feasibility of using Zernike polynomials to represent biomedical instrument data in conjunction with a decision tree classifier to distinguish between the diseased and non-diseased eyes. Here, we provide a comprehensive follow-up to that work, examining a second representation, pseudo-Zernike polynomials, to determine whether they provide any increase in classification accuracy. We compare the fidelity of both methods using residual root-mean-square (rms) error and evaluate accuracy using several classifiers: neural networks, C4.5 decision trees, Voting Feature Intervals, and Naïve Bayes. We also examine the effect of several meta-learning strategies: boosting, bagging, and Random Forests (RFs). We present results comparing accuracy as it relates to dataset and transformation resolution over a larger, more challenging, multi-class dataset. They show that classification accuracy is similar for both data transformations, but differs by classifier. We find that the Zernike polynomials provide better feature representation than the pseudo-Zernikes and that the decision trees yield the best balance of classification accuracy and interpretability.

  17. Tree Colors: Color Schemes for Tree-Structured Data.

    PubMed

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  18. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.

    PubMed

    Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori

    2018-01-01

    We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.

  19. Prognostic value of computed tomography classification systems for intra-articular calcaneus fractures.

    PubMed

    Swords, Michael P; Alton, Timothy B; Holt, Sarah; Sangeorzan, Bruce J; Shank, John R; Benirschke, Stephen K

    2014-10-01

    There are several published computed tomography (CT) classification systems for calcaneus fractures, each validated by a different standard. The goal of this study was to measure which system would best predict clinical outcomes as measured by a widely used and validated musculoskeletal health status questionnaire. Forty-nine patients with isolated intra-articular joint depression calcaneus fractures more than 2 years after treatment were identified. All had preoperative CT studies and were treated with open reduction and plate fixation using a lateral extensile approach. Four different blinded reviewers classified injuries according to the CT classification systems of Crosby and Fitzgibbons, Eastwood, and Sanders. Functional outcomes evaluated with a Musculoskeletal Functional Assessment (MFA). The mean follow-up was 4.3 years. The mean MFA score was 15.7 (SD = 11.6), which is not significantly different from published values for midfoot injuries, hindfoot injuries, or both, 1 year after injury (mean = 22.1, SD = 18.4). The classification systems of Crosby and Fitzgibbons, Eastwood, and Sanders, the number of fragments of the posterior facet, and payer status were not significantly associated with outcome as determined by the MFA. The Sanders classification trended toward significance. Anterior process comminution and surgeon's overall impression of severity were significantly associated with functional outcome. The amount of anterior process comminution was an important determinant of functional outcome with increasing anterior process comminution significantly associated with worsened functional outcome (P = .04). In addition, the surgeon's overall impression of severity of injury was predictive of functional outcome (P = .02), as determined by MFA. Level III, comparative series. © The Author(s) 2014.

  20. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    NASA Technical Reports Server (NTRS)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  1. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata) Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics

    PubMed Central

    Thuy, Ben; Stöhr, Sabine

    2016-01-01

    Ophiuroid systematics is currently in a state of upheaval, with recent molecular estimates fundamentally clashing with traditional, morphology-based classifications. Here, we attempt a long overdue recast of a morphological phylogeny estimate of the Ophiuroidea taking into account latest insights on microstructural features of the arm skeleton. Our final estimate is based on a total of 45 ingroup taxa, including 41 recent species covering the full range of extant ophiuroid higher taxon diversity and 4 fossil species known from exceptionally preserved material, and the Lower Carboniferous Aganaster gregarius as the outgroup. A total of 130 characters were scored directly on specimens. The tree resulting from the Bayesian inference analysis of the full data matrix is reasonably well resolved and well supported, and refutes all previous classifications, with most traditional families discredited as poly- or paraphyletic. In contrast, our tree agrees remarkably well with the latest molecular estimate, thus paving the way towards an integrated new classification of the Ophiuroidea. Among the characters which were qualitatively found to accord best with our tree topology, we selected a list of potential synapomorphies for future formal clade definitions. Furthermore, an analysis with 13 of the ingroup taxa reduced to the lateral arm plate characters produced a tree which was essentially similar to the full dataset tree. This suggests that dissociated lateral arm plates can be analysed in combination with fully known taxa and thus effectively unlocks the extensive record of fossil lateral arm plates for phylogenetic estimates. Finally, the age and position within our tree implies that the ophiuroid crown-group had started to diversify by the Early Triassic. PMID:27227685

  2. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  3. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods

    Treesearch

    Gretchen G. Moisen; Elizabeth A. Freeman; Jock A. Blackard; Tracey S. Frescino; Niklaus E. Zimmermann; Thomas C. Edwards

    2006-01-01

    Many efforts are underway to produce broad-scale forest attribute maps by modelling forest class and structure variables collected in forest inventories as functions of satellite-based and biophysical information. Typically, variants of classification and regression trees implemented in Rulequest's© See5 and Cubist (for binary and continuous responses,...

  4. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    E. Freeman; G. Moisen; J. Coulston; B. Wilson

    2014-01-01

    Random forests (RF) and stochastic gradient boosting (SGB), both involving an ensemble of classification and regression trees, are compared for modeling tree canopy cover for the 2011 National Land Cover Database (NLCD). The objectives of this study were twofold. First, sensitivity of RF and SGB to choices in tuning parameters was explored. Second, performance of the...

  5. Components of Antagonism and Mutualism in Ips pini–Fungal Interactions: Relationship to a Life History of Colonizing Highly Stressed and Dead Trees

    Treesearch

    Brian J. Kopper; Kier D. Klepzig; Kenneth F. Raffa

    2004-01-01

    Efforts to describe the complex relationships between bark beetles and the ophiostomatoid (stain) fungi they transport have largely resulted in a dichotomous classification. These symbioses have been viewed as either mutualistic (i.e., fungi help bark beetles colonize living trees by overcoming tree defenses or by providing nutrients after colonization in return for...

  6. Portable Language-Independent Adaptive Translation from OCR. Phase 1

    DTIC Science & Technology

    2009-04-01

    including brute-force k-Nearest Neighbors ( kNN ), fast approximate kNN using hashed k-d trees, classification and regression trees, and locality...achieved by refinements in ground-truthing protocols. Recent algorithmic improvements to our approximate kNN classifier using hashed k-D trees allows...recent years discriminative training has been shown to outperform phonetic HMMs estimated using ML for speech recognition. Standard ML estimation

  7. Tree species classification using within crown localization of waveform LiDAR attributes

    NASA Astrophysics Data System (ADS)

    Blomley, Rosmarie; Hovi, Aarne; Weinmann, Martin; Hinz, Stefan; Korpela, Ilkka; Jutzi, Boris

    2017-11-01

    Since forest planning is increasingly taking an ecological, diversity-oriented perspective into account, remote sensing technologies are becoming ever more important in assessing existing resources with reduced manual effort. While the light detection and ranging (LiDAR) technology provides a good basis for predictions of tree height and biomass, tree species identification based on this type of data is particularly challenging in structurally heterogeneous forests. In this paper, we analyse existing approaches with respect to the geometrical scale of feature extraction (whole tree, within crown partitions or within laser footprint) and conclude that currently features are always extracted separately from the different scales. Since multi-scale approaches however have proven successful in other applications, we aim to utilize the within-tree-crown distribution of within-footprint signal characteristics as additional features. To do so, a spin image algorithm, originally devised for the extraction of 3D surface features in object recognition, is adapted. This algorithm relies on spinning an image plane around a defined axis, e.g. the tree stem, collecting the number of LiDAR returns or mean values of returns attributes per pixel as respective values. Based on this representation, spin image features are extracted that comprise only those components of highest variability among a given set of library trees. The relative performance and the combined improvement of these spin image features with respect to non-spatial statistical metrics of the waveform (WF) attributes are evaluated for the tree species classification of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Silver/Downy birch (Betula pendula Roth/Betula pubescens Ehrh.) in a boreal forest environment. This evaluation is performed for two WF LiDAR datasets that differ in footprint size, pulse density at ground, laser wavelength and pulse width. Furthermore, we evaluate the robustness of the proposed method with respect to internal parameters and tree size. The results reveal, that the consideration of the crown-internal distribution of within-footprint signal characteristics captured in spin image features improves the classification results in nearly all test cases.

  8. Classification of Different Degrees of Disability Following Intracerebral Hemorrhage: A Decision Tree Analysis from VISTA-ICH Collaboration.

    PubMed

    Phan, Thanh G; Chen, Jian; Beare, Richard; Ma, Henry; Clissold, Benjamin; Van Ly, John; Srikanth, Velandai

    2017-01-01

    Prognostication following intracerebral hemorrhage (ICH) has focused on poor outcome at the expense of lumping together mild and moderate disability. We aimed to develop a novel approach at classifying a range of disability following ICH. The Virtual International Stroke Trial Archive collaboration database was searched for patients with ICH and known volume of ICH on baseline CT scans. Disability was partitioned into mild [modified Rankin Scale (mRS) at 90 days of 0-2], moderate (mRS = 3-4), and severe disabilities (mRS = 5-6). We used binary and trichotomy decision tree methodology. The data were randomly divided into training (2/3 of data) and validation (1/3 data) datasets. The area under the receiver operating characteristic curve (AUC) was used to calculate the accuracy of the decision tree model. We identified 957 patients, age 65.9 ± 12.3 years, 63.7% males, and ICH volume 22.6 ± 22.1 ml. The binary tree showed that lower ICH volume (<13.7 ml), age (<66.5 years), serum glucose (<8.95 mmol/l), and systolic blood pressure (<170 mm Hg) discriminate between mild versus moderate-to-severe disabilities with AUC of 0.79 (95% CI 0.73-0.85). Large ICH volume (>27.9 ml), older age (>69.5 years), and low Glasgow Coma Scale (<15) classify severe disability with AUC of 0.80 (95% CI 0.75-0.86). The trichotomy tree showed that ICH volume, age, and serum glucose can separate mild, moderate, and severe disability groups with AUC 0.79 (95% CI 0.71-0.87). Both the binary and trichotomy methods provide equivalent discrimination of disability outcome after ICH. The trichotomy method can classify three categories at once, whereas this action was not possible with the binary method. The trichotomy method may be of use to clinicians and trialists for classifying a range of disability in ICH.

  9. Predicting internal yellow-poplar log defect features using surface indicators

    Treesearch

    R. Edward Thomas

    2008-01-01

    Determining the defects that are located within the log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive X-ray/CT, MRI, or microwave technology. These methods do not lend themselves to fast, efficient, and cost-effective analysis of logs and tree stems in...

  10. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Treesearch

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  11. The Early Detection of the Emerald Ash Borer (EAB) Using Advanced Geospacial Technologies

    NASA Astrophysics Data System (ADS)

    Hu, B.; Li, J.; Wang, J.; Hall, B.

    2014-11-01

    The objectives of this study were to exploit Light Detection And Ranging (LiDAR) and very high spatial resolution (VHR) data and their synergy with hyperspectral imagery in the early detection of the EAB presence in trees within urban areas and to develop a framework to combine information extracted from multiple data sources. To achieve these, an object-oriented framework was developed to combine information derived from available data sets to characterize ash trees. Within this framework, individual trees were first extracted and then classified into different species based on their spectral information derived from hyperspectral imagery, spatial information from VHR imagery, and for each ash tree its health state and EAB infestation stage were determined based on hyperspectral imagery. The developed framework and methods were demonstrated to be effective according to the results obtained on two study sites in the city of Toronto, Ontario Canada. The individual tree delineation method provided satisfactory results with an overall accuracy of 78 % and 19 % commission and 23 % omission errors when used on the combined very high-spatial resolution imagery and LiDAR data. In terms of the identification of ash trees, given sufficient representative training data, our classification model was able to predict tree species with above 75 % overall accuracy, and mis-classification occurred mainly between ash and maple trees. The hypothesis that a strong correlation exists between general tree stress and EAB infestation was confirmed. Vegetation indices sensitive to leaf chlorophyll content derived from hyperspectral imagery can be used to predict the EAB infestation levels for each ash tree.

  12. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2007-10-01

    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.

  13. Variable coupling between sap-flow and transpiration in pine trees under drought conditions

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan

    2016-04-01

    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and hydraulic conductivity in larger trees recovered faster from midday depression than in smaller ones. We concluded that the observed changes in the patterns of water flow into and out of the trees reflected differences in the utilization of external and internal 'water storage'. Large trees appear to rely on sufficient internal water storage that filled up in the morning (max DBH) and supported transpiration both in the morning and the afternoon, while SF increased throughout the day to compensate for the depletion in water storage (SF maximum in the afternoon). In contrast, small trees with insufficient internal water storage must rely on soil water availability and maximize SF in the morning to support concurrent tree transpiration, achieving some internal storage only in the afternoon, when T declines and maximum daily DBH is observed. The results indicated also that trees with insufficient internal storage, as can be detected by the simultaneous SF and DBH patterns, are likely to be more vulnerable to drought-related mortality since soil water availability may not be sufficient to support transpiration and stomata opening.

  14. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  15. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.

    PubMed

    O'Dell, Walter G; Gormaley, Anne K; Prida, David A

    2017-12-01

    Detailed characterization of changes in vessel size is crucial for the diagnosis and management of a variety of vascular diseases. Because clinical measurement of vessel size is typically dependent on the radiologist's subjective interpretation of the vessel borders, it is often prone to high inter- and intra-user variability. Automatic methods of vessel sizing have been developed for two-dimensional images but a fully three-dimensional (3D) method suitable for vessel sizing from volumetric X-ray computed tomography (CT) or magnetic resonance imaging has heretofore not been demonstrated and validated robustly. In this paper, we refined and objectively validated Gatortail, a method that creates a mathematical geometric 3D model of each branch in a vascular tree, simulates the appearance of the virtual vascular tree in a 3D CT image, and uses the similarity of the simulated image to a patient's CT scan to drive the optimization of the model parameters, including vessel size, to match that of the patient. The method was validated with a 2-dimensional virtual tree structure under deformation, and with a realistic 3D-printed vascular phantom in which the diameter of 64 branches were manually measured 3 times each. The phantom was then scanned on a conventional clinical CT imaging system and the images processed with the in-house software to automatically segment and mathematically model the vascular tree, label each branch, and perform the Gatortail optimization of branch size and trajectory. Previously proposed methods of vessel sizing using matched Gaussian filters and tubularity metrics were also tested. The Gatortail method was then demonstrated on the pulmonary arterial tree segmented from a human volunteer's CT scan. The standard deviation of the difference between the manually measured and Gatortail-based radii in the 3D physical phantom was 0.074 mm (0.087 in-plane pixel units for image voxels of dimension 0.85 × 0.85 × 1.0 mm) over the 64 branches, representing vessel diameters ranging from 1.2 to 7 mm. The linear regression fit gave a slope of 1.056 and an R 2 value of 0.989. These three metrics reflect superior agreement of the radii estimates relative to previously published results over all sizes tested. Sizing via matched Gaussian filters resulted in size underestimates of >33% over all three test vessels, while the tubularity-metric matching exhibited a sizing uncertainty of >50%. In the human chest CT data set, the vessel voxel intensity profiles with and without branch model optimization showed excellent agreement and improvement in the objective measure of image similarity. Gatortail has been demonstrated to be an automated, objective, accurate and robust method for sizing of vessels in 3D non-invasively from chest CT scans. We anticipate that Gatortail, an image-based approach to automatically compute estimates of blood vessel radii and trajectories from 3D medical images, will facilitate future quantitative evaluation of vascular response to disease and environmental insult and improve understanding of the biological mechanisms underlying vascular disease processes. © 2017 American Association of Physicists in Medicine.

  16. Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.

    PubMed

    Chen, Shizhi; Yang, Xiaodong; Tian, Yingli

    2015-09-01

    A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.

  17. Combined optical coherence tomography and optical coherence elastography for glomerulonephritis classification

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.

    2016-03-01

    Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.

  18. The classification of frontal sinus pneumatization patterns by CT-based volumetry.

    PubMed

    Yüksel Aslier, Nesibe Gül; Karabay, Nuri; Zeybek, Gülşah; Keskinoğlu, Pembe; Kiray, Amaç; Sütay, Semih; Ecevit, Mustafa Cenk

    2016-10-01

    We aimed to define the classification of frontal sinus pneumatization patterns according to three-dimensional volume measurements. Datasets of 148 sides of 74 dry skulls were generated by the computerized tomography-based volumetry to measure frontal sinus volumes. The cutoff points for frontal sinus hypoplasia and hyperplasia were tested by ROC curve analysis and the validity of the diagnostic points was measured. The overall frequencies were 4.1, 14.2, 37.2 and 44.5 % for frontal sinus aplasia, hypoplasia, medium size and hyperplasia, respectively. The aplasia was bilateral in all three skulls. Hypoplasia was seen 76 % at the right side and hyperplasia was seen 56 % at the left side. The cutoff points for diagnosing frontal sinus hypoplasia and hyperplasia were '1131.25 mm(3)' (95.2 % sensitivity and 100 % specificity) and '3328.50 mm(3)' (88 % sensitivity and 86 % specificity), respectively. The findings provided in the present study, which define frontal sinus pneumatization patterns by CT-based volumetry, proved that two opposite sides of the frontal sinuses are asymmetric and three-dimensional classification should be developed by CT-based volumetry, because two-dimensional evaluations lack depth measurement.

  19. Oxfordshire community stroke project clinical stroke syndrome and appearances of tissue and vascular lesions on pretreatment ct in hyperacute ischemic stroke among the first 510 patients in the Third International Stroke Trial (IST-3).

    PubMed

    Kobayashi, Adam; Wardlaw, Joanna M; Lindley, Richard I; Lewis, Steff C; Sandercock, Peter A G; Czlonkowska, Anna

    2009-03-01

    The Oxfordshire Community Stroke Project (OCSP) clinical stroke syndrome classification correlates well with the stroke lesion in established ischemic stroke, but there are few data in patients with hyperacute stroke. We wished to assess whether the OCSP correlated with the site and size of the ischemic lesion and location of cerebral vessel lesion on computed tomography (CT) in hyperacute stroke. Prospective study of ischemic stroke patients presenting within 6 hours of onset in the Third International Stroke Trial (IST-3), a randomized, controlled trial of rt-PA. OCSP syndrome was assigned by a computer-based algorithm. The CT assessment was made by a neuroradiologist blinded to clinical details. We assessed baseline data and CT findings for the first 510 patients; early tissue ischemic changes were present in 329/510 (65%) total anterior circulation syndrome (TACS) - 79%; partial anterior circulation syndrome (PACS) - 57%, lacunar syndrome (LACS) - 40%; posterior circulation syndrome (POCS) - 33%. The site and size of ischemic change on CT was compatible with the clinical syndrome in 79%, 37%, 2%, and 14%, respectively. Assuming that all patients with a normal CT scan will develop an incompatible lesion these numbers reflected the "worst possible scenario." For the "best possible scenario" we presumed that those with a normal CT will develop concordant ischemic change and the proportions were 100%, 80%, 62% and 81%, respectively. The hyperattenuated artery sign was seen in 206/510 (40%); (TACS 54%; PACS 35%, LACS 5%, and POCS 19%). Within 6 hours of stroke, in patients with a nonlacunar syndrome, the OCSP syndrome correlated well with the pattern of ischemic change on CT. For clinicians who wish to restrict the use of thrombolytic therapy to large-artery ischemic stroke, concordance of clinical and CT appearances may give greater confidence in making therapeutic decisions in hyperacute stroke. In centers where immediate access to MR is limited, use of the classification may help focus use of MR on patients with suspected LACS and POCS. The utility of the classification may further increase if IST-3 establishes that the OCSP syndrome significantly modifies response to thrombolytic therapy.

  20. A feature alignment score for online cone-beam CT-based image-guided radiotherapy for prostate cancer.

    PubMed

    Hargrave, Catriona; Deegan, Timothy; Poulsen, Michael; Bednarz, Tomasz; Harden, Fiona; Mengersen, Kerrie

    2018-05-17

    To develop a method for scoring online cone-beam CT (CBCT)-to-planning CT image feature alignment to inform prostate image-guided radiotherapy (IGRT) decision-making. The feasibility of incorporating volume variation metric thresholds predictive of delivering planned dose into weighted functions, was investigated. Radiation therapists and radiation oncologists participated in workshops where they reviewed prostate CBCT-IGRT case examples and completed a paper-based survey of image feature matching practices. For 36 prostate cancer patients, one daily CBCT was retrospectively contoured then registered with their plan to simulate delivered dose if (a) no online setup corrections and (b) online image alignment and setup corrections, were performed. Survey results were used to select variables for inclusion in classification and regression tree (CART) and boosted regression trees (BRT) modeling of volume variation metric thresholds predictive of delivering planned dose to the prostate, proximal seminal vesicles (PSV), bladder, and rectum. Weighted functions incorporating the CART and BRT results were used to calculate a score of individual tumor and organ at risk image feature alignment (FAS TV _ OAR ). Scaled and weighted FAS TV _ OAR were then used to calculate a score of overall treatment compliance (FAS global ) for a given CBCT-planning CT registration. The FAS TV _ OAR were assessed for sensitivity, specificity, and predictive power. FAS global thresholds indicative of high, medium, or low overall treatment plan compliance were determined using coefficients from multiple linear regression analysis. Thirty-two participants completed the prostate CBCT-IGRT survey. While responses demonstrated consensus of practice for preferential ranking of planning CT and CBCT match features in the presence of deformation and rotation, variation existed in the specified thresholds for observed volume differences requiring patient repositioning or repeat bladder and bowel preparation. The CART and BRT modeling indicated that for a given registration, a Dice similarity coefficient >0.80 and >0.60 for the prostate and PSV, respectively, and a maximum Hausdorff distance <8.0 mm for both structures were predictive of delivered dose ± 5% of planned dose. A normalized volume difference <1.0 and a CBCT anterior rectum wall >1.0 mm anterior to the planning CT anterior rectum wall were predictive of delivered dose >5% of planned rectum dose. A normalized volume difference <0.88, and a CBCT bladder wall >13.5 mm inferior and >5.0 mm posterior to the planning CT bladder were predictive of delivered dose >5% of planned bladder dose. A FAS TV _ OAR >0 is indicative of delivery of planned dose. For calculated FAS TV _ OAR for the prostate, PSV, bladder, and rectum using test data, sensitivity was 0.56, 0.75, 0.89, and 1.00, respectively; specificity 0.90, 0.94, 0.59, and 1.00, respectively; positive predictive power 0.90, 0.86, 0.53, and 1.00, respectively; and negative predictive power 0.56, 0.89, 0.91, and 1.00, respectively. Thresholds for the calculated FAS global of were low <60, medium 60-80, and high >80, with a 27% misclassification rate for the test data. A FAS global incorporating nested FAS TV _ OAR and volume variation metric thresholds predictive of treatment plan compliance was developed, offering an alternative to pretreatment dose calculations to assess treatment delivery accuracy. © 2018 American Association of Physicists in Medicine.

  1. Apple rootstocks: history, physiology, management and breeding

    USDA-ARS?s Scientific Manuscript database

    For more than two millennia superior fruit tree genotypes have been grafted onto rootstocks to maintain the genetic identity of the desirable scions. Until the 20th century most fruit trees were grafted onto seedling rootstocks. Following the classification, evaluation and propagation of clonal root...

  2. Forestry 101.

    ERIC Educational Resources Information Center

    Markham, Mary T.

    2000-01-01

    Introduces a unit on forest management in which students manage the school forest. Involves students in tree identification, determining the size or volume and height of trees, and evaluation of the forest for management decisions. Integrates mathematics, writing, and social studies with plant classification, plant reproduction, and the use of…

  3. Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data.

    PubMed

    Li, Jiuyong; Liu, Lin; Liu, Jixue; Green, Ryan

    2017-12-01

    It is common that a trained classification model is applied to the operating data that is deviated from the training data because of noise. This paper will test an ensemble method, Diversified Multiple Tree (DMT), on its capability for classifying instances in a new laboratory using the classifier built on the instances of another laboratory. DMT is tested on three real world biomedical data sets from different laboratories in comparison with four benchmark ensemble methods, AdaBoost, Bagging, Random Forests, and Random Trees. Experiments have also been conducted on studying the limitation of DMT and its possible variations. Experimental results show that DMT is significantly more accurate than other benchmark ensemble classifiers on classifying new instances of a different laboratory from the laboratory where instances are used to build the classifier. This paper demonstrates that an ensemble classifier, DMT, is more robust in classifying noisy data than other widely used ensemble methods. DMT works on the data set that supports multiple simple trees.

  4. Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees.

    PubMed

    Chung, Yi-Shih

    2013-12-01

    Factor complexity is a characteristic of traffic crashes. This paper proposes a novel method, namely boosted regression trees (BRT), to investigate the complex and nonlinear relationships in high-variance traffic crash data. The Taiwanese 2004-2005 single-vehicle motorcycle crash data are used to demonstrate the utility of BRT. Traditional logistic regression and classification and regression tree (CART) models are also used to compare their estimation results and external validities. Both the in-sample cross-validation and out-of-sample validation results show that an increase in tree complexity provides improved, although declining, classification performance, indicating a limited factor complexity of single-vehicle motorcycle crashes. The effects of crucial variables including geographical, time, and sociodemographic factors explain some fatal crashes. Relatively unique fatal crashes are better approximated by interactive terms, especially combinations of behavioral factors. BRT models generally provide improved transferability than conventional logistic regression and CART models. This study also discusses the implications of the results for devising safety policies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A self-trained classification technique for producing 30 m percent-water maps from Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei

    2010-01-01

    Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.

  6. Log Defect Recognition Using CT-images and Neural Net Classifiers

    Treesearch

    Daniel L. Schmoldt; Pei Li; A. Lynn Abbott

    1995-01-01

    Although several approaches have been introduced to automatically identify internal log defects using computed tomography (CT) imagery, most of these have been feasibility efforts and consequently have had several limitations: (1) reports of classification accuracy are largely subjective, not statistical, (2) there has been no attempt to achieve real-time operation,...

  7. Use of Binary Partition Tree and energy minimization for object-based classification of urban land cover

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Bijker, Wietske; Stein, Alfred

    2015-04-01

    Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.

  8. On the detection of pornographic digital images

    NASA Astrophysics Data System (ADS)

    Schettini, Raimondo; Brambilla, Carla; Cusano, Claudio; Ciocca, Gianluigi

    2003-06-01

    The paper addresses the problem of distinguishing between pornographic and non-pornographic photographs, for the design of semantic filters for the web. Both, decision forests of trees built according to CART (Classification And Regression Trees) methodology and Support Vectors Machines (SVM), have been used to perform the classification. The photographs are described by a set of low-level features, features that can be automatically computed simply on gray-level and color representation of the image. The database used in our experiments contained 1500 photographs, 750 of which labeled as pornographic on the basis of the independent judgement of several viewers.

  9. Evaluation of computed tomography post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs.

    PubMed

    Li, Haobo; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Jiang, Yuchen; Zhang, Yijie; Jia, Xiaoyang

    2017-06-14

    The objective of this study is to evaluate the value of computed tomography (CT) post-processing images in postoperative assessment of Lisfranc injuries compared with plain radiographs. A total of 79 cases with closed Lisfranc injuries that were treated with conventional open reduction and internal fixation from January 2010 to June 2016 were analyzed. Postoperative assessment was performed by two independent orthopedic surgeons with both plain radiographs and CT post-processing images. Inter- and intra-observer agreement were analyzed by kappa statistics while the differences between the two postoperative imaging assessments were assessed using the χ 2 test (McNemar's test). Significance was assumed when p < 0.05. Inter- and intra-observer agreement of CT post-processing images was much higher than that of plain radiographs. Non-anatomic reduction was more easily identified in patients with injuries of Myerson classifications A, B1, B2, and C1 using CT post-processing images with overall groups (p < 0.05), and poor internal fixation was also more easily detected in patients with injuries of Myerson classifications A, B1, B2, and C2 using CT post-processing images with overall groups (p < 0.05). CT post-processing images can be more reliable than plain radiographs in the postoperative assessment of reduction and implant placement for Lisfranc injuries.

  10. Reliability of injury grading systems for patients with blunt splenic trauma.

    PubMed

    Olthof, D C; van der Vlies, C H; Scheerder, M J; de Haan, R J; Beenen, L F M; Goslings, J C; van Delden, O M

    2014-01-01

    The most widely used grading system for blunt splenic injury is the American Association for the Surgery of Trauma (AAST) organ injury scale. In 2007 a new grading system was developed. This 'Baltimore CT grading system' is superior to the AAST classification system in predicting the need for angiography and embolization or surgery. The objective of this study was to assess inter- and intraobserver reliability between radiologists in classifying splenic injury according to both grading systems. CT scans of 83 patients with blunt splenic injury admitted between 1998 and 2008 to an academic Level 1 trauma centre were retrospectively reviewed. Inter and intrarater reliability were expressed in Cohen's or weighted Kappa values. Overall weighted interobserver Kappa coefficients for the AAST and 'Baltimore CT grading system' were respectively substantial (kappa=0.80) and almost perfect (kappa=0.85). Average weighted intraobserver Kappa's values were in the 'almost perfect' range (AAST: kappa=0.91, 'Baltimore CT grading system': kappa=0.81). The present study shows that overall the inter- and intraobserver reliability for grading splenic injury according to the AAST grading system and 'Baltimore CT grading system' are equally high. Because of the integration of vascular injury, the 'Baltimore CT grading system' supports clinical decision making. We therefore recommend use of this system in the classification of splenic injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A new coding system for metabolic disorders demonstrates gaps in the international disease classifications ICD-10 and SNOMED-CT, which can be barriers to genotype-phenotype data sharing.

    PubMed

    Sollie, Annet; Sijmons, Rolf H; Lindhout, Dick; van der Ploeg, Ans T; Rubio Gozalbo, M Estela; Smit, G Peter A; Verheijen, Frans; Waterham, Hans R; van Weely, Sonja; Wijburg, Frits A; Wijburg, Rudolph; Visser, Gepke

    2013-07-01

    Data sharing is essential for a better understanding of genetic disorders. Good phenotype coding plays a key role in this process. Unfortunately, the two most widely used coding systems in medicine, ICD-10 and SNOMED-CT, lack information necessary for the detailed classification and annotation of rare and genetic disorders. This prevents the optimal registration of such patients in databases and thus data-sharing efforts. To improve care and to facilitate research for patients with metabolic disorders, we developed a new coding system for metabolic diseases with a dedicated group of clinical specialists. Next, we compared the resulting codes with those in ICD and SNOMED-CT. No matches were found in 76% of cases in ICD-10 and in 54% in SNOMED-CT. We conclude that there are sizable gaps in the SNOMED-CT and ICD coding systems for metabolic disorders. There may be similar gaps for other classes of rare and genetic disorders. We have demonstrated that expert groups can help in addressing such coding issues. Our coding system has been made available to the ICD and SNOMED-CT organizations as well as to the Orphanet and HPO organizations for further public application and updates will be published online (www.ddrmd.nl and www.cineas.org). © 2013 WILEY PERIODICALS, INC.

  12. First CT findings and improvement in GOS and GOSE scores 6 and 12 months after severe traumatic brain injury.

    PubMed

    Corral, Luisa; Herrero, José Ignacio; Monfort, José Luis; Ventura, José Luis; Javierre, Casimiro F; Juncadella, Montserrat; García-Huete, Lucía; Bartolomé, Carlos; Gabarrós, Andreu

    2009-05-01

    To analyse the association between individual initial computerized tomography (CT) scan characteristics and Glasgow Outcome Scale (GOS) and Extended Glasgow Outcome Scale (GOSE) improvement between 6 months and 1 year. Two hundred and twenty-four adult patients with severe traumatic brain injury and Glasgow Coma Scale (GCS) score of 8 or less who were admitted to an intensive care unit were studied. GOS and GOSE scores were obtained 6 and 12 months after injury in 203 subjects. Patients were predominantly male (84%) and median age was 35 years. Traumatic Coma Data Bank (TCDB) CT classification was associated with GOS/GOSE improvement between 6 months and 1 year, with diffuse injury type I, type II and evacuated mass improving more than diffuse injury type III, type IV and non-evacuated mass; for GOS 43/155 (28%) vs 3/48 (6%) (chi(2) = 9.66, p < 0.01) and for GOSE 71/155 (46%) vs 7/48 (15%) (chi(2) = 15.1, p < 0.01). CT individual abnormalities were not associated with GOS/GOSE improvement, with the exception of subarachnoid haemorrhage, which showed a negative association with GOSE improvement (chi(2) = 4.08, p < 0.05). TCDB CT scan classification and subarachnoid haemorrhage were associated with GOS/GOSE improvement from 6-12 months, but individual CT abnormalities were not associated.

  13. Ensemble Pruning for Glaucoma Detection in an Unbalanced Data Set.

    PubMed

    Adler, Werner; Gefeller, Olaf; Gul, Asma; Horn, Folkert K; Khan, Zardad; Lausen, Berthold

    2016-12-07

    Random forests are successful classifier ensemble methods consisting of typically 100 to 1000 classification trees. Ensemble pruning techniques reduce the computational cost, especially the memory demand, of random forests by reducing the number of trees without relevant loss of performance or even with increased performance of the sub-ensemble. The application to the problem of an early detection of glaucoma, a severe eye disease with low prevalence, based on topographical measurements of the eye background faces specific challenges. We examine the performance of ensemble pruning strategies for glaucoma detection in an unbalanced data situation. The data set consists of 102 topographical features of the eye background of 254 healthy controls and 55 glaucoma patients. We compare the area under the receiver operating characteristic curve (AUC), and the Brier score on the total data set, in the majority class, and in the minority class of pruned random forest ensembles obtained with strategies based on the prediction accuracy of greedily grown sub-ensembles, the uncertainty weighted accuracy, and the similarity between single trees. To validate the findings and to examine the influence of the prevalence of glaucoma in the data set, we additionally perform a simulation study with lower prevalences of glaucoma. In glaucoma classification all three pruning strategies lead to improved AUC and smaller Brier scores on the total data set with sub-ensembles as small as 30 to 80 trees compared to the classification results obtained with the full ensemble consisting of 1000 trees. In the simulation study, we were able to show that the prevalence of glaucoma is a critical factor and lower prevalence decreases the performance of our pruning strategies. The memory demand for glaucoma classification in an unbalanced data situation based on random forests could effectively be reduced by the application of pruning strategies without loss of performance in a population with increased risk of glaucoma.

  14. Use of classification trees to apportion single echo detections to species: Application to the pelagic fish community of Lake Superior

    USGS Publications Warehouse

    Yule, Daniel L.; Adams, Jean V.; Hrabik, Thomas R.; Vinson, Mark R.; Woiak, Zebadiah; Ahrenstroff, Tyler D.

    2013-01-01

    Acoustic methods are used to estimate the density of pelagic fish in large lakes with results of midwater trawling used to assign species composition. Apportionment in lakes having mixed species can be challenging because only a small fraction of the water sampled acoustically is sampled with trawl gear. Here we describe a new method where single echo detections (SEDs) are assigned to species based on classification tree models developed from catch data that separate species based on fish size and the spatial habitats they occupy. During the summer of 2011, we conducted a spatially-balanced lake-wide acoustic and midwater trawl survey of Lake Superior. A total of 51 sites in four bathymetric depth strata (0–30 m, 30–100 m, 100–200 m, and >200 m) were sampled. We developed classification tree models for each stratum and found fish length was the most important variable for separating species. To apply these trees to the acoustic data, we needed to identify a target strength to length (TS-to-L) relationship appropriate for all abundant Lake Superior pelagic species. We tested performance of 7 general (i.e., multi-species) relationships derived from three published studies. The best-performing relationship was identified by comparing predicted and observed catch compositions using a second independent Lake Superior data set. Once identified, the relationship was used to predict lengths of SEDs from the lake-wide survey, and the classification tree models were used to assign each SED to a species. Exotic rainbow smelt (Osmerus mordax) were the most common species at bathymetric depths 100 m (384 million; 6.0 kt). Cisco (Coregonus artedi) were widely distributed over all strata with their population estimated at 182 million (44 kt). The apportionment method we describe should be transferable to other large lakes provided fish are not tightly aggregated, and an appropriate TS-to-L relationship for abundant pelagic fish species can be determined.

  15. A phylogenomic approach to bacterial subspecies classification: proof of concept in Mycobacterium abscessus.

    PubMed

    Tan, Joon Liang; Khang, Tsung Fei; Ngeow, Yun Fong; Choo, Siew Woh

    2013-12-13

    Mycobacterium abscessus is a rapidly growing mycobacterium that is often associated with human infections. The taxonomy of this species has undergone several revisions and is still being debated. In this study, we sequenced the genomes of 12 M. abscessus strains and used phylogenomic analysis to perform subspecies classification. A data mining approach was used to rank and select informative genes based on the relative entropy metric for the construction of a phylogenetic tree. The resulting tree topology was similar to that generated using the concatenation of five classical housekeeping genes: rpoB, hsp65, secA, recA and sodA. Additional support for the reliability of the subspecies classification came from the analysis of erm41 and ITS gene sequences, single nucleotide polymorphisms (SNPs)-based classification and strain clustering demonstrated by a variable number tandem repeat (VNTR) assay and a multilocus sequence analysis (MLSA). We subsequently found that the concatenation of a minimal set of three median-ranked genes: DNA polymerase III subunit alpha (polC), 4-hydroxy-2-ketovalerate aldolase (Hoa) and cell division protein FtsZ (ftsZ), is sufficient to recover the same tree topology. PCR assays designed specifically for these genes showed that all three genes could be amplified in the reference strain of M. abscessus ATCC 19977T. This study provides proof of concept that whole-genome sequence-based data mining approach can provide confirmatory evidence of the phylogenetic informativeness of existing markers, as well as lead to the discovery of a more economical and informative set of markers that produces similar subspecies classification in M. abscessus. The systematic procedure used in this study to choose the informative minimal set of gene markers can potentially be applied to species or subspecies classification of other bacteria.

  16. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  17. Bioinformatics in proteomics: application, terminology, and pitfalls.

    PubMed

    Wiemer, Jan C; Prokudin, Alexander

    2004-01-01

    Bioinformatics applies data mining, i.e., modern computer-based statistics, to biomedical data. It leverages on machine learning approaches, such as artificial neural networks, decision trees and clustering algorithms, and is ideally suited for handling huge data amounts. In this article, we review the analysis of mass spectrometry data in proteomics, starting with common pre-processing steps and using single decision trees and decision tree ensembles for classification. Special emphasis is put on the pitfall of overfitting, i.e., of generating too complex single decision trees. Finally, we discuss the pros and cons of the two different decision tree usages.

  18. Seasonal trends in separability of leaf reflectance spectra for Ailanthus altissima and four other tree species

    NASA Astrophysics Data System (ADS)

    Burkholder, Aaron

    This project investigated the spectral separability of the invasive species Ailanthus altissima, commonly called tree of heaven, and four other native species. Leaves were collected from Ailanthus and four native tree species from May 13 through August 24, 2008, and spectral reflectance factor measurements were gathered for each tree using an ASD (Boulder, Colorado) FieldSpec Pro full-range spectroradiometer. The original data covered the range from 350-2500 nm, with one reflectance measurement collected per one nm wavelength. To reduce dimensionality, the measurements were resampled to the actual resolution of the spectrometer's sensors, and regions of atmospheric absorption were removed. Continuum removal was performed on the reflectance data, resulting in a second dataset. For both the reflectance and continuum removed datasets, least angle regression (LARS) and random forest classification were used to identify a single set of optimal wavelengths across all sampled dates, a set of optimal wavelengths for each date, and the dates for which Ailanthus is most separable from other species. It was found that classification accuracy varies both with dates and bands used. Contrary to expectations that early spring would provide the best separability, the lowest classification error was observed on July 22 for the reflectance data, and on May 13, July 11 and August 1 for the continuum removed data. This suggests that July and August are also potentially good months for species differentiation. Applying continuum removal in many cases reduced classification error, although not consistently. Band selection seems to be more important for reflectance data in that it results in greater improvement in classification accuracy, and LARS appears to be an effective band selection tool. The optimal spectral bands were selected from across the spectrum, often with bands from the blue (401-431 nm), NIR (1115 nm) and SWIR (1985-1995 nm), suggesting that hyperspectral sensors with broad wavelength sensitivity are important for mapping and identification of Ailanthus.

  19. A classification tree based modeling approach for segment related crashes on multilane highways.

    PubMed

    Pande, Anurag; Abdel-Aty, Mohamed; Das, Abhishek

    2010-10-01

    This study presents a classification tree based alternative to crash frequency analysis for analyzing crashes on mid-block segments of multilane arterials. The traditional approach of modeling counts of crashes that occur over a period of time works well for intersection crashes where each intersection itself provides a well-defined unit over which to aggregate the crash data. However, in the case of mid-block segments the crash frequency based approach requires segmentation of the arterial corridor into segments of arbitrary lengths. In this study we have used random samples of time, day of week, and location (i.e., milepost) combinations and compared them with the sample of crashes from the same arterial corridor. For crash and non-crash cases, geometric design/roadside and traffic characteristics were derived based on their milepost locations. The variables used in the analysis are non-event specific and therefore more relevant for roadway safety feature improvement programs. First classification tree model is a model comparing all crashes with the non-crash data and then four groups of crashes (rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes) are separately compared to the non-crash cases. The classification tree models provide a list of significant variables as well as a measure to classify crash from non-crash cases. ADT along with time of day/day of week are significantly related to all crash types with different groups of crashes being more likely to occur at different times. From the classification performance of different models it was apparent that using non-event specific information may not be suitable for single vehicle/off-road crashes. The study provides the safety analysis community an additional tool to assess safety without having to aggregate the corridor crash data over arbitrary segment lengths. Copyright © 2010. Published by Elsevier Ltd.

  20. Classification tree for the assessment of sedentary lifestyle among hypertensive.

    PubMed

    Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale

    2016-04-01

    To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  1. Exploring the biological activity of condensed tannins and nutritional value of tree and shrub leaves from native species of the Argentinean Dry Chaco.

    PubMed

    García, Elisa M; Cherry, Nicole; Lambert, Barry D; Muir, James P; Nazareno, Mónica A; Arroquy, Jose I

    2017-11-01

    Tropical tree or shrub leaves are an important source of nutrients for ruminants and a potential source of biologically active compounds that may affect ruminal metabolism of nutrients. Therefore, eight woody species from the native flora of Argentinean Dry Chaco, rich in secondary compounds such as condensed tannins (CT), were assessed for their nutritional value, CT fractions and in vitro true digestibility of dry matter, as well as biological activity (BA). Differences among species were found in contents of total phenol, protein-precipitating phenols (PPP), bound proteins to PPP (BP) and BP/PPP (P < 0.0001). The BP/PPP ratio reveals differences among species in potential BA as indicated by protein precipitation. The major CT of each species were isolated and purified for use as a standard. Although Schinopsis balansae had the most (P ≤ 0.05) total CT (19.59% DM), Caesalpinia paraguariensis had greater (P ≤ 0.05) BA with the most PPP (530.21% dry matter). Larrea divaricata, at 0.97, followed by Acacia aroma, at 0.89, had CT with the highest (P ≤ 0.05) BP/PPP ratios, followed by Prosopis alba (0.59). There were differences in nutritive value and bioactivity among species. Those with the greatest CT were not necessarily those with the most BA. Caesalpinia paraguariensis, S. balansae and L. divaricata were the most promising species as native forage CT sources. Cercidiurm praecox (20.87% CP; 18.14% acid detergent fiber) and Prosopis nigra (19.00% CP; 27.96% acid detergent fiber) showed the best (P ≤ 0.05) nutritive values. According to their nutritive traits, these species might be complementary in grass-based ruminant diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Using a Java Dynamic Tree to manage the terminology in a suite of medical applications.

    PubMed

    Yang, K; Evens, M W; Trace, D A

    2008-01-01

    Now that the National Library of Medicine has made SNOMED-CT widely available, we are trying to manage the terminology of a whole suite of medical applications and map our terminology into that in SNOMED. This paper describes the design and implementation of the Java Dynamic Tree that provides structure to our medical terminology and explains how it functions as the core of our system. The tree was designed to reflect the stages in a patient interview, so it contains components for identifying the patient and the provider, a large set of chief complaints, review of systems, physical examination, several history modules, medications, laboratory tests, imaging, and special procedures. The tree is mirrored in a commercial DBMS, which also stores multi-encounter patient data, disorder patterns for our Bayesian diagnostic system, and the data and rules for other expert systems. The DBMS facilitates the import and export of large terminology files. Our Java Dynamic Tree allows the health care provider to view the entire terminology along with the structure that supports it, as well as the mechanism for the generation of progress notes and other documents, in terms of a single hierarchical structure. Changes in terminology can be propagated through the system under the control of the expert. The import/ export facility has been a major help by replacing our original terminology by the terminology in SNOMED-CT.

  3. From Google Maps to a fine-grained catalog of street trees

    NASA Astrophysics Data System (ADS)

    Branson, Steve; Wegner, Jan Dirk; Hall, David; Lang, Nico; Schindler, Konrad; Perona, Pietro

    2018-01-01

    Up-to-date catalogs of the urban tree population are of importance for municipalities to monitor and improve quality of life in cities. Despite much research on automation of tree mapping, mainly relying on dedicated airborne LiDAR or hyperspectral campaigns, tree detection and species recognition is still mostly done manually in practice. We present a fully automated tree detection and species recognition pipeline that can process thousands of trees within a few hours using publicly available aerial and street view images of Google MapsTM. These data provide rich information from different viewpoints and at different scales from global tree shapes to bark textures. Our work-flow is built around a supervised classification that automatically learns the most discriminative features from thousands of trees and corresponding, publicly available tree inventory data. In addition, we introduce a change tracker that recognizes changes of individual trees at city-scale, which is essential to keep an urban tree inventory up-to-date. The system takes street-level images of the same tree location at two different times and classifies the type of change (e.g., tree has been removed). Drawing on recent advances in computer vision and machine learning, we apply convolutional neural networks (CNN) for all classification tasks. We propose the following pipeline: download all available panoramas and overhead images of an area of interest, detect trees per image and combine multi-view detections in a probabilistic framework, adding prior knowledge; recognize fine-grained species of detected trees. In a later, separate module, track trees over time, detect significant changes and classify the type of change. We believe this is the first work to exploit publicly available image data for city-scale street tree detection, species recognition and change tracking, exhaustively over several square kilometers, respectively many thousands of trees. Experiments in the city of Pasadena, California, USA show that we can detect >70% of the street trees, assign correct species to >80% for 40 different species, and correctly detect and classify changes in >90% of the cases.

  4. Multi-test decision tree and its application to microarray data classification.

    PubMed

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota

    Treesearch

    Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard

    2006-01-01

    The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...

  6. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  7. Automating the expert consensus paradigm for robust lung tissue classification

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.

  8. A hybrid approach to select features and classify diseases based on medical data

    NASA Astrophysics Data System (ADS)

    AbdelLatif, Hisham; Luo, Jiawei

    2018-03-01

    Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms

  9. Sorting Olive Batches for the Milling Process Using Image Processing

    PubMed Central

    Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan

    2015-01-01

    The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729

  10. Performance analysis of distributed applications using automatic classification of communication inefficiencies

    DOEpatents

    Vetter, Jeffrey S.

    2005-02-01

    The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.

  11. Automatic Classification of Trees from Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2015-08-01

    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatically classifying laser scanning point clouds into 'tree' and 'non-tree' classes. Our method uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point indicating if it belongs to the 'tree' or 'non-tree' class. To do so, a grid surface is assigned to the lowest height level of the point cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications. While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point cloud sources are discussed in detail.

  12. Discriminating Drug-Like Compounds by Partition Trees with Quantum Similarity Indices and Graph Invariants.

    PubMed

    Julián-Ortiz, Jesus V de; Gozalbes, Rafael; Besalú, Emili

    2016-01-01

    The search for new drug candidates in databases is of paramount importance in pharmaceutical chemistry. The selection of molecular subsets is greatly optimized and much more promising when potential drug-like molecules are detected a priori. In this work, about one hundred thousand molecules are ranked following a new methodology: a drug/non-drug classifier constructed by a consensual set of classification trees. The classification trees arise from the stochastic generation of training sets, which in turn are used to estimate probability factors of test molecules to be drug-like compounds. Molecules were represented by Topological Quantum Similarity Indices and their Graph Theoretical counterparts. The contribution of the present paper consists of presenting an effective ranking method able to improve the probability of finding drug-like substances by using these types of molecular descriptors.

  13. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    PubMed

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®

  14. A Climatic Classification for Citrus Winter Survival in China.

    NASA Astrophysics Data System (ADS)

    Shou, Bo Huang

    1991-05-01

    The citrus tree is susceptible to frost damage. Winter injury to citrus from freezing weather is the major meteorological problem in the northern pail of citrus growing regions in China. Based on meteorological data collected at 120 stations in southern China and on the extent of citrus freezing injury, five climatic regions for citrus winter survival in China were developed. They were: 1) no citrus tree injury. 2) light injury to mandarins (citrus reticulate) or moderate injury to oranges (citrus sinensis), 3) moderate injury to mandarins or heavy injury to oranges, 4) heavy injury to mandarins, and 5) impossible citrus tree growth. This citrus climatic classification was an attempt to provide guidelines for regulation of citrus production, to effectively utilize land and climatic resources, to chose suitable citrus varieties, and to develop methods to prevent injury by freezing.

  15. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Fuzzy pulmonary vessel segmentation in contrast enhanced CT data

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til

    2008-03-01

    Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.

  17. Applying an Ensemble Classification Tree Approach to the Prediction of Completion of a 12-Step Facilitation Intervention with Stimulant Abusers

    PubMed Central

    Doyle, Suzanne R.; Donovan, Dennis M.

    2014-01-01

    Aims The purpose of this study was to explore the selection of predictor variables in the evaluation of drug treatment completion using an ensemble approach with classification trees. The basic methodology is reviewed and the subagging procedure of random subsampling is applied. Methods Among 234 individuals with stimulant use disorders randomized to a 12-Step facilitative intervention shown to increase stimulant use abstinence, 67.52% were classified as treatment completers. A total of 122 baseline variables were used to identify factors associated with completion. Findings The number of types of self-help activity involvement prior to treatment was the predominant predictor. Other effective predictors included better coping self-efficacy for substance use in high-risk situations, more days of prior meeting attendance, greater acceptance of the Disease model, higher confidence for not resuming use following discharge, lower ASI Drug and Alcohol composite scores, negative urine screens for cocaine or marijuana, and fewer employment problems. Conclusions The application of an ensemble subsampling regression tree method utilizes the fact that classification trees are unstable but, on average, produce an improved prediction of the completion of drug abuse treatment. The results support the notion there are early indicators of treatment completion that may allow for modification of approaches more tailored to fitting the needs of individuals and potentially provide more successful treatment engagement and improved outcomes. PMID:25134038

  18. Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification.

    PubMed

    Ramírez, J; Górriz, J M; Segovia, F; Chaves, R; Salas-Gonzalez, D; López, M; Alvarez, I; Padilla, P

    2010-03-19

    This letter shows a computer aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The proposed method is based on partial least squares (PLS) regression model and a random forest (RF) predictor. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data by downscaling the SPECT images and extracting score features using PLS. A RF predictor then forms an ensemble of classification and regression tree (CART)-like classifiers being its output determined by a majority vote of the trees in the forest. A baseline principal component analysis (PCA) system is also developed for reference. The experimental results show that the combined PLS-RF system yields a generalization error that converges to a limit when increasing the number of trees in the forest. Thus, the generalization error is reduced when using PLS and depends on the strength of the individual trees in the forest and the correlation between them. Moreover, PLS feature extraction is found to be more effective for extracting discriminative information from the data than PCA yielding peak sensitivity, specificity and accuracy values of 100%, 92.7%, and 96.9%, respectively. Moreover, the proposed CAD system outperformed several other recently developed AD CAD systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Fassnacht, Fabian Ewald; Joshi, P. K.; Koch, Barbara

    2014-02-01

    Knowledge of tree species distribution is important worldwide for sustainable forest management and resource evaluation. The accuracy and information content of species maps produced using remote sensing images vary with scale, sensor (optical, microwave, LiDAR), classification algorithm, verification design and natural conditions like tree age, forest structure and density. Imaging spectroscopy reduces the inaccuracies making use of the detailed spectral response. However, the scale effect still has a strong influence and cannot be neglected. This study aims to bridge the knowledge gap in understanding the scale effect in imaging spectroscopy when moving from 4 to 30 m pixel size for tree species mapping, keeping in mind that most current and future hyperspectral satellite based sensors work with spatial resolution around 30 m or more. Two airborne (HyMAP) and one spaceborne (Hyperion) imaging spectroscopy dataset with pixel sizes of 4, 8 and 30 m, respectively were available to examine the effect of scale over a central European forest. The forest under examination is a typical managed forest with relatively homogenous stands featuring mostly two canopy layers. Normalized digital surface model (nDSM) derived from LiDAR data was used additionally to examine the effect of height information in tree species mapping. Six different sets of predictor variables (reflectance value of all bands, selected components of a Minimum Noise Fraction (MNF), Vegetation Indices (VI) and each of these sets combined with LiDAR derived height) were explored at each scale. Supervised kernel based (Support Vector Machines) and ensemble based (Random Forest) machine learning algorithms were applied on the dataset to investigate the effect of the classifier. Iterative bootstrap-validation with 100 iterations was performed for classification model building and testing for all the trials. For scale, analysis of overall classification accuracy and kappa values indicated that 8 m spatial resolution (reaching kappa values of over 0.83) slightly outperformed the results obtained from 4 m for the study area and five tree species under examination. The 30 m resolution Hyperion image produced sound results (kappa values of over 0.70), which in some areas of the test site were comparable with the higher spatial resolution imagery when qualitatively assessing the map outputs. Considering input predictor sets, MNF bands performed best at 4 and 8 m resolution. Optical bands were found to be best for 30 m spatial resolution. Classification with MNF as input predictors produced better visual appearance of tree species patches when compared with reference maps. Based on the analysis, it was concluded that there is no significant effect of height information on tree species classification accuracies for the present framework and study area. Furthermore, in the examined cases there was no single best choice among the two classifiers across scales and predictors. It can be concluded that tree species mapping from imaging spectroscopy for forest sites comparable to the one under investigation is possible with reliable accuracies not only from airborne but also from spaceborne imaging spectroscopy datasets.

  20. Classification tree and minimum-volume ellipsoid analyses of the distribution of ponderosa pine in the western USA

    USGS Publications Warehouse

    Norris, Jodi R.; Jackson, Stephen T.; Betancourt, Julio L.

    2006-01-01

    Aim? Ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) is an economically and ecologically important conifer that has a wide geographic range in the western USA, but is mostly absent from the geographic centre of its distribution - the Great Basin and adjoining mountain ranges. Much of its modern range was achieved by migration of geographically distinct Sierra Nevada (P. ponderosa var. ponderosa) and Rocky Mountain (P. ponderosa var. scopulorum) varieties in the last 10,000 years. Previous research has confirmed genetic differences between the two varieties, and measurable genetic exchange occurs where their ranges now overlap in western Montana. A variety of approaches in bioclimatic modelling is required to explore the ecological differences between these varieties and their implications for historical biogeography and impending changes in western landscapes. Location? Western USA. Methods? We used a classification tree analysis and a minimum-volume ellipsoid as models to explain the broad patterns of distribution of ponderosa pine in modern environments using climatic and edaphic variables. Most biogeographical modelling assumes that the target group represents a single, ecologically uniform taxonomic population. Classification tree analysis does not require this assumption because it allows the creation of pathways that predict multiple positive and negative outcomes. Thus, classification tree analysis can be used to test the ecological uniformity of the species. In addition, a multidimensional ellipsoid was constructed to describe the niche of each variety of ponderosa pine, and distances from the niche were calculated and mapped on a 4-km grid for each ecological variable. Results? The resulting classification tree identified three dominant pathways predicting ponderosa pine presence. Two of these three pathways correspond roughly to the distribution of var. ponderosa, and the third pathway generally corresponds to the distribution of var. scopulorum. The classification tree and minimum-volume ellipsoid model show that both varieties have very similar temperature limitations, although var. ponderosa is more limited by the temperature extremes of the continental interior. The precipitation limitations of the two varieties are seasonally different, with var. ponderosa requiring significant winter moisture and var. scopulorum requiring significant summer moisture. Great Basin mountain ranges are too cold at higher elevations to support either variety of ponderosa pine, and at lower elevations are too dry in summer for var. scopulorum and too dry in winter for var. ponderosa. Main conclusions? The classification tree analysis indicates that var. ponderosa is ecologically as well as genetically distinct from var. scopulorum. Ecological differences may maintain genetic separation in spite of a limited zone of introgression between the two varieties in western Montana. Two hypotheses about past and future movements of ponderosa pine emerge from our analyses. The first hypothesis is that, during the last glacial period, colder and/or drier summers truncated most of the range of var. scopulorum in the central Rockies, but had less dramatic effects on the more maritime and winter-wet distribution of var. ponderosa. The second hypothesis is that, all other factors held constant, increasing summer temperatures in the future should produce changes in the distribution of var. scopulorum that are likely to involve range expansions in the central Rockies with the warming of mountain ranges currently too cold but sufficiently wet in summer for var. scopulorum. Finally, our results underscore the growing need to focus on genotypes in biogeographical modelling and ecological forecasting.

  1. Genome-Based Taxonomic Classification of Bacteroidetes

    DOE PAGES

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; ...

    2016-12-20

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogeneticmore » analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.« less

  2. Genome-Based Taxonomic Classification of Bacteroidetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogeneticmore » analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.« less

  3. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  4. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge. PMID:22007016

  5. Genome-Based Taxonomic Classification of Bacteroidetes

    PubMed Central

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Klenk, Hans-Peter; Göker, Markus

    2016-01-01

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved. PMID:28066339

  6. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    EPA Science Inventory

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  7. Spectral difference analysis and airborne imaging classification for citrus greening infected trees

    USDA-ARS?s Scientific Manuscript database

    Citrus greening, also called Huanglongbing (HLB), became a devastating disease spread through citrus groves in Florida, since it was first found in 2005. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were acquired to detect citrus greening infected trees in 20...

  8. Mapping regional distribution of a single tree species: Whitebark pine in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Landenburger, L.; Lawrence, R.L.; Podruzny, S.; Schwartz, C.C.

    2008-01-01

    Moderate resolution satellite imagery traditionally has been thought to be inadequate for mapping vegetation at the species level. This has made comprehensive mapping of regional distributions of sensitive species, such as whitebark pine, either impractical or extremely time consuming. We sought to determine whether using a combination of moderate resolution satellite imagery (Landsat Enhanced Thematic Mapper Plus), extensive stand data collected by land management agencies for other purposes, and modern statistical classification techniques (boosted classification trees) could result in successful mapping of whitebark pine. Overall classification accuracies exceeded 90%, with similar individual class accuracies. Accuracies on a localized basis varied based on elevation. Accuracies also varied among administrative units, although we were not able to determine whether these differences related to inherent spatial variations or differences in the quality of available reference data.

  9. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study.

    PubMed

    Joshuva, A; Sugumaran, V

    2017-03-01

    Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Using Bayesian neural networks to classify forest scenes

    NASA Astrophysics Data System (ADS)

    Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujarvi, Jouni

    1998-10-01

    We present results that compare the performance of Bayesian learning methods for neural networks on the task of classifying forest scenes into trees and background. Classification task is demanding due to the texture richness of the trees, occlusions of the forest scene objects and diverse lighting conditions under operation. This makes it difficult to determine which are optimal image features for the classification. A natural way to proceed is to extract many different types of potentially suitable features, and to evaluate their usefulness in later processing stages. One approach to cope with large number of features is to use Bayesian methods to control the model complexity. Bayesian learning uses a prior on model parameters, combines this with evidence from a training data, and the integrates over the resulting posterior to make predictions. With this method, we can use large networks and many features without fear of overfitting. For this classification task we compare two Bayesian learning methods for multi-layer perceptron (MLP) neural networks: (1) The evidence framework of MacKay uses a Gaussian approximation to the posterior weight distribution and maximizes with respect to hyperparameters. (2) In a Markov Chain Monte Carlo (MCMC) method due to Neal, the posterior distribution of the network parameters is numerically integrated using the MCMC method. As baseline classifiers for comparison we use (3) MLP early stop committee, (4) K-nearest-neighbor and (5) Classification And Regression Tree.

  11. Symbolic rule-based classification of lung cancer stages from free-text pathology reports.

    PubMed

    Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni

    2010-01-01

    To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.

  12. Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices.

    PubMed

    Padma, A; Sukanesh, R

    2013-01-01

    A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.

  13. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    PubMed

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  14. An undescribed first branchial cleft anomaly.

    PubMed

    Rockey, Jason Gabriel; John, D Gareth; Herbetko, John

    2003-06-01

    A variant of a type 2 first branchial cleft anomaly, in which accessory ossicles were found, is described. There follows a discussion of the classification of first branchial cleft abnormalities and how this particular case falls outside the standard classification. CT scanning is mentioned as the investigation that is most useful for defining these abnormalities.

  15. Regional Estimates of Drought-Induced Tree Canopy Loss across Texas

    NASA Astrophysics Data System (ADS)

    Schwantes, A.; Swenson, J. J.; González-Roglich, M.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2015-12-01

    The severe drought of 2011 killed millions of trees across the state of Texas. Drought-induced tree-mortality can have significant impacts to carbon cycling, regional biophysics, and community composition. We quantified canopy cover loss across the state using remotely sensed imagery from before and after the drought at multiple scales. First, we classified ~200 orthophotos (1-m spatial resolution) from the National Agriculture Imagery Program, using a supervised maximum likelihood classification. Area of canopy cover loss in these classifications was highly correlated (R2 = 0.8) with ground estimates of canopy cover loss, measured in 74 plots across 15 different sites in Texas. These 1-m orthophoto classifications were then used to calibrate and validate coarser scale (30-m) Landsat imagery to create wall-to-wall tree canopy cover loss maps across the state of Texas. We quantified percent dead and live canopy within each pixel of Landsat to create continuous maps of dead and live tree cover, using two approaches: (1) a zero-inflated beta distribution model and (2) a random forest algorithm. Widespread canopy loss occurred across all the major natural systems of Texas, with the Edwards Plateau region most affected. In this region, on average, 10% of the forested area was lost due to the 2011 drought. We also identified climatic thresholds that controlled the spatial distribution of tree canopy loss across the state. However, surprisingly, there were many local hot spots of canopy loss, suggesting that not only climatic factors could explain the spatial patterns of canopy loss, but rather other factors related to soil, landscape, management, and stand density also likely played a role. As increases in extreme droughts are predicted to occur with climate change, it will become important to define methods that can detect associated drought-induced tree mortality across large regions. These maps could then be used (1) to quantify impacts to carbon cycling and regional biophysics, (2) to better understand the spatiotemporal dynamics of tree mortality, and (3) to calibrate and/or validate mortality algorithms in regional models.

  16. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    PubMed

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  17. Seasonal variation in non-structural carbohydrates, sucrolytic activity and secondary metabolites in deciduous and perennial Diospyros species sampled in Western Mexico

    PubMed Central

    Ramírez-Briones, Ernesto; Rodríguez-Macías, Ramón; Salcedo-Pérez, Eduardo; Martínez-Gallardo, Norma; Tiessen, Axel; Molina-Torres, Jorge; Délano-Frier, John P.; Zañudo-Hernández, Julia

    2017-01-01

    This study was performed to test the working hypothesis that the primary determinants influencing seasonal driven modifications in carbon mobilization and other key biochemical parameters in leaves of poorly known Diospyros digyna (Ddg; semi-domesticated; perennial) and D. rekoi (Dre; undomesticated; deciduous) trees are determined by environmental growing conditions, agronomic management and physiological plasticity. Thus, biochemical changes in leaves of both trees were recorded seasonally during two successive fruiting years. Trees were randomly sampled in Western Mexico habitats with differing soil quality, climatic conditions, luminosity, and cultivation practices. Leaves of Ddg had consistently higher total chlorophyll contents (CT) that, unexpectedly, peaked in the winter of 2015. In Dre, the highest leaf CT values recorded in the summer of 2015 inversely correlated with low average luminosity and high Chl a/ Chlb ratios. The seasonal CT variations in Dre were congruent with varying luminosity, whereas those in Ddg were probably affected by other factors, such as fluctuating leaf protein contents and the funneling of light energy to foliar non-structural carbohydrates (NSCs) accumulation, which were consistently higher than those detected in Dre leaves. Seasonal foliar NSC fluctuations in both species were in agreement with the carbon (C) demands of flowering, fruiting and/ or leaf regrowth. Seasonal changes in foliar hexose to sucrose (Hex/ Suc) ratios coincided with cell wall invertase activity in both species. In Dre, high Hex/ Suc ratios in spring leaves possibly allowed an accumulation of phenolic acids, not observed in Ddg. The above results supported the hypothesis proposed by showing that leaf responses to changing environmental conditions differ in perennial and deciduous Diospyros trees, including a dynamic adjustment of NSCs to supply the C demands imposed by reproduction, leaf regrowth and, possibly, stress. PMID:29073239

  18. Airflow in Tracheobronchial Tree of Subjects with Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method.

    PubMed

    Qi, Shouliang; Zhang, Baihua; Yue, Yong; Shen, Jing; Teng, Yueyang; Qian, Wei; Wu, Jianlin

    2018-03-01

    Tracheal Bronchus (TB) is a rare congenital anomaly characterized by the presence of an abnormal bronchus originating from the trachea or main bronchi and directed toward the upper lobe. The airflow pattern in tracheobronchial trees of TB subjects is critical, but has not been systemically studied. This study proposes to simulate the airflow using CT image based models and the computational fluid dynamics (CFD) method. Six TB subjects and three health controls (HC) are included. After the geometric model of tracheobronchial tree is extracted from CT images, the spatial distribution of velocity, wall pressure, wall shear stress (WSS) is obtained through CFD simulation, and the lobar distribution of air, flow pattern and global pressure drop are investigated. Compared with HC subjects, the main bronchus angle of TB subjects and the variation of volume are large, while the cross-sectional growth rate is small. High airflow velocity, wall pressure, and WSS are observed locally at the tracheal bronchus, but the global patterns of these measures are still similar to those of HC. The ratio of airflow into the tracheal bronchus accounts for 6.6-15.6% of the inhaled airflow, decreasing the ratio to the right upper lobe from 15.7-21.4% (HC) to 4.9-13.6%. The air into tracheal bronchus originates from the right dorsal near-wall region of the trachea. Tracheal bronchus does not change the global pressure drop which is dependent on multiple variables. Though the tracheobronchial trees of TB subjects present individualized features, several commonalities on the structural and airflow characteristics can be revealed. The observed local alternations might provide new insight into the reason of recurrent local infections, cough and acute respiratory distress related to TB.

  19. Classification of Liss IV Imagery Using Decision Tree Methods

    NASA Astrophysics Data System (ADS)

    Verma, Amit Kumar; Garg, P. K.; Prasad, K. S. Hari; Dadhwal, V. K.

    2016-06-01

    Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.

  20. Evaluation of radiography as a screening method for detection and characterisation of congenital vertebral malformations in dogs.

    PubMed

    Brocal, Josep; De Decker, Steven; José-López, Roberto; Guevar, Julien; Ortega, Maria; Parkin, Tim; Ter Haar, Gert; Gutierrez-Quintana, Rodrigo

    2018-05-19

    Congenital vertebral malformations (CVM) are common in brachycephalic 'screw-tailed' dogs; they can be associated with neurological deficits and a genetic predisposition has been suggested. The purpose of this study was to evaluate radiography as a screening method for congenital thoracic vertebral malformations in brachycephalic 'screw-tailed' dogs by comparing it with CT. Forty-nine dogs that had both radiographic and CT evaluations of the thoracic vertebral column were included. Three observers retrospectively reviewed the images independently to detect CVMs. When identified, they were classified according to a previously published radiographic classification scheme. A CT consensus was then reached. All observers identified significantly more affected vertebrae when evaluating orthogonal radiographic views compared with lateral views alone; and more affected vertebrae with the CT consensus compared with orthogonal radiographic views. Given the high number of CVMs per dog, the number of dogs classified as being CVM free was not significantly different between CT and radiography. Significantly more midline closure defects were also identified with CT compared with radiography. Malformations classified as symmetrical or ventral hypoplasias on radiography were frequently classified as ventral and medial aplasias on CT images. Our results support that CT is better than radiography for the classification of CVMs and this will be important when further evidence of which are the most clinically relevant CVMs is identified. These findings are of particular importance for designing screening schemes of CVMs that could help selective breeding programmes based on phenotype and future studies. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. WhatsApp Messenger is useful and reproducible in the assessment of tibial plateau fractures: inter- and intra-observer agreement study.

    PubMed

    Giordano, Vincenzo; Koch, Hilton Augusto; Mendes, Carlos Henrique; Bergamin, André; de Souza, Felipe Serrão; do Amaral, Ney Pecegueiro

    2015-02-01

    The aim of this study was to evaluate the inter- and intra-observer agreement in the initial diagnosis and classification by means of plain radiographs and CT scans of tibial plateau fractures photographed and sent via WhatsApp Messenger. The increasing popularity of smartphones has driven the development of technology for data transmission and imaging and generated a growing interest in the use of these devices as diagnostic tools. The emergence of WhatsApp Messenger technology, which is available for various platforms used by smartphones, has led to an improvement in the quality and resolution of images sent and received. The images (plain radiographs and CT scans) were obtained from 13 cases of tibial plateau fractures using the iPhone 5 (Apple Inc., Cupertino, CA, USA) and were sent to six observers via the WhatsApp Messenger application. The observers were asked to determine the standard deviation and type of injury, the classification according to the Schatzker and the Luo classifications schemes, and whether the CT scan changed the classification. The six observers independently assessed the images on two separate occasions, 15 days apart. The inter- and intra-observer agreement for both periods of the study ranged from excellent to perfect (0.75<κ<1.0) across all survey questions. When asked if the inclusion of the CT images would change their final X-ray classification (Schatzker or Luo), the inter- and intra-observer agreement was perfect (k=1) on both assessment occasions. We found an excellent inter- and intra-observer agreement in the imaging assessment of tibial plateau fractures sent via WhatsApp Messenger. The authors now propose the systematic use of the application to facilitate faster documentation and obtaining the opinion of an experienced consultant when not on call. Finally, we think the use of the WhatsApp Messenger as an adjuvant tool could be broadened to other clinical centres to assess its viability in other skeletal and non-skeletal trauma situations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Spectral and spatial resolution analysis of multi sensor satellite data for coral reef mapping: Tioman Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet; Kabiri, Keivan

    2012-07-01

    This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island

  3. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  4. Reticulate classification of mosaic microbial genomes using NeAT website.

    PubMed

    Lima-Mendez, Gipsi

    2012-01-01

    The tree of life is the classical representation of the evolutionary relationships between existent species. A tree is appropriate to display the divergence of species through mutation, i.e., by vertical descent. However, lateral gene transfer (LGT) is excluded from such representations. When LGT contribution to genome evolution cannot be neglected (e.g., for prokaryotes and mobile genetic elements), the tree becomes misleading. Networks appear as an intuitive way to represent both vertical and horizontal relationships, while overlapping groups within such graphs are more suitable for their classification. Here, we describe a method to represent both vertical and horizontal relationships. We start with a set of genomes whose coded proteins have been grouped into families based on sequence similarity. Next, all pairs of genomes are compared, counting the number of proteins classified into the same family. From this comparison, we derive a weighted graph where genomes with a significant number of similar proteins are linked. Finally, we apply a two-step clustering of this graph to produce a classification where nodes can be assigned to multiple clusters. The procedure can be performed using the Network Analysis Tools (NeAT) website.

  5. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.

    PubMed

    Mane, Vijay Mahadeo; Jadhav, D V

    2017-05-24

    Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.

  6. Can SLE classification rules be effectively applied to diagnose unclear SLE cases?

    PubMed Central

    Mesa, Annia; Fernandez, Mitch; Wu, Wensong; Narasimhan, Giri; Greidinger, Eric L.; Mills, DeEtta K.

    2016-01-01

    Summary Objective Develop a novel classification criteria to distinguish between unclear SLE and MCTD cases. Methods A total of 205 variables from 111 SLE and 55 MCTD patients were evaluated to uncover unique molecular and clinical markers for each disease. Binomial logistic regressions (BLR) were performed on currently used SLE and MCTD classification criteria sets to obtain six reduced models with power to discriminate between unclear SLE and MCTD patients which were confirmed by Receiving Operating Characteristic (ROC) curve. Decision trees were employed to delineate novel classification rules to discriminate between unclear SLE and MCTD patients. Results SLE and MCTD patients exhibited contrasting molecular markers and clinical manifestations. Furthermore, reduced models highlighted SLE patients exhibit prevalence of skin rashes and renal disease while MCTD cases show dominance of myositis and muscle weakness. Additionally decision trees analyses revealed a novel classification rule tailored to differentiate unclear SLE and MCTD patients (Lu-vs-M) with an overall accuracy of 88%. Conclusions Validation of our novel proposed classification rule (Lu-vs-M) includes novel contrasting characteristics (calcinosis, CPK elevated and anti-IgM reactivity for U1-70K, U1A and U1C) between SLE and MCTD patients and showed a 33% improvement in distinguishing these disorders when compare to currently used classification criteria sets. Pending additional validation, our novel classification rule is a promising method to distinguish between patients with unclear SLE and MCTD diagnosis. PMID:27353506

  7. Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2009-10-01

    Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.

  8. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2009-11-01

    imaging using two distinct methods7-15: mathematically based models defined by geometric primitives and voxelized models derived from real human...trees to complete them. We also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces. Realistic...generated model for the coronary arterial tree based on multislice CT and morphometric data," Medical Imaging 2006: Physics of Medical Imaging 6142

  9. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    PubMed Central

    Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  10. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  11. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  12. Development of a thresholding algorithm for calcium classification at multiple CT energies

    NASA Astrophysics Data System (ADS)

    Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.

    2017-05-01

    The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.

  13. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

    PubMed

    Dilger, Samantha K N; Uthoff, Johanna; Judisch, Alexandra; Hammond, Emily; Mott, Sarah L; Smith, Brian J; Newell, John D; Hoffman, Eric A; Sieren, Jessica C

    2015-10-01

    Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

  14. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.

    PubMed

    McDonald, Daniel; Price, Morgan N; Goodrich, Julia; Nawrocki, Eric P; DeSantis, Todd Z; Probst, Alexander; Andersen, Gary L; Knight, Rob; Hugenholtz, Philip

    2012-03-01

    Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a 'taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408,315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.

  15. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea

    PubMed Central

    McDonald, Daniel; Price, Morgan N; Goodrich, Julia; Nawrocki, Eric P; DeSantis, Todd Z; Probst, Alexander; Andersen, Gary L; Knight, Rob; Hugenholtz, Philip

    2012-01-01

    Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/. PMID:22134646

  16. Beating the Odds: Trees to Success in Different Countries

    ERIC Educational Resources Information Center

    Finch, W. Holmes; Marchant, Gregory J.

    2017-01-01

    A recursive partitioning model approach in the form of classification and regression trees (CART) was used with 2012 PISA data for five countries (Canada, Finland, Germany, Singapore-China, and the Unites States). The objective of the study was to determine demographic and educational variables that differentiated between low SES student that were…

  17. Geospatial relationships of tree species damage caused by Hurricane Katrina in south Mississippi

    Treesearch

    Mark W. Garrigues; Zhaofei Fan; David L. Evans; Scott D. Roberts; William H. Cooke III

    2012-01-01

    Hurricane Katrina generated substantial impacts on the forests and biological resources of the affected area in Mississippi. This study seeks to use classification tree analysis (CTA) to determine which variables are significant in predicting hurricane damage (shear or windthrow) in the Southeast Mississippi Institute for Forest Inventory District. Logistic regressions...

  18. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii)

    USDA-ARS?s Scientific Manuscript database

    Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii),...

  19. The Tree of Animal Life

    ERIC Educational Resources Information Center

    Braude, Stan

    2007-01-01

    In this article, the author describes a short activity which introduces third- to fifth-grade students to animal classification. The Tree of Animal Life activity is a simple, sorting exercise that can help them see a bigger picture. The activity sets the stage for learning about animal taxonomy and introduces the characteristics of various animal…

  20. Variation in the suitability of tree species for the gypsy moth

    Treesearch

    Michael E. Montgomery

    1991-01-01

    Lymantria dispar L. is a polyphagous defoliator that feeds on a variety of trees and shrubs. These hosts vary considerably in their nutritional value for the gypsy moth. Classifications patterned after that of Mosher (1915) are used to group potential hosts into categories that correspond to suitable, marginal, and inadequate. Within species...

  1. T-RMSD: a web server for automated fine-grained protein structural classification.

    PubMed

    Magis, Cedrik; Di Tommaso, Paolo; Notredame, Cedric

    2013-07-01

    This article introduces the T-RMSD web server (tree-based on root-mean-square deviation), a service allowing the online computation of structure-based protein classification. It has been developed to address the relation between structural and functional similarity in proteins, and it allows a fine-grained structural clustering of a given protein family or group of structurally related proteins using distance RMSD (dRMSD) variations. These distances are computed between all pairs of equivalent residues, as defined by the ungapped columns within a given multiple sequence alignment. Using these generated distance matrices (one per equivalent position), T-RMSD produces a structural tree with support values for each cluster node, reminiscent of bootstrap values. These values, associated with the tree topology, allow a quantitative estimate of structural distances between proteins or group of proteins defined by the tree topology. The clusters thus defined have been shown to be structurally and functionally informative. The T-RMSD web server is a free website open to all users and available at http://tcoffee.crg.cat/apps/tcoffee/do:trmsd.

  2. T-RMSD: a web server for automated fine-grained protein structural classification

    PubMed Central

    Magis, Cedrik; Di Tommaso, Paolo; Notredame, Cedric

    2013-01-01

    This article introduces the T-RMSD web server (tree-based on root-mean-square deviation), a service allowing the online computation of structure-based protein classification. It has been developed to address the relation between structural and functional similarity in proteins, and it allows a fine-grained structural clustering of a given protein family or group of structurally related proteins using distance RMSD (dRMSD) variations. These distances are computed between all pairs of equivalent residues, as defined by the ungapped columns within a given multiple sequence alignment. Using these generated distance matrices (one per equivalent position), T-RMSD produces a structural tree with support values for each cluster node, reminiscent of bootstrap values. These values, associated with the tree topology, allow a quantitative estimate of structural distances between proteins or group of proteins defined by the tree topology. The clusters thus defined have been shown to be structurally and functionally informative. The T-RMSD web server is a free website open to all users and available at http://tcoffee.crg.cat/apps/tcoffee/do:trmsd. PMID:23716642

  3. Protein classification based on text document classification techniques.

    PubMed

    Cheng, Betty Yee Man; Carbonell, Jaime G; Klein-Seetharaman, Judith

    2005-03-01

    The need for accurate, automated protein classification methods continues to increase as advances in biotechnology uncover new proteins. G-protein coupled receptors (GPCRs) are a particularly difficult superfamily of proteins to classify due to extreme diversity among its members. Previous comparisons of BLAST, k-nearest neighbor (k-NN), hidden markov model (HMM) and support vector machine (SVM) using alignment-based features have suggested that classifiers at the complexity of SVM are needed to attain high accuracy. Here, analogous to document classification, we applied Decision Tree and Naive Bayes classifiers with chi-square feature selection on counts of n-grams (i.e. short peptide sequences of length n) to this classification task. Using the GPCR dataset and evaluation protocol from the previous study, the Naive Bayes classifier attained an accuracy of 93.0 and 92.4% in level I and level II subfamily classification respectively, while SVM has a reported accuracy of 88.4 and 86.3%. This is a 39.7 and 44.5% reduction in residual error for level I and level II subfamily classification, respectively. The Decision Tree, while inferior to SVM, outperforms HMM in both level I and level II subfamily classification. For those GPCR families whose profiles are stored in the Protein FAMilies database of alignments and HMMs (PFAM), our method performs comparably to a search against those profiles. Finally, our method can be generalized to other protein families by applying it to the superfamily of nuclear receptors with 94.5, 97.8 and 93.6% accuracy in family, level I and level II subfamily classification respectively. Copyright 2005 Wiley-Liss, Inc.

  4. Cross-Disciplinary Analysis of Lymph Node Classification in Lung Cancer on CT Scanning.

    PubMed

    El-Sherief, Ahmed H; Lau, Charles T; Obuchowski, Nancy A; Mehta, Atul C; Rice, Thomas W; Blackstone, Eugene H

    2017-04-01

    Accurate and consistent regional lymph node classification is an important element in the staging and multidisciplinary management of lung cancer. Regional lymph node definition sets-lymph node maps-have been created to standardize regional lymph node classification. In 2009, the International Association for the Study of Lung Cancer (IASLC) introduced a lymph node map to supersede all preexisting lymph node maps. Our aim was to study if and how lung cancer specialists apply the IASLC lymph node map when classifying thoracic lymph nodes encountered on CT scans during lung cancer staging. From April 2013 through July 2013, invitations were distributed to all members of the Fleischner Society, Society of Thoracic Radiology, General Thoracic Surgical Club, and the American Association of Bronchology and Interventional Pulmonology to participate in an anonymous online image-based and text-based 20-question survey regarding lymph node classification for lung cancer staging on CT imaging. Three hundred thirty-seven people responded (approximately 25% participation). Respondents consisted of self-reported thoracic radiologists (n = 158), thoracic surgeons (n = 102), and pulmonologists who perform endobronchial ultrasonography (n = 77). Half of the respondents (50%; 95% CI, 44%-55%) reported using the IASLC lymph node map in daily practice, with no significant differences between subspecialties. A disparity was observed between the IASLC definition sets and their interpretation and application on CT scans, in particular for lymph nodes near the thoracic inlet, anterior to the trachea, anterior to the tracheal bifurcation, near the ligamentum arteriosum, between the bronchus intermedius and esophagus, in the internal mammary space, and adjacent to the heart. Use of older lymph node maps and inconsistencies in interpretation and application of definitions in the IASLC lymph node map may potentially lead to misclassification of stage and suboptimal management of lung cancer in some patients. Published by Elsevier Inc.

  5. 99mTc MDP SPECT-CT-Based Modified Mirels Classification for Evaluation of Risk of Fracture in Skeletal Metastasis: A Pilot Study.

    PubMed

    Riaz, Saima; Bashir, Humayun; Niazi, Imran Khalid; Butt, Sumera; Qamar, Faisal

    2018-06-01

    Mirels' scoring system quantifies the risk of sustaining a pathologic fracture in osseous metastases of weight bearing long bones. Conventional Mirels' scoring is based on radiographs. Our pilot study proposes Tc MDP bone SPECT-CT based modified Mirels' scoring system and its comparison with conventional Mirels' scoring. Cortical lysis was noted in 8(24%) by SPECT-CT versus 2 (6.3%) on X-rays. Additional SPECT-CT parameters were; circumferential involvement [1/4 (31%), 1/2 (3%), 3/4 (37.5%), 4/4 (28%)] and extra-osseous soft tissue [3%]. Our pilot study suggests the potential role of SPECT-CT in predicting risk of fracture in osseous metastases.

  6. Extraction and classification of 3D objects from volumetric CT data

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.

    2016-05-01

    We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.

  7. Effects of Tree-crop Farming on Land-cover Transitions in a Mosaic Landscape in the Eastern Region of Ghana.

    PubMed

    Asubonteng, Kwabena; Pfeffer, Karin; Ros-Tonen, Mirjam; Verbesselt, Jan; Baud, Isa

    2018-05-11

    Tree crops such as cocoa and oil palm are important to smallholders' livelihoods and national economies of tropical producer countries. Governments seek to expand tree-crop acreages and improve yields. Existing literature has analyzed socioeconomic and environmental effects of tree-crop expansion, but its spatial effects on the landscape are yet to be explored. This study aims to assess the effects of tree-crop farming on the composition and the extent of land-cover transitions in a mixed cocoa/oil palm landscape in Ghana. Land-cover maps of 1986 and 2015 produced through ISODATA, and maximum likelihood classification were validated with field reference, Google Earth data, and key respondent interviews. Post-classification change detection was conducted and the transition matrix analyzed using intensity analysis. Cocoa and oil palm areas have increased in extent by 8.9% and 11.2%, respectively, mainly at the expense of food-crop land and forest. The intensity of forest loss to both tree crops is at a lower intensity than the loss of food-crop land. There were transitions between cocoa and oil palm, but the gains in oil palm outweigh those of cocoa. Cocoa and oil palm have increased in area and dominance. The main cover types converted to tree-crop areas are food-crop land and off-reserve forest. This is beginning to have serious implications for food security and livelihood options that depend on ecosystem services provided by the mosaic landscape. Tree-crop policies should take account of the geographical distribution of tree-commodity production at landscape level and its implications for food production and ecosystems services.

  8. Increasing CAD system efficacy for lung texture analysis using a convolutional network

    NASA Astrophysics Data System (ADS)

    Tarando, Sebastian Roberto; Fetita, Catalin; Faccinetto, Alex; Brillet, Pierre-Yves

    2016-03-01

    The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. For the large majority of CAD systems, such classification relies on a two-dimensional analysis of axial CT images. In a previously developed CAD system, we proposed a fully-3D approach exploiting a multi-scale morphological analysis which showed good performance in detecting diseased areas, but with a major drawback consisting of sometimes overestimating the pathological areas and mixing different type of lung patterns. This paper proposes a combination of the existing CAD system with the classification outcome provided by a convolutional network, specifically tuned-up, in order to increase the specificity of the classification and the confidence to diagnosis. The advantage of using a deep learning approach is a better regularization of the classification output (because of a deeper insight into a given pathological class over a large series of samples) where the previous system is extra-sensitive due to the multi-scale response on patient-specific, localized patterns. In a preliminary evaluation, the combined approach was tested on a 10 patient database of various lung pathologies, showing a sharp increase of true detections.

  9. A soil map of a large watershed in China: applying digital soil mapping in a data sparse region

    NASA Astrophysics Data System (ADS)

    Barthold, F.; Blank, B.; Wiesmeier, M.; Breuer, L.; Frede, H.-G.

    2009-04-01

    Prediction of soil classes in data sparse regions is a major research challenge. With the advent of machine learning the possibilities to spatially predict soil classes have increased tremendously and given birth to new possibilities in soil mapping. Digital soil mapping is a research field that has been established during the last decades and has been accepted widely. We now need to develop tools to reduce the uncertainty in soil predictions. This is especially challenging in data sparse regions. One approach to do this is to implement soil taxonomic distance as a classification error criterion in classification and regression trees (CART) as suggested by Minasny et al. (Geoderma 142 (2007) 285-293). This approach assumes that the classification error should be larger between soils that are more dissimilar, i.e. differ in a larger number of soil properties, and smaller between more similar soils. Our study area is the Xilin River Basin, which is located in central Inner Mongolia in China. It is characterized by semi arid climate conditions and is representative for the natural occurring steppe ecosystem. The study area comprises 3600 km2. We applied a random, stratified sampling design after McKenzie and Ryan (Geoderma 89 (1999) 67-94) with landuse and topography as stratifying variables. We defined 10 sampling classes, from each class 14 replicates were randomly drawn and sampled. The dataset was split into 100 soil profiles for training and 40 soil profiles for validation. We then applied classification and regression trees (CART) to quantify the relationships between soil classes and environmental covariates. The classification tree explained 75.5% of the variance with land use and geology as most important predictor variables. Among the 8 soil classes that we predicted, the Kastanozems cover most of the area. They are predominantly found in steppe areas. However, even some of the soils at sand dune sites, which were thought to show only little soil formation, can be classified as Kastanozems. Besides the Kastanozems, Regosols are most common at the sand dune sites as well as at sites that are defined as bare soil which are characterized by little or no vegetation. Gleysols are mostly found at sites in the vicinity of the Xilin river, which are connected to the groundwater. They can also be found in small valleys or depressions where sub-surface waters from neighboring areas collect. The richest soils are found in mountain meadow areas. Pedogenetic conditions here are most favorable and lead to the formation of Chernozems with deep humic Ah horizons. Other soil types that occur in the study area are Arenosols, Calcisols, Cambisol and Phaeozems. In addition, soil taxonomic distance is implemented into the decision tree procedure as a measure of classification error. The results of incorporating taxonomic distance as a loss function in the decision tree will be compared with the standard application of the decision tree.

  10. Predicting Chemically Induced Duodenal Ulcer and Adrenal Necrosis with Classification Trees

    NASA Astrophysics Data System (ADS)

    Giampaolo, Casimiro; Gray, Andrew T.; Olshen, Richard A.; Szabo, Sandor

    1991-07-01

    Binary tree-structured statistical classification algorithms and properties of 56 model alkyl nucleophiles were brought to bear on two problems of experimental pharmacology and toxicology. Each rat of a learning sample of 745 was administered one compound and autopsied to determine the presence of duodenal ulcer or adrenal hemorrhagic necrosis. The cited statistical classification schemes were then applied to these outcomes and 67 features of the compounds to ascertain those characteristics that are associated with biologic activity. For predicting duodenal ulceration, dipole moment, melting point, and solubility in octanol are particularly important, while for predicting adrenal necrosis, important features include the number of sulfhydryl groups and double bonds. These methods may constitute inexpensive but powerful ways to screen untested compounds for possible organ-specific toxicity. Mechanisms for the etiology and pathogenesis of the duodenal and adrenal lesions are suggested, as are additional avenues for drug design.

  11. Pelvic fracture in multiple trauma: A 67-case series.

    PubMed

    Caillot, M; Hammad, E; Le Baron, M; Villes, V; Leone, M; Flecher, X

    2016-12-01

    Severe pelvic trauma remains associated with elevated mortality, largely due to hemorrhagic shock. The main study objective was to test for correlation between fracture type and mortality. The secondary objective was to assess the efficacy in terms of mortality of multidisciplinary management following a decision-tree in multiple trauma victims admitted to a level 1 trauma center. Between July 2011 and July 2013, 534 severe trauma patients were included in a single-center continuous prospective observational study. All patients with hemorrhagic shock received early treatment by pelvic binder. Patients with active bleeding on full-body CT or persisting hemorrhagic shock underwent arteriography with or without embolization. Pelvic trauma was graded on the Tile classification. The principle end-point was mortality. Median age was 40 years (range, 26-48 years), with a 79% male/female sex ratio. Thirty-two of the 67 patients with pelvic trauma (48%) were in hemorrhagic shock at admission. Median injury severity score (ISS) was 36 (range, 24-43). On the Tile classification, 22 patients (33%) were grade A, 33 (49%) grade B and 12 (18%) grade C. Overall mortality was 19%, and 42% in case of hemorrhagic shock. Mortality was significantly higher with Tile C than A or B (58% vs. 9.1% and 12.1%, respectively; P=0.001). Vertical shear fracture (Tile C) was associated with greater mortality from hemorrhagic shock. IV, case series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. An artificial neural networks approach for assessment treatment response in oncological patients using PET/CT images.

    PubMed

    Nogueira, Mariana A; Abreu, Pedro H; Martins, Pedro; Machado, Penousal; Duarte, Hugo; Santos, João

    2017-02-13

    Positron Emission Tomography - Computed Tomography (PET/CT) imaging is the basis for the evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed, but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for treatment response evaluation is still a territory to be explored. In this project, Artificial Neural Network approaches were implemented to automatically assess treatment response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features extracted from PET/CT. The results show that the considered set of features allows for the achievement of very high classification performances, especially when data is properly balanced. After synthetic data generation and PCA-based dimensionality reduction to only two components, LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response-to-treatment classes.

  13. A cross-sectional study for predicting tail biting risk in pig farms using classification and regression tree analysis.

    PubMed

    Scollo, Annalisa; Gottardo, Flaviana; Contiero, Barbara; Edwards, Sandra A

    2017-10-01

    Tail biting in pigs has been an identified behavioural, welfare and economic problem for decades, and requires appropriate but sometimes difficult on-farm interventions. The aim of the paper is to introduce the Classification and Regression Tree (CRT) methodologies to develop a tool for prevention of acute tail biting lesions in pigs on-farm. A sample of 60 commercial farms rearing heavy pigs were involved; an on-farm visit and an interview with the farmer collected data on general management, herd health, disease prevention, climate control, feeding and production traits. Results suggest a value for the CRT analysis in managing the risk factors behind tail biting on a farm-specific level, showing 86.7% sensitivity for the Classification Tree and a correlation of 0.7 between observed and predicted prevalence of tail biting obtained with the Regression Tree. CRT analysis showed five main variables (stocking density, ammonia levels, number of pigs per stockman, type of floor and timeliness in feed supply) as critical predictors of acute tail biting lesions, which demonstrate different importance in different farms subgroups. The model might have reliable and practical applications for the support and implementation of tail biting prevention interventions, especially in case of subgroups of pigs with higher risk, helping farmers and veterinarians to assess the risk in their own farm and to manage their predisposing variables in order to reduce acute tail biting lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determining the saliency of feature measurements obtained from images of sedimentary organic matter for use in its classification

    NASA Astrophysics Data System (ADS)

    Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.

    2006-11-01

    The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.

  15. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    NASA Astrophysics Data System (ADS)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be used in the development and evaluation of instrumentation and methods for imaging normal and pathological hearts with myocardial perfusion defects.

  16. Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Helferty, James P.; Padfield, Dirk R.

    2003-05-01

    Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.

  17. Evidence of host-associated divergence from coral-eating snails (genus Coralliophila) in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Simmonds, Sara E.; Chou, Vincent; Cheng, Samantha H.; Rachmawati, Rita; Calumpong, Hilconida P.; Ngurah Mahardika, G.; Barber, Paul H.

    2018-06-01

    We studied how host-associations and geography shape the genetic structure of sister species of marine snails Coralliophila radula (A. Adams, 1853) and C. violacea (Kiener, 1836). These obligate ectoparasites prey upon corals and are sympatric throughout much of their ranges in coral reefs of the tropical and subtropical Indo-Pacific. We tested for population genetic structure of snails in relation to geography and their host corals using mtDNA (COI) sequences in minimum spanning trees and AMOVAs. We also examined the evolutionary relationships of their Porites host coral species using maximum likelihood trees of RAD-seq (restriction site-associated DNA sequencing) loci mapped to a reference transcriptome. A maximum likelihood tree of host corals revealed three distinct clades. Coralliophila radula showed a pronounced genetic break across the Sunda Shelf ( Φ CT = 0.735) but exhibited no genetic structure with respect to host. C. violacea exhibited significant geographic structure ( Φ CT = 0.427), with divergence among Hawaiian populations, the Coral Triangle and the Indian Ocean. Notably, C. violacea showed evidence of ecological divergence; two lineages were associated with different groups of host coral species, one widespread found at all sites, and the other restricted to the Coral Triangle. Sympatric populations of C. violacea found on different suites of coral species were highly divergent ( Φ CT = 0.561, d = 5.13%), suggesting that symbiotic relationships may contribute to lineage diversification in the Coral Triangle.

  18. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    PubMed

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  20. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro.

    PubMed

    Zarse, Chad A; Hameed, Tariq A; Jackson, Molly E; Pishchalnikov, Yuri A; Lingeman, James E; McAteer, James A; Williams, James C

    2007-08-01

    Calcium oxalate monohydrate (COM) stones are often resistant to breakage using shock wave (SW) lithotripsy. It would be useful to identify by computed tomography (CT) those COM stones that are susceptible to SW's. For this study, 47 COM stones (4-10 mm in diameter) were scanned with micro CT to verify composition and also for assessment of heterogeneity (presence of pronounced lobulation, voids, or apatite inclusions) by blinded observers. Stones were then placed in water and scanned using 64-channel helical CT. As with micro CT, heterogeneity was assessed by blinded observers, using high-bone viewing windows. Then stones were broken in a lithotripter (Dornier Doli-50) over 2 mm mesh, and SW's counted. Results showed that classification of stones using micro CT was highly repeatable among observers (kappa = 0.81), and also predictive of stone fragility. Stones graded as homogeneous required 1,874 +/- 821 SW/g for comminution, while stones with visible structure required half as many SW/g, 912 +/- 678. Similarly, when stones were graded by appearance on helical CT, classification was repeatable (kappa = 0.40), and homogeneous stones required more SW's for comminution than did heterogeneous stones (1,702 +/- 993 SW/g, compared to 907 +/- 773). Stone fragility normalized to stone size did not correlate with Hounsfield units (P = 0.85). In conclusion, COM stones of homogeneous structure require almost twice as many SW's to comminute than stones of similar mineral composition that exhibit internal structural features that are visible by CT. This suggests that stone fragility in patients could be predicted using pre-treatment CT imaging. The findings also show that Hounsfield unit values of COM stones did not correlate with stone fragility. Thus, it is stone morphology, rather than X-ray attenuation, which correlates with fragility to SW's in this common stone type.

  1. Normal Lung Quantification in Usual Interstitial Pneumonia Pattern: The Impact of Threshold-based Volumetric CT Analysis for the Staging of Idiopathic Pulmonary Fibrosis.

    PubMed

    Ohkubo, Hirotsugu; Kanemitsu, Yoshihiro; Uemura, Takehiro; Takakuwa, Osamu; Takemura, Masaya; Maeno, Ken; Ito, Yutaka; Oguri, Tetsuya; Kazawa, Nobutaka; Mikami, Ryuji; Niimi, Akio

    2016-01-01

    Although several computer-aided computed tomography (CT) analysis methods have been reported to objectively assess the disease severity and progression of idiopathic pulmonary fibrosis (IPF), it is unclear which method is most practical. A universal severity classification system has not yet been adopted for IPF. The purpose of this study was to test the correlation between quantitative-CT indices and lung physiology variables and to determine the ability of such indices to predict disease severity in IPF. A total of 27 IPF patients showing radiological UIP pattern on high-resolution (HR) CT were retrospectively enrolled. Staging of IPF was performed according to two classification systems: the Japanese and GAP (gender, age, and physiology) staging systems. CT images were assessed using a commercially available CT imaging analysis workstation, and the whole-lung mean CT value (MCT), the normally attenuated lung volume as defined from -950 HU to -701 Hounsfield unit (NL), the volume of the whole lung (WL), and the percentage of NL to WL (NL%), were calculated. CT indices (MCT, WL, and NL) closely correlated with lung physiology variables. Among them, NL strongly correlated with forced vital capacity (FVC) (r = 0.92, P <0.0001). NL% showed a large area under the receiver operating characteristic curve for detecting patients in the moderate or advanced stages of IPF. Multivariable logistic regression analyses showed that NL% is significantly more useful than the percentages of predicted FVC and predicted diffusing capacity of the lungs for carbon monoxide (Japanese stage II/III/IV [odds ratio, 0.73; 95% confidence intervals (CI), 0.48 to 0.92; P < 0.01]; III/IV [odds ratio. 0.80; 95% CI 0.59 to 0.96; P < 0.01]; GAP stage II/III [odds ratio, 0.79; 95% CI, 0.56 to 0.97; P < 0.05]). The measurement of NL% by threshold-based volumetric CT analysis may help improve IPF staging.

  2. Aspen, climate, and sudden decline in western USA

    Treesearch

    Gerald E. Rehfeldt; Dennis E. Ferguson; Nicholas L. Crookston

    2009-01-01

    A bioclimate model predicting the presence or absence of aspen, Populus tremuloides, in western USA from climate variables was developed by using the Random Forests classification tree on Forest Inventory data from about 118,000 permanent sample plots. A reasonably parsimonious model used eight predictors to describe aspen's climate profile. Classification errors...

  3. Analysis of dual tree M-band wavelet transform based features for brain image classification.

    PubMed

    Ayalapogu, Ratna Raju; Pabboju, Suresh; Ramisetty, Rajeswara Rao

    2018-04-29

    The most complex organ in the human body is the brain. The unrestrained growth of cells in the brain is called a brain tumor. The cause of a brain tumor is still unknown and the survival rate is lower than other types of cancers. Hence, early detection is very important for proper treatment. In this study, an efficient computer-aided diagnosis (CAD) system is presented for brain image classification by analyzing MRI of the brain. At first, the MRI brain images of normal and abnormal categories are modeled by using the statistical features of dual tree m-band wavelet transform (DTMBWT). A maximum margin classifier, support vector machine (SVM) is then used for the classification and validated with k-fold approach. Results show that the system provides promising results on a repository of molecular brain neoplasia data (REMBRANDT) with 97.5% accuracy using 4 th level statistical features of DTMBWT. Viewing the experimental results, we conclude that the system gives a satisfactory performance for the brain image classification. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Molecular systematics of the barklouse family Psocidae (Insecta: Psocodea: 'Psocoptera') and implications for morphological and behavioral evolution.

    PubMed

    Yoshizawa, Kazunori; Johnson, Kevin P

    2008-02-01

    We evaluated the higher level classification within the family Psocidae (Insecta: Psocodea: 'Psocoptera') based on combined analyses of nuclear 18S, Histone 3, wingless and mitochondrial 12S, 16S and COI gene sequences. Various analyses (inclusion/exclusion of incomplete taxa and/or rapidly evolving genes, data partitioning, and analytical method selection) all provided similar results, which were generally concordant with relationships inferred using morphological observations. Based on the phylogenetic trees estimated for Psocidae, we propose a revised higher level classification of this family, although uncertainty still exists regarding some aspects of this classification. This classification includes a basal division into two subfamilies, 'Amphigerontiinae' (possibly paraphyletic) and Psocinae. The Amphigerontiinae is divided into the tribes Kaindipsocini (new tribe), Blastini, Amphigerontini, and Stylatopsocini. Psocinae is divided into the tribes 'Ptyctini' (probably paraphyletic), Psocini, Atrichadenotecnini (new tribe), Sigmatoneurini, Metylophorini, and Thyrsophorini (the latter includes the taxon previously recognized as Cerastipsocini). We examined the evolution of symmetric/asymmetric male genitalia over this tree and found this character to be quite homoplasious.

  5. Generation and Termination of Binary Decision Trees for Nonparametric Multiclass Classification.

    DTIC Science & Technology

    1984-10-01

    O M coF=F;; UMBER2. GOVT ACCE5SION NO.1 3 . REC,PINS :A7AL:,G NUMBER ( ’eneration and Terminat_,on :)f Binary D-ecision jC j ik; Trees for Nonnararetrc...1-I . v)IAMO 0~I4 EDvt" O F I 00 . 3 15I OR%.OL.ETL - S-S OCTOBER 1984 LIDS-P-1411 GENERATION AND TERMINATION OF BINARY DECISION TREES FOR...minimizes the Bayes risk. Tree generation and termination are based on the training and test samples, respectively. 0 0 0/ 6 0¢ A 3 I. Introduction We state

  6. The gravity apple tree

    NASA Astrophysics Data System (ADS)

    Espinosa Aldama, Mariana

    2015-04-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.

  7. Temporal expansion of annual crop classification layers for the CONUS using the C5 decision tree classifier

    USGS Publications Warehouse

    Friesz, Aaron M.; Wylie, Bruce K.; Howard, Daniel M.

    2017-01-01

    Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008 to 2013. In this investigation, we sought to contribute to the availability of consistent CONUS crop cover maps by extending temporal coverage of the NASS CDL archive back eight additional years to 2000 by creating annual NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million records to train a classification tree algorithm and develop a crop classification model (CCM). The model was used to create crop cover maps for the CONUS for years 2000–2013 at 250 m spatial resolution. The CCM and the maps for years 2008–2013 were assessed for accuracy relative to resampled NASS CDLs. The CCM performed well against a withheld test data set with a model prediction accuracy of over 90%. The assessment of the crop cover maps indicated that the model performed well spatially, placing crop cover pixels within their known domains; however, the model did show a bias towards the ‘Other’ crop cover class, which caused frequent misclassifications of pixels around the periphery of large crop cover patch clusters and of pixels that form small, sparsely dispersed crop cover patches.

  8. Who Died, Where? Quantification of Drought-Induced Tree Mortality in Texas

    NASA Astrophysics Data System (ADS)

    Schwantes, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2014-12-01

    During 2011, Texas experienced a severe drought that killed millions of trees across the state. Drought-induced tree mortality can have significant ecological impacts and is expected to increase with climate change. We identify methods to quantify tree mortality in central Texas by using remotely sensed images before and after the drought at multiple spatial resolutions. Fine-scale tree mortality maps were created by classifying 1-m orthophotos from the National Agriculture Imagery Program. These classifications showed a high correlation with field estimates of percent canopy loss (RMSE = 2%; R2=0.9), and were thus used to calibrate coarser scale 30-m Landsat imagery. Random Forest, a machine learning method, was applied to obtain sub-pixel estimates of tree mortality. Traditional per-pixel classification techniques can map mortality of whole stands of trees (e.g. fire). However, these methods are often inadequate in detecting subtle changes in land cover, such as those associated with drought-induced tree mortality, which is often a widespread but scattered disturbance. Our method is unique, because it is capable of mapping death of individual canopies within a pixel. These 30-m tree mortality maps were then used to identify ecological systems most impacted by the drought and edaphic factors that control spatial distributions of tree mortality across central Texas. Ground observations coupled with our remote sensing analyses revealed that the majority of the mortality was Juniperus ashei. From a physiological standpoint this is surprising, because J. ashei is a drought-resistant tree. However, over the last century, this species has recently encroached into many areas previously dominated by grassland. Also, J. ashei tends to occupy landscape positions with lower available water storage, which could explain its high mortality rate. Predominantly tree mortality occurred in dry landscape positions (e.g. areas dominated by shallow soils, a low compound topographic index, and a high heat index). As increases in extreme drought events are predicted to occur with climate change, it will become more important to establish methods capable of detecting associated drought-induced tree mortality, to recognize vulnerable ecological systems, and to identify edaphic factors that predispose trees to mortality.

  9. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  10. Using Evidence-Based Decision Trees Instead of Formulas to Identify At-Risk Readers. REL 2014-036

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov; Foorman, Barbara R.

    2014-01-01

    This study examines whether the classification and regression tree (CART) model improves the early identification of students at risk for reading comprehension difficulties compared with the more difficult to interpret logistic regression model. CART is a type of predictive modeling that relies on nonparametric techniques. It presents results in…

  11. Phylogeny of the cycads based on multiple single copy nuclear genes: congruence of concatenation and species tree inference methods

    USDA-ARS?s Scientific Manuscript database

    Despite a recent new classification, a stable tree of life for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study we apply five single copy nuclear genes (SCNGs) to the phylogeny of the order Cycadales. We specifically aim to evaluate seve...

  12. Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA

    Treesearch

    Kirk M. Stueve; Dawna L. Cerney; Regina M. Rochefort; Laurie L. Kurth

    2009-01-01

    We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables.

  13. Analytical and CASE study on Limited Search, ID3, CHAID, C4.5, Improved C4.5 and OVA Decision Tree Algorithms to design Decision Support System

    NASA Astrophysics Data System (ADS)

    Kaur, Parneet; Singh, Sukhwinder; Garg, Sushil; Harmanpreet

    2010-11-01

    In this paper we study about classification algorithms for farm DSS. By applying classification algorithms i.e. Limited search, ID3, CHAID, C4.5, Improved C4.5 and One VS all Decision Tree on common data set of crop with specified class, results are obtained. The tool used to derive results is SPINA. The graphical results obtained from tool are compared to suggest best technique to develop farm Decision Support System. This analysis would help to researchers to design effective and fast DSS for farmer to take decision for enhancing their yield.

  14. Systematic Model-in-the-Loop Test of Embedded Control Systems

    NASA Astrophysics Data System (ADS)

    Krupp, Alexander; Müller, Wolfgang

    Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.

  15. Boosting bonsai trees for handwritten/printed text discrimination

    NASA Astrophysics Data System (ADS)

    Ricquebourg, Yann; Raymond, Christian; Poirriez, Baptiste; Lemaitre, Aurélie; Coüasnon, Bertrand

    2013-12-01

    Boosting over decision-stumps proved its efficiency in Natural Language Processing essentially with symbolic features, and its good properties (fast, few and not critical parameters, not sensitive to over-fitting) could be of great interest in the numeric world of pixel images. In this article we investigated the use of boosting over small decision trees, in image classification processing, for the discrimination of handwritten/printed text. Then, we conducted experiments to compare it to usual SVM-based classification revealing convincing results with very close performance, but with faster predictions and behaving far less as a black-box. Those promising results tend to make use of this classifier in more complex recognition tasks like multiclass problems.

  16. Black smokers and the Tree of Life

    NASA Astrophysics Data System (ADS)

    Linich, Michael

    The molecular biology revolution has turned the classification of life on its head. Is Whittaker's five-kingdom scheme for the classification of living things no longer relevant to life science education? Coupled with this is the discovery that most microscopic life cannot yet be brought into culture. One of the key organisms making this knowledge possible is Methanococcus jannishi a microorganism found in black smokers. This workshop presents the development of the Universal Tree of Life in a historical context and then links together major concepts in the New South Wales senior science programs of Earth and Environmental Science and Biology by examining the biological and geological aspects of changes to black smokers over geological time.

  17. Reduction in training time of a deep learning model in detection of lesions in CT

    NASA Astrophysics Data System (ADS)

    Makkinejad, Nazanin; Tajbakhsh, Nima; Zarshenas, Amin; Khokhar, Ashfaq; Suzuki, Kenji

    2018-02-01

    Deep learning (DL) emerged as a powerful tool for object detection and classification in medical images. Building a well-performing DL model, however, requires a huge number of images for training, and it takes days to train a DL model even on a cutting edge high-performance computing platform. This study is aimed at developing a method for selecting a "small" number of representative samples from a large collection of training samples to train a DL model for the could be used to detect polyps in CT colonography (CTC), without compromising the classification performance. Our proposed method for representative sample selection (RSS) consists of a K-means clustering algorithm. For the performance evaluation, we applied the proposed method to select samples for the training of a massive training artificial neural network based DL model, to be used for the classification of polyps and non-polyps in CTC. Our results show that the proposed method reduce the training time by a factor of 15, while maintaining the classification performance equivalent to the model trained using the full training set. We compare the performance using area under the receiveroperating- characteristic curve (AUC).

  18. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery. Caribbean Journal of Science. 44(2):175-198.

    Treesearch

    E.H. Helmer; T.A. Kennaway; D.H. Pedreros; M.L. Clark; H. Marcano-Vega; L.L. Tieszen; S.R. Schill; C.M.S. Carrington

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius...

  19. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  20. Object-based locust habitat mapping using high-resolution multispectral satellite data in the southern Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Navratil, Peter; Wilps, Hans

    2013-01-01

    Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.

  1. Bayesian Ensemble Trees (BET) for Clustering and Prediction in Heterogeneous Data

    PubMed Central

    Duan, Leo L.; Clancy, John P.; Szczesniak, Rhonda D.

    2016-01-01

    We propose a novel “tree-averaging” model that utilizes the ensemble of classification and regression trees (CART). Each constituent tree is estimated with a subset of similar data. We treat this grouping of subsets as Bayesian Ensemble Trees (BET) and model them as a Dirichlet process. We show that BET determines the optimal number of trees by adapting to the data heterogeneity. Compared with the other ensemble methods, BET requires much fewer trees and shows equivalent prediction accuracy using weighted averaging. Moreover, each tree in BET provides variable selection criterion and interpretation for each subset. We developed an efficient estimating procedure with improved estimation strategies in both CART and mixture models. We demonstrate these advantages of BET with simulations and illustrate the approach with a real-world data example involving regression of lung function measurements obtained from patients with cystic fibrosis. Supplemental materials are available online. PMID:27524872

  2. Task-Driven Dictionary Learning Based on Mutual Information for Medical Image Classification.

    PubMed

    Diamant, Idit; Klang, Eyal; Amitai, Michal; Konen, Eli; Goldberger, Jacob; Greenspan, Hayit

    2017-06-01

    We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification. Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task using a mutual information-based criterion. Additionally, we generate relevance maps to visualize and localize the decision of the automatic classification algorithm. These maps demonstrate how the algorithm works and show the spatial layout of the most relevant words. We applied our algorithm to three different tasks: chest x-ray pathology identification (of four pathologies: cardiomegaly, enlarged mediastinum, right consolidation, and left consolidation), liver lesion classification into four categories in computed tomography (CT) images and benign/malignant clusters of microcalcifications (MCs) classification in breast mammograms. Validation was conducted on three datasets: 443 chest x-rays, 118 portal phase CT images of liver lesions, and 260 mammography MCs. The proposed method improves the classical BoVW method for all tested applications. For chest x-ray, area under curve of 0.876 was obtained for enlarged mediastinum identification compared to 0.855 using classical BoVW (with p-value 0.01). For MC classification, a significant improvement of 4% was achieved using our new approach (with p-value = 0.03). For liver lesion classification, an improvement of 6% in sensitivity and 2% in specificity were obtained (with p-value 0.001). We demonstrated that classification based on informative selected set of words results in significant improvement. Our new BoVW approach shows promising results in clinically important domains. Additionally, it can discover relevant parts of images for the task at hand without explicit annotations for training data. This can provide computer-aided support for medical experts in challenging image analysis tasks.

  3. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  4. Detecting Forests Damaged by Pine Wilt Disease at the Individual Tree Level Using Airborne Laser Data and WORLDVIEW-2/3 Images Over Two Seasons

    NASA Astrophysics Data System (ADS)

    Takenaka, Y.; Katoh, M.; Deng, S.; Cheung, K.

    2017-10-01

    Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus) and Japanese pine sawyer (Monochamus alternatus). This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning (ALS) data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS) images and 18 remote sensing indices (RSI) derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6 %, with an overall accuracy of 98.5 %. However, the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4 %, with an overall accuracy of 72 %, which suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were acquired in October 2016 from an area with low sun, at a low altitude.

  5. Classification of coronary artery calcifications according to motion artifacts in chest CT using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Šprem, Jurica; de Vos, Bob D.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2017-02-01

    Coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events (CVEs). CAC can be quantified in chest CT scans acquired in lung screening. However, in these images the reproducibility of CAC quantification is compromised by cardiac motion that occurs during scanning, thereby limiting the reproducibility of CVE risk assessment. We present a system for the identification of CACs strongly affected by cardiac motion artifacts by using a convolutional neural network (CNN). This study included 125 chest CT scans from the National Lung Screening Trial (NLST). Images were acquired with CT scanners from four different vendors (GE, Siemens, Philips, Toshiba) with varying tube voltage, image resolution settings, and without ECG synchronization. To define the reference standard, an observer manually identified CAC lesions and labeled each according to the presence of cardiac motion: strongly affected (positive), mildly affected/not affected (negative). A CNN was designed to automatically label the identified CAC lesions according to the presence of cardiac motion by analyzing a patch from the axial CT slice around each lesion. From 125 CT scans, 9201 CAC lesions were analyzed. 8001 lesions were used for training (19% positive) and the remaining 1200 (50% positive) were used for testing. The proposed CNN achieved a classification accuracy of 85% (86% sensitivity, 84% specificity). The obtained results demonstrate that the proposed algorithm can identify CAC lesions that are strongly affected by cardiac motion. This could facilitate further investigation into the relation of CAC scoring reproducibility and the presence of cardiac motion artifacts.

  6. [Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].

    PubMed

    Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng

    2015-08-01

    The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.

  7. Spiral CT scanning technique in the detection of aspiration of LEGO foreign bodies.

    PubMed

    Applegate, K E; Dardinger, J T; Lieber, M L; Herts, B R; Davros, W J; Obuchowski, N A; Maneker, A

    2001-12-01

    Radiolucent foreign bodies (FBs) such as plastic objects and toys remain difficult to identify on conventional radiographs of the neck and chest. Children may present with a variety of respiratory complaints, which may or may not be due to a FB. To determine whether radiolucent FBs such as plastic LEGOs and peanuts can be seen in the tracheobronchial tree or esophagus using low-dose spiral CT, and, if visible, to determine the optimal CT imaging technique. Multiple spiral sequences were performed while varying the CT parameters and the presence and location of FBs in either the trachea or the esophagus first on a neck phantom and then a cadaver. Sequences were rated by three radiologists blinded to the presence of a FB using a single scoring system. The LEGO was well visualized in the trachea by all three readers (both lung and soft-tissue windowing: combined sensitivity 89 %, combined specificity 89 %) and to a lesser extent in the esophagus (combined sensitivity 31 %, combined specificity 100 %). The peanut was not well visualized (combined sensitivity < 35 %). The optimal technique for visualizing the LEGO was 120 kV, 90 mA, 3-mm collimation, 0.75 s/revolution, and 2.0 pitch. This allowed for coverage of the cadaver tracheobronchial tree (approximately 11 cm) in about 18 s. Although statistical power was low for detecting significant differences, all three readers noted higher average confidence ratings with lung windowing among 18 LEGO-in-trachea scans. Rapid, low-dose spiral CT may be used to visualize LEGO FBs in the airway or esophagus. Peanuts were not well visualized.

  8. Lung tumor diagnosis and subtype discovery by gene expression profiling.

    PubMed

    Wang, Lu-yong; Tu, Zhuowen

    2006-01-01

    The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.

  9. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests

    ERIC Educational Resources Information Center

    Strobl, Carolin; Malley, James; Tutz, Gerhard

    2009-01-01

    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…

  10. Accuracy and efficiency of area classifications based on tree tally

    Treesearch

    Michael S. Williams; Hans T. Schreuder; Raymond L. Czaplewski

    2001-01-01

    Inventory data are often used to estimate the area of the land base that is classified as a specific condition class. Examples include areas classified as old-growth forest, private ownership, or suitable habitat for a given species. Many inventory programs rely on classification algorithms of varying complexity to determine condition class. These algorithms can be...

  11. Classification and evaluation for forest sites in the Cumberland Mountains

    Treesearch

    Glendon W. Smalley

    1984-01-01

    This report classifies and evaluates forest sites in the Cumberland Mountains (fig. 1) for the management of several commercially valuable tree species. It provides forest managers with a land classification system that will enable them to subdivide forest land into logical segments (landtypes), allow them to rate productivity, and alert them to any limitations and...

  12. Landsat TM Classifications For SAFIS Using FIA Field Plots

    Treesearch

    William H. Cooke; Andrew J. Hartsell

    2001-01-01

    Wall-to-wall Landsat Thematic Mapper (TM) classification efforts in Georgia require field validation. We developed a new crown modeling procedure based on Forest Health Monitoring (FHM) data to test Forest Inventory and Analysis (FIA) data. These models simulate the proportion of tree crowns that reflect light on a FIA subplot basis. We averaged subplot crown...

  13. Investigation of Fuel Oil/Lube Oil Spray Fires On Board Vessels. Volume 3.

    DTIC Science & Technology

    1998-11-01

    U.S. Coast Guard Research and Development Center 1082 Shennecossett Road, Groton, CT 06340-6096 Report No. CG-D-01-99, III Investigation of Fuel ...refinery). Developed the technical and mathematical specifications for BRAVO™2.0, a state-of-the-art Windows program for performing event tree and fault...tree analyses. Also managed the development of and prepared the technical specifications for QRA ROOTS™, a Windows program for storing, searching K-4

  14. Archaeological Investigations of The Little Cypress Bayou Site (3CT50) Crittenden County, Arkansas. Volume 1

    DTIC Science & Technology

    1986-01-01

    are the dominant trees found on levee crests adjacent to rivers and streams. A variety of lesser trees and herbs follow. Particularly conspicuous are...Mangrum where Klinger (1982:129) suggest that Dunklin phase subsistence at both Zebree and Mangrum was "dominated primarily by gathering wild flora...of wild plant foods continued to be an important food resource. Evidence obtained from some large Mississippian sites, such as Parkin (P. Morse 1981

  15. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, D; Shao, W; Low, D

    Purpose: To evaluate and test the hypothesis that plan quality may be systematically affected by treatment delivery techniques and target-tocritical structure geometric relationship in radiotherapy for brain tumor. Methods: Thirty-four consecutive brain tumor patients treated between 2011–2014 were analyzed. Among this cohort, 10 were planned with 3DCRT, 11 with RadipArc, and 13 with helical IMRT on TomoTherapy. The selected dosimetric endpoints (i.e., PTV V100, maximum brainstem/chiasm/ optic nerve doses) were considered as a vector in a highdimensional space. A Pareto analysis was performed to identify the subset of Pareto-efficient plans.The geometric relationships, specifically the overlapping volume and centroid-of-mass distance betweenmore » each critical structure to the PTV were extracted as potential geometric features. The classification-tree analyses were repeated using these geometric features with and without the treatment modality as an additional categorical predictor. In both scenarios, the dominant features to prognosticate the Pareto membership were identified and the tree structures to provide optimal inference were recorded. The classification performance was further analyzed to determine the role of treatment modality in affecting plan quality. Results: Seven Pareto-efficient plans were identified based on dosimetric endpoints (3 from 3DCRT, 3 from RapicArc, 1 from Tomo), which implies that the evaluated treatment modality may have a minor influence on plan quality. Classification trees with/without the treatment modality as a predictor both achieved accuracy of 88.2%: with 100% sensitivity and 87.1% specificity for the former, and 66.7% sensitivity and 96.0% specificity for the latter. The coincidence of accuracy from both analyses further indicates no-to-weak dependence of plan quality on treatment modality. Both analyses have identified the brainstem to PTV distance as the primary predictive feature for Pareto-efficiency. Conclusion: Pareto evaluation and classification-tree analyses have indicated that plan quality depends strongly on geometry for brain tumor, specifically PTV-tobrain-stem-distance but minimally on treatment modality.« less

  17. SELDI-TOF-MS proteomic profiling of serum, urine, and amniotic fluid in neural tube defects.

    PubMed

    Liu, Zhenjiang; Yuan, Zhengwei; Zhao, Qun

    2014-01-01

    Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection.

  18. Thin-layer chromatographic identification of Chinese propolis using chemometric fingerprinting.

    PubMed

    Tang, Tie-xin; Guo, Wei-yan; Xu, Ye; Zhang, Si-ming; Xu, Xin-jun; Wang, Dong-mei; Zhao, Zhi-min; Zhu, Long-ping; Yang, De-po

    2014-01-01

    Poplar tree gum has a similar chemical composition and appearance to Chinese propolis (bee glue) and has been widely used as a counterfeit propolis because Chinese propolis is typically the poplar-type propolis, the chemical composition of which is determined mainly by the resin of poplar trees. The discrimination of Chinese propolis from poplar tree gum is a challenging task. To develop a rapid thin-layer chromatographic (TLC) identification method using chemometric fingerprinting to discriminate Chinese propolis from poplar tree gum. A new TLC method using a combination of ammonia and hydrogen peroxide vapours as the visualisation reagent was developed to characterise the chemical profile of Chinese propolis. Three separate people performed TLC on eight Chinese propolis samples and three poplar tree gum samples of varying origins. Five chemometric methods, including similarity analysis, hierarchical clustering, k-means clustering, neural network and support vector machine, were compared for use in classifying the samples based on their densitograms obtained from the TLC chromatograms via image analysis. Hierarchical clustering, neural network and support vector machine analyses achieved a correct classification rate of 100% in classifying the samples. A strategy for TLC identification of Chinese propolis using chemometric fingerprinting was proposed and it provided accurate sample classification. The study has shown that the TLC identification method using chemometric fingerprinting is a rapid, low-cost method for the discrimination of Chinese propolis from poplar tree gum and may be used for the quality control of Chinese propolis. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Analysis of occlusal variables, dental attrition, and age for distinguishing healthy controls from female patients with intracapsular temporomandibular disorders.

    PubMed

    Seligman, D A; Pullinger, A G

    2000-01-01

    Confusion about the relationship of occlusion to temporomandibular disorders (TMD) persists. This study attempted to identify occlusal and attrition factors plus age that would characterize asymptomatic normal female subjects. A total of 124 female patients with intracapsular TMD were compared with 47 asymptomatic female controls for associations to 9 occlusal factors, 3 attrition severity measures, and age using classification tree, multiple stepwise logistic regression, and univariate analyses. Models were tested for accuracy (sensitivity and specificity) and total contribution to the variance. The classification tree model had 4 terminal nodes that used only anterior attrition and age. "Normals" were mainly characterized by low attrition levels, whereas patients had higher attrition and tended to be younger. The tree model was only moderately useful (sensitivity 63%, specificity 94%) in predicting normals. The logistic regression model incorporated unilateral posterior crossbite and mediotrusive attrition severity in addition to the 2 factors in the tree, but was slightly less accurate than the tree (sensitivity 51%, specificity 90%). When only occlusal factors were considered in the analysis, normals were additionally characterized by a lack of anterior open bite, smaller overjet, and smaller RCP-ICP slides. The log likelihood accounted for was similar for both the tree (pseudo R(2) = 29.38%; mean deviance = 0.95) and the multiple logistic regression (Cox Snell R(2) = 30.3%, mean deviance = 0.84) models. The occlusal and attrition factors studied were only moderately useful in differentiating normals from TMD patients.

  20. Deep-learning derived features for lung nodule classification with limited datasets

    NASA Astrophysics Data System (ADS)

    Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.

    2018-02-01

    Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.

  1. Comprehensive Assessment of Osteoporosis and Bone Fragility with CT Colonography

    PubMed Central

    Murthy, Naveen S.; Khosla, Sundeep; Clarke, Bart L.; Bruining, David H.; Kopperdahl, David L.; Lee, David C.; Keaveny, Tony M.

    2016-01-01

    Purpose To evaluate the ability of additional analysis of computed tomographic (CT) colonography images to provide a comprehensive osteoporosis assessment. Materials and Methods This Health Insurance Portability and Accountability Act–compliant study was approved by our institutional review board with a waiver of informed consent. Diagnosis of osteoporosis and assessment of fracture risk were compared between biomechanical CT analysis and dual-energy x-ray absorptiometry (DXA) in 136 women (age range, 43–92 years), each of whom underwent CT colonography and DXA within a 6-month period (between January 2008 and April 2010). Blinded to the DXA data, biomechanical CT analysis was retrospectively applied to CT images by using phantomless calibration and finite element analysis to measure bone mineral density and bone strength at the hip and spine. Regression, Bland-Altman, and reclassification analyses and paired t tests were used to compare results. Results For bone mineral density T scores at the femoral neck, biomechanical CT analysis was highly correlated (R2 = 0.84) with DXA, did not differ from DXA (P = .15, paired t test), and was able to identify osteoporosis (as defined by DXA), with 100% sensitivity in eight of eight patients (95% confidence interval [CI]: 67.6%, 100%) and 98.4% specificity in 126 of 128 patients (95% CI: 94.5%, 99.6%). Considering both the hip and spine, the classification of patients at high risk for fracture by biomechanical CT analysis—those with osteoporosis or “fragile bone strength”—agreed well against classifications for clinical osteoporosis by DXA (T score ≤−2.5 at the hip or spine), with 82.8% sensitivity in 24 of 29 patients (95% CI: 65.4%, 92.4%) and 85.7% specificity in 66 of 77 patients (95% CI: 76.2%, 91.8%). Conclusion Retrospective biomechanical CT analysis of CT colonography for colorectal cancer screening provides a comprehensive osteoporosis assessment without requiring changes in imaging protocols. © RSNA, 2015 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on July 24, 2015. PMID:26200602

  2. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    PubMed

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classification of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT (DECT). We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols. The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configuration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images examining realistic configurations for both DECT and TECT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 and 1 mg/mL, respectively. TECT outperforms DECT for multicontrast CT imaging and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic configurations. A unified framework for both DECT and TECT imaging has been established for the accurate extraction of material compositions using currently available commercial DECT configurations. The novel technique is promising to provide an urgently needed solution for several CT-based diagnostic and therapy applications, especially for the diagnosis of cardiovascular and abdominal diseases where multicontrast imaging is involved. © 2018 American Association of Physicists in Medicine.

  3. Positron emission tomography/computed tomography with 18F-fluorocholine improve tumor staging and treatment allocation in patients with hepatocellular carcinoma.

    PubMed

    Chalaye, Julia; Costentin, Charlotte E; Luciani, Alain; Amaddeo, Giuliana; Ganne-Carrié, Nathalie; Baranes, Laurence; Allaire, Manon; Calderaro, Julien; Azoulay, Daniel; Nahon, Pierre; Seror, Olivier; Mallat, Ariane; Soussan, Michael; Duvoux, Christophe; Itti, Emmanuel; Nault, Jean Charles

    2018-03-06

    Hepatocellular carcinoma (HCC) staging according to the Barcelona Clinical Liver Cancer (BCLC) classification is based on conventional imaging. The aim of our study was to assess the impact of dual-tracer 18F-fluorocholine and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) on tumor staging and treatment allocation. A total of 192 dual-tracer PET/CT scans (18F-fluorocholine and 18F-fluorodeoxyglucose PET/CT) were performed in 177 patients with HCC. BCLC staging and treatment proposal were retrospectively collected based on conventional imaging, along with any new lesions detected, and changes in BCLC classification or treatment allocation based on dual-tracer PET/CT. Patients were primarily men (87.5%) with cirrhosis (71%) due to alcohol ± non-alcoholic steatohepatitis (26%), viral infection (62%) or unknown causes (12%). Among 122 patients with PET/CT performed for staging, BCLC stage based on conventional imaging was 0/A in 61 patients (50%), B in 32 patients (26%) and C in 29 patients (24%). Dual-tracer PET/CT detected new lesions in 26 patients (21%), upgraded BCLC staging in 14 (11%) and modified treatment strategy in 17 (14%). In addition, dual-tracer PET/CT modified the final treatment in 4/9 (44%) patients with unexplained elevation of alpha-fetoprotein (AFP), 10/25 patients (40%) with doubtful lesions on conventional imaging and 3/36 patients (8%) waiting for liver transplantation without active HCC after tumor response following bridging therapy. When used for HCC staging, dual-tracer PET/CT enabled BCLC upgrading and treatment modification in 11% and 14% of patients, respectively. Dual-tracer PET/CT might also be useful in specific situations (an unexplained rise in AFP, doubtful lesions or pre-transplant evaluation of patients without active HCC). Using a combination of tracers 18F-fluorocholine and 18F-fluorodeoxyglucose when performing positron emission tomography/computed tomography (PET/CT), often called a PET scan, helps to identify new tumor lesions in patients with hepatocellular carcinoma. This technique enabled staging modification of patients' tumors and led to changes in treatment allocation in certain patients. Copyright © 2018. Published by Elsevier B.V.

  4. Airway extraction from 3D chest CT volumes based on iterative extension of VOI enhanced by cavity enhancement filter

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku

    2017-03-01

    Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.

  5. An iterative method for airway segmentation using multiscale leakage detection

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Ahmed; Jin, Dakai; Hoffman, Eric A.; Saha, Punam K.

    2017-02-01

    There are growing applications of quantitative computed tomography for assessment of pulmonary diseases by characterizing lung parenchyma as well as the bronchial tree. Many large multi-center studies incorporating lung imaging as a study component are interested in phenotypes relating airway branching patterns, wall-thickness, and other morphological measures. To our knowledge, there are no fully automated airway tree segmentation methods, free of the need for user review. Even when there are failures in a small fraction of segmentation results, the airway tree masks must be manually reviewed for all results which is laborious considering that several thousands of image data sets are evaluated in large studies. In this paper, we present a CT-based novel airway tree segmentation algorithm using iterative multi-scale leakage detection, freezing, and active seed detection. The method is fully automated requiring no manual inputs or post-segmentation editing. It uses simple intensity based connectivity and a new leakage detection algorithm to iteratively grow an airway tree starting from an initial seed inside the trachea. It begins with a conservative threshold and then, iteratively shifts toward generous values. The method was applied on chest CT scans of ten non-smoking subjects at total lung capacity and ten at functional residual capacity. Airway segmentation results were compared to an expert's manually edited segmentations. Branch level accuracy of the new segmentation method was examined along five standardized segmental airway paths (RB1, RB4, RB10, LB1, LB10) and two generations beyond these branches. The method successfully detected all branches up to two generations beyond these segmental bronchi with no visual leakages.

  6. Developing a methodology to predict oak wilt distribution using classification tree analysis

    Treesearch

    Marla C. Downing; Vernon L. Thomas; Robin M. Reich

    2006-01-01

    Oak wilt (Ceratocystis fagacearum), a fungal disease that causes some species of oak trees to wilt and die rapidly, is a threat to oak forested resources in 22 states in the United States. We developed a methodology for predicting the Potential Distribution of Oak Wilt (PDOW) using Anoka County, Minnesota as our study area. The PDOW utilizes GIS; the...

  7. Method of center localization for objects containing concentric arcs

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena G.; Shvets, Evgeny A.; Nikolaev, Dmitry P.

    2015-02-01

    This paper proposes a method for automatic center location of objects containing concentric arcs. The method utilizes structure tensor analysis and voting scheme optimized with Fast Hough Transform. Two applications of the proposed method are considered: (i) wheel tracking in video-based system for automatic vehicle classification and (ii) tree growth rings analysis on a tree cross cut image.

  8. Soil-Site Classification for Bottomland Hardwoods

    Treesearch

    John K. Francis

    1984-01-01

    Foresters have always needed a means of predicting tree growth. Of the many indexes of potential growth, site index is the most widely used. Site index may be defined as the height of dominant trees in a stand at a reference age (usually 50 years). Site index is, in theory, a true reflection of growth potential of the site because height growth is generally unaffected...

  9. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  10. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study.

    PubMed

    Ramezankhani, Azra; Pournik, Omid; Shahrabi, Jamal; Khalili, Davood; Azizi, Fereidoun; Hadaegh, Farzad

    2014-09-01

    The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast

    DTIC Science & Technology

    2007-03-01

    TERMS breast imaging, breast CT, scatter compensation, denoising, CAD , Cone-beam CT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...clinical projection images. The CAD tool based on signal known exactly (SKE) scenario is under development. Task 6: Test and compare the...performances of the CAD developed in Task 5 applied to processed projection data from Task 1 with the CAD performance on the projection data without Bayesian

  13. Identifying type 1 and type 2 diabetic cases using administrative data: a tree-structured model.

    PubMed

    Lo-Ciganic, Weihsuan; Zgibor, Janice C; Ruppert, Kristine; Arena, Vincent C; Stone, Roslyn A

    2011-05-01

    To date, few administrative diabetes mellitus (DM) registries have distinguished type 1 diabetes mellitus (T1DM) from type 2 diabetes mellitus (T2DM). Using a classification tree model, a prediction rule was developed to distinguish T1DM from T2DM in a large administrative database. The Medical Archival Retrieval System at the University of Pittsburgh Medical Center included administrative and clinical data from January 1, 2000, through September 30, 2009, for 209,647 DM patients aged ≥18 years. Probable cases (8,173 T1DM and 125,111 T2DM) were identified by applying clinical criteria to administrative data. Nonparametric classification tree models were fit using TIBCO Spotfire S+ 8.1 (TIBCO Software), with model size based on 10-fold cross validation. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of T1DM were estimated. The main predictors that distinguished T1DM from T2DM are age <40 years; International Classification of Disease, 9th revision, codes of T1DM or T2DM diagnosis; inpatient oral hypoglycemic agent use; inpatient insulin use; and episode(s) of diabetic ketoacidosis diagnosis. Compared with a complex clinical algorithm, the tree-structured model to predict T1DM had 92.8% sensitivity, 99.3% specificity, 89.5% PPV, and 99.5% NPV. The preliminary predictive rule appears to be promising. Being able to distinguish between DM subtypes in administrative databases will allow large-scale subtype-specific analyses of medical care costs, morbidity, and mortality. © 2011 Diabetes Technology Society.

  14. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  15. Subpopulations of Older Foster Youths With Differential Risk of Diagnosis for Alcohol Abuse or Dependence*

    PubMed Central

    Keller, Thomas E.; Blakeslee, Jennifer E.; Lemon, Stephenie C.; Courtney, Mark E.

    2010-01-01

    Objective: Distinctive combinations of factors are likely to be associated with serious alcohol problems among adolescents about to emancipate from the foster care system and face the difficult transition to independent adulthood. This study identifies particular subpopulations of older foster youths that differ markedly in the probability of a lifetime diagnosis for alcohol abuse or dependence. Method: Classification and regression tree (CART) analysis was applied to a large, representative sample (N = 732) of individuals, 17 years of age or older, placed in the child welfare system for more than 1 year. CART evaluated two exploratory sets of variables for optimal splits into groups distinguished from each other on the criterion of lifetime alcohol-use disorder diagnosis. Results: Each classification tree yielded four terminal groups with different rates of lifetime alcohol-use disorder diagnosis. Notable groups in the first tree included one characterized by high levels of both delinquency and violence exposure (53% diagnosed) and another that featured lower delinquency but an independent-living placement (21% diagnosed). Notable groups in the second tree included African American adolescents (only 8% diagnosed), White adolescents not close to caregivers (40% diagnosed), and White adolescents closer to caregivers but with a history of psychological abuse (36% diagnosed). Conclusions: Analyses incorporating variables that could be comorbid with or symptomatic of alcohol problems, such as delinquency, yielded classifications potentially useful for assessment and service planning. Analyses without such variables identified other factors, such as quality of caregiving relationships and maltreatment, associated with serious alcohol problems, suggesting opportunities for prevention or intervention. PMID:20946738

  16. 68Ga-PSMA-11 PET/CT in Newly Diagnosed Carcinoma of the Prostate: Correlation of Intraprostatic PSMA Uptake with Several Clinical Parameters.

    PubMed

    Koerber, Stefan A; Utzinger, Maximilian T; Kratochwil, Clemens; Kesch, Claudia; Haefner, Matthias F; Katayama, Sonja; Mier, Walter; Iagaru, Andrei H; Herfarth, Klaus; Haberkorn, Uwe; Debus, Juergen; Giesel, Frederik L

    2017-12-01

    68 Ga-prostate-specific membrane antigen (PSMA) PET/CT is a promising diagnostic tool for patients with prostate cancer. Our study evaluates SUVs in benign prostate tissue and malignant, intraprostatic tumor lesions and correlates results with several clinical parameters. Methods: One hundred four men with newly diagnosed prostate carcinoma and no previous therapy were included in this study. SUV max was measured and correlated with biopsy findings and MRI. Afterward, data were compared with current prostate-specific antigen (PSA) values, Gleason score (GS), and d'Amico risk classification. Results: In this investigation a mean SUV max of 1.88 ± 0.44 in healthy prostate tissue compared with 10.77 ± 8.45 in malignant prostate lesions ( P < 0.001) was observed. Patients with higher PSA, higher GS, and higher d'Amico risk score had statistically significant higher PSMA uptake on PET/CT ( P < 0.001 each). Conclusion: PSMA PET/CT is well suited for detecting the intraprostatic malignant lesion in patients with newly diagnosed prostate cancer. Our findings indicate a significant correlation of PSMA uptake with PSA, GS, and risk classification according to the d'Amico scale. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  17. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  18. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  19. Application of the pessimistic pruning to increase the accuracy of C4.5 algorithm in diagnosing chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.

    2018-03-01

    A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.

  20. Identification of phreatophytic groundwater dependent ecosystems using geospatial technologies

    NASA Astrophysics Data System (ADS)

    Perez Hoyos, Isabel Cristina

    The protection of groundwater dependent ecosystems (GDEs) is increasingly being recognized as an essential aspect for the sustainable management and allocation of water resources. Ecosystem services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in technologies such as remote sensing and their integration with geographic information systems (GIS) has provided alternative ways to map GDEs at much larger spatial extents. This study is concerned with the discovery of patterns in geospatial data sets using data mining techniques for mapping phreatophytic GDEs in the United States at 1 km spatial resolution. A methodology to identify the probability of an ecosystem to be groundwater dependent is developed. Probabilities are obtained by modeling the relationship between the known locations of GDEs and main factors influencing groundwater dependency, namely water table depth (WTD) and aridity index (AI). A methodology is proposed to predict WTD at 1 km spatial resolution using relevant geospatial data sets calibrated with WTD observations. An ensemble learning algorithm called random forest (RF) is used in order to model the distribution of groundwater in three study areas: Nevada, California, and Washington, as well as in the entire United States. RF regression performance is compared with a single regression tree (RT). The comparison is based on contrasting training error, true prediction error, and variable importance estimates of both methods. Additionally, remote sensing variables are omitted from the process of fitting the RF model to the data to evaluate the deterioration in the model performance when these variables are not used as an input. Research results suggest that although the prediction accuracy of a single RT is reduced in comparison with RFs, single trees can still be used to understand the interactions that might be taking place between predictor variables and the response variable. Regarding RF, there is a great potential in using the power of an ensemble of trees for prediction of WTD. The superior capability of RF to accurately map water table position in Nevada, California, and Washington demonstrate that this technique can be applied at scales larger than regional levels. It is also shown that the removal of remote sensing variables from the RF training process degrades the performance of the model. Using the predicted WTD, the probability of an ecosystem to be groundwater dependent (GDE probability) is estimated at 1 km spatial resolution. The modeling technique is evaluated in the state of Nevada, USA to develop a systematic approach for the identification of GDEs and it is then applied in the United States. The modeling approach selected for the development of the GDE probability map results from a comparison of the performance of classification trees (CT) and classification forests (CF). Predictive performance evaluation for the selection of the most accurate model is achieved using a threshold independent technique, and the prediction accuracy of both models is assessed in greater detail using threshold-dependent measures. The resulting GDE probability map can potentially be used for the definition of conservation areas since it can be translated into a binary classification map with two classes: GDE and NON-GDE. These maps are created by selecting a probability threshold. It is demonstrated that the choice of this threshold has dramatic effects on deterministic model performance measures.

Top