Feature Selection and Effective Classifiers.
ERIC Educational Resources Information Center
Deogun, Jitender S.; Choubey, Suresh K.; Raghavan, Vijay V.; Sever, Hayri
1998-01-01
Develops and analyzes four algorithms for feature selection in the context of rough set methodology. Experimental results confirm the expected relationship between the time complexity of these algorithms and the classification accuracy of the resulting upper classifiers. When compared, results of upper classifiers perform better than lower…
Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble
Liu, Hang; Chu, Renzhi; Tang, Zhenan
2015-01-01
Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied. PMID:25942640
NASA Astrophysics Data System (ADS)
Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam
2018-04-01
Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
A Hybrid Template-Based Composite Classification System
2009-02-01
Hybrid Classifier: Forced Decision . . . . 116 5.3.2 Forced Decision Experimental Results . . . . . 119 5.3.3 Test for Statistical Significance ...Results . . . . . . . . . . 127 5.4.2 Test for Statistical Significance : NDEC Option 129 5.5 Implementing the Hyrid Classifier with OOL Targets . 130...comple- mentary in nature . Complementary classifiers are observed by finding an optimal method for partitioning the problem space. For example, the
Minimum distance classification in remote sensing
NASA Technical Reports Server (NTRS)
Wacker, A. G.; Landgrebe, D. A.
1972-01-01
The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.
Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
Xu, Yan; Wang, Xiao-Bo; Ding, Jun; Wu, Ling-Yun; Deng, Nai-Yang
2010-05-07
Lysine acetylation is an essentially reversible and high regulated post-translational modification which regulates diverse protein properties. Experimental identification of acetylation sites is laborious and expensive. Hence, there is significant interest in the development of computational methods for reliable prediction of acetylation sites from amino acid sequences. In this paper we use an ensemble of support vector machine classifiers to perform this work. The experimentally determined acetylation lysine sites are extracted from Swiss-Prot database and scientific literatures. Experiment results show that an ensemble of support vector machine classifiers outperforms single support vector machine classifier and other computational methods such as PAIL and LysAcet on the problem of predicting acetylation lysine sites. The resulting method has been implemented in EnsemblePail, a web server for lysine acetylation sites prediction available at http://www.aporc.org/EnsemblePail/. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Novel layered clustering-based approach for generating ensemble of classifiers.
Rahman, Ashfaqur; Verma, Brijesh
2011-05-01
This paper introduces a novel concept for creating an ensemble of classifiers. The concept is based on generating an ensemble of classifiers through clustering of data at multiple layers. The ensemble classifier model generates a set of alternative clustering of a dataset at different layers by randomly initializing the clustering parameters and trains a set of base classifiers on the patterns at different clusters in different layers. A test pattern is classified by first finding the appropriate cluster at each layer and then using the corresponding base classifier. The decisions obtained at different layers are fused into a final verdict using majority voting. As the base classifiers are trained on overlapping patterns at different layers, the proposed approach achieves diversity among the individual classifiers. Identification of difficult-to-classify patterns through clustering as well as achievement of diversity through layering leads to better classification results as evidenced from the experimental results.
NASA Astrophysics Data System (ADS)
Sasaki, Kenya; Mitani, Yoshihiro; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao
2017-02-01
In this paper, in order to classify liver cirrhosis on regions of interest (ROIs) images from B-mode ultrasound images, we have proposed to use the higher order local autocorrelation (HLAC) features. In a previous study, we tried to classify liver cirrhosis by using a Gabor filter based approach. However, the classification performance of the Gabor feature was poor from our preliminary experimental results. In order accurately to classify liver cirrhosis, we examined to use the HLAC features for liver cirrhosis classification. The experimental results show the effectiveness of HLAC features compared with the Gabor feature. Furthermore, by using a binary image made by an adaptive thresholding method, the classification performance of HLAC features has improved.
Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan
2015-06-01
Conventional clinical decision support systems are based on individual classifiers or simple combination of these classifiers which tend to show moderate performance. This research paper presents a novel classifier ensemble framework based on enhanced bagging approach with multi-objective weighted voting scheme for prediction and analysis of heart disease. The proposed model overcomes the limitations of conventional performance by utilizing an ensemble of five heterogeneous classifiers: Naïve Bayes, linear regression, quadratic discriminant analysis, instance based learner and support vector machines. Five different datasets are used for experimentation, evaluation and validation. The datasets are obtained from publicly available data repositories. Effectiveness of the proposed ensemble is investigated by comparison of results with several classifiers. Prediction results of the proposed ensemble model are assessed by ten fold cross validation and ANOVA statistics. The experimental evaluation shows that the proposed framework deals with all type of attributes and achieved high diagnosis accuracy of 84.16 %, 93.29 % sensitivity, 96.70 % specificity, and 82.15 % f-measure. The f-ratio higher than f-critical and p value less than 0.05 for 95 % confidence interval indicate that the results are extremely statistically significant for most of the datasets.
Linear and Order Statistics Combiners for Pattern Classification
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)
2001-01-01
Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.
Palmprint identification using FRIT
NASA Astrophysics Data System (ADS)
Kisku, D. R.; Rattani, A.; Gupta, P.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper proposes a palmprint identification system using Finite Ridgelet Transform (FRIT) and Bayesian classifier. FRIT is applied on the ROI (region of interest), which is extracted from palmprint image, to extract a set of distinctive features from palmprint image. These features are used to classify with the help of Bayesian classifier. The proposed system has been tested on CASIA and IIT Kanpur palmprint databases. The experimental results reveal better performance compared to all well known systems.
Recognition of pornographic web pages by classifying texts and images.
Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve
2007-06-01
With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages.
Embedded feature ranking for ensemble MLP classifiers.
Windeatt, Terry; Duangsoithong, Rakkrit; Smith, Raymond
2011-06-01
A feature ranking scheme for multilayer perceptron (MLP) ensembles is proposed, along with a stopping criterion based upon the out-of-bootstrap estimate. To solve multi-class problems feature ranking is combined with modified error-correcting output coding. Experimental results on benchmark data demonstrate the versatility of the MLP base classifier in removing irrelevant features.
Ensemble Classifier Strategy Based on Transient Feature Fusion in Electronic Nose
NASA Astrophysics Data System (ADS)
Bagheri, Mohammad Ali; Montazer, Gholam Ali
2011-09-01
In this paper, we test the performance of several ensembles of classifiers and each base learner has been trained on different types of extracted features. Experimental results show the potential benefits introduced by the usage of simple ensemble classification systems for the integration of different types of transient features.
Multiple Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2010-01-01
A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.
Textual and visual content-based anti-phishing: a Bayesian approach.
Zhang, Haijun; Liu, Gang; Chow, Tommy W S; Liu, Wenyin
2011-10-01
A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases. © 2011 IEEE
Adaptive classifier for steel strip surface defects
NASA Astrophysics Data System (ADS)
Jiang, Mingming; Li, Guangyao; Xie, Li; Xiao, Mang; Yi, Li
2017-01-01
Surface defects detection system has been receiving increased attention as its precision, speed and less cost. One of the most challenges is reacting to accuracy deterioration with time as aged equipment and changed processes. These variables will make a tiny change to the real world model but a big impact on the classification result. In this paper, we propose a new adaptive classifier with a Bayes kernel (BYEC) which update the model with small sample to it adaptive for accuracy deterioration. Firstly, abundant features were introduced to cover lots of information about the defects. Secondly, we constructed a series of SVMs with the random subspace of the features. Then, a Bayes classifier was trained as an evolutionary kernel to fuse the results from base SVMs. Finally, we proposed the method to update the Bayes evolutionary kernel. The proposed algorithm is experimentally compared with different algorithms, experimental results demonstrate that the proposed method can be updated with small sample and fit the changed model well. Robustness, low requirement for samples and adaptive is presented in the experiment.
A decision support system using combined-classifier for high-speed data stream in smart grid
NASA Astrophysics Data System (ADS)
Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun
2016-11-01
Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.
Local classifier weighting by quadratic programming.
Cevikalp, Hakan; Polikar, Robi
2008-10-01
It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.
Classification with spatio-temporal interpixel class dependency contexts
NASA Technical Reports Server (NTRS)
Jeon, Byeungwoo; Landgrebe, David A.
1992-01-01
A contextual classifier which can utilize both spatial and temporal interpixel dependency contexts is investigated. After spatial and temporal neighbors are defined, a general form of maximum a posterior spatiotemporal contextual classifier is derived. This contextual classifier is simplified under several assumptions. Joint prior probabilities of the classes of each pixel and its spatial neighbors are modeled by the Gibbs random field. The classification is performed in a recursive manner to allow a computationally efficient contextual classification. Experimental results with bitemporal TM data show significant improvement of classification accuracy over noncontextual pixelwise classifiers. This spatiotemporal contextual classifier should find use in many applications of remote sensing, especially when the classification accuracy is important.
The decision tree approach to classification
NASA Technical Reports Server (NTRS)
Wu, C.; Landgrebe, D. A.; Swain, P. H.
1975-01-01
A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.
Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael
2007-01-01
In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.
Comparing ensemble learning methods based on decision tree classifiers for protein fold recognition.
Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi
2014-01-01
In this paper, some methods for ensemble learning of protein fold recognition based on a decision tree (DT) are compared and contrasted against each other over three datasets taken from the literature. According to previously reported studies, the features of the datasets are divided into some groups. Then, for each of these groups, three ensemble classifiers, namely, random forest, rotation forest and AdaBoost.M1 are employed. Also, some fusion methods are introduced for combining the ensemble classifiers obtained in the previous step. After this step, three classifiers are produced based on the combination of classifiers of types random forest, rotation forest and AdaBoost.M1. Finally, the three different classifiers achieved are combined to make an overall classifier. Experimental results show that the overall classifier obtained by the genetic algorithm (GA) weighting fusion method, is the best one in comparison to previously applied methods in terms of classification accuracy.
Discovering Fine-grained Sentiment in Suicide Notes
Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.
2012-01-01
This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770
Experimental Machine Learning of Quantum States
NASA Astrophysics Data System (ADS)
Gao, Jun; Qiao, Lu-Feng; Jiao, Zhi-Qiang; Ma, Yue-Chi; Hu, Cheng-Qiu; Ren, Ruo-Jing; Yang, Ai-Lin; Tang, Hao; Yung, Man-Hong; Jin, Xian-Min
2018-06-01
Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.
ERIC Educational Resources Information Center
Bliss, Stacy L.; Skinner, Christopher H.; Hautau, Briana; Carroll, Erin E.
2008-01-01
Using an experimenter-developed system, articles from four school psychology journals for the years 2000-2005 (n = 929) were classified. Results showed that 40% of the articles were narrative, 29% correlational, 16% descriptive, 8% causal-experimental, 4% causal-comparative, and 2% were meta-analytic. Further analysis of the causal-experimental…
Mexican Hat Wavelet Kernel ELM for Multiclass Classification.
Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei
2017-01-01
Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.
Coustaty, M; Bertet, K; Visani, M; Ogier, J
2011-08-01
In this paper, we propose a new approach for symbol recognition using structural signatures and a Galois lattice as a classifier. The structural signatures are based on topological graphs computed from segments which are extracted from the symbol images by using an adapted Hough transform. These structural signatures-that can be seen as dynamic paths which carry high-level information-are robust toward various transformations. They are classified by using a Galois lattice as a classifier. The performance of the proposed approach is evaluated based on the GREC'03 symbol database, and the experimental results we obtain are encouraging.
Malof, Jordan M.; Mazurowski, Maciej A.; Tourassi, Georgia D.
2013-01-01
Case selection is a useful approach for increasing the efficiency and performance of case-based classifiers. Multiple techniques have been designed to perform case selection. This paper empirically investigates how class imbalance in the available set of training cases can impact the performance of the resulting classifier as well as properties of the selected set. In this study, the experiments are performed using a dataset for the problem of detecting breast masses in screening mammograms. The classification problem was binary and we used a k-nearest neighbor classifier. The classifier’s performance was evaluated using the Receiver Operating Characteristic (ROC) area under the curve (AUC) measure. The experimental results indicate that although class imbalance reduces the performance of the derived classifier and the effectiveness of selection at improving overall classifier performance, case selection can still be beneficial, regardless of the level of class imbalance. PMID:21820273
Impact of study design on development and evaluation of an activity-type classifier.
van Hees, Vincent T; Golubic, Rajna; Ekelund, Ulf; Brage, Søren
2013-04-01
Methods to classify activity types are often evaluated with an experimental protocol involving prescribed physical activities under confined (laboratory) conditions, which may not reflect real-life conditions. The present study aims to evaluate how study design may impact on classifier performance in real life. Twenty-eight healthy participants (21-53 yr) were asked to wear nine triaxial accelerometers while performing 58 activity types selected to simulate activities in real life. For each sensor location, logistic classifiers were trained in subsets of up to 8 activities to distinguish between walking and nonwalking activities and were then evaluated in all 58 activities. Different weighting factors were used to convert the resulting confusion matrices into an estimation of the confusion matrix as would apply in the real-life setting by creating four different real-life scenarios, as well as one traditional laboratory scenario. The sensitivity of a classifier estimated with a traditional laboratory protocol is within the range of estimates derived from real-life scenarios for any body location. The specificity, however, was systematically overestimated by the traditional laboratory scenario. Walking time was systematically overestimated, except for lower back sensor data (range: 7-757%). In conclusion, classifier performance under confined conditions may not accurately reflect classifier performance in real life. Future studies that aim to evaluate activity classification methods are warranted to pay special attention to the representativeness of experimental conditions for real-life conditions.
Invariant 2D object recognition using the wavelet transform and structured neural networks
NASA Astrophysics Data System (ADS)
Khalil, Mahmoud I.; Bayoumi, Mohamed M.
1999-03-01
This paper applies the dyadic wavelet transform and the structured neural networks approach to recognize 2D objects under translation, rotation, and scale transformation. Experimental results are presented and compared with traditional methods. The experimental results showed that this refined technique successfully classified the objects and outperformed some traditional methods especially in the presence of noise.
Latency correction of event-related potentials between different experimental protocols
NASA Astrophysics Data System (ADS)
Iturrate, I.; Chavarriaga, R.; Montesano, L.; Minguez, J.; Millán, JdR
2014-06-01
Objective. A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP. Approach. We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification. Main results. The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes. Significance. These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.
Solving a Higgs optimization problem with quantum annealing for machine learning.
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-18
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
Anam, Khairul; Al-Jumaily, Adel
2017-01-01
The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and non-amputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solving a Higgs optimization problem with quantum annealing for machine learning
NASA Astrophysics Data System (ADS)
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-01
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA
Ma, Xiaoqi
2015-01-01
A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
An ensemble of dissimilarity based classifiers for Mackerel gender determination
NASA Astrophysics Data System (ADS)
Blanco, A.; Rodriguez, R.; Martinez-Maranon, I.
2014-03-01
Mackerel is an infravalored fish captured by European fishing vessels. A manner to add value to this specie can be achieved by trying to classify it attending to its sex. Colour measurements were performed on Mackerel females and males (fresh and defrozen) extracted gonads to obtain differences between sexes. Several linear and non linear classifiers such as Support Vector Machines (SVM), k Nearest Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA) can been applied to this problem. However, theyare usually based on Euclidean distances that fail to reflect accurately the sample proximities. Classifiers based on non-Euclidean dissimilarities misclassify a different set of patterns. We combine different kind of dissimilarity based classifiers. The diversity is induced considering a set of complementary dissimilarities for each model. The experimental results suggest that our algorithm helps to improve classifiers based on a single dissimilarity.
Use of Unlabeled Samples for Mitigating the Hughes Phenomenon
NASA Technical Reports Server (NTRS)
Landgrebe, David A.; Shahshahani, Behzad M.
1993-01-01
The use of unlabeled samples in improving the performance of classifiers is studied. When the number of training samples is fixed and small, additional feature measurements may reduce the performance of a statistical classifier. It is shown that by using unlabeled samples, estimates of the parameters can be improved and therefore this phenomenon may be mitigated. Various methods for using unlabeled samples are reviewed and experimental results are provided.
Comparison of Classification Methods for Detecting Emotion from Mandarin Speech
NASA Astrophysics Data System (ADS)
Pao, Tsang-Long; Chen, Yu-Te; Yeh, Jun-Heng
It is said that technology comes out from humanity. What is humanity? The very definition of humanity is emotion. Emotion is the basis for all human expression and the underlying theme behind everything that is done, said, thought or imagined. Making computers being able to perceive and respond to human emotion, the human-computer interaction will be more natural. Several classifiers are adopted for automatically assigning an emotion category, such as anger, happiness or sadness, to a speech utterance. These classifiers were designed independently and tested on various emotional speech corpora, making it difficult to compare and evaluate their performance. In this paper, we first compared several popular classification methods and evaluated their performance by applying them to a Mandarin speech corpus consisting of five basic emotions, including anger, happiness, boredom, sadness and neutral. The extracted feature streams contain MFCC, LPCC, and LPC. The experimental results show that the proposed WD-MKNN classifier achieves an accuracy of 81.4% for the 5-class emotion recognition and outperforms other classification techniques, including KNN, MKNN, DW-KNN, LDA, QDA, GMM, HMM, SVM, and BPNN. Then, to verify the advantage of the proposed method, we compared these classifiers by applying them to another Mandarin expressive speech corpus consisting of two emotions. The experimental results still show that the proposed WD-MKNN outperforms others.
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.
2017-01-01
In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403
AVNM: A Voting based Novel Mathematical Rule for Image Classification.
Vidyarthi, Ankit; Mittal, Namita
2016-12-01
In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Monti, S.; Cooper, G. F.
1998-01-01
We present a new Bayesian classifier for computer-aided diagnosis. The new classifier builds upon the naive-Bayes classifier, and models the dependencies among patient findings in an attempt to improve its performance, both in terms of classification accuracy and in terms of calibration of the estimated probabilities. This work finds motivation in the argument that highly calibrated probabilities are necessary for the clinician to be able to rely on the model's recommendations. Experimental results are presented, supporting the conclusion that modeling the dependencies among findings improves calibration. PMID:9929288
Palmprint authentication using multiple classifiers
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Zhang, David
2004-08-01
This paper investigates the performance improvement for palmprint authentication using multiple classifiers. The proposed methods on personal authentication using palmprints can be divided into three categories; appearance- , line -, and texture-based. A combination of these approaches can be used to achieve higher performance. We propose to simultaneously extract palmprint features from PCA, Line detectors and Gabor-filters and combine their corresponding matching scores. This paper also investigates the comparative performance of simple combination rules and the hybrid fusion strategy to achieve performance improvement. Our experimental results on the database of 100 users demonstrate the usefulness of such approach over those based on individual classifiers.
Intelligent query by humming system based on score level fusion of multiple classifiers
NASA Astrophysics Data System (ADS)
Pyo Nam, Gi; Thu Trang Luong, Thi; Ha Nam, Hyun; Ryoung Park, Kang; Park, Sung-Joo
2011-12-01
Recently, the necessity for content-based music retrieval that can return results even if a user does not know information such as the title or singer has increased. Query-by-humming (QBH) systems have been introduced to address this need, as they allow the user to simply hum snatches of the tune to find the right song. Even though there have been many studies on QBH, few have combined multiple classifiers based on various fusion methods. Here we propose a new QBH system based on the score level fusion of multiple classifiers. This research is novel in the following three respects: three local classifiers [quantized binary (QB) code-based linear scaling (LS), pitch-based dynamic time warping (DTW), and LS] are employed; local maximum and minimum point-based LS and pitch distribution feature-based LS are used as global classifiers; and the combination of local and global classifiers based on the score level fusion by the PRODUCT rule is used to achieve enhanced matching accuracy. Experimental results with the 2006 MIREX QBSH and 2009 MIR-QBSH corpus databases show that the performance of the proposed method is better than that of single classifier and other fusion methods.
Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data.
Li, Jiuyong; Liu, Lin; Liu, Jixue; Green, Ryan
2017-12-01
It is common that a trained classification model is applied to the operating data that is deviated from the training data because of noise. This paper will test an ensemble method, Diversified Multiple Tree (DMT), on its capability for classifying instances in a new laboratory using the classifier built on the instances of another laboratory. DMT is tested on three real world biomedical data sets from different laboratories in comparison with four benchmark ensemble methods, AdaBoost, Bagging, Random Forests, and Random Trees. Experiments have also been conducted on studying the limitation of DMT and its possible variations. Experimental results show that DMT is significantly more accurate than other benchmark ensemble classifiers on classifying new instances of a different laboratory from the laboratory where instances are used to build the classifier. This paper demonstrates that an ensemble classifier, DMT, is more robust in classifying noisy data than other widely used ensemble methods. DMT works on the data set that supports multiple simple trees.
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
Learning accurate and concise naïve Bayes classifiers from attribute value taxonomies and data
Kang, D.-K.; Silvescu, A.; Honavar, V.
2009-01-01
In many application domains, there is a need for learning algorithms that can effectively exploit attribute value taxonomies (AVT)—hierarchical groupings of attribute values—to learn compact, comprehensible and accurate classifiers from data—including data that are partially specified. This paper describes AVT-NBL, a natural generalization of the naïve Bayes learner (NBL), for learning classifiers from AVT and data. Our experimental results show that AVT-NBL is able to generate classifiers that are substantially more compact and more accurate than those produced by NBL on a broad range of data sets with different percentages of partially specified values. We also show that AVT-NBL is more efficient in its use of training data: AVT-NBL produces classifiers that outperform those produced by NBL using substantially fewer training examples. PMID:20351793
Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.
Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong
2018-05-24
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.
SVM based colon polyps classifier in a wireless active stereo endoscope.
Ayoub, J; Granado, B; Mhanna, Y; Romain, O
2010-01-01
This work focuses on the recognition of three-dimensional colon polyps captured by an active stereo vision sensor. The detection algorithm consists of SVM classifier trained on robust feature descriptors. The study is related to Cyclope, this prototype sensor allows real time 3D object reconstruction and continues to be optimized technically to improve its classification task by differentiation between hyperplastic and adenomatous polyps. Experimental results were encouraging and show correct classification rate of approximately 97%. The work contains detailed statistics about the detection rate and the computing complexity. Inspired by intensity histogram, the work shows a new approach that extracts a set of features based on depth histogram and combines stereo measurement with SVM classifiers to correctly classify benign and malignant polyps.
Extraction of Protein-Protein Interaction from Scientific Articles by Predicting Dominant Keywords.
Koyabu, Shun; Phan, Thi Thanh Thuy; Ohkawa, Takenao
2015-01-01
For the automatic extraction of protein-protein interaction information from scientific articles, a machine learning approach is useful. The classifier is generated from training data represented using several features to decide whether a protein pair in each sentence has an interaction. Such a specific keyword that is directly related to interaction as "bind" or "interact" plays an important role for training classifiers. We call it a dominant keyword that affects the capability of the classifier. Although it is important to identify the dominant keywords, whether a keyword is dominant depends on the context in which it occurs. Therefore, we propose a method for predicting whether a keyword is dominant for each instance. In this method, a keyword that derives imbalanced classification results is tentatively assumed to be a dominant keyword initially. Then the classifiers are separately trained from the instance with and without the assumed dominant keywords. The validity of the assumed dominant keyword is evaluated based on the classification results of the generated classifiers. The assumption is updated by the evaluation result. Repeating this process increases the prediction accuracy of the dominant keyword. Our experimental results using five corpora show the effectiveness of our proposed method with dominant keyword prediction.
Chaotic particle swarm optimization with mutation for classification.
Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza
2015-01-01
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.
Future View: Web Navigation based on Learning User's Browsing Strategy
NASA Astrophysics Data System (ADS)
Nagino, Norikatsu; Yamada, Seiji
In this paper, we propose a Future View system that assists user's usual Web browsing. The Future View will prefetch Web pages based on user's browsing strategies and present them to a user in order to assist Web browsing. To learn user's browsing strategy, the Future View uses two types of learning classifier systems: a content-based classifier system for contents change patterns and an action-based classifier system for user's action patterns. The results of learning is applied to crawling by Web robots, and the gathered Web pages are presented to a user through a Web browser interface. We experimentally show effectiveness of navigation using the Future View.
Nanni, Loris; Lumini, Alessandra
2009-01-01
The focuses of this work are: to propose a novel method for building an ensemble of classifiers for peptide classification based on substitution matrices; to show the importance to select a proper set of the parameters of the classifiers that build the ensemble of learning systems. The HIV-1 protease cleavage site prediction problem is here studied. The results obtained by a blind testing protocol are reported, the comparison with other state-of-the-art approaches, based on ensemble of classifiers, allows to quantify the performance improvement obtained by the systems proposed in this paper. The simulation based on experimentally determined protease cleavage data has demonstrated the success of these new ensemble algorithms. Particularly interesting it is to note that also if the HIV-1 protease cleavage site prediction problem is considered linearly separable we obtain the best performance using an ensemble of non-linear classifiers.
Robust Combining of Disparate Classifiers Through Order Statistics
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2001-01-01
Integrating the outputs of multiple classifiers via combiners or meta-learners has led to substantial improvements in several difficult pattern recognition problems. In this article we investigate a family of combiners based on order statistics, for robust handling of situations where there are large discrepancies in performance of individual classifiers. Based on a mathematical modeling of how the decision boundaries are affected by order statistic combiners, we derive expressions for the reductions in error expected when simple output combination methods based on the the median, the maximum and in general, the ith order statistic, are used. Furthermore, we analyze the trim and spread combiners, both based on linear combinations of the ordered classifier outputs, and show that in the presence of uneven classifier performance, they often provide substantial gains over both linear and simple order statistics combiners. Experimental results on both real world data and standard public domain data sets corroborate these findings.
E-Nose Vapor Identification Based on Dempster-Shafer Fusion of Multiple Classifiers
NASA Technical Reports Server (NTRS)
Li, Winston; Leung, Henry; Kwan, Chiman; Linnell, Bruce R.
2005-01-01
Electronic nose (e-nose) vapor identification is an efficient approach to monitor air contaminants in space stations and shuttles in order to ensure the health and safety of astronauts. Data preprocessing (measurement denoising and feature extraction) and pattern classification are important components of an e-nose system. In this paper, a wavelet-based denoising method is applied to filter the noisy sensor measurements. Transient-state features are then extracted from the denoised sensor measurements, and are used to train multiple classifiers such as multi-layer perceptions (MLP), support vector machines (SVM), k nearest neighbor (KNN), and Parzen classifier. The Dempster-Shafer (DS) technique is used at the end to fuse the results of the multiple classifiers to get the final classification. Experimental analysis based on real vapor data shows that the wavelet denoising method can remove both random noise and outliers successfully, and the classification rate can be improved by using classifier fusion.
Invariant object recognition based on the generalized discrete radon transform
NASA Astrophysics Data System (ADS)
Easley, Glenn R.; Colonna, Flavia
2004-04-01
We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.
Semi-supervised protein subcellular localization.
Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang
2009-01-30
Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.
Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram
2015-08-01
In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.
Arshad, Sannia; Rho, Seungmin
2014-01-01
We have presented a classification framework that combines multiple heterogeneous classifiers in the presence of class label noise. An extension of m-Mediods based modeling is presented that generates model of various classes whilst identifying and filtering noisy training data. This noise free data is further used to learn model for other classifiers such as GMM and SVM. A weight learning method is then introduced to learn weights on each class for different classifiers to construct an ensemble. For this purpose, we applied genetic algorithm to search for an optimal weight vector on which classifier ensemble is expected to give the best accuracy. The proposed approach is evaluated on variety of real life datasets. It is also compared with existing standard ensemble techniques such as Adaboost, Bagging, and Random Subspace Methods. Experimental results show the superiority of proposed ensemble method as compared to its competitors, especially in the presence of class label noise and imbalance classes. PMID:25295302
Khalid, Shehzad; Arshad, Sannia; Jabbar, Sohail; Rho, Seungmin
2014-01-01
We have presented a classification framework that combines multiple heterogeneous classifiers in the presence of class label noise. An extension of m-Mediods based modeling is presented that generates model of various classes whilst identifying and filtering noisy training data. This noise free data is further used to learn model for other classifiers such as GMM and SVM. A weight learning method is then introduced to learn weights on each class for different classifiers to construct an ensemble. For this purpose, we applied genetic algorithm to search for an optimal weight vector on which classifier ensemble is expected to give the best accuracy. The proposed approach is evaluated on variety of real life datasets. It is also compared with existing standard ensemble techniques such as Adaboost, Bagging, and Random Subspace Methods. Experimental results show the superiority of proposed ensemble method as compared to its competitors, especially in the presence of class label noise and imbalance classes.
Abbreviations: Their Effects on Comprehension of Classified Advertisements.
ERIC Educational Resources Information Center
Sokol, Kirstin R.
Two experimental designs were used to test the hypothesis that abbreviations in classified advertisements decrease the reader's comprehension of such ads. In the first experimental design, 73 high school students read four ads (for employment, used cars, apartments for rent, and articles for sale) either with abbreviations or with all…
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2018-06-01
Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results. The experimental results indicated that the CGDR technique achieved 12% to 15% improvement in accuracy compared with fully automated document representation baseline techniques. Moreover, two-level classification obtained better results compared with one-level classification. The promising results of the proposed conceptual graph-based document representation technique suggest that pathologists can adopt the proposed system as their basis for second opinion, thereby supporting them in effectively determining CoD. Copyright © 2018 Elsevier Inc. All rights reserved.
Anam, Khairul; Al-Jumaily, Adel
2014-01-01
The use of a small number of surface electromyography (EMG) channels on the transradial amputee in a myoelectric controller is a big challenge. This paper proposes a pattern recognition system using an extreme learning machine (ELM) optimized by particle swarm optimization (PSO). PSO is mutated by wavelet function to avoid trapped in a local minima. The proposed system is used to classify eleven imagined finger motions on five amputees by using only two EMG channels. The optimal performance of wavelet-PSO was compared to a grid-search method and standard PSO. The experimental results show that the proposed system is the most accurate classifier among other tested classifiers. It could classify 11 finger motions with the average accuracy of about 94 % across five amputees.
Design of an audio advertisement dataset
NASA Astrophysics Data System (ADS)
Fu, Yutao; Liu, Jihong; Zhang, Qi; Geng, Yuting
2015-12-01
Since more and more advertisements swarm into radios, it is necessary to establish an audio advertising dataset which could be used to analyze and classify the advertisement. A method of how to establish a complete audio advertising dataset is presented in this paper. The dataset is divided into four different kinds of advertisements. Each advertisement's sample is given in *.wav file format, and annotated with a txt file which contains its file name, sampling frequency, channel number, broadcasting time and its class. The classifying rationality of the advertisements in this dataset is proved by clustering the different advertisements based on Principal Component Analysis (PCA). The experimental results show that this audio advertisement dataset offers a reliable set of samples for correlative audio advertisement experimental studies.
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis.
Duong, Bach Phi; Kim, Jong-Myon
2018-04-07
The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance.
Frog sound identification using extended k-nearest neighbor classifier
NASA Astrophysics Data System (ADS)
Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati
2017-09-01
Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.
Chaotic Particle Swarm Optimization with Mutation for Classification
Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza
2015-01-01
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937
Extraction of Protein-Protein Interaction from Scientific Articles by Predicting Dominant Keywords
Koyabu, Shun; Phan, Thi Thanh Thuy; Ohkawa, Takenao
2015-01-01
For the automatic extraction of protein-protein interaction information from scientific articles, a machine learning approach is useful. The classifier is generated from training data represented using several features to decide whether a protein pair in each sentence has an interaction. Such a specific keyword that is directly related to interaction as “bind” or “interact” plays an important role for training classifiers. We call it a dominant keyword that affects the capability of the classifier. Although it is important to identify the dominant keywords, whether a keyword is dominant depends on the context in which it occurs. Therefore, we propose a method for predicting whether a keyword is dominant for each instance. In this method, a keyword that derives imbalanced classification results is tentatively assumed to be a dominant keyword initially. Then the classifiers are separately trained from the instance with and without the assumed dominant keywords. The validity of the assumed dominant keyword is evaluated based on the classification results of the generated classifiers. The assumption is updated by the evaluation result. Repeating this process increases the prediction accuracy of the dominant keyword. Our experimental results using five corpora show the effectiveness of our proposed method with dominant keyword prediction. PMID:26783534
NASA Technical Reports Server (NTRS)
Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.
1996-01-01
A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Empirical study of classification process for two-stage turbo air classifier in series
NASA Astrophysics Data System (ADS)
Yu, Yuan; Liu, Jiaxiang; Li, Gang
2013-05-01
The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the "fish-hook" effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the "fish-hook" effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.
Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition
Islam, Md. Rabiul
2014-01-01
The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al. PMID:25114676
Feature and score fusion based multiple classifier selection for iris recognition.
Islam, Md Rabiul
2014-01-01
The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al.
NASA Astrophysics Data System (ADS)
Allman, Derek; Reiter, Austin; Bell, Muyinatu
2018-02-01
We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.
Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.
Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan
2017-07-01
Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.
Repliscan: a tool for classifying replication timing regions.
Zynda, Gregory J; Song, Jawon; Concia, Lorenzo; Wear, Emily E; Hanley-Bowdoin, Linda; Thompson, William F; Vaughn, Matthew W
2017-08-07
Replication timing experiments that use label incorporation and high throughput sequencing produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing. To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan generally applicable and more robust than previous methods that classify regions based on thresholds. Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage.
Automatic morphological classification of galaxy images
Shamir, Lior
2009-01-01
We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594
Rajagopal, Rekha; Ranganathan, Vidhyapriya
2018-06-05
Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.
Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of human biomedical science. Many such classifiers discovered thus far lack vigorous statistical and experimental validations, with their stability and rel...
Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks.
Liu, Xiaoming; Guo, Shuxu; Yang, Bingtao; Ma, Shuzhi; Zhang, Huimao; Li, Jing; Sun, Changjian; Jin, Lanyi; Li, Xueyan; Yang, Qi; Fu, Yu
2018-04-20
Accurate segmentation of specific organ from computed tomography (CT) scans is a basic and crucial task for accurate diagnosis and treatment. To avoid time-consuming manual optimization and to help physicians distinguish diseases, an automatic organ segmentation framework is presented. The framework utilized convolution neural networks (CNN) to classify pixels. To reduce the redundant inputs, the simple linear iterative clustering (SLIC) of super-pixels and the support vector machine (SVM) classifier are introduced. To establish the perfect boundary of organs in one-pixel-level, the pixels need to be classified step-by-step. First, the SLIC is used to cut an image into grids and extract respective digital signatures. Next, the signature is classified by the SVM, and the rough edges are acquired. Finally, a precise boundary is obtained by the CNN, which is based on patches around each pixel-point. The framework is applied to abdominal CT scans of livers and high-resolution computed tomography (HRCT) scans of lungs. The experimental CT scans are derived from two public datasets (Sliver 07 and a Chinese local dataset). Experimental results show that the proposed method can precisely and efficiently detect the organs. This method consumes 38 s/slice for liver segmentation. The Dice coefficient of the liver segmentation results reaches to 97.43%. For lung segmentation, the Dice coefficient is 97.93%. This finding demonstrates that the proposed framework is a favorable method for lung segmentation of HRCT scans.
A new approach to human microRNA target prediction using ensemble pruning and rotation forest.
Mousavi, Reza; Eftekhari, Mahdi; Haghighi, Mehdi Ghezelbash
2015-12-01
MicroRNAs (miRNAs) are small non-coding RNAs that have important functions in gene regulation. Since finding miRNA target experimentally is costly and needs spending much time, the use of machine learning methods is a growing research area for miRNA target prediction. In this paper, a new approach is proposed by using two popular ensemble strategies, i.e. Ensemble Pruning and Rotation Forest (EP-RTF), to predict human miRNA target. For EP, the approach utilizes Genetic Algorithm (GA). In other words, a subset of classifiers from the heterogeneous ensemble is first selected by GA. Next, the selected classifiers are trained based on the RTF method and then are combined using weighted majority voting. In addition to seeking a better subset of classifiers, the parameter of RTF is also optimized by GA. Findings of the present study confirm that the newly developed EP-RTF outperforms (in terms of classification accuracy, sensitivity, and specificity) the previously applied methods over four datasets in the field of human miRNA target. Diversity-error diagrams reveal that the proposed ensemble approach constructs individual classifiers which are more accurate and usually diverse than the other ensemble approaches. Given these experimental results, we highly recommend EP-RTF for improving the performance of miRNA target prediction.
Multiwavelet grading of prostate pathological images
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Jafari-Khouzani, Kourosh
2002-05-01
We have developed image analysis methods to automatically grade pathological images of prostate. The proposed method generates Gleason grades to images, where each image is assigned a grade between 1 and 5. This is done using features extracted from multiwavelet transformations. We extract energy and entropy features from submatrices obtained in the decomposition. Next, we apply a k-NN classifier to grade the image. To find optimal multiwavelet basis, preprocessing, and classifier, we use features extracted by different multiwavelets with either critically sampled preprocessing or repeated row preprocessing and different k-NN classifiers and compare their performances, evaluated by total misclassification rate (TMR). To evaluate sensitivity to noise, we add white Gaussian noise to images and compare the results (TMR's). We applied proposed methods to 100 images. We evaluated the first and second levels of decomposition using Geronimo, Hardin, and Massopust (GHM), Chui and Lian (CL), and Shen (SA4) multiwavelets. We also evaluated k-NN classifier for k=1,2,3,4,5. Experimental results illustrate that first level of decomposition is quite noisy. They also show that critically sampled preprocessing outperforms repeated row preprocessing and has less sensitivity to noise. Finally, comparison studies indicate that SA4 multiwavelet and k-NN classifier (k=1) generates optimal results (with smallest TMR of 3%).
Real-time 3D human pose recognition from reconstructed volume via voxel classifiers
NASA Astrophysics Data System (ADS)
Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo
2014-03-01
This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
Kim, Jong-Myon
2018-01-01
The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance. PMID:29642466
WND-CHARM: Multi-purpose image classification using compound image transforms
Orlov, Nikita; Shamir, Lior; Macura, Tomasz; Johnston, Josiah; Eckley, D. Mark; Goldberg, Ilya G.
2008-01-01
We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from openmicroscopy.org. PMID:18958301
An Improvement To The k-Nearest Neighbor Classifier For ECG Database
NASA Astrophysics Data System (ADS)
Jaafar, Haryati; Hidayah Ramli, Nur; Nasir, Aimi Salihah Abdul
2018-03-01
The k nearest neighbor (kNN) is a non-parametric classifier and has been widely used for pattern classification. However, in practice, the performance of kNN often tends to fail due to the lack of information on how the samples are distributed among them. Moreover, kNN is no longer optimal when the training samples are limited. Another problem observed in kNN is regarding the weighting issues in assigning the class label before classification. Thus, to solve these limitations, a new classifier called Mahalanobis fuzzy k-nearest centroid neighbor (MFkNCN) is proposed in this study. Here, a Mahalanobis distance is applied to avoid the imbalance of samples distribition. Then, a surrounding rule is employed to obtain the nearest centroid neighbor based on the distributions of training samples and its distance to the query point. Consequently, the fuzzy membership function is employed to assign the query point to the class label which is frequently represented by the nearest centroid neighbor Experimental studies from electrocardiogram (ECG) signal is applied in this study. The classification performances are evaluated in two experimental steps i.e. different values of k and different sizes of feature dimensions. Subsequently, a comparative study of kNN, kNCN, FkNN and MFkCNN classifier is conducted to evaluate the performances of the proposed classifier. The results show that the performance of MFkNCN consistently exceeds the kNN, kNCN and FkNN with the best classification rates of 96.5%.
Speaker gender identification based on majority vote classifiers
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2017-03-01
Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.
Classification of human carcinoma cells using multispectral imagery
NASA Astrophysics Data System (ADS)
Ćinar, Umut; Y. Ćetin, Yasemin; Ćetin-Atalay, Rengul; Ćetin, Enis
2016-03-01
In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options.
Classification of Odours for Mobile Robots Using an Ensemble of Linear Classifiers
NASA Astrophysics Data System (ADS)
Trincavelli, Marco; Coradeschi, Silvia; Loutfi, Amy
2009-05-01
This paper investigates the classification of odours using an electronic nose mounted on a mobile robot. The samples are collected as the robot explores the environment. Under such conditions, the sensor response differs from typical three phase sampling processes. In this paper, we focus particularly on the classification problem and how it is influenced by the movement of the robot. To cope with these influences, an algorithm consisting of an ensemble of classifiers is presented. Experimental results show that this algorithm increases classification performance compared to other traditional classification methods.
Classifying BCI signals from novice users with extreme learning machine
NASA Astrophysics Data System (ADS)
Rodríguez-Bermúdez, Germán; Bueno-Crespo, Andrés; José Martinez-Albaladejo, F.
2017-07-01
Brain computer interface (BCI) allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM) has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui
2015-12-01
This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.
Link prediction boosted psychiatry disorder classification for functional connectivity network
NASA Astrophysics Data System (ADS)
Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang
2017-02-01
Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.
A Random Forest-based ensemble method for activity recognition.
Feng, Zengtao; Mo, Lingfei; Li, Meng
2015-01-01
This paper presents a multi-sensor ensemble approach to human physical activity (PA) recognition, using random forest. We designed an ensemble learning algorithm, which integrates several independent Random Forest classifiers based on different sensor feature sets to build a more stable, more accurate and faster classifier for human activity recognition. To evaluate the algorithm, PA data collected from the PAMAP (Physical Activity Monitoring for Aging People), which is a standard, publicly available database, was utilized to train and test. The experimental results show that the algorithm is able to correctly recognize 19 PA types with an accuracy of 93.44%, while the training is faster than others. The ensemble classifier system based on the RF (Random Forest) algorithm can achieve high recognition accuracy and fast calculation.
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
Special object extraction from medieval books using superpixels and bag-of-features
NASA Astrophysics Data System (ADS)
Yang, Ying; Rushmeier, Holly
2017-01-01
We propose a method to extract special objects in images of medieval books, which generally represent, for example, figures and capital letters. Instead of working on the single-pixel level, we consider superpixels as the basic classification units for improved time efficiency. More specifically, we classify superpixels into different categories/objects by using a bag-of-features approach, where a superpixel category classifier is trained with the local features of the superpixels of the training images. With the trained classifier, we are able to assign the category labels to the superpixels of a historical document image under test. Finally, special objects can easily be identified and extracted after analyzing the categorization results. Experimental results demonstrate that, as compared to the state-of-the-art algorithms, our method provides comparable performance for some historical books but greatly outperforms them in terms of generality and computational time.
An ensemble-based approach for breast mass classification in mammography images
NASA Astrophysics Data System (ADS)
Ribeiro, Patricia B.; Papa, João. P.; Romero, Roseli A. F.
2017-03-01
Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naïve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.
A linear-RBF multikernel SVM to classify big text corpora.
Romero, R; Iglesias, E L; Borrajo, L
2015-01-01
Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force search. The model consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel). The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared with the classic SVM, while the training is significantly faster than several other SVM classifiers.
Issues on machine learning for prediction of classes among molecular sequences of plants and animals
NASA Astrophysics Data System (ADS)
Stehlik, Milan; Pant, Bhasker; Pant, Kumud; Pardasani, K. R.
2012-09-01
Nowadays major laboratories of the world are turning towards in-silico experimentation due to their ease, reproducibility and accuracy. The ethical issues concerning wet lab experimentations are also minimal in in-silico experimentations. But before we turn fully towards dry lab simulations it is necessary to understand the discrepancies and bottle necks involved with dry lab experimentations. It is necessary before reporting any result using dry lab simulations to perform in-depth statistical analysis of the data. Keeping same in mind here we are presenting a collaborative effort to correlate findings and results of various machine learning algorithms and checking underlying regressions and mutual dependencies so as to develop an optimal classifier and predictors.
Data Processing of LAPAN-A3 Thermal Imager
NASA Astrophysics Data System (ADS)
Hartono, R.; Hakim, P. R.; Syafrudin, AH
2018-04-01
As an experimental microsatellite, LAPAN-A3/IPB satellite has an experimental thermal imager, which is called as micro-bolometer, to observe earth surface temperature for horizon observation. The imager data is transmitted from satellite to ground station by S-band video analog signal transmission, and then processed by ground station to become sequence of 8-bit enhanced and contrasted images. Data processing of LAPAN-A3/IPB thermal imager is more difficult than visual digital camera, especially for mosaic and classification purpose. This research aims to describe simple mosaic and classification process of LAPAN-A3/IPB thermal imager based on several videos data produced by the imager. The results show that stitching using Adobe Photoshop produces excellent result but can only process small area, while manual approach using ImageJ software can produce a good result but need a lot of works and time consuming. The mosaic process using image cross-correlation by Matlab offers alternative solution, which can process significantly bigger area in significantly shorter time processing. However, the quality produced is not as good as mosaic images of the other two methods. The simple classifying process that has been done shows that the thermal image can classify three distinct objects, i.e.: clouds, sea, and land surface. However, the algorithm fail to classify any other object which might be caused by distortions in the images. All of these results can be used as reference for development of thermal imager in LAPAN-A4 satellite.
The Unobtrusive Measurement of Racial Bias Among Recruit Classification Specialists
1974-10-01
Sattler, J. M. Racial "experimenter effects" in experimentation, testing , interviewing, and psychotherapy. Psychological Bulletin, 1970, 73...16 5 Analyses of Variance of Mean Test Scores (GCT + ARI) of Black and White Recruits Seen by Each Classifier 17 6 Average Criterion Scores... test scores and experiences equivalent to those interviewed by black classifiers. If these assumptions can be verified, several interesting
NASA Astrophysics Data System (ADS)
Shiraishi, Yuhki; Takeda, Fumiaki
In this research, we have developed a sorting system for fishes, which is comprised of a conveyance part, a capturing image part, and a sorting part. In the conveyance part, we have developed an independent conveyance system in order to separate one fish from an intertwined group of fishes. After the image of the separated fish is captured in the capturing part, a rotation invariant feature is extracted using two-dimensional fast Fourier transform, which is the mean value of the power spectrum with the same distance from the origin in the spectrum field. After that, the fishes are classified by three-layered feed-forward neural networks. The experimental results show that the developed system classifies three kinds of fishes captured in various angles with the classification ratio of 98.95% for 1044 captured images of five fishes. The other experimental results show the classification ratio of 90.7% for 300 fishes by 10-fold cross validation method.
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong
2015-11-13
In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system.
NASA Astrophysics Data System (ADS)
Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan
2018-04-01
This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.
de Albuquerque, Victor Hugo C.; Barbosa, Cleisson V.; Silva, Cleiton C.; Moura, Elineudo P.; Rebouças Filho, Pedro P.; Papa, João P.; Tavares, João Manuel R. S.
2015-01-01
Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ” and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed. PMID:26024416
de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S
2015-05-27
Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.
Developing a radiomics framework for classifying non-small cell lung carcinoma subtypes
NASA Astrophysics Data System (ADS)
Yu, Dongdong; Zang, Yali; Dong, Di; Zhou, Mu; Gevaert, Olivier; Fang, Mengjie; Shi, Jingyun; Tian, Jie
2017-03-01
Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features) to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs patients with CT image scans. Classification of these features is performed with four different machine-learning classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest (RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers' performance, optimal feature subset is selected from the original feature set by using an iterative forward inclusion and backward eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).
Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation.
Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira
2013-04-01
Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers.
An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming
2016-01-01
We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.
Burns, Gully A P C; Dasigi, Pradeep; de Waard, Anita; Hovy, Eduard H
2016-01-01
Automated machine-reading biocuration systems typically use sentence-by-sentence information extraction to construct meaning representations for use by curators. This does not directly reflect the typical discourse structure used by scientists to construct an argument from the experimental data available within a article, and is therefore less likely to correspond to representations typically used in biomedical informatics systems (let alone to the mental models that scientists have). In this study, we develop Natural Language Processing methods to locate, extract, and classify the individual passages of text from articles' Results sections that refer to experimental data. In our domain of interest (molecular biology studies of cancer signal transduction pathways), individual articles may contain as many as 30 small-scale individual experiments describing a variety of findings, upon which authors base their overall research conclusions. Our system automatically classifies discourse segments in these texts into seven categories (fact, hypothesis, problem, goal, method, result, implication) with an F-score of 0.68. These segments describe the essential building blocks of scientific discourse to (i) provide context for each experiment, (ii) report experimental details and (iii) explain the data's meaning in context. We evaluate our system on text passages from articles that were curated in molecular biology databases (the Pathway Logic Datum repository, the Molecular Interaction MINT and INTACT databases) linking individual experiments in articles to the type of assay used (coprecipitation, phosphorylation, translocation etc.). We use supervised machine learning techniques on text passages containing unambiguous references to experiments to obtain baseline F1 scores of 0.59 for MINT, 0.71 for INTACT and 0.63 for Pathway Logic. Although preliminary, these results support the notion that targeting information extraction methods to experimental results could provide accurate, automated methods for biocuration. We also suggest the need for finer-grained curation of experimental methods used when constructing molecular biology databases. © The Author(s) 2016. Published by Oxford University Press.
Complex interactions of multiple aquatic consumers: an experimental mesocosm manipulation
Richardson, William B.; Threlkeld, Stephen T.
1993-01-01
In 7-m3 outdoor tanks filled with lake water, the presence/absence of omnivorous young-of-the- year Micropterus salmoides), zooplanktivorous Menidia beryllina , and herbivorous larval Hyla chrysocelis was experimentally manipulated. A cross-classified design was used to assess the interactive effects of these vertebrate consumers on the experimental food webs. The primary effects of the experimental manipulations on food web components were two- and three-way interactions in which the effect of a given treatment was dependent on the presence of another treatment. Results suggest that the addition or removal of consumers may not cause linear, additive changes in food webs.
ERIC Educational Resources Information Center
Pedrini, D. T.; Pedrini, Bonnie C.
Sigmund Freud and his associates did much clinical work with the dynamic of projection, especially with regard to paranoid symptoms and syndromes. Much experimental work has also been done with projection. Sears evaluated the results of some of those studies. Murstein and Pryer sub-classified projection and reviewed typical studies. The…
Rue-Albrecht, Kévin; McGettigan, Paul A; Hernández, Belinda; Nalpas, Nicolas C; Magee, David A; Parnell, Andrew C; Gordon, Stephen V; MacHugh, David E
2016-03-11
Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.
Multi-view L2-SVM and its multi-view core vector machine.
Huang, Chengquan; Chung, Fu-lai; Wang, Shitong
2016-03-01
In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin
2016-01-01
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.
Identification of terrain cover using the optimum polarimetric classifier
NASA Technical Reports Server (NTRS)
Kong, J. A.; Swartz, A. A.; Yueh, H. A.; Novak, L. M.; Shin, R. T.
1988-01-01
A systematic approach for the identification of terrain media such as vegetation canopy, forest, and snow-covered fields is developed using the optimum polarimetric classifier. The covariance matrices for various terrain cover are computed from theoretical models of random medium by evaluating the scattering matrix elements. The optimal classification scheme makes use of a quadratic distance measure and is applied to classify a vegetation canopy consisting of both trees and grass. Experimentally measured data are used to validate the classification scheme. Analytical and Monte Carlo simulated classification errors using the fully polarimetric feature vector are compared with classification based on single features which include the phase difference between the VV and HH polarization returns. It is shown that the full polarimetric results are optimal and provide better classification performance than single feature measurements.
Ensemble of One-Class Classifiers for Personal Risk Detection Based on Wearable Sensor Data.
Rodríguez, Jorge; Barrera-Animas, Ari Y; Trejo, Luis A; Medina-Pérez, Miguel Angel; Monroy, Raúl
2016-09-29
This study introduces the One-Class K-means with Randomly-projected features Algorithm (OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset according to random feature subsets. Algorithms found in the literature spread over a wide range of applications where ensembles of one-class classifiers have been satisfactorily applied; however, none is oriented to the area under our study: personal risk detection. OCKRA has been designed with the aim of improving the detection performance in the problem posed by the Personal RIsk DEtection(PRIDE) dataset. PRIDE was built based on 23 test subjects, where the data for each user were captured using a set of sensors embedded in a wearable band. The performance of OCKRA was compared against support vector machine and three versions of the Parzen window classifier. On average, experimental results show that OCKRA outperformed the other classifiers for at least 0.53% of the area under the curve (AUC). In addition, OCKRA achieved an AUC above 90% for more than 57% of the users.
Ensemble of One-Class Classifiers for Personal Risk Detection Based on Wearable Sensor Data
Rodríguez, Jorge; Barrera-Animas, Ari Y.; Trejo, Luis A.; Medina-Pérez, Miguel Angel; Monroy, Raúl
2016-01-01
This study introduces the One-Class K-means with Randomly-projected features Algorithm (OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset according to random feature subsets. Algorithms found in the literature spread over a wide range of applications where ensembles of one-class classifiers have been satisfactorily applied; however, none is oriented to the area under our study: personal risk detection. OCKRA has been designed with the aim of improving the detection performance in the problem posed by the Personal RIsk DEtection(PRIDE) dataset. PRIDE was built based on 23 test subjects, where the data for each user were captured using a set of sensors embedded in a wearable band. The performance of OCKRA was compared against support vector machine and three versions of the Parzen window classifier. On average, experimental results show that OCKRA outperformed the other classifiers for at least 0.53% of the area under the curve (AUC). In addition, OCKRA achieved an AUC above 90% for more than 57% of the users. PMID:27690054
Color Image Classification Using Block Matching and Learning
NASA Astrophysics Data System (ADS)
Kondo, Kazuki; Hotta, Seiji
In this paper, we propose block matching and learning for color image classification. In our method, training images are partitioned into small blocks. Given a test image, it is also partitioned into small blocks, and mean-blocks corresponding to each test block are calculated with neighbor training blocks. Our method classifies a test image into the class that has the shortest total sum of distances between mean blocks and test ones. We also propose a learning method for reducing memory requirement. Experimental results show that our classification outperforms other classifiers such as support vector machine with bag of keypoints.
Music Research in Inclusive School Settings: 1975 to 2013
ERIC Educational Resources Information Center
Jellison, Judith A.; Draper, Ellary A.
2015-01-01
A search for music research in inclusive music school settings (1975-2013) resulted in 22 descriptive and experimental studies that can be classified and coded according to settings, participants, research variables, measures of generalization, and effectiveness of the interventions. Half of the studies reported data from both students with…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... in one or more experimental mammalian species as the result of any oral, respiratory or dermal... scientific evidence. In contrast, other organizations, such as the International Agency for Research on... need for more efficient and quicker means of classifying chemicals. Qualitative and semi- quantitative...
Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview
NASA Astrophysics Data System (ADS)
Weisenberger, Andrew G.
A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.
Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng
2014-03-15
The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.
Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Garshasbi, Masoud
2018-01-01
Background: Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost and complexity of the classifier and improves its reliability for prediction of a new class of samples. Methods: The present study used hybrid particle swarm optimization and genetic algorithms for gene selection and a fuzzy support vector machine (SVM) as the classifier. Fuzzy logic is used to infer the importance of each sample in the training phase and decrease the outlier sensitivity of the system to increase the ability to generalize the classifier. A decision-tree algorithm was applied to the most frequent genes to develop a set of rules for each type of cancer. This improved the abilities of the algorithm by finding the best parameters for the classifier during the training phase without the need for trial-and-error by the user. The proposed approach was tested on four benchmark gene expression profiles. Results: Good results have been demonstrated for the proposed algorithm. The classification accuracy for leukemia data is 100%, for colon cancer is 96.67% and for breast cancer is 98%. The results show that the best kernel used in training the SVM classifier is the radial basis function. Conclusions: The experimental results show that the proposed algorithm can decrease the dimensionality of the dataset, determine the most informative gene subset, and improve classification accuracy using the optimal parameters of the classifier with no user interface. PMID:29535919
Power, Sarah D; Kushki, Azadeh; Chau, Tom
2012-01-01
Near-infrared spectroscopy (NIRS) has been recently investigated for use in noninvasive brain-computer interface (BCI) technologies. Previous studies have demonstrated the ability to classify patterns of neural activation associated with different mental tasks (e.g., mental arithmetic) using NIRS signals. Though these studies represent an important step towards the realization of an NIRS-BCI, there is a paucity of literature regarding the consistency of these responses, and the ability to classify them on a single-trial basis, over multiple sessions. This is important when moving out of an experimental context toward a practical system, where performance must be maintained over longer periods. When considering response consistency across sessions, two questions arise: 1) can the hemodynamic response to the activation task be distinguished from a baseline (or other task) condition, consistently across sessions, and if so, 2) are the spatiotemporal characteristics of the response which best distinguish it from the baseline (or other task) condition consistent across sessions. The answers will have implications for the viability of an NIRS-BCI system, and the design strategies (especially in terms of classifier training protocols) adopted. In this study, we investigated the consistency of classification of a mental arithmetic task and a no-control condition over five experimental sessions. Mixed model linear regression on intrasession classification accuracies indicate that the task and baseline states remain differentiable across multiple sessions, with no significant decrease in accuracy (p = 0.67). Intersession analysis, however, revealed inconsistencies in spatiotemporal response characteristics. Based on these results, we investigated several different practical classifier training protocols, including scenarios in which the training and test data come from 1) different sessions, 2) the same session, and 3) a combination of both. Results indicate that when selecting optimal classifier training protocols for NIRS-BCI, a compromise between accuracy and convenience (e.g., in terms of duration/frequency of training data collection) must be considered.
Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui
2016-06-01
Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.
Shu, Ting; Zhang, Bob; Tang, Yuan Yan
2017-01-01
At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.
Statistical process control using optimized neural networks: a case study.
Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid
2014-09-01
The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
A visual tracking method based on improved online multiple instance learning
NASA Astrophysics Data System (ADS)
He, Xianhui; Wei, Yuxing
2016-09-01
Visual tracking is an active research topic in the field of computer vision and has been well studied in the last decades. The method based on multiple instance learning (MIL) was recently introduced into the tracking task, which can solve the problem that template drift well. However, MIL method has relatively poor performance in running efficiency and accuracy, due to its strong classifiers updating strategy is complicated, and the speed of the classifiers update is not always same with the change of the targets' appearance. In this paper, we present a novel online effective MIL (EMIL) tracker. A new update strategy for strong classifier was proposed to improve the running efficiency of MIL method. In addition, to improve the t racking accuracy and stability of the MIL method, a new dynamic mechanism for learning rate renewal of the classifier and variable search window were proposed. Experimental results show that our method performs good performance under the complex scenes, with strong stability and high efficiency.
Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions
Jia, Jiangyong
2014-12-01
I review recent measurements of a large set of flow observables associated with event-shape fluctuations and collective expansion in heavy ion collisions. First, these flow observables are classified and experiment methods are introduced. The experimental results for each type of observables are then presented and compared to theoretical calculations. A coherent picture of initial condition and collective flow based on linear and non-linear hydrodynamic responses is derived, which qualitatively describe most experimental results. I discuss new types of fluctuation measurements that can further our understanding of the event-shape fluctuations and collective expansion dynamics.
[Canine teeth as an experimental model for fixed stomatologic prosthesis].
Redzepagić, S
1996-01-01
Clinical researches, especially pathological-histological experimental researches in mouth of patient reach the level of impossible, from the ethical and law aspect. Trying to define particular state concerning relation of fixed protetical work in the mouth of patient to tooth caries and surrounding belonging tissues, there is a question whether it is necessary to establish milieu-in vivo--which follows scientifically established principles. These principles are necessary for converting results which would become valid in scientific defining of state in the mouth of patient, as well as on the tissues which we want to research clinically and experimentally. Experimental animals are the second choice for researching tissues of human beings. Dogs have many conveniences that classify them into most usually experimental animal.
Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation
Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira
2013-01-01
Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers. PMID:24098863
Piao, Yongjun; Piao, Minghao; Ryu, Keun Ho
2017-01-01
Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data. In this article, we propose a feature subset-based ensemble method in which each model is learned from a different projection of the original feature space to classify multiple cancers. In our method, the feature relevance and redundancy are considered to generate multiple feature subsets, the base classifiers are learned from each independent miRNA subset, and the average posterior probability is used to combine the base classifiers. To test the performance of our method, we used bead-based and sequence-based miRNA expression datasets and conducted 10-fold and leave-one-out cross validations. The experimental results show that the proposed method yields good results and has higher prediction accuracy than popular ensemble methods. The Java program and source code of the proposed method and the datasets in the experiments are freely available at https://sourceforge.net/projects/mirna-ensemble/. Copyright © 2016 Elsevier Ltd. All rights reserved.
Classification of high dimensional multispectral image data
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1993-01-01
A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.
Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules
Javadi, Mehrdad; Ebrahimpour, Reza; Sajedin, Atena; Faridi, Soheil; Zakernejad, Shokoufeh
2011-01-01
This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization. PMID:22046232
NASA Astrophysics Data System (ADS)
Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John
2015-05-01
This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.
Apply lightweight recognition algorithms in optical music recognition
NASA Astrophysics Data System (ADS)
Pham, Viet-Khoi; Nguyen, Hai-Dang; Nguyen-Khac, Tung-Anh; Tran, Minh-Triet
2015-02-01
The problems of digitalization and transformation of musical scores into machine-readable format are necessary to be solved since they help people to enjoy music, to learn music, to conserve music sheets, and even to assist music composers. However, the results of existing methods still require improvements for higher accuracy. Therefore, the authors propose lightweight algorithms for Optical Music Recognition to help people to recognize and automatically play musical scores. In our proposal, after removing staff lines and extracting symbols, each music symbol is represented as a grid of identical M ∗ N cells, and the features are extracted and classified with multiple lightweight SVM classifiers. Through experiments, the authors find that the size of 10 ∗ 12 cells yields the highest precision value. Experimental results on the dataset consisting of 4929 music symbols taken from 18 modern music sheets in the Synthetic Score Database show that our proposed method is able to classify printed musical scores with accuracy up to 99.56%.
Gap Shape Classification using Landscape Indices and Multivariate Statistics
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-01-01
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap. PMID:27901127
Gap Shape Classification using Landscape Indices and Multivariate Statistics.
Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung
2016-11-30
This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks' lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
... experimental mammalian species as the result of any oral, respiratory or dermal exposure, or any other exposure... contrast, other organizations, such as the International Agency for Research on Cancer (IARC) and the... and quicker means of classifying chemicals. Qualitative and semi- quantitative approaches such as...
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong
2015-01-01
In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system. PMID:26580620
An assessment of support vector machines for land cover classification
Huang, C.; Davis, L.S.; Townshend, J.R.G.
2002-01-01
The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.
Chun, Hong-Woo; Tsuruoka, Yoshimasa; Kim, Jin-Dong; Shiba, Rie; Nagata, Naoki; Hishiki, Teruyoshi; Tsujii, Jun'ichi
2006-01-01
Background Automatic recognition of relations between a specific disease term and its relevant genes or protein terms is an important practice of bioinformatics. Considering the utility of the results of this approach, we identified prostate cancer and gene terms with the ID tags of public biomedical databases. Moreover, considering that genetics experts will use our results, we classified them based on six topics that can be used to analyze the type of prostate cancers, genes, and their relations. Methods We developed a maximum entropy-based named entity recognizer and a relation recognizer and applied them to a corpus-based approach. We collected prostate cancer-related abstracts from MEDLINE, and constructed an annotated corpus of gene and prostate cancer relations based on six topics by biologists. We used it to train the maximum entropy-based named entity recognizer and relation recognizer. Results Topic-classified relation recognition achieved 92.1% precision for the relation (an increase of 11.0% from that obtained in a baseline experiment). For all topics, the precision was between 67.6 and 88.1%. Conclusion A series of experimental results revealed two important findings: a carefully designed relation recognition system using named entity recognition can improve the performance of relation recognition, and topic-classified relation recognition can be effectively addressed through a corpus-based approach using manual annotation and machine learning techniques. PMID:17134477
SVM and SVM Ensembles in Breast Cancer Prediction.
Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong
2017-01-01
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.
SVM and SVM Ensembles in Breast Cancer Prediction
Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong
2017-01-01
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807
Thin Cloud Detection Method by Linear Combination Model of Cloud Image
NASA Astrophysics Data System (ADS)
Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.
2018-04-01
The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.
Multiple disturbances classifier for electric signals using adaptive structuring neural networks
NASA Astrophysics Data System (ADS)
Lu, Yen-Ling; Chuang, Cheng-Long; Fahn, Chin-Shyurng; Jiang, Joe-Air
2008-07-01
This work proposes a novel classifier to recognize multiple disturbances for electric signals of power systems. The proposed classifier consists of a series of pipeline-based processing components, including amplitude estimator, transient disturbance detector, transient impulsive detector, wavelet transform and a brand-new neural network for recognizing multiple disturbances in a power quality (PQ) event. Most of the previously proposed methods usually treated a PQ event as a single disturbance at a time. In practice, however, a PQ event often consists of various types of disturbances at the same time. Therefore, the performances of those methods might be limited in real power systems. This work considers the PQ event as a combination of several disturbances, including steady-state and transient disturbances, which is more analogous to the real status of a power system. Six types of commonly encountered power quality disturbances are considered for training and testing the proposed classifier. The proposed classifier has been tested on electric signals that contain single disturbance or several disturbances at a time. Experimental results indicate that the proposed PQ disturbance classification algorithm can achieve a high accuracy of more than 97% in various complex testing cases.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
..., but within its historical range, as ''experimental.'' Section 10(j) is designed to increase our... a Nonessential Experimental Population of Endangered Whooping Cranes in Southwestern Louisiana... to classify the flock as a nonessential experimental population (NEP) according to section 10(j) of...
Zahiri, Javad; Mohammad-Noori, Morteza; Ebrahimpour, Reza; Saadat, Samaneh; Bozorgmehr, Joseph H; Goldberg, Tatyana; Masoudi-Nejad, Ali
2014-12-01
Protein-protein interaction (PPI) detection is one of the central goals of functional genomics and systems biology. Knowledge about the nature of PPIs can help fill the widening gap between sequence information and functional annotations. Although experimental methods have produced valuable PPI data, they also suffer from significant limitations. Computational PPI prediction methods have attracted tremendous attentions. Despite considerable efforts, PPI prediction is still in its infancy in complex multicellular organisms such as humans. Here, we propose a novel ensemble learning method, LocFuse, which is useful in human PPI prediction. This method uses eight different genomic and proteomic features along with four types of different classifiers. The prediction performance of this classifier selection method was found to be considerably better than methods employed hitherto. This confirms the complex nature of the PPI prediction problem and also the necessity of using biological information for classifier fusion. The LocFuse is available at: http://lbb.ut.ac.ir/Download/LBBsoft/LocFuse. The results revealed that if we divide proteome space according to the cellular localization of proteins, then the utility of some classifiers in PPI prediction can be improved. Therefore, to predict the interaction for any given protein pair, we can select the most accurate classifier with regard to the cellular localization information. Based on the results, we can say that the importance of different features for PPI prediction varies between differently localized proteins; however in general, our novel features, which were extracted from position-specific scoring matrices (PSSMs), are the most important ones and the Random Forest (RF) classifier performs best in most cases. LocFuse was developed with a user-friendly graphic interface and it is freely available for Linux, Mac OSX and MS Windows operating systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Real-time antenna fault diagnosis experiments at DSS 13
NASA Technical Reports Server (NTRS)
Mellstrom, J.; Pierson, C.; Smyth, P.
1992-01-01
Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.
2013-01-01
Background Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Methods Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE) ,cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Results Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. Conclusions LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR. PMID:24207108
Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo
2011-04-01
The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Classification of EEG signals using a genetic-based machine learning classifier.
Skinner, B T; Nguyen, H T; Liu, D K
2007-01-01
This paper investigates the efficacy of the genetic-based learning classifier system XCS, for the classification of noisy, artefact-inclusive human electroencephalogram (EEG) signals represented using large condition strings (108bits). EEG signals from three participants were recorded while they performed four mental tasks designed to elicit hemispheric responses. Autoregressive (AR) models and Fast Fourier Transform (FFT) methods were used to form feature vectors with which mental tasks can be discriminated. XCS achieved a maximum classification accuracy of 99.3% and a best average of 88.9%. The relative classification performance of XCS was then compared against four non-evolutionary classifier systems originating from different learning techniques. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
NASA Astrophysics Data System (ADS)
Drozd, Marek
2018-03-01
According to literature data two structures of guanidine with nitrobenzoic acids are known. For guanidinium 4-nitrobenzoate the detailed studies of X-ray structure, vibrational and theoretical properties were performed. This compound was classified as second harmonic generator with efficiency of 3.3 times that KDP, standard crystal. On the contrary to mentioned above results for the guanidinium 3-nitrobenzoate the basic X-ray diffraction study was performed, only. On the basis of established crystallographic results, the detailed investigation of geometry and vibrational properties were made on the basis of theoretical calculation. According to this data the equilibrium geometry of investigated molecule was established. On the basis of this calculation the detailed computational studies of vibrational properties were performed. The theoretical IR and Raman frequencies, intensities and PED analysis are presented. Additionally, the NBO charges, HOMO and LUMO shapes and NLO properties of titled crystal were calculated. On the basis of these results the crystal was classified as second order generator in NLO but with bigger efficiency that guanidinium 4-nitorobenzoate compound. The obtained data are compared with experimental crystallographic and vibrational results for real crystal of guanidinium 3-nitrobenzoate. Additionally, the theoretical vibrational spectra are compared with literature calculations of guanidinium 4-nitrobenzoate compound.
ERIC Educational Resources Information Center
Parker, Megan R.; Jordan, Kelli R.; Kirk, Emily R.; Aspiranti, Kathleen B.; Bain, Sherry K.
2010-01-01
We reviewed articles from four premier journals in the field of gifted education for the years 2001 to 2006 (N = 506). We classified articles according to types, including narrative, descriptive, correlational, meta-analysis, causal-comparative, experimental, and qualitative. Results indicated that 46% of the articles were narrative, 16%…
Anisotropy of machine building materials
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.
Chun, Hong-Woo; Tsuruoka, Yoshimasa; Kim, Jin-Dong; Shiba, Rie; Nagata, Naoki; Hishiki, Teruyoshi; Tsujii, Jun'ichi
2006-11-24
Automatic recognition of relations between a specific disease term and its relevant genes or protein terms is an important practice of bioinformatics. Considering the utility of the results of this approach, we identified prostate cancer and gene terms with the ID tags of public biomedical databases. Moreover, considering that genetics experts will use our results, we classified them based on six topics that can be used to analyze the type of prostate cancers, genes, and their relations. We developed a maximum entropy-based named entity recognizer and a relation recognizer and applied them to a corpus-based approach. We collected prostate cancer-related abstracts from MEDLINE, and constructed an annotated corpus of gene and prostate cancer relations based on six topics by biologists. We used it to train the maximum entropy-based named entity recognizer and relation recognizer. Topic-classified relation recognition achieved 92.1% precision for the relation (an increase of 11.0% from that obtained in a baseline experiment). For all topics, the precision was between 67.6 and 88.1%. A series of experimental results revealed two important findings: a carefully designed relation recognition system using named entity recognition can improve the performance of relation recognition, and topic-classified relation recognition can be effectively addressed through a corpus-based approach using manual annotation and machine learning techniques.
AdaBoost-based algorithm for network intrusion detection.
Hu, Weiming; Hu, Wei; Maybank, Steve
2008-04-01
Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.
Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy
2017-01-01
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier. PMID:28124985
Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.
Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling
2015-11-01
In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.
Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy
2017-01-23
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.
Adversarial Feature Selection Against Evasion Attacks.
Zhang, Fei; Chan, Patrick P K; Biggio, Battista; Yeung, Daniel S; Roli, Fabio
2016-03-01
Pattern recognition and machine learning techniques have been increasingly adopted in adversarial settings such as spam, intrusion, and malware detection, although their security against well-crafted attacks that aim to evade detection by manipulating data at test time has not yet been thoroughly assessed. While previous work has been mainly focused on devising adversary-aware classification algorithms to counter evasion attempts, only few authors have considered the impact of using reduced feature sets on classifier security against the same attacks. An interesting, preliminary result is that classifier security to evasion may be even worsened by the application of feature selection. In this paper, we provide a more detailed investigation of this aspect, shedding some light on the security properties of feature selection against evasion attacks. Inspired by previous work on adversary-aware classifiers, we propose a novel adversary-aware feature selection model that can improve classifier security against evasion attacks, by incorporating specific assumptions on the adversary's data manipulation strategy. We focus on an efficient, wrapper-based implementation of our approach, and experimentally validate its soundness on different application examples, including spam and malware detection.
Parallel protein secondary structure prediction based on neural networks.
Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi
2004-01-01
Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.
LDA boost classification: boosting by topics
NASA Astrophysics Data System (ADS)
Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li
2012-12-01
AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.
Zhao, Nan; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry
2014-01-01
Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SNPs (nsSNPs) have been found near or inside the protein-protein interaction (PPI) interfaces. Determining whether such nsSNP will disrupt or preserve a PPI is a challenging task to address, both experimentally and computationally. Here, we present this task as three related classification problems, and develop a new computational method, called the SNP-IN tool (non-synonymous SNP INteraction effect predictor). Our method predicts the effects of nsSNPs on PPIs, given the interaction's structure. It leverages supervised and semi-supervised feature-based classifiers, including our new Random Forest self-learning protocol. The classifiers are trained based on a dataset of comprehensive mutagenesis studies for 151 PPI complexes, with experimentally determined binding affinities of the mutant and wild-type interactions. Three classification problems were considered: (1) a 2-class problem (strengthening/weakening PPI mutations), (2) another 2-class problem (mutations that disrupt/preserve a PPI), and (3) a 3-class classification (detrimental/neutral/beneficial mutation effects). In total, 11 different supervised and semi-supervised classifiers were trained and assessed resulting in a promising performance, with the weighted f-measure ranging from 0.87 for Problem 1 to 0.70 for the most challenging Problem 3. By integrating prediction results of the 2-class classifiers into the 3-class classifier, we further improved its performance for Problem 3. To demonstrate the utility of SNP-IN tool, it was applied to study the nsSNP-induced rewiring of two disease-centered networks. The accurate and balanced performance of SNP-IN tool makes it readily available to study the rewiring of large-scale protein-protein interaction networks, and can be useful for functional annotation of disease-associated SNPs. SNIP-IN tool is freely accessible as a web-server at http://korkinlab.org/snpintool/. PMID:24784581
Wang, Xinglong; Rak, Rafal; Restificar, Angelo; Nobata, Chikashi; Rupp, C J; Batista-Navarro, Riza Theresa B; Nawaz, Raheel; Ananiadou, Sophia
2011-10-03
The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest's Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task's development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew's Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance.
Off-lexicon online Arabic handwriting recognition using neural network
NASA Astrophysics Data System (ADS)
Yahia, Hamdi; Chaabouni, Aymen; Boubaker, Houcine; Alimi, Adel M.
2017-03-01
This paper highlights a new method for online Arabic handwriting recognition based on graphemes segmentation. The main contribution of our work is to explore the utility of Beta-elliptic model in segmentation and features extraction for online handwriting recognition. Indeed, our method consists in decomposing the input signal into continuous part called graphemes based on Beta-Elliptical model, and classify them according to their position in the pseudo-word. The segmented graphemes are then described by the combination of geometric features and trajectory shape modeling. The efficiency of the considered features has been evaluated using feed forward neural network classifier. Experimental results using the benchmarking ADAB Database show the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher
2012-10-01
Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.
Prediction of cell penetrating peptides by support vector machines.
Sanders, William S; Johnston, C Ian; Bridges, Susan M; Burgess, Shane C; Willeford, Kenneth O
2011-07-01
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.
Padma, A; Sukanesh, R
2013-01-01
A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.
Experiments on automatic classification of tissue malignancy in the field of digital pathology
NASA Astrophysics Data System (ADS)
Pereira, J.; Barata, R.; Furtado, Pedro
2017-06-01
Automated analysis of histological images helps diagnose and further classify breast cancer. Totally automated approaches can be used to pinpoint images for further analysis by the medical doctor. But tissue images are especially challenging for either manual or automated approaches, due to mixed patterns and textures, where malignant regions are sometimes difficult to detect unless they are in very advanced stages. Some of the major challenges are related to irregular and very diffuse patterns, as well as difficulty to define winning features and classifier models. Although it is also hard to segment correctly into regions, due to the diffuse nature, it is still crucial to take low-level features over individualized regions instead of the whole image, and to select those with the best outcomes. In this paper we report on our experiments building a region classifier with a simple subspace division and a feature selection model that improves results over image-wide and/or limited feature sets. Experimental results show modest accuracy for a set of classifiers applied over the whole image, while the conjunction of image division, per-region low-level extraction of features and selection of features, together with the use of a neural network classifier achieved the best levels of accuracy for the dataset and settings we used in the experiments. Future work involves deep learning techniques, adding structures semantics and embedding the approach as a tumor finding helper in a practical Medical Imaging Application.
NASA Astrophysics Data System (ADS)
Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya
2018-04-01
In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.
Chatterjee, Sankhadeep; Dey, Nilanjan; Shi, Fuqian; Ashour, Amira S; Fong, Simon James; Sen, Soumya
2018-04-01
Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.
Hierarchy-associated semantic-rule inference framework for classifying indoor scenes
NASA Astrophysics Data System (ADS)
Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei
2016-03-01
Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.
Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina
2015-09-07
Antifreeze proteins (AFPs) play a pivotal role in the antifreeze effect of overwintering organisms. They have a wide range of applications in numerous fields, such as improving the production of crops and the quality of frozen foods. Accurate identification of AFPs may provide important clues to decipher the underlying mechanisms of AFPs in ice-binding and to facilitate the selection of the most appropriate AFPs for several applications. Based on an ensemble learning technique, this study proposes an AFP identification system called AFP-Ensemble. In this system, random forest classifiers are trained by different training subsets and then aggregated into a consensus classifier by majority voting. The resulting predictor yields a sensitivity of 0.892, a specificity of 0.940, an accuracy of 0.938 and a balanced accuracy of 0.916 on an independent dataset, which are far better than the results obtained by previous methods. These results reveal that AFP-Ensemble is an effective and promising predictor for large-scale determination of AFPs. The detailed feature analysis in this study may give useful insights into the molecular mechanisms of AFP-ice interactions and provide guidance for the related experimental validation. A web server has been designed to implement the proposed method.
Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A
2017-04-01
Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.
Experimental confirmation of multiple community states in a marine ecosystem.
Petraitis, Peter S; Methratta, Elizabeth T; Rhile, Erika C; Vidargas, Nicholas A; Dudgeon, Steve R
2009-08-01
Small changes in environmental conditions can unexpectedly tip an ecosystem from one community type to another, and these often irreversible shifts have been observed in semi-arid grasslands, freshwater lakes and ponds, coral reefs, and kelp forests. A commonly accepted explanation is that these ecosystems contain multiple stable points, but experimental tests confirming multiple stable states have proven elusive. Here we present a novel approach and show that mussel beds and rockweed stands are multiple stable states on intertidal shores in the Gulf of Maine, USA. Using broad-scale observational data and long-term data from experimental clearings, we show that the removal of rockweed by winter ice scour can tip persistent rockweed stands to mussel beds. The observational data were analyzed with Anderson's discriminant analysis of principal coordinates, which provided an objective function to separate mussel beds from rockweed stands. The function was then applied to 55 experimental plots, which had been established in rockweed stands in 1996. Based on 2005 data, all uncleared controls and all but one of the small clearings were classified as rockweed stands; 37% of the large clearings were classified as mussel beds. Our results address the establishment of mussels versus rockweeds and complement rather than refute the current paradigm that mussel beds and rockweed stands, once established, are maintained by site-specific differences in strong consumer control.
Wang, Kung-Jeng; Makond, Bunjira; Wang, Kung-Min
2013-11-09
Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE), cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR.
Application of texture analysis method for mammogram density classification
NASA Astrophysics Data System (ADS)
Nithya, R.; Santhi, B.
2017-07-01
Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.
Recognition of Simple 3D Geometrical Objects under Partial Occlusion
NASA Astrophysics Data System (ADS)
Barchunova, Alexandra; Sommer, Gerald
In this paper we present a novel procedure for contour-based recognition of partially occluded three-dimensional objects. In our approach we use images of real and rendered objects whose contours have been deformed by a restricted change of the viewpoint. The preparatory part consists of contour extraction, preprocessing, local structure analysis and feature extraction. The main part deals with an extended construction and functionality of the classifier ensemble Adaptive Occlusion Classifier (AOC). It relies on a hierarchical fragmenting algorithm to perform a local structure analysis which is essential when dealing with occlusions. In the experimental part of this paper we present classification results for five classes of simple geometrical figures: prism, cylinder, half cylinder, a cube, and a bridge. We compare classification results for three classical feature extractors: Fourier descriptors, pseudo Zernike and Zernike moments.
NASA Astrophysics Data System (ADS)
Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo
1997-04-01
There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.
ERIC Educational Resources Information Center
Karagiannakis, Giannis N.; Baccaglini-Frank, Anna E.; Roussos, Petros
2016-01-01
Through a review of the literature on mathematical learning disabilities (MLD) and low achievement in mathematics (LA) we have proposed a model classifying mathematical skills involved in learning mathematics into four domains (Core number, Memory, Reasoning, and Visual-spatial). In this paper we present a new experimental computer-based battery…
Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin
2013-08-01
Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.
2012-01-01
Background Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions. PMID:22849515
A Distributed Fuzzy Associative Classifier for Big Data.
Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco
2017-09-19
Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.
A Host-Based RT-PCR Gene Expression Signature to Identify Acute Respiratory Viral Infection
Zaas, Aimee K.; Burke, Thomas; Chen, Minhua; McClain, Micah; Nicholson, Bradly; Veldman, Timothy; Tsalik, Ephraim L.; Fowler, Vance; Rivers, Emanuel P.; Otero, Ronny; Kingsmore, Stephen F.; Voora, Deepak; Lucas, Joseph; Hero, Alfred O.; Carin, Lawrence; Woods, Christopher W.; Ginsburg, Geoffrey S.
2014-01-01
Improved ways to diagnose acute respiratory viral infections could decrease inappropriate antibacterial use and serve as a vital triage mechanism in the event of a potential viral pandemic. Measurement of the host response to infection is an alternative to pathogen-based diagnostic testing and may improve diagnostic accuracy. We have developed a host-based assay with a reverse transcription polymerase chain reaction (RT-PCR) TaqMan low-density array (TLDA) platform for classifying respiratory viral infection. We developed the assay using two cohorts experimentally infected with influenza A H3N2/Wisconsin or influenza A H1N1/Brisbane, and validated the assay in a sample of adults presenting to the emergency department with fever (n = 102) and in healthy volunteers (n = 41). Peripheral blood RNA samples were obtained from individuals who underwent experimental viral challenge or who presented to the emergency department and had microbiologically proven viral respiratory infection or systemic bacterial infection. The selected gene set on the RT-PCR TLDA assay classified participants with experimentally induced influenza H3N2 and H1N1 infection with 100 and 87% accuracy, respectively. We validated this host gene expression signature in a cohort of 102 individuals arriving at the emergency department. The sensitivity of the RT-PCR test was 89% [95% confidence interval (CI), 72 to 98%], and the specificity was 94% (95% CI, 86 to 99%). These results show that RT-PCR–based detection of a host gene expression signature can classify individuals with respiratory viral infection and sets the stage for prospective evaluation of this diagnostic approach in a clinical setting. PMID:24048524
A comprehensive simulation study on classification of RNA-Seq data.
Zararsız, Gökmen; Goksuluk, Dincer; Korkmaz, Selcuk; Eldem, Vahap; Zararsiz, Gozde Erturk; Duru, Izzet Parug; Ozturk, Ahmet
2017-01-01
RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption. Hence, these methods cannot be directly applied to RNA-Seq data since they violate both data structure and distributional assumptions. However, it is possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way is to develop count-based classifiers, such as Poisson linear discriminant analysis and negative binomial linear discriminant analysis. Another way is to bring the data closer to microarrays and apply microarray-based classifiers. In this study, we compared several classifiers including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF). We also examined the effect of several parameters such as overdispersion, sample size, number of genes, number of classes, differential-expression rate, and the transformation method on model performances. A comprehensive simulation study is conducted and the results are compared with the results of two miRNA and two mRNA experimental datasets. The results revealed that increasing the sample size, differential-expression rate and decreasing the dispersion parameter and number of groups lead to an increase in classification accuracy. Similar with differential-expression studies, the classification of RNA-Seq data requires careful attention when handling data overdispersion. We conclude that, as a count-based classifier, the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
Chinese Sentence Classification Based on Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Gu, Chengwei; Wu, Ming; Zhang, Chuang
2017-10-01
Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.
Fault diagnosis for diesel valve trains based on time frequency images
NASA Astrophysics Data System (ADS)
Wang, Chengdong; Zhang, Youyun; Zhong, Zhenyuan
2008-11-01
In this paper, the Wigner-Ville distributions (WVD) of vibration acceleration signals which were acquired from the cylinder head in eight different states of valve train were calculated and displayed in grey images; and the probabilistic neural networks (PNN) were directly used to classify the time-frequency images after the images were normalized. By this way, the fault diagnosis of valve train was transferred to the classification of time-frequency images. As there is no need to extract further fault features (such as eigenvalues or symptom parameters) from time-frequency distributions before classification, the fault diagnosis process is highly simplified. The experimental results show that the faults of diesel valve trains can be classified accurately by the proposed methods.
Prediction of Ionizing Radiation Resistance in Bacteria Using a Multiple Instance Learning Model.
Aridhi, Sabeur; Sghaier, Haïtham; Zoghlami, Manel; Maddouri, Mondher; Nguifo, Engelbert Mephu
2016-01-01
Ionizing-radiation-resistant bacteria (IRRB) are important in biotechnology. In this context, in silico methods of phenotypic prediction and genotype-phenotype relationship discovery are limited. In this work, we analyzed basal DNA repair proteins of most known proteome sequences of IRRB and ionizing-radiation-sensitive bacteria (IRSB) in order to learn a classifier that correctly predicts this bacterial phenotype. We formulated the problem of predicting bacterial ionizing radiation resistance (IRR) as a multiple-instance learning (MIL) problem, and we proposed a novel approach for this purpose. We provide a MIL-based prediction system that classifies a bacterium to either IRRB or IRSB. The experimental results of the proposed system are satisfactory with 91.5% of successful predictions.
Segmentation of thalamus from MR images via task-driven dictionary learning
NASA Astrophysics Data System (ADS)
Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D.; Prince, Jerry L.
2016-03-01
Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is pro- posed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation overstate-of-the-art atlas-based thalamus segmentation algorithms.
Segmentation of Thalamus from MR images via Task-Driven Dictionary Learning.
Liu, Luoluo; Glaister, Jeffrey; Sun, Xiaoxia; Carass, Aaron; Tran, Trac D; Prince, Jerry L
2016-02-27
Automatic thalamus segmentation is useful to track changes in thalamic volume over time. In this work, we introduce a task-driven dictionary learning framework to find the optimal dictionary given a set of eleven features obtained from T1-weighted MRI and diffusion tensor imaging. In this dictionary learning framework, a linear classifier is designed concurrently to classify voxels as belonging to the thalamus or non-thalamus class. Morphological post-processing is applied to produce the final thalamus segmentation. Due to the uneven size of the training data samples for the non-thalamus and thalamus classes, a non-uniform sampling scheme is proposed to train the classifier to better discriminate between the two classes around the boundary of the thalamus. Experiments are conducted on data collected from 22 subjects with manually delineated ground truth. The experimental results are promising in terms of improvements in the Dice coefficient of the thalamus segmentation over state-of-the-art atlas-based thalamus segmentation algorithms.
Drug-related webpages classification based on multi-modal local decision fusion
NASA Astrophysics Data System (ADS)
Hu, Ruiguang; Su, Xiaojing; Liu, Yanxin
2018-03-01
In this paper, multi-modal local decision fusion is used for drug-related webpages classification. First, meaningful text are extracted through HTML parsing, and effective images are chosen by the FOCARSS algorithm. Second, six SVM classifiers are trained for six kinds of drug-taking instruments, which are represented by PHOG. One SVM classifier is trained for the cannabis, which is represented by the mid-feature of BOW model. For each instance in a webpage, seven SVMs give seven labels for its image, and other seven labels are given by searching the names of drug-taking instruments and cannabis in its related text. Concatenating seven labels of image and seven labels of text, the representation of those instances in webpages are generated. Last, Multi-Instance Learning is used to classify those drugrelated webpages. Experimental results demonstrate that the classification accuracy of multi-instance learning with multi-modal local decision fusion is much higher than those of single-modal classification.
Target discrimination method for SAR images based on semisupervised co-training
NASA Astrophysics Data System (ADS)
Wang, Yan; Du, Lan; Dai, Hui
2018-01-01
Synthetic aperture radar (SAR) target discrimination is usually performed in a supervised manner. However, supervised methods for SAR target discrimination may need lots of labeled training samples, whose acquirement is costly, time consuming, and sometimes impossible. This paper proposes an SAR target discrimination method based on semisupervised co-training, which utilizes a limited number of labeled samples and an abundant number of unlabeled samples. First, Lincoln features, widely used in SAR target discrimination, are extracted from the training samples and partitioned into two sets according to their physical meanings. Second, two support vector machine classifiers are iteratively co-trained with the extracted two feature sets based on the co-training algorithm. Finally, the trained classifiers are exploited to classify the test data. The experimental results on real SAR images data not only validate the effectiveness of the proposed method compared with the traditional supervised methods, but also demonstrate the superiority of co-training over self-training, which only uses one feature set.
Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar
dos Santos, Matheus; Ribeiro, Pedro Otávio; Núñez, Pedro; Botelho, Silvia
2017-01-01
The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper. PMID:28961163
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition.
Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan
2017-01-01
Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition.
Combination of minimum enclosing balls classifier with SVM in coal-rock recognition
Song, QingJun; Jiang, HaiYan; Song, Qinghui; Zhao, XieGuang; Wu, Xiaoxuan
2017-01-01
Top-coal caving technology is a productive and efficient method in modern mechanized coal mining, the study of coal-rock recognition is key to realizing automation in comprehensive mechanized coal mining. In this paper we propose a new discriminant analysis framework for coal-rock recognition. In the framework, a data acquisition model with vibration and acoustic signals is designed and the caving dataset with 10 feature variables and three classes is got. And the perfect combination of feature variables can be automatically decided by using the multi-class F-score (MF-Score) feature selection. In terms of nonlinear mapping in real-world optimization problem, an effective minimum enclosing ball (MEB) algorithm plus Support vector machine (SVM) is proposed for rapid detection of coal-rock in the caving process. In particular, we illustrate how to construct MEB-SVM classifier in coal-rock recognition which exhibit inherently complex distribution data. The proposed method is examined on UCI data sets and the caving dataset, and compared with some new excellent SVM classifiers. We conduct experiments with accuracy and Friedman test for comparison of more classifiers over multiple on the UCI data sets. Experimental results demonstrate that the proposed algorithm has good robustness and generalization ability. The results of experiments on the caving dataset show the better performance which leads to a promising feature selection and multi-class recognition in coal-rock recognition. PMID:28937987
2011-01-01
Background The selection of relevant articles for curation, and linking those articles to experimental techniques confirming the findings became one of the primary subjects of the recent BioCreative III contest. The contest’s Protein-Protein Interaction (PPI) task consisted of two sub-tasks: Article Classification Task (ACT) and Interaction Method Task (IMT). ACT aimed to automatically select relevant documents for PPI curation, whereas the goal of IMT was to recognise the methods used in experiments for identifying the interactions in full-text articles. Results We proposed and compared several classification-based methods for both tasks, employing rich contextual features as well as features extracted from external knowledge sources. For IMT, a new method that classifies pair-wise relations between every text phrase and candidate interaction method obtained promising results with an F1 score of 64.49%, as tested on the task’s development dataset. We also explored ways to combine this new approach and more conventional, multi-label document classification methods. For ACT, our classifiers exploited automatically detected named entities and other linguistic information. The evaluation results on the BioCreative III PPI test datasets showed that our systems were very competitive: one of our IMT methods yielded the best performance among all participants, as measured by F1 score, Matthew’s Correlation Coefficient and AUC iP/R; whereas for ACT, our best classifier was ranked second as measured by AUC iP/R, and also competitive according to other metrics. Conclusions Our novel approach that converts the multi-class, multi-label classification problem to a binary classification problem showed much promise in IMT. Nevertheless, on the test dataset the best performance was achieved by taking the union of the output of this method and that of a multi-class, multi-label document classifier, which indicates that the two types of systems complement each other in terms of recall. For ACT, our system exploited a rich set of features and also obtained encouraging results. We examined the features with respect to their contributions to the classification results, and concluded that contextual words surrounding named entities, as well as the MeSH headings associated with the documents were among the main contributors to the performance. PMID:22151769
An efficient ensemble learning method for gene microarray classification.
Osareh, Alireza; Shadgar, Bita
2013-01-01
The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.
Age and gender estimation using Region-SIFT and multi-layered SVM
NASA Astrophysics Data System (ADS)
Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun
2018-04-01
In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.
Content-based image retrieval for interstitial lung diseases using classification confidence
NASA Astrophysics Data System (ADS)
Dash, Jatindra Kumar; Mukhopadhyay, Sudipta; Prabhakar, Nidhi; Garg, Mandeep; Khandelwal, Niranjan
2013-02-01
Content Based Image Retrieval (CBIR) system could exploit the wealth of High-Resolution Computed Tomography (HRCT) data stored in the archive by finding similar images to assist radiologists for self learning and differential diagnosis of Interstitial Lung Diseases (ILDs). HRCT findings of ILDs are classified into several categories (e.g. consolidation, emphysema, ground glass, nodular etc.) based on their texture like appearances. Therefore, analysis of ILDs is considered as a texture analysis problem. Many approaches have been proposed for CBIR of lung images using texture as primitive visual content. This paper presents a new approach to CBIR for ILDs. The proposed approach makes use of a trained neural network (NN) to find the output class label of query image. The degree of confidence of the NN classifier is analyzed using Naive Bayes classifier that dynamically takes a decision on the size of the search space to be used for retrieval. The proposed approach is compared with three simple distance based and one classifier based texture retrieval approaches. Experimental results show that the proposed technique achieved highest average percentage precision of 92.60% with lowest standard deviation of 20.82%.
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.
Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun
2016-01-01
Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.
Suñé, Pilar; Suñé, Josep Maria; Montoro, J Bruno
2013-01-01
Publication bias may affect the validity of evidence based medical decisions. The aim of this study is to assess whether research outcomes affect the dissemination of clinical trial findings, in terms of rate, time to publication, and impact factor of journal publications. All drug-evaluating clinical trials submitted to and approved by a general hospital ethics committee between 1997 and 2004 were prospectively followed to analyze their fate and publication. Published articles were identified by searching Pubmed and other electronic databases. Clinical study final reports submitted to the ethics committee, final reports synopses available online and meeting abstracts were also considered as sources of study results. Study outcomes were classified as positive (when statistical significance favoring experimental drug was achieved), negative (when no statistical significance was achieved or it favored control drug) and descriptive (for non-controlled studies). Time to publication was defined as time from study closure to publication. A survival analysis was performed using a Cox regression model to analyze time to publication. Journal impact factors of identified publications were recorded. Publication rate was 48·4% (380/785). Study results were identified for 68·9% of all completed clinical trials (541/785). Publication rate was 84·9% (180/212) for studies with results classified as positive and 68·9% (128/186) for studies with results classified as negative (p<0·001). Median time to publication was 2·09 years (IC95 1·61-2·56) for studies with results classified as positive and 3·21 years (IC95 2·69-3·70) for studies with results classified as negative (hazard ratio 1·99 (IC95 1·55-2·55). No differences were found in publication impact factor between positive (median 6·308, interquartile range: 3·141-28·409) and negative result studies (median 8·266, interquartile range: 4·135-17·157). Clinical trials with positive outcomes have significantly higher rates and shorter times to publication than those with negative results. However, no differences have been found in terms of impact factor.
Multiple-instance ensemble learning for hyperspectral images
NASA Astrophysics Data System (ADS)
Ergul, Ugur; Bilgin, Gokhan
2017-10-01
An ensemble framework for multiple-instance (MI) learning (MIL) is introduced for use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap aggregation) method in ensemble learning. Ensemble-based bagging is performed by a small percentage of training samples, and MI bags are formed by a local windowing process with variable window sizes on selected instances. In addition to bootstrap aggregation, random subspace is another method used to diversify base classifiers. The proposed method is implemented using four MIL classification algorithms. The classifier model learning phase is carried out with MI bags, and the estimation phase is performed over single-test instances. In the experimental part of the study, two different HSIs that have ground-truth information are used, and comparative results are demonstrated with state-of-the-art classification methods. In general, the MI ensemble approach produces more compact results in terms of both diversity and error compared to equipollent non-MIL algorithms.
Diverse Region-Based CNN for Hyperspectral Image Classification.
Zhang, Mengmeng; Li, Wei; Du, Qian
2018-06-01
Convolutional neural network (CNN) is of great interest in machine learning and has demonstrated excellent performance in hyperspectral image classification. In this paper, we propose a classification framework, called diverse region-based CNN, which can encode semantic context-aware representation to obtain promising features. With merging a diverse set of discriminative appearance factors, the resulting CNN-based representation exhibits spatial-spectral context sensitivity that is essential for accurate pixel classification. The proposed method exploiting diverse region-based inputs to learn contextual interactional features is expected to have more discriminative power. The joint representation containing rich spectral and spatial information is then fed to a fully connected network and the label of each pixel vector is predicted by a softmax layer. Experimental results with widely used hyperspectral image data sets demonstrate that the proposed method can surpass any other conventional deep learning-based classifiers and other state-of-the-art classifiers.
Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal
2016-10-01
In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improving Night Time Driving Safety Using Vision-Based Classification Techniques.
Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der
2017-09-24
The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver's attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes' movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver's eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver's vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section of this paper.
Improving Night Time Driving Safety Using Vision-Based Classification Techniques
Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der
2017-01-01
The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver’s attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes’ movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver’s eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver’s vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section of this paper. PMID:28946643
Sequential Classifier Training for Rice Mapping with Multitemporal Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Guo, Y.; Jia, X.; Paull, D.
2017-10-01
Most traditional methods for rice mapping with remote sensing data are effective when they are applied to the initial growing stage of rice, as the practice of flooding during this period makes the spectral characteristics of rice fields more distinguishable. In this study, we propose a sequential classifier training approach for rice mapping that can be used over the whole growing period of rice for monitoring various growth stages. Rice fields are firstly identified during the initial flooding period. The identified rice fields are used as training data to train a classifier that separates rice and non-rice pixels. The classifier is then used as a priori knowledge to assist the training of classifiers for later rice growing stages. This approach can be applied progressively to sequential image data, with only a small amount of training samples being required from each image. In order to demonstrate the effectiveness of the proposed approach, experiments were conducted at one of the major rice-growing areas in Australia. The proposed approach was applied to a set of multitemporal remote sensing images acquired by the Sentinel-2A satellite. Experimental results show that, compared with traditional spectral-indexbased algorithms, the proposed method is able to achieve more stable and consistent rice mapping accuracies and it reaches higher than 80% during the whole rice growing period.
Recognition of medication information from discharge summaries using ensembles of classifiers.
Doan, Son; Collier, Nigel; Xu, Hua; Pham, Hoang Duy; Tu, Minh Phuong
2012-05-07
Extraction of clinical information such as medications or problems from clinical text is an important task of clinical natural language processing (NLP). Rule-based methods are often used in clinical NLP systems because they are easy to adapt and customize. Recently, supervised machine learning methods have proven to be effective in clinical NLP as well. However, combining different classifiers to further improve the performance of clinical entity recognition systems has not been investigated extensively. Combining classifiers into an ensemble classifier presents both challenges and opportunities to improve performance in such NLP tasks. We investigated ensemble classifiers that used different voting strategies to combine outputs from three individual classifiers: a rule-based system, a support vector machine (SVM) based system, and a conditional random field (CRF) based system. Three voting methods were proposed and evaluated using the annotated data sets from the 2009 i2b2 NLP challenge: simple majority, local SVM-based voting, and local CRF-based voting. Evaluation on 268 manually annotated discharge summaries from the i2b2 challenge showed that the local CRF-based voting method achieved the best F-score of 90.84% (94.11% Precision, 87.81% Recall) for 10-fold cross-validation. We then compared our systems with the first-ranked system in the challenge by using the same training and test sets. Our system based on majority voting achieved a better F-score of 89.65% (93.91% Precision, 85.76% Recall) than the previously reported F-score of 89.19% (93.78% Precision, 85.03% Recall) by the first-ranked system in the challenge. Our experimental results using the 2009 i2b2 challenge datasets showed that ensemble classifiers that combine individual classifiers into a voting system could achieve better performance than a single classifier in recognizing medication information from clinical text. It suggests that simple strategies that can be easily implemented such as majority voting could have the potential to significantly improve clinical entity recognition.
Boston Community Information System 1987-1988 Experimental Test Results
1989-05-01
criteria which users can put in their filter lines and advertisers can target. The users largely regarded BCIS as an effective medium for advertisement ...financial service industries. BCIS would be effective for advertisement of: classified advertisements ; employment opportunities (as a job mart); books and...of ads that can be filtered for personal interests. I think this could be a very effective advertising method - possibly very profitable. Ads can be
Activities in Aeroelasticity at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Perry, Boyd, III; Noll, Thomas E.
1997-01-01
This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.
Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine
Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin
2016-01-01
This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665
Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan
2016-01-01
Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.
Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine.
Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin
2016-02-02
This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox.
Face liveness detection using shearlet-based feature descriptors
NASA Astrophysics Data System (ADS)
Feng, Litong; Po, Lai-Man; Li, Yuming; Yuan, Fang
2016-07-01
Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core technology to make sure that the input face is a live person. However, this is still very challenging using conventional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detection problem. In this framework, new feature descriptors are defined using a multiscale directional transform (shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liveness. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The experimental results show that our approach performs better than the state-of-the-art techniques following the provided protocols of these databases, and it is possible to significantly enhance the security of the face recognition biometric system. In addition, the experimental results also demonstrate that this framework can be easily extended to classify different spoofing attacks.
Fine-grained leukocyte classification with deep residual learning for microscopic images.
Qin, Feiwei; Gao, Nannan; Peng, Yong; Wu, Zizhao; Shen, Shuying; Grudtsin, Artur
2018-08-01
Leukocyte classification and cytometry have wide applications in medical domain, previous researches usually exploit machine learning techniques to classify leukocytes automatically. However, constrained by the past development of machine learning techniques, for example, extracting distinctive features from raw microscopic images are difficult, the widely used SVM classifier only has relative few parameters to tune, these methods cannot efficiently handle fine-grained classification cases when the white blood cells have up to 40 categories. Based on deep learning theory, a systematic study is conducted on finer leukocyte classification in this paper. A deep residual neural network based leukocyte classifier is constructed at first, which can imitate the domain expert's cell recognition process, and extract salient features robustly and automatically. Then the deep neural network classifier's topology is adjusted according to the prior knowledge of white blood cell test. After that the microscopic image dataset with almost one hundred thousand labeled leukocytes belonging to 40 categories is built, and combined training strategies are adopted to make the designed classifier has good generalization ability. The proposed deep residual neural network based classifier was tested on microscopic image dataset with 40 leukocyte categories. It achieves top-1 accuracy of 77.80%, top-5 accuracy of 98.75% during the training procedure. The average accuracy on the test set is nearly 76.84%. This paper presents a fine-grained leukocyte classification method for microscopic images, based on deep residual learning theory and medical domain knowledge. Experimental results validate the feasibility and effectiveness of our approach. Extended experiments support that the fine-grained leukocyte classifier could be used in real medical applications, assist doctors in diagnosing diseases, reduce human power significantly. Copyright © 2018 Elsevier B.V. All rights reserved.
DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.
Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan
2016-12-23
With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.
Fiannaca, Antonino; La Rosa, Massimo; Rizzo, Riccardo; Urso, Alfonso
2015-07-01
In this paper, an alignment-free method for DNA barcode classification that is based on both a spectral representation and a neural gas network for unsupervised clustering is proposed. In the proposed methodology, distinctive words are identified from a spectral representation of DNA sequences. A taxonomic classification of the DNA sequence is then performed using the sequence signature, i.e., the smallest set of k-mers that can assign a DNA sequence to its proper taxonomic category. Experiments were then performed to compare our method with other supervised machine learning classification algorithms, such as support vector machine, random forest, ripper, naïve Bayes, ridor, and classification tree, which also consider short DNA sequence fragments of 200 and 300 base pairs (bp). The experimental tests were conducted over 10 real barcode datasets belonging to different animal species, which were provided by the on-line resource "Barcode of Life Database". The experimental results showed that our k-mer-based approach is directly comparable, in terms of accuracy, recall and precision metrics, with the other classifiers when considering full-length sequences. In addition, we demonstrate the robustness of our method when a classification is performed task with a set of short DNA sequences that were randomly extracted from the original data. For example, the proposed method can reach the accuracy of 64.8% at the species level with 200-bp fragments. Under the same conditions, the best other classifier (random forest) reaches the accuracy of 20.9%. Our results indicate that we obtained a clear improvement over the other classifiers for the study of short DNA barcode sequence fragments. Copyright © 2015 Elsevier B.V. All rights reserved.
Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders
2010-06-01
Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2016-08-02
Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18-24 and 65-73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.
An expert fitness diagnosis system based on elastic cloud computing.
Tseng, Kevin C; Wu, Chia-Chuan
2014-01-01
This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.
Target recognition of ladar range images using even-order Zernike moments.
Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi
2012-11-01
Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.
A comparative study of machine learning models for ethnicity classification
NASA Astrophysics Data System (ADS)
Trivedi, Advait; Bessie Amali, D. Geraldine
2017-11-01
This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.
NASA Astrophysics Data System (ADS)
Khan, Masood Mehmood; Ward, Robert D.; Ingleby, Michael
The ability to distinguish feigned from involuntary expressions of emotions could help in the investigation and treatment of neuropsychiatric and affective disorders and in the detection of malingering. This work investigates differences in emotion-specific patterns of thermal variations along the major facial muscles. Using experimental data extracted from 156 images, we attempted to classify patterns of emotion-specific thermal variations into neutral, and voluntary and involuntary expressions of positive and negative emotive states. Initial results suggest (i) each facial muscle exhibits a unique thermal response to various emotive states; (ii) the pattern of thermal variances along the facial muscles may assist in classifying voluntary and involuntary facial expressions; and (iii) facial skin temperature measurements along the major facial muscles may be used in automated emotion assessment.
Online graphic symbol recognition using neural network and ARG matching
NASA Astrophysics Data System (ADS)
Yang, Bing; Li, Changhua; Xie, Weixing
2001-09-01
This paper proposes a novel method for on-line recognition of line-based graphic symbol. The input strokes are usually warped into a cursive form due to the sundry drawing style, and classifying them is very difficult. To deal with this, an ART-2 neural network is used to classify the input strokes. It has the advantages of high recognition rate, less recognition time and forming classes in a self-organized manner. The symbol recognition is achieved by an Attribute Relational Graph (ARG) matching algorithm. The ARG is very efficient for representing complex objects, but computation cost is very high. To over come this, we suggest a fast graph matching algorithm using symbol structure information. The experimental results show that the proposed method is effective for recognition of symbols with hierarchical structure.
NASA Astrophysics Data System (ADS)
Cai, Jiaxin; Chen, Tingting; Li, Yan; Zhu, Nenghui; Qiu, Xuan
2018-03-01
In order to analysis the fibrosis stage and inflammatory activity grade of chronic hepatitis C, a novel classification method based on collaborative representation (CR) with smoothly clipped absolute deviation penalty (SCAD) penalty term, called CR-SCAD classifier, is proposed for pattern recognition. After that, an auto-grading system based on CR-SCAD classifier is introduced for the prediction of fibrosis stage and inflammatory activity grade of chronic hepatitis C. The proposed method has been tested on 123 clinical cases of chronic hepatitis C based on serological indexes. Experimental results show that the performance of the proposed method outperforms the state-of-the-art baselines for the classification of fibrosis stage and inflammatory activity grade of chronic hepatitis C.
ElGokhy, Sherin M; ElHefnawi, Mahmoud; Shoukry, Amin
2014-05-06
MicroRNAs (miRNAs) are endogenous ∼22 nt RNAs that are identified in many species as powerful regulators of gene expressions. Experimental identification of miRNAs is still slow since miRNAs are difficult to isolate by cloning due to their low expression, low stability, tissue specificity and the high cost of the cloning procedure. Thus, computational identification of miRNAs from genomic sequences provide a valuable complement to cloning. Different approaches for identification of miRNAs have been proposed based on homology, thermodynamic parameters, and cross-species comparisons. The present paper focuses on the integration of miRNA classifiers in a meta-classifier and the identification of miRNAs from metagenomic sequences collected from different environments. An ensemble of classifiers is proposed for miRNA hairpin prediction based on four well-known classifiers (Triplet SVM, Mipred, Virgo and EumiR), with non-identical features, and which have been trained on different data. Their decisions are combined using a single hidden layer neural network to increase the accuracy of the predictions. Our ensemble classifier achieved 89.3% accuracy, 82.2% f-measure, 74% sensitivity, 97% specificity, 92.5% precision and 88.2% negative predictive value when tested on real miRNA and pseudo sequence data. The area under the receiver operating characteristic curve of our classifier is 0.9 which represents a high performance index.The proposed classifier yields a significant performance improvement relative to Triplet-SVM, Virgo and EumiR and a minor refinement over MiPred.The developed ensemble classifier is used for miRNA prediction in mine drainage, groundwater and marine metagenomic sequences downloaded from the NCBI sequence reed archive. By consulting the miRBase repository, 179 miRNAs have been identified as highly probable miRNAs. Our new approach could thus be used for mining metagenomic sequences and finding new and homologous miRNAs. The paper investigates a computational tool for miRNA prediction in genomic or metagenomic data. It has been applied on three metagenomic samples from different environments (mine drainage, groundwater and marine metagenomic sequences). The prediction results provide a set of extremely potential miRNA hairpins for cloning prediction methods. Among the ensemble prediction obtained results there are pre-miRNA candidates that have been validated using miRbase while they have not been recognized by some of the base classifiers.
NASA Astrophysics Data System (ADS)
Wesendonk, F. S.; Terrazzan, E. A.
2016-12-01
In this article, we presented a characterization of the recent academic and scientific literature on experiments in Physics Education in terms of focus and research intentions and results built through these investigations. For this, we used as a source of information 10 national Academic and Scientific Journals available on websites. By consulting these journals, we identified that 147 papers published from 2009 to 2013 had as their main focus the experimental research. We classified the Works in categories established a priori and subcategories established a posteriori. At the end, we found out that few articles deal with this issue (9%). Moreover, in most productions there is a superficial discussion of theoretical studies on the use of experimentation in teaching. This makes the contribution of these productions for the development of conceptual discussions about the potential and limited use of experimentation in Physics Education to be relatively small.
Keefe, Douglas H; Archer, Kelly L; Schmid, Kendra K; Fitzpatrick, Denis F; Feeney, M Patrick; Hunter, Lisa L
2017-10-01
Otosclerosis is a progressive middle-ear disease that affects conductive transmission through the middle ear. Ear-canal acoustic tests may be useful in the diagnosis of conductive disorders. This study addressed the degree to which results from a battery of ear-canal tests, which include wideband reflectance, acoustic stapedius muscle reflex threshold (ASRT), and transient evoked otoacoustic emissions (TEOAEs), were effective in quantifying a risk of otosclerosis and in evaluating middle-ear function in ears after surgical intervention for otosclerosis. To evaluate the ability of the test battery to classify ears as normal or otosclerotic, measure the accuracy of reflectance in classifying ears as normal or otosclerotic, and evaluate the similarity of responses in normal ears compared with ears after surgical intervention for otosclerosis. A quasi-experimental cross-sectional study incorporating case control was used. Three groups were studied: one diagnosed with otosclerosis before corrective surgery, a group that received corrective surgery for otosclerosis, and a control group. The test groups included 23 ears (13 right and 10 left) with normal hearing from 16 participants (4 male and 12 female), 12 ears (7 right and 5 left) diagnosed with otosclerosis from 9 participants (3 male and 6 female), and 13 ears (4 right and 9 left) after surgical intervention from 10 participants (2 male and 8 female). Participants received audiometric evaluations and clinical immittance testing. Experimental tests performed included ASRT tests with wideband reference signal (0.25-8 kHz), reflectance tests (0.25-8 kHz), which were parameterized by absorbance and group delay at ambient pressure and at swept tympanometric pressures, and TEOAE tests using chirp stimuli (1-8 kHz). ASRTs were measured in ipsilateral and contralateral conditions using tonal and broadband noise activators. Experimental ASRT tests were based on the difference in wideband-absorbed sound power before and after presenting the activator. Diagnostic accuracy to classify ears as otosclerotic or normal was quantified by the area under the receiver operating characteristic curve (AUC) for univariate and multivariate reflectance tests. The multivariate predictor used a small number of input reflectance variables, each having a large AUC, in a principal components analysis to create independent variables and followed by a logistic regression procedure to classify the test ears. Relative to the results in normal ears, diagnosed otosclerosis ears more frequently showed absent TEOAEs and ASRTs, reduced ambient absorbance at 4 kHz, and a different pattern of tympanometric absorbance and group delay (absorbance increased at 2.8 kHz at the positive-pressure tail and decreased at 0.7-1 kHz at the peak pressure, whereas group delay decreased at positive and negative-pressure tails from 0.35-0.7 kHz, and at 2.8-4 kHz at positive-pressure tail). Using a multivariate predictor with three reflectance variables, tympanometric reflectance (AUC = 0.95) was more accurate than ambient reflectance (AUC = 0.88) in classifying ears as normal or otosclerotic. Reflectance provides a middle-ear test that is sensitive to classifying ears as otosclerotic or normal, which may be useful in clinical applications. American Academy of Audiology
NASA Astrophysics Data System (ADS)
Chahrazed, Yahiaoui; Jean-Louis, Lanet; Mohamed, Mezghiche; Karim, Tamine
2018-01-01
Fault attack represents one of the serious threats against Java Card security. It consists of physical perturbation of chip components to introduce faults in the code execution. A fault may be induced using a laser beam to impact opcodes and operands of instructions. This could lead to a mutation of the application code in such a way that it becomes hostile. Any successful attack may reveal a secret information stored in the card or grant an undesired authorisation. We propose a methodology to recognise, during the development step, the sensitive patterns to the fault attack in the Java Card applications. It is based on the concepts from text categorisation and machine learning. In fact, in this method, we represented the patterns using opcodes n-grams as features, and we evaluated different machine learning classifiers. The results show that the classifiers performed poorly when classifying dangerous sensitive patterns, due to the imbalance of our data-set. The number of dangerous sensitive patterns is much lower than the number of not dangerous patterns. We used resampling techniques to balance the class distribution in our data-set. The experimental results indicated that the resampling techniques improved the accuracy of the classifiers. In addition, our proposed method reduces the execution time of sensitive patterns classification in comparison to the SmartCM tool. This tool is used in our study to evaluate the effect of faults on Java Card applications.
Three-dimensional passive sensing photon counting for object classification
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
How large a training set is needed to develop a classifier for microarray data?
Dobbin, Kevin K; Zhao, Yingdong; Simon, Richard M
2008-01-01
A common goal of gene expression microarray studies is the development of a classifier that can be used to divide patients into groups with different prognoses, or with different expected responses to a therapy. These types of classifiers are developed on a training set, which is the set of samples used to train a classifier. The question of how many samples are needed in the training set to produce a good classifier from high-dimensional microarray data is challenging. We present a model-based approach to determining the sample size required to adequately train a classifier. It is shown that sample size can be determined from three quantities: standardized fold change, class prevalence, and number of genes or features on the arrays. Numerous examples and important experimental design issues are discussed. The method is adapted to address ex post facto determination of whether the size of a training set used to develop a classifier was adequate. An interactive web site for performing the sample size calculations is provided. We showed that sample size calculations for classifier development from high-dimensional microarray data are feasible, discussed numerous important considerations, and presented examples.
Multiclass classification of microarray data samples with a reduced number of genes
2011-01-01
Background Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained. Results A novel bound on the maximum number of genes that can be handled by binary classifiers in binary mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated multiclass classifiers for microarray data samples. Conclusions A comprehensive experimental work shows that the bound is indeed useful to induce accurate and sparse multiclass classifiers for microarray data samples. PMID:21342522
Selection-Fusion Approach for Classification of Datasets with Missing Values
Ghannad-Rezaie, Mostafa; Soltanian-Zadeh, Hamid; Ying, Hao; Dong, Ming
2010-01-01
This paper proposes a new approach based on missing value pattern discovery for classifying incomplete data. This approach is particularly designed for classification of datasets with a small number of samples and a high percentage of missing values where available missing value treatment approaches do not usually work well. Based on the pattern of the missing values, the proposed approach finds subsets of samples for which most of the features are available and trains a classifier for each subset. Then, it combines the outputs of the classifiers. Subset selection is translated into a clustering problem, allowing derivation of a mathematical framework for it. A trade off is established between the computational complexity (number of subsets) and the accuracy of the overall classifier. To deal with this trade off, a numerical criterion is proposed for the prediction of the overall performance. The proposed method is applied to seven datasets from the popular University of California, Irvine data mining archive and an epilepsy dataset from Henry Ford Hospital, Detroit, Michigan (total of eight datasets). Experimental results show that classification accuracy of the proposed method is superior to those of the widely used multiple imputations method and four other methods. They also show that the level of superiority depends on the pattern and percentage of missing values. PMID:20212921
Fall Detection Using Smartphone Audio Features.
Cheffena, Michael
2016-07-01
An automated fall detection system based on smartphone audio features is developed. The spectrogram, mel frequency cepstral coefficents (MFCCs), linear predictive coding (LPC), and matching pursuit (MP) features of different fall and no-fall sound events are extracted from experimental data. Based on the extracted audio features, four different machine learning classifiers: k-nearest neighbor classifier (k-NN), support vector machine (SVM), least squares method (LSM), and artificial neural network (ANN) are investigated for distinguishing between fall and no-fall events. For each audio feature, the performance of each classifier in terms of sensitivity, specificity, accuracy, and computational complexity is evaluated. The best performance is achieved using spectrogram features with ANN classifier with sensitivity, specificity, and accuracy all above 98%. The classifier also has acceptable computational requirement for training and testing. The system is applicable in home environments where the phone is placed in the vicinity of the user.
Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng
2017-05-27
As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.
Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng
2017-01-01
As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The thorough quantitative comparison of the features and classifiers in this study supports the feasibility of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection. PMID:28555016
77 FR 64566 - Market Test of Experimental Product-Metro Post
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... Metro Post. This document describes the proposed test, addresses procedural aspects of the filing, and.... \\1\\ Notice of the United States Postal Service of Market Test of Experimental Product--Metro Post... the Metro Post market test under seal. Notice at 4. The Postal Service classifies Metro Post as a...
Tripathy, Rajesh Kumar; Dandapat, Samarendra
2017-04-01
The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.
Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis
2013-01-01
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.
A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine
Gao, Junfeng; Wang, Zhao; Yang, Yong; Zhang, Wenjia; Tao, Chunyi; Guan, Jinan; Rao, Nini
2013-01-01
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time. PMID:23755136
Skoura, Angeliki; Bakic, Predrag R.; Megalooikonomou, Vasilis
2014-01-01
The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis. PMID:25414850
Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios
2013-08-01
Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.
Identifying typical physical activity on smartphone with varying positions and orientations.
Miao, Fen; He, Yi; Liu, Jinlei; Li, Ye; Ayoola, Idowu
2015-04-13
Traditional activity recognition solutions are not widely applicable due to a high cost and inconvenience to use with numerous sensors. This paper aims to automatically recognize physical activity with the help of the built-in sensors of the widespread smartphone without any limitation of firm attachment to the human body. By introducing a method to judge whether the phone is in a pocket, we investigated the data collected from six positions of seven subjects, chose five signals that are insensitive to orientation for activity classification. Decision trees (J48), Naive Bayes and Sequential minimal optimization (SMO) were employed to recognize five activities: static, walking, running, walking upstairs and walking downstairs. The experimental results based on 8,097 activity data demonstrated that the J48 classifier produced the best performance with an average recognition accuracy of 89.6% during the three classifiers, and thus would serve as the optimal online classifier. The utilization of the built-in sensors of the smartphone to recognize typical physical activities without any limitation of firm attachment is feasible.
An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.
Ibrahim, Ali K; Chérubin, Laurent M; Zhuang, Hanqi; Schärer Umpierre, Michelle T; Dalgleish, Fraser; Erdol, Nurgun; Ouyang, B; Dalgleish, A
2018-02-01
Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive behavior during spawning aggregation. These low frequencies sounds (50-350 Hz) consist of a series of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classification of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on weighted features and sparse classifier. Group sounds were labeled initially by humans for training and testing various feature extraction and classification methods. In the feature extraction phase, four types of features were used to extract features of sounds produced by groupers. Once the sound features were extracted, three types of representative classifiers were applied to categorize the species that produced these sounds. Experimental results showed that the overall percentage of identification using the best combination of the selected feature extractor weighted mel frequency cepstral coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been implemented in an autonomous platform (wave glider) for real-time detection and classification of group vocalizations.
Audio-guided audiovisual data segmentation, indexing, and retrieval
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1998-12-01
While current approaches for video segmentation and indexing are mostly focused on visual information, audio signals may actually play a primary role in video content parsing. In this paper, we present an approach for automatic segmentation, indexing, and retrieval of audiovisual data, based on audio content analysis. The accompanying audio signal of audiovisual data is first segmented and classified into basic types, i.e., speech, music, environmental sound, and silence. This coarse-level segmentation and indexing step is based upon morphological and statistical analysis of several short-term features of the audio signals. Then, environmental sounds are classified into finer classes, such as applause, explosions, bird sounds, etc. This fine-level classification and indexing step is based upon time- frequency analysis of audio signals and the use of the hidden Markov model as the classifier. On top of this archiving scheme, an audiovisual data retrieval system is proposed. Experimental results show that the proposed approach has an accuracy rate higher than 90 percent for the coarse-level classification, and higher than 85 percent for the fine-level classification. Examples of audiovisual data segmentation and retrieval are also provided.
Automatic classification of radiological reports for clinical care.
Gerevini, Alfonso Emilio; Lavelli, Alberto; Maffi, Alessandro; Maroldi, Roberto; Minard, Anne-Lyse; Serina, Ivan; Squassina, Guido
2018-06-07
Radiological reporting generates a large amount of free-text clinical narratives, a potentially valuable source of information for improving clinical care and supporting research. The use of automatic techniques to analyze such reports is necessary to make their content effectively available to radiologists in an aggregated form. In this paper we focus on the classification of chest computed tomography reports according to a classification schema proposed for this task by radiologists of the Italian hospital ASST Spedali Civili di Brescia. The proposed system is built exploiting a training data set containing reports annotated by radiologists. Each report is classified according to the schema developed by radiologists and textual evidences are marked in the report. The annotations are then used to train different machine learning based classifiers. We present in this paper a method based on a cascade of classifiers which make use of a set of syntactic and semantic features. The resulting system is a novel hierarchical classification system for the given task, that we have experimentally evaluated. Copyright © 2018 Elsevier B.V. All rights reserved.
Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar
2015-01-01
Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861
Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network.
Chi, Jianning; Walia, Ekta; Babyn, Paul; Wang, Jimmy; Groot, Gary; Eramian, Mark
2017-08-01
With many thyroid nodules being incidentally detected, it is important to identify as many malignant nodules as possible while excluding those that are highly likely to be benign from fine needle aspiration (FNA) biopsies or surgeries. This paper presents a computer-aided diagnosis (CAD) system for classifying thyroid nodules in ultrasound images. We use deep learning approach to extract features from thyroid ultrasound images. Ultrasound images are pre-processed to calibrate their scale and remove the artifacts. A pre-trained GoogLeNet model is then fine-tuned using the pre-processed image samples which leads to superior feature extraction. The extracted features of the thyroid ultrasound images are sent to a Cost-sensitive Random Forest classifier to classify the images into "malignant" and "benign" cases. The experimental results show the proposed fine-tuned GoogLeNet model achieves excellent classification performance, attaining 98.29% classification accuracy, 99.10% sensitivity and 93.90% specificity for the images in an open access database (Pedraza et al. 16), while 96.34% classification accuracy, 86% sensitivity and 99% specificity for the images in our local health region database.
NASA Astrophysics Data System (ADS)
Liao, Zhijun; Wang, Xinrui; Zeng, Yeting; Zou, Quan
2016-12-01
The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.
NASA Astrophysics Data System (ADS)
Noda, Masafumi; Takahashi, Tomokazu; Deguchi, Daisuke; Ide, Ichiro; Murase, Hiroshi; Kojima, Yoshiko; Naito, Takashi
In this study, we propose a method for detecting road markings recorded in an image captured by an in-vehicle camera by using a position-dependent classifier. Road markings are symbols painted on the road surface that help in preventing traffic accidents and in ensuring traffic smooth. Therefore, driver support systems for detecting road markings, such as a system that provides warning in the case when traffic signs are overlooked, and supporting the stopping of a vehicle are required. It is difficult to detect road markings because their appearance changes with the actual traffic conditions, e. g. the shape and resolution change. The variation in these appearances depend on the positional relation between the vehicle and the road markings, and on the vehicle posture. Although these variations are quite large in an entire image, they are relatively small in a local area of the image. Therefore, we try to improve the detection performance by taking into account the local variations in these appearances. We propose a method in which a position-dependent classifier is used to detect road markings recorded in images captured by an in-vehicle camera. Further, to train the classifier efficiently, we propose a generative learning method that takes into consideration the positional relation between the vehicle and road markings, and also the vehicle posture. Experimental results showed that the detection performance when the proposed method was used was better than when a method involving a single classifier was used.
Towards Autonomous Agriculture: Automatic Ground Detection Using Trinocular Stereovision
Reina, Giulio; Milella, Annalisa
2012-01-01
Autonomous driving is a challenging problem, particularly when the domain is unstructured, as in an outdoor agricultural setting. Thus, advanced perception systems are primarily required to sense and understand the surrounding environment recognizing artificial and natural structures, topology, vegetation and paths. In this paper, a self-learning framework is proposed to automatically train a ground classifier for scene interpretation and autonomous navigation based on multi-baseline stereovision. The use of rich 3D data is emphasized where the sensor output includes range and color information of the surrounding environment. Two distinct classifiers are presented, one based on geometric data that can detect the broad class of ground and one based on color data that can further segment ground into subclasses. The geometry-based classifier features two main stages: an adaptive training stage and a classification stage. During the training stage, the system automatically learns to associate geometric appearance of 3D stereo-generated data with class labels. Then, it makes predictions based on past observations. It serves as well to provide training labels to the color-based classifier. Once trained, the color-based classifier is able to recognize similar terrain classes in stereo imagery. The system is continuously updated online using the latest stereo readings, thus making it feasible for long range and long duration navigation, over changing environments. Experimental results, obtained with a tractor test platform operating in a rural environment, are presented to validate this approach, showing an average classification precision and recall of 91.0% and 77.3%, respectively.
Brain medical image diagnosis based on corners with importance-values.
Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao
2017-11-21
Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity calculation method for brain image classification. Experimental results on two brain image sets show the proposed corner-based brain medical image classifier outperforms the state-of-the-art studies.
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Gao, Lei; Bourke, A K; Nelson, John
2014-06-01
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
A Method of Character Detection and Segmentation for Highway Guide Signs
NASA Astrophysics Data System (ADS)
Xu, Jiawei; Zhang, Chongyang
2018-01-01
In this paper, a method of character detection and segmentation for highway signs in China is proposed. It consists of four steps. Firstly, the highway sign area is detectedby colour and geometric features, andthe possible character region is obtained by multi-level projection strategy. Secondly, pseudo target character region is removed by local binary patterns (LBP) feature. Thirdly, convolutional neural network (CNN)is used to classify target regions. Finally, adaptive projection strategies are used to segment characters strings. Experimental results indicate that the proposed method achieves new state-of-the-art results.
Inferring pathological states in cortical neuron microcircuits.
Rydzewski, Jakub; Nowak, Wieslaw; Nicosia, Giuseppe
2015-12-07
The brain activity is to a large extent determined by states of neural cortex microcircuits. Unfortunately, accuracy of results from neural circuits׳ mathematical models is often biased by the presence of uncertainties in underlying experimental data. Moreover, due to problems with uncertainties identification in a multidimensional parameters space, it is almost impossible to classify states of the neural cortex, which correspond to a particular set of the parameters. Here, we develop a complete methodology for determining uncertainties and the novel protocol for classifying all states in any neuroinformatic model. Further, we test this protocol on the mathematical, nonlinear model of such a microcircuit developed by Giugliano et al. (2008) and applied in the experimental data analysis of Huntington׳s disease. Up to now, the link between parameter domains in the mathematical model of Huntington׳s disease and the pathological states in cortical microcircuits has remained unclear. In this paper we precisely identify all the uncertainties, the most crucial input parameters and domains that drive the system into an unhealthy state. The scheme proposed here is general and can be easily applied to other mathematical models of biological phenomena. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spectral perspective on the electromagnetic activity of cells.
Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal
2015-01-01
In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.
Mazurowski, Maciej A; Zurada, Jacek M; Tourassi, Georgia D
2009-07-01
Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC = 0.905 +/- 0.024) in performance as compared to the original IT-CAD system (AUC = 0.865 +/- 0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters.
Tahir, Fahima; Fahiem, Muhammad Abuzar
2014-01-01
The quality of pharmaceutical products plays an important role in pharmaceutical industry as well as in our lives. Usage of defective tablets can be harmful for patients. In this research we proposed a nondestructive method to identify defective and nondefective tablets using their surface morphology. Three different environmental factors temperature, humidity and moisture are analyzed to evaluate the performance of the proposed method. Multiple textural features are extracted from the surface of the defective and nondefective tablets. These textural features are gray level cooccurrence matrix, run length matrix, histogram, autoregressive model and HAAR wavelet. Total textural features extracted from images are 281. We performed an analysis on all those 281, top 15, and top 2 features. Top 15 features are extracted using three different feature reduction techniques: chi-square, gain ratio and relief-F. In this research we have used three different classifiers: support vector machine, K-nearest neighbors and naïve Bayes to calculate the accuracies against proposed method using two experiments, that is, leave-one-out cross-validation technique and train test models. We tested each classifier against all selected features and then performed the comparison of their results. The experimental work resulted in that in most of the cases SVM performed better than the other two classifiers.
Research on driver fatigue detection
NASA Astrophysics Data System (ADS)
Zhang, Ting; Chen, Zhong; Ouyang, Chao
2018-03-01
Driver fatigue is one of the main causes of frequent traffic accidents. In this case, driver fatigue detection system has very important significance in avoiding traffic accidents. This paper presents a real-time method based on fusion of multiple facial features, including eye closure, yawn and head movement. The eye state is classified as being open or closed by a linear SVM classifier trained using HOG features of the detected eye. The mouth state is determined according to the width-height ratio of the mouth. The head movement is detected by head pitch angle calculated by facial landmark. The driver's fatigue state can be reasoned by the model trained by above features. According to experimental results, drive fatigue detection obtains an excellent performance. It indicates that the developed method is valuable for the application of avoiding traffic accidents caused by driver's fatigue.
Experimental Study on Comprehensive Performance of Full Tailings Paste Filling in Jiaojia Gold Mine.
NASA Astrophysics Data System (ADS)
Zhang, Z. H.; Zou, Q. B.; Wang, P. Z.
2017-11-01
Filling mining method is the main method of modern underground mining. High concentration cementation is carried out using coarse tailing of +37 μm, and the mine has maturely used classified tailings paste filling technology. The gold mine studied on the performance of full tailings paste filling in order to maximize the use of tailings, reduce -37 μm fine tailings discharged into the tailing pond, reduce mining cost and eliminate security risks. The results show that: comprehensive index of full tailings paste filling is higher than that of classified tailings high concentration cementation filling, and the full tailings paste filling of 76% mass concentration has the best comprehensive index of slump, expansibility, yield stress and viscosity to meet the mining method requirements, which can effectively reduce the mining loss rate and dilution rate.
NASA Astrophysics Data System (ADS)
de Lautour, Oliver R.; Omenzetter, Piotr
2010-07-01
Developed for studying long sequences of regularly sampled data, time series analysis methods are being increasingly investigated for the use of Structural Health Monitoring (SHM). In this research, Autoregressive (AR) models were used to fit the acceleration time histories obtained from two experimental structures: a 3-storey bookshelf structure and the ASCE Phase II Experimental SHM Benchmark Structure, in undamaged and limited number of damaged states. The coefficients of the AR models were considered to be damage-sensitive features and used as input into an Artificial Neural Network (ANN). The ANN was trained to classify damage cases or estimate remaining structural stiffness. The results showed that the combination of AR models and ANNs are efficient tools for damage classification and estimation, and perform well using small number of damage-sensitive features and limited sensors.
Interactions of large amplitude solitary waves in viscous fluid conduits
NASA Astrophysics Data System (ADS)
Lowman, Nicholas K.; Hoefer, M. A.; El, G. A.
2014-07-01
The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg-de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behavior are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as "physical solitons." Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.
NASA Astrophysics Data System (ADS)
Dibb, S. D.; Ustin, S.; Grigsby, S.
2015-12-01
Air- and space-borne remote sensing instruments allow for rapid and precise study of the diversity of the Earth's ecosystems. After atmospheric correction and ground validation are performed, the gathered hyperspectral and topographic data can be assembled into a stack of layers for land cover classification. Data for this project were collected in multiple field campaigns, including the 2013 NSF NEON California campaign and 2015 NASA SARP campaign. Using hyperspectral and high resolution topography data, 25 discriminatory attributes were processed in Exelis' ENVI software and collected for use in a decision forest to classify the four major tree species (Blue Oak, Live Oak, California Buckeye, and Foothill Pine) at the San Joaquin Experimental Range near Fresno, CA. These attributes include 21 classic vegetation indices and a number of other spectral characteristics, such as color and albedo, and four topographic layers, including slope, aspect, elevation, and tree height. Additionally, a number of nearby terrain classes, including bare earth, asphalt, water, rock, shadow, structures, and grass were created. Fifty training pixels were used for each class. The training pixels for each tree species came from collected GPS points in the field. Ensemble bootstrap aggregation of decision trees was performed in MATLAB, and an arbitrary number of 500 trees were selected to be grown. The tree that produced the minimum out-of-bag classification error (4.65%) was selected to classify the entire scene. Classification results accurately distinguished between oak species, but was suboptimal in dense areas. The entire San Joaquin Experimental Range was mapped with an overall accuracy of 94.7% and a Kappa coefficient 0.94. Finally, the Commission and Omission percentage averages were 5.3% each. A highly accurate map of tree species at this scale supports studies on drought effects, disease, and species-specific growth traits.
The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies.
Drozd, Marek; Dudzic, Damian
2012-04-01
On the basis of experimental literature data the theoretical studies for guanidinium and maleic acid complex with using DFT method are performed. In these studies the experimental X-ray data for two different forms of investigated crystal were used. During the geometry optimization process one equilibrium structure was found, only. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained and graphically illustrated. The energy difference (GAP) between HOMO and LUMO was analyzed. Additionally, the nonlinear properties of this molecule were calculated. The α and β (first and second order) hyperpolarizability values are obtained. On the basis of these results the title crystal was classified as new second order NLO generator. Copyright © 2011 Elsevier B.V. All rights reserved.
2015-01-01
Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications. PMID:26267377
Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Li, Li-Ping; Huang, De-Shuang; Yan, Gui-Ying; Nie, Ru; Huang, Yu-An
2017-04-04
Identification of protein-protein interactions (PPIs) is of critical importance for deciphering the underlying mechanisms of almost all biological processes of cell and providing great insight into the study of human disease. Although much effort has been devoted to identifying PPIs from various organisms, existing high-throughput biological techniques are time-consuming, expensive, and have high false positive and negative results. Thus it is highly urgent to develop in silico methods to predict PPIs efficiently and accurately in this post genomic era. In this article, we report a novel computational model combining our newly developed discriminative vector machine classifier (DVM) and an improved Weber local descriptor (IWLD) for the prediction of PPIs. Two components, differential excitation and orientation, are exploited to build evolutionary features for each protein sequence. The main characteristics of the proposed method lies in introducing an effective feature descriptor IWLD which can capture highly discriminative evolutionary information from position-specific scoring matrixes (PSSM) of protein data, and employing the powerful and robust DVM classifier. When applying the proposed method to Yeast and H. pylori data sets, we obtained excellent prediction accuracies as high as 96.52% and 91.80%, respectively, which are significantly better than the previous methods. Extensive experiments were then performed for predicting cross-species PPIs and the predictive results were also pretty promising. To further validate the performance of the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier on Human data set. The experimental results obtained indicate that our method is highly effective for PPIs prediction and can be taken as a supplementary tool for future proteomics research.
Chen, Yen-Kuang; Li, Kuo-Bin
2013-02-07
The type information of un-annotated membrane proteins provides an important hint for their biological functions. The experimental determination of membrane protein types, despite being more accurate and reliable, is not always feasible due to the costly laboratory procedures, thereby creating a need for the development of bioinformatics methods. This article describes a novel computational classifier for the prediction of membrane protein types using proteins' sequences. The classifier, comprising a collection of one-versus-one support vector machines, makes use of the following sequence attributes: (1) the cationic patch sizes, the orientation, and the topology of transmembrane segments; (2) the amino acid physicochemical properties; (3) the presence of signal peptides or anchors; and (4) the specific protein motifs. A new voting scheme was implemented to cope with the multi-class prediction. Both the training and the testing sequences were collected from SwissProt. Homologous proteins were removed such that there is no pair of sequences left in the datasets with a sequence identity higher than 40%. The performance of the classifier was evaluated by a Jackknife cross-validation and an independent testing experiments. Results show that the proposed classifier outperforms earlier predictors in prediction accuracy in seven of the eight membrane protein types. The overall accuracy was increased from 78.3% to 88.2%. Unlike earlier approaches which largely depend on position-specific substitution matrices and amino acid compositions, most of the sequence attributes implemented in the proposed classifier have supported literature evidences. The classifier has been deployed as a web server and can be accessed at http://bsaltools.ym.edu.tw/predmpt. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2017-04-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
NASA Technical Reports Server (NTRS)
Degrandi, G.; Lavalle, C.; Degroof, H.; Sieber, A.
1992-01-01
A study on the performance of a supervised fully polarimetric maximum likelihood classifier for synthetic aperture radar (SAR) data when applied to a specific classification context: forest classification based on age classes and in the presence of a sloping terrain is presented. For the experimental part, the polarimetric AIRSAR data at P, L, and C-band, acquired over the German Black Forest near Freiburg in the frame of the 1989 MAESTRO-1 campaign and the 1991 MAC Europe campaign was used, MAESTRO-1 with an ESA/JRC sponsored campaign, and MAC Europe (Multi-sensor Aircraft Campaign); in both cases the multi-frequency polarimetric JPL Airborne Synthetic Aperture Radar (AIRSAR) radar was flown over a number of European test sites. The study is structured as follows. At first, the general characteristics of the classifier and the dependencies from some parameters, like frequency bands, feature vector, calibration, using test areas lying on a flat terrain are investigated. Once it is determined the optimal conditions for the classifier performance, we then move on to the study of the slope effect. The bulk of this work is performed using the Maestrol data set. Next the classifier performance with the MAC Europe data is considered. The study is divided into two stages: first some of the tests done on the Maestro data are repeated, to highlight the improvements due to the new processing scheme that delivers 16 look data. Second we experiment with multi images classification with two goals: to assess the possibility of using a training set measured from one image to classify areas in different images; and to classify areas on critical slopes using different viewing angles. The main points of the study are listed and some of the results obtained so far are highlighted.
ERIC Educational Resources Information Center
Vincent, Claude; Lachance, Jean-Paul; Deaudelin, Isabelle
2012-01-01
This study sought to compare road safety of new drivers with low vision who have followed a specific pilot bioptic training program with other groups of drivers all matched for age and driving experience. A quasi-experimental design was used two years after drivers obtained their license. Drivers were classified in the experimental group (n = 10,…
Autohydrolysis of agricultural residues: study of reaction byproducts.
Garrote, Gil; Falqué, Elena; Domínguez, Herminia; Parajó, Juan Carlos
2007-07-01
Samples of rice husks and corn cobs were subjected to hydrothermal treatments in aqueous media under conditions leading to maximal xylooligomer concentration, and the reaction liquors were extracted with dichloromethane (DCM) to assess the type and amount of reaction byproducts with potential application as food ingredients and cosmetics. The identified DCM-soluble compounds were classified in four categories (sugar-derived compounds, lignin-derived compounds, nitrogen-containing compounds and fatty acids). The experimental results were compared with literature data.
Artificial intelligence systems based on texture descriptors for vaccine development.
Nanni, Loris; Brahnam, Sheryl; Lumini, Alessandra
2011-02-01
The aim of this work is to analyze and compare several feature extraction methods for peptide classification that are based on the calculation of texture descriptors starting from a matrix representation of the peptide. This texture-based representation of the peptide is then used to train a support vector machine classifier. In our experiments, the best results are obtained using local binary patterns variants and the discrete cosine transform with selected coefficients. These results are better than those previously reported that employed texture descriptors for peptide representation. In addition, we perform experiments that combine standard approaches based on amino acid sequence. The experimental section reports several tests performed on a vaccine dataset for the prediction of peptides that bind human leukocyte antigens and on a human immunodeficiency virus (HIV-1). Experimental results confirm the usefulness of our novel descriptors. The matlab implementation of our approaches is available at http://bias.csr.unibo.it/nanni/TexturePeptide.zip.
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data
2013-01-01
Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200
Identification of polymorphic inversions from genotypes
2012-01-01
Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by independent experimental methods in ten (9+1) individuals [3,4]. We provide efficient implementations of both genotype and haplotype methods as a unified R package inveRsion. PMID:22321652
Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N
2017-06-21
Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k -NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k -NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Derivation of an artificial gene to improve classification accuracy upon gene selection.
Seo, Minseok; Oh, Sejong
2012-02-01
Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.
Robust stereo matching with trinary cross color census and triple image-based refinements
NASA Astrophysics Data System (ADS)
Chang, Ting-An; Lu, Xiao; Yang, Jar-Ferr
2017-12-01
For future 3D TV broadcasting systems and navigation applications, it is necessary to have accurate stereo matching which could precisely estimate depth map from two distanced cameras. In this paper, we first suggest a trinary cross color (TCC) census transform, which can help to achieve accurate disparity raw matching cost with low computational cost. The two-pass cost aggregation (TPCA) is formed to compute the aggregation cost, then the disparity map can be obtained by a range winner-take-all (RWTA) process and a white hole filling procedure. To further enhance the accuracy performance, a range left-right checking (RLRC) method is proposed to classify the results as correct, mismatched, or occluded pixels. Then, the image-based refinements for the mismatched and occluded pixels are proposed to refine the classified errors. Finally, the image-based cross voting and a median filter are employed to complete the fine depth estimation. Experimental results show that the proposed semi-global stereo matching system achieves considerably accurate disparity maps with reasonable computation cost.
Nateghi, Ramin; Danyali, Habibollah; Helfroush, Mohammad Sadegh
2017-08-14
Based on the Nottingham criteria, the number of mitosis cells in histopathological slides is an important factor in diagnosis and grading of breast cancer. For manual grading of mitosis cells, histopathology slides of the tissue are examined by pathologists at 40× magnification for each patient. This task is very difficult and time-consuming even for experts. In this paper, a fully automated method is presented for accurate detection of mitosis cells in histopathology slide images. First a method based on maximum-likelihood is employed for segmentation and extraction of mitosis cell. Then a novel Maximized Inter-class Weighted Mean (MIWM) method is proposed that aims at reducing the number of extracted non-mitosis candidates that results in reducing the false positive mitosis detection rate. Finally, segmented candidates are classified into mitosis and non-mitosis classes by using a support vector machine (SVM) classifier. Experimental results demonstrate a significant improvement in accuracy of mitosis cells detection in different grades of breast cancer histopathological images.
Leaching characteristics of fly ash from thermal power plants of Soma and Tuncbilek, Turkey.
Baba, Alper; Kaya, Abidin
2004-02-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as 'toxic waste' based on TCLP result whereas they were classified as 'non-toxic' wastes based on CEN results, indicating test results are pH dependent.
Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan
2013-05-01
In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less
Presentation and Impact of Experimental Techniques in Chemistry
ERIC Educational Resources Information Center
Sojka, Zbigniew; Che, Michel
2008-01-01
Laboratory and practical courses, where students become familiar with experimental techniques and learn to interpret data and relate them to appropriate theory, play a vital role in chemical education. In the large panoply of currently available techniques, it is difficult to find a rational and easy way to classify the techniques in relation to…
Locating and classifying defects using an hybrid data base
NASA Astrophysics Data System (ADS)
Luna-Avilés, A.; Hernández-Gómez, L. H.; Durodola, J. F.; Urriolagoitia-Calderón, G.; Urriolagoitia-Sosa, G.; Beltrán Fernández, J. A.; Díaz Pineda, A.
2011-07-01
A computational inverse technique was used in the localization and classification of defects. Postulated voids of two different sizes (2 mm and 4 mm diameter) were introduced in PMMA bars with and without a notch. The bar dimensions are 200×20×5 mm. One half of them were plain and the other half has a notch (3 mm × 4 mm) which is close to the defect area (19 mm × 16 mm).This analysis was done with an Artificial Neural Network (ANN) and its optimization was done with an Adaptive Neuro Fuzzy Procedure (ANFIS). A hybrid data base was developed with numerical and experimental results. Synthetic data was generated with the finite element method using SOLID95 element of ANSYS code. A parametric analysis was carried out. Only one defect in such bars was taken into account and the first five natural frequencies were calculated. 460 cases were evaluated. Half of them were plain and the other half has a notch. All the input data was classified in two groups. Each one has 230 cases and corresponds to one of the two sort of voids mentioned above. On the other hand, experimental analysis was carried on with PMMA specimens of the same size. The first two natural frequencies of 40 cases were obtained with one void. The other three frequencies were obtained numerically. 20 of these bars were plain and the others have a notch. These experimental results were introduced in the synthetic data base. 400 cases were taken randomly and, with this information, the ANN was trained with the backpropagation algorithm. The accuracy of the results was tested with the 100 cases that were left. In the next stage of this work, the ANN output was optimized with ANFIS. Previous papers showed that localization and classification of defects was reduced as notches were introduced in such bars. In the case of this paper, improved results were obtained when a hybrid data base was used.
Brandenberg, G A; Mann, M D
1989-03-01
Extracellular recordings were made of activity evoked in neurons of the forepaw focus of somatosensory cerebral cortex by electrical stimulation of each paw in control cats and cats that had undergone crush injury of all cutaneous sensory nerves to the contralateral forepaw 31 to 63 days previously. Neurons responding only to stimulation of the contralateral forepaw were classified as sa; neurons responding to stimulation of both forepaws were classified as sb; neurons responding to stimulation of both contralateral paws were classified as sc; and neurons responding to stimulation of at least three paws were classified as m. The ratio sa:sb:sc:m neurons was 46:3:0:0 in control cats and 104:15:3:26 in cats that had undergone nerve crush 1-2 months prior to study. sa neurons from experimental cats had depth distributions similar to those in controls and responded to contralateral forepaw stimulation with more spikes per discharge, longer latency, and higher threshold than sa neurons in control cats. m neurons from experimental cats were distributed deeper in the cortex than sa neurons, and, when compared to experimental sa neurons, they responded with longer latency and poorer frequency-following ability; however, the number of spikes per discharge and threshold were not significantly different. The appearance of wide-field neurons in this tissue may be explained in terms of strengthening of previously sub-threshold inputs to neurons in the somatosensory system. If the neurons in sensory cortex play a requisite role in cutaneous sensations and if changes similar to those reported here occur and persist in human cortex after nerve crush, then "complete" recovery of sensation in such patients may occur against a background of changed cortical neuronal responsiveness.
A cDNA microarray gene expression data classifier for clinical diagnostics based on graph theory.
Benso, Alfredo; Di Carlo, Stefano; Politano, Gianfranco
2011-01-01
Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithms.
Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao
2017-12-01
Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.
ANALYSIS OF SAMPLING TECHNIQUES FOR IMBALANCED DATA: AN N=648 ADNI STUDY
Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M.; Ye, Jieping
2013-01-01
Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer’s disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and under sampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1). a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2). sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. PMID:24176869
Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study.
Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M; Ye, Jieping
2014-02-15
Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer's disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and undersampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1) a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2) sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. © 2013 Elsevier Inc. All rights reserved.
A new approach to enhance the performance of decision tree for classifying gene expression data.
Hassan, Md; Kotagiri, Ramamohanarao
2013-12-20
Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.
Ensemble Sparse Classification of Alzheimer’s Disease
Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang
2012-01-01
The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352
Combining multiple decisions: applications to bioinformatics
NASA Astrophysics Data System (ADS)
Yukinawa, N.; Takenouchi, T.; Oba, S.; Ishii, S.
2008-01-01
Multi-class classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. This article reviews two recent approaches to multi-class classification by combining multiple binary classifiers, which are formulated based on a unified framework of error-correcting output coding (ECOC). The first approach is to construct a multi-class classifier in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. In the second approach, misclassification of each binary classifier is formulated as a bit inversion error with a probabilistic model by making an analogy to the context of information transmission theory. Experimental studies using various real-world datasets including cancer classification problems reveal that both of the new methods are superior or comparable to other multi-class classification methods.
Classification of ligand molecules in PDB with fast heuristic graph match algorithm COMPLIG.
Saito, Mihoko; Takemura, Naomi; Shirai, Tsuyoshi
2012-12-14
A fast heuristic graph-matching algorithm, COMPLIG, was devised to classify the small-molecule ligands in the Protein Data Bank (PDB), which are currently not properly classified on structure basis. By concurrently classifying proteins and ligands, we determined the most appropriate parameter for categorizing ligands to be more than 60% identity of atoms and bonds between molecules, and we classified 11,585 types of ligands into 1946 clusters. Although the large clusters were composed of nucleotides or amino acids, a significant presence of drug compounds was also observed. Application of the system to classify the natural ligand status of human proteins in the current database suggested that, at most, 37% of the experimental structures of human proteins were in complex with natural ligands. However, protein homology- and/or ligand similarity-based modeling was implied to provide models of natural interactions for an additional 28% of the total, which might be used to increase the knowledge of intrinsic protein-metabolite interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.
McIntyre, Alexa B R; Ounit, Rachid; Afshinnekoo, Ebrahim; Prill, Robert J; Hénaff, Elizabeth; Alexander, Noah; Minot, Samuel S; Danko, David; Foox, Jonathan; Ahsanuddin, Sofia; Tighe, Scott; Hasan, Nur A; Subramanian, Poorani; Moffat, Kelly; Levy, Shawn; Lonardi, Stefano; Greenfield, Nick; Colwell, Rita R; Rosen, Gail L; Mason, Christopher E
2017-09-21
One of the main challenges in metagenomics is the identification of microorganisms in clinical and environmental samples. While an extensive and heterogeneous set of computational tools is available to classify microorganisms using whole-genome shotgun sequencing data, comprehensive comparisons of these methods are limited. In this study, we use the largest-to-date set of laboratory-generated and simulated controls across 846 species to evaluate the performance of 11 metagenomic classifiers. Tools were characterized on the basis of their ability to identify taxa at the genus, species, and strain levels, quantify relative abundances of taxa, and classify individual reads to the species level. Strikingly, the number of species identified by the 11 tools can differ by over three orders of magnitude on the same datasets. Various strategies can ameliorate taxonomic misclassification, including abundance filtering, ensemble approaches, and tool intersection. Nevertheless, these strategies were often insufficient to completely eliminate false positives from environmental samples, which are especially important where they concern medically relevant species. Overall, pairing tools with different classification strategies (k-mer, alignment, marker) can combine their respective advantages. This study provides positive and negative controls, titrated standards, and a guide for selecting tools for metagenomic analyses by comparing ranges of precision, accuracy, and recall. We show that proper experimental design and analysis parameters can reduce false positives, provide greater resolution of species in complex metagenomic samples, and improve the interpretation of results.
Robust evaluation of time series classification algorithms for structural health monitoring
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.
2014-03-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.
Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients
NASA Astrophysics Data System (ADS)
Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.
2016-03-01
Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.
Predict or classify: The deceptive role of time-locking in brain signal classification
NASA Astrophysics Data System (ADS)
Rusconi, Marco; Valleriani, Angelo
2016-06-01
Several experimental studies claim to be able to predict the outcome of simple decisions from brain signals measured before subjects are aware of their decision. Often, these studies use multivariate pattern recognition methods with the underlying assumption that the ability to classify the brain signal is equivalent to predict the decision itself. Here we show instead that it is possible to correctly classify a signal even if it does not contain any predictive information about the decision. We first define a simple stochastic model that mimics the random decision process between two equivalent alternatives, and generate a large number of independent trials that contain no choice-predictive information. The trials are first time-locked to the time point of the final event and then classified using standard machine-learning techniques. The resulting classification accuracy is above chance level long before the time point of time-locking. We then analyze the same trials using information theory. We demonstrate that the high classification accuracy is a consequence of time-locking and that its time behavior is simply related to the large relaxation time of the process. We conclude that when time-locking is a crucial step in the analysis of neural activity patterns, both the emergence and the timing of the classification accuracy are affected by structural properties of the network that generates the signal.
Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis
Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin
2016-01-01
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques. PMID:27589760
Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin
2016-08-31
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques.
NASA Astrophysics Data System (ADS)
Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.
2015-05-01
The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.
[Terahertz Spectroscopic Identification with Deep Belief Network].
Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao
2015-12-01
Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.
An AIS-Based E-mail Classification Method
NASA Astrophysics Data System (ADS)
Qing, Jinjian; Mao, Ruilong; Bie, Rongfang; Gao, Xiao-Zhi
This paper proposes a new e-mail classification method based on the Artificial Immune System (AIS), which is endowed with good diversity and self-adaptive ability by using the immune learning, immune memory, and immune recognition. In our method, the features of spam and non-spam extracted from the training sets are combined together, and the number of false positives (non-spam messages that are incorrectly classified as spam) can be reduced. The experimental results demonstrate that this method is effective in reducing the false rate.
A CNN based neurobiology inspired approach for retinal image quality assessment.
Mahapatra, Dwarikanath; Roy, Pallab K; Sedai, Suman; Garnavi, Rahil
2016-08-01
Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making. Experimental results demonstrate the superior performance of our proposed algorithm over competing methods.
Mapping soil types from multispectral scanner data.
NASA Technical Reports Server (NTRS)
Kristof, S. J.; Zachary, A. L.
1971-01-01
Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.
A Clock Fingerprints-Based Approach for Wireless Transmitter Identification
NASA Astrophysics Data System (ADS)
Zhao, Caidan; Xie, Liang; Huang, Lianfen; Yao, Yan
Cognitive radio (CR) was proposed as one of the promising solutions for low spectrum utilization. However, security problems such as the primary user emulation (PUE) attack severely limit its applications. In this paper, we propose a clock fingerprints-based authentication approach to prevent PUE attacks in CR networks with the help of curve fitting and classifier. An experimental setup was constructed using the WLAN cards and software radio devices, and the corresponding results show that satisfied identification can be achieved for wireless transmitters.
An investigation of Hebbian phase sequences as assembly graphs
Almeida-Filho, Daniel G.; Lopes-dos-Santos, Vitor; Vasconcelos, Nivaldo A. P.; Miranda, José G. V.; Tort, Adriano B. L.; Ribeiro, Sidarta
2014-01-01
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition. PMID:24782715
Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles
Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Promoter Sequences Prediction Using Relational Association Rule Mining
Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely
2012-01-01
In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Global and Local Features Based Classification for Bleed-Through Removal
NASA Astrophysics Data System (ADS)
Hu, Xiangyu; Lin, Hui; Li, Shutao; Sun, Bin
2016-12-01
The text on one side of historical documents often seeps through and appears on the other side, so the bleed-through is a common problem in historical document images. It makes the document images hard to read and the text difficult to recognize. To improve the image quality and readability, the bleed-through has to be removed. This paper proposes a global and local features extraction based bleed-through removal method. The Gaussian mixture model is used to get the global features of the images. Local features are extracted by the patch around each pixel. Then, the extreme learning machine classifier is utilized to classify the scanned images into the foreground text and the bleed-through component. Experimental results on real document image datasets show that the proposed method outperforms the state-of-the-art bleed-through removal methods and preserves the text strokes well.
A Sieving ANN for Emotion-Based Movie Clip Classification
NASA Astrophysics Data System (ADS)
Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon
Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.
An intelligent identification algorithm for the monoclonal picking instrument
NASA Astrophysics Data System (ADS)
Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun
2017-11-01
The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.
A novel underwater dam crack detection and classification approach based on sonar images
Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min
2017-01-01
Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925
A novel underwater dam crack detection and classification approach based on sonar images.
Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min
2017-01-01
Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.
BIOREL: the benchmark resource to estimate the relevance of the gene networks.
Antonov, Alexey V; Mewes, Hans W
2006-02-06
The progress of high-throughput methodologies in functional genomics has lead to the development of statistical procedures to infer gene networks from various types of high-throughput data. However, due to the lack of common standards, the biological significance of the results of the different studies is hard to compare. To overcome this problem we propose a benchmark procedure and have developed a web resource (BIOREL), which is useful for estimating the biological relevance of any genetic network by integrating different sources of biological information. The associations of each gene from the network are classified as biologically relevant or not. The proportion of genes in the network classified as "relevant" is used as the overall network relevance score. Employing synthetic data we demonstrated that such a score ranks the networks fairly in respect to the relevance level. Using BIOREL as the benchmark resource we compared the quality of experimental and theoretically predicted protein interaction data.
A target recognition method for maritime surveillance radars based on hybrid ensemble selection
NASA Astrophysics Data System (ADS)
Fan, Xueman; Hu, Shengliang; He, Jingbo
2017-11-01
In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.
Probe classification of on-off type DNA microarray images with a nonlinear matching measure
NASA Astrophysics Data System (ADS)
Ryu, Munho; Kim, Jong Dae; Min, Byoung Goo; Kim, Jongwon; Kim, Y. Y.
2006-01-01
We propose a nonlinear matching measure, called counting measure, as a signal detection measure that is defined as the number of on pixels in the spot area. It is applied to classify probes for an on-off type DNA microarray, where each probe spot is classified as hybridized or not. The counting measure also incorporates the maximum response search method, where the expected signal is obtained by taking the maximum among the measured responses of the various positions and sizes of the spot template. The counting measure was compared to existing signal detection measures such as the normalized covariance and the median for 2390 patient samples tested on the human papillomavirus (HPV) DNA chip. The counting measure performed the best regardless of whether or not the maximum response search method was used. The experimental results showed that the counting measure combined with the positional search was the most preferable.
Gesture Recognition Based on the Probability Distribution of Arm Trajectories
NASA Astrophysics Data System (ADS)
Wan, Khairunizam; Sawada, Hideyuki
The use of human motions for the interaction between humans and computers is becoming an attractive alternative to verbal media, especially through the visual interpretation of the human body motion. In particular, hand gestures are used as non-verbal media for the humans to communicate with machines that pertain to the use of the human gestures to interact with them. This paper introduces a 3D motion measurement of the human upper body for the purpose of the gesture recognition, which is based on the probability distribution of arm trajectories. In this study, by examining the characteristics of the arm trajectories given by a signer, motion features are selected and classified by using a fuzzy technique. Experimental results show that the use of the features extracted from arm trajectories effectively works on the recognition of dynamic gestures of a human, and gives a good performance to classify various gesture patterns.
Discontinuity Detection in the Shield Metal Arc Welding Process
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-01-01
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors—a microphone and piezoelectric—that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system’s high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries. PMID:28489045
Thermogram breast cancer prediction approach based on Neutrosophic sets and fuzzy c-means algorithm.
Gaber, Tarek; Ismail, Gehad; Anter, Ahmed; Soliman, Mona; Ali, Mona; Semary, Noura; Hassanien, Aboul Ella; Snasel, Vaclav
2015-08-01
The early detection of breast cancer makes many women survive. In this paper, a CAD system classifying breast cancer thermograms to normal and abnormal is proposed. This approach consists of two main phases: automatic segmentation and classification. For the former phase, an improved segmentation approach based on both Neutrosophic sets (NS) and optimized Fast Fuzzy c-mean (F-FCM) algorithm was proposed. Also, post-segmentation process was suggested to segment breast parenchyma (i.e. ROI) from thermogram images. For the classification, different kernel functions of the Support Vector Machine (SVM) were used to classify breast parenchyma into normal or abnormal cases. Using benchmark database, the proposed CAD system was evaluated based on precision, recall, and accuracy as well as a comparison with related work. The experimental results showed that our system would be a very promising step toward automatic diagnosis of breast cancer using thermograms as the accuracy reached 100%.
Discontinuity Detection in the Shield Metal Arc Welding Process.
Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros
2017-05-10
This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.
NASA Technical Reports Server (NTRS)
Ni, W.-T.
1972-01-01
Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.
Feature point based 3D tracking of multiple fish from multi-view images
Qian, Zhi-Ming
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966
Feature point based 3D tracking of multiple fish from multi-view images.
Qian, Zhi-Ming; Chen, Yan Qiu
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.
NASA Astrophysics Data System (ADS)
Chang, You; Kim, Namkeun; Stenfelt, Stefan
2015-12-01
Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.
Experimental and Computational Study of Sonic and Supersonic Jet Plumes
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Naughton, J. W.; Fletcher, D. G.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock-shear-layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos
2005-01-01
Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.
Dandapat, Samarendra
2017-01-01
The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques. PMID:28894589
Recognizing human activities using appearance metric feature and kinematics feature
NASA Astrophysics Data System (ADS)
Qian, Huimin; Zhou, Jun; Lu, Xinbiao; Wu, Xinye
2017-05-01
The problem of automatically recognizing human activities from videos through the fusion of the two most important cues, appearance metric feature and kinematics feature, is considered. And a system of two-dimensional (2-D) Poisson equations is introduced to extract the more discriminative appearance metric feature. Specifically, the moving human blobs are first detected out from the video by background subtraction technique to form a binary image sequence, from which the appearance feature designated as the motion accumulation image and the kinematics feature termed as centroid instantaneous velocity are extracted. Second, 2-D discrete Poisson equations are employed to reinterpret the motion accumulation image to produce a more differentiated Poisson silhouette image, from which the appearance feature vector is created through the dimension reduction technique called bidirectional 2-D principal component analysis, considering the balance between classification accuracy and time consumption. Finally, a cascaded classifier based on the nearest neighbor classifier and two directed acyclic graph support vector machine classifiers, integrated with the fusion of the appearance feature vector and centroid instantaneous velocity vector, is applied to recognize the human activities. Experimental results on the open databases and a homemade one confirm the recognition performance of the proposed algorithm.
An Efficient Statistical Computation Technique for Health Care Big Data using R
NASA Astrophysics Data System (ADS)
Sushma Rani, N.; Srinivasa Rao, P., Dr; Parimala, P.
2017-08-01
Due to the changes in living conditions and other factors many critical health related problems are arising. The diagnosis of the problem at earlier stages will increase the chances of survival and fast recovery. This reduces the time of recovery and the cost associated for the treatment. One such medical related issue is cancer and breast cancer has been identified as the second leading cause of cancer death. If detected in the early stage it can be cured. Once a patient is detected with breast cancer tumor, it should be classified whether it is cancerous or non-cancerous. So the paper uses k-nearest neighbors(KNN) algorithm which is one of the simplest machine learning algorithms and is an instance-based learning algorithm to classify the data. Day-to -day new records are added which leds to increase in the data to be classified and this tends to be big data problem. The algorithm is implemented in R whichis the most popular platform applied to machine learning algorithms for statistical computing. Experimentation is conducted by using various classification evaluation metric onvarious values of k. The results show that the KNN algorithm out performes better than existing models.
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
Enhancing business intelligence by means of suggestive reviews.
Qazi, Atika; Raj, Ram Gopal; Tahir, Muhammad; Cambria, Erik; Syed, Karim Bux Shah
2014-01-01
Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons.
MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging
NASA Astrophysics Data System (ADS)
Chen, Lei; Kamel, Mohamed S.
2016-01-01
In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.
Structural analysis of online handwritten mathematical symbols based on support vector machines
NASA Astrophysics Data System (ADS)
Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George
2013-01-01
Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.
Understanding user intents in online health forums.
Zhang, Thomas; Cho, Jason H D; Zhai, Chengxiang
2015-07-01
Online health forums provide a convenient way for patients to obtain medical information and connect with physicians and peers outside of clinical settings. However, large quantities of unstructured and diversified content generated on these forums make it difficult for users to digest and extract useful information. Understanding user intents would enable forums to find and recommend relevant information to users by filtering out threads that do not match particular intents. In this paper, we derive a taxonomy of intents to capture user information needs in online health forums and propose novel pattern-based features for use with a multiclass support vector machine (SVM) classifier to classify original thread posts according to their underlying intents. Since no dataset existed for this task, we employ three annotators to manually label a dataset of 1192 HealthBoards posts spanning four forum topics. Experimental results show that a SVM using pattern-based features is highly capable of identifying user intents in forum posts, reaching a maximum precision of 75%, and that a SVM-based hierarchical classifier using both pattern and word features outperforms its SVM counterpart that uses only word features. Furthermore, comparable classification performance can be achieved by training and testing on posts from different forum topics.
Joint Sparse Recovery With Semisupervised MUSIC
NASA Astrophysics Data System (ADS)
Wen, Zaidao; Hou, Biao; Jiao, Licheng
2017-05-01
Discrete multiple signal classification (MUSIC) with its low computational cost and mild condition requirement becomes a significant noniterative algorithm for joint sparse recovery (JSR). However, it fails in rank defective problem caused by coherent or limited amount of multiple measurement vectors (MMVs). In this letter, we provide a novel sight to address this problem by interpreting JSR as a binary classification problem with respect to atoms. Meanwhile, MUSIC essentially constructs a supervised classifier based on the labeled MMVs so that its performance will heavily depend on the quality and quantity of these training samples. From this viewpoint, we develop a semisupervised MUSIC (SS-MUSIC) in the spirit of machine learning, which declares that the insufficient supervised information in the training samples can be compensated from those unlabeled atoms. Instead of constructing a classifier in a fully supervised manner, we iteratively refine a semisupervised classifier by exploiting the labeled MMVs and some reliable unlabeled atoms simultaneously. Through this way, the required conditions and iterations can be greatly relaxed and reduced. Numerical experimental results demonstrate that SS-MUSIC can achieve much better recovery performances than other MUSIC extended algorithms as well as some typical greedy algorithms for JSR in terms of iterations and recovery probability.
Enhancing Business Intelligence by Means of Suggestive Reviews
Qazi, Atika
2014-01-01
Appropriate identification and classification of online reviews to satisfy the needs of current and potential users pose a critical challenge for the business environment. This paper focuses on a specific kind of reviews: the suggestive type. Suggestions have a significant influence on both consumers' choices and designers' understanding and, hence, they are key for tasks such as brand positioning and social media marketing. The proposed approach consists of three main steps: (1) classify comparative and suggestive sentences; (2) categorize suggestive sentences into different types, either explicit or implicit locutions; (3) perform sentiment analysis on the classified reviews. A range of supervised machine learning approaches and feature sets are evaluated to tackle the problem of suggestive opinion mining. Experimental results for all three tasks are obtained on a dataset of mobile phone reviews and demonstrate that extending a bag-of-words representation with suggestive and comparative patterns is ideal for distinguishing suggestive sentences. In particular, it is observed that classifying suggestive sentences into implicit and explicit locutions works best when using a mixed sequential rule feature representation. Sentiment analysis achieves maximum performance when employing additional preprocessing in the form of negation handling and target masking, combined with sentiment lexicons. PMID:25054188
Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples
NASA Astrophysics Data System (ADS)
Muggleton, Stephen; Paes, Aline; Santos Costa, Vítor; Zaverucha, Gerson
The game of chess has been a major testbed for research in artificial intelligence, since it requires focus on intelligent reasoning. Particularly, several challenges arise to machine learning systems when inducing a model describing legal moves of the chess, including the collection of the examples, the learning of a model correctly representing the official rules of the game, covering all the branches and restrictions of the correct moves, and the comprehensibility of such a model. Besides, the game of chess has inspired the creation of numerous variants, ranging from faster to more challenging or to regional versions of the game. The question arises if it is possible to take advantage of an initial classifier of chess as a starting point to obtain classifiers for the different variants. We approach this problem as an instance of theory revision from examples. The initial classifier of chess is inspired by a FOL theory approved by a chess expert and the examples are defined as sequences of moves within a game. Starting from a standard revision system, we argue that abduction and negation are also required to best address this problem. Experimental results show the effectiveness of our approach.
Knee X-ray image analysis method for automated detection of Osteoarthritis
Shamir, Lior; Ling, Shari M.; Scott, William W.; Bos, Angelo; Orlov, Nikita; Macura, Tomasz; Eckley, D. Mark; Ferrucci, Luigi; Goldberg, Ilya G.
2008-01-01
We describe a method for automated detection of radiographic Osteoarthritis (OA) in knee X-ray images. The detection is based on the Kellgren-Lawrence classification grades, which correspond to the different stages of OA severity. The classifier was built using manually classified X-rays, representing the first four KL grades (normal, doubtful, minimal and moderate). Image analysis is performed by first identifying a set of image content descriptors and image transforms that are informative for the detection of OA in the X-rays, and assigning weights to these image features using Fisher scores. Then, a simple weighted nearest neighbor rule is used in order to predict the KL grade to which a given test X-ray sample belongs. The dataset used in the experiment contained 350 X-ray images classified manually by their KL grades. Experimental results show that moderate OA (KL grade 3) and minimal OA (KL grade 2) can be differentiated from normal cases with accuracy of 91.5% and 80.4%, respectively. Doubtful OA (KL grade 1) was detected automatically with a much lower accuracy of 57%. The source code developed and used in this study is available for free download at www.openmicroscopy.org. PMID:19342330
A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.
Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan
2015-01-01
The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.
A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System
Yuan, Xianfeng; Song, Mumin; Chen, Zhumin; Li, Yan
2015-01-01
The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526
Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.
Allen, Edward E; Norris, James L; John, David J; Thomas, Stan J; Turkett, William H; Fetrow, Jacquelyn S
2010-01-01
Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.
Classification of conductance traces with recurrent neural networks
NASA Astrophysics Data System (ADS)
Lauritzen, Kasper P.; Magyarkuti, András; Balogh, Zoltán; Halbritter, András; Solomon, Gemma C.
2018-02-01
We present a new automated method for structural classification of the traces obtained in break junction experiments. Using recurrent neural networks trained on the traces of minimal cross-sectional area in molecular dynamics simulations, we successfully separate the traces into two classes: point contact or nanowire. This is done without any assumptions about the expected features of each class. The trained neural network is applied to experimental break junction conductance traces, and it separates the classes as well as the previously used experimental methods. The effect of using partial conductance traces is explored, and we show that the method performs equally well using full or partial traces (as long as the trace just prior to breaking is included). When only the initial part of the trace is included, the results are still better than random chance. Finally, we show that the neural network classification method can be used to classify experimental conductance traces without using simulated results for training, but instead training the network on a few representative experimental traces. This offers a tool to recognize some characteristic motifs of the traces, which can be hard to find by simple data selection algorithms.
Mazurowski, Maciej A.; Zurada, Jacek M.; Tourassi, Georgia D.
2009-01-01
Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC=0.905±0.024) in performance as compared to the original IT-CAD system (AUC=0.865±0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters. PMID:19673196
Machine learning, medical diagnosis, and biomedical engineering research - commentary.
Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D
2014-07-05
A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.
Standard plane localization in ultrasound by radial component model and selective search.
Ni, Dong; Yang, Xin; Chen, Xin; Chin, Chien-Ting; Chen, Siping; Heng, Pheng Ann; Li, Shengli; Qin, Jing; Wang, Tianfu
2014-11-01
Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Fleury, Anthony; Vacher, Michel; Noury, Norbert
2010-03-01
By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.
Experimental analysis of a mobile health system for mood disorders.
Massey, Tammara; Marfia, Gustavo; Potkonjak, Miodrag; Sarrafzadeh, Majid
2010-03-01
Depression is one of the leading causes of disability. Methods are needed to quantitatively classify emotions in order to better understand and treat mood disorders. This research proposes techniques to improve communication in body sensor network (BSN) that gathers data on the affective states of the patient. These BSNs can continuously monitor, discretely quantify, and classify a patient's depressive states. In addition, data on the patient's lifestyle can be correlated with his/her physiological conditions to identify how various stimuli trigger symptoms. This continuous stream of data is an improvement over a snapshot of localized symptoms that a doctor often collects during a medical examination. Our research first quantifies how the body interferes with communication in a BSN and detects a pattern between the line of sight of an embedded device and its reception rate. Then, a mathematical model of the data using linear programming techniques determines the optimal placement and number of sensors in a BSN to improve communication. Experimental results show that the optimal placement of embedded devices can reduce power cost up to 27% and reduce hardware costs up to 47%. This research brings researchers a step closer to continuous, real-time systemic monitoring that will allow one to analyze the dynamic human physiology and understand, diagnosis, and treat mood disorders.
Fasano, Fabrizio; Mitolo, Micaela; Gardini, Simona; Venneri, Annalena; Caffarra, Paolo; Pazzaglia, Francesca
2018-01-01
Recently, efforts have been made to combine complementary perspectives in the assessment of Alzheimer type dementia. Of particular interest is the definition of the fingerprints of an early stage of the disease known as Mild Cognitive Impairment or prodromal Alzheimer's Disease. Machine learning approaches have been shown to be extremely suitable for the implementation of such a combination. In the present pilot study we combined the machine learning approach with structural magnetic resonance imaging and cognitive test assessments to classify a small cohort of 11 healthy participants and 11 patients experiencing Mild Cognitive Impairment. Cognitive assessment included a battery of standardised tests and a battery of experimental visuospatial memory tests. Correct classification was achieved in 100% of the participants, suggesting that the combination of neuroimaging with more complex cognitive tests is suitable for early detection of Alzheimer Disease. In particular, the results highlighted the importance of the experimental visuospatial memory test battery in the efficiency of classification, suggesting that the high-level brain computational framework underpinning the participant's performance in these ecological tests may represent a "natural filter" in the exploration of cognitive patterns of information able to identify early signs of the disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prediction of Enzyme Mutant Activity Using Computational Mutagenesis and Incremental Transduction
Basit, Nada; Wechsler, Harry
2011-01-01
Wet laboratory mutagenesis to determine enzyme activity changes is expensive and time consuming. This paper expands on standard one-shot learning by proposing an incremental transductive method (T2bRF) for the prediction of enzyme mutant activity during mutagenesis using Delaunay tessellation and 4-body statistical potentials for representation. Incremental learning is in tune with both eScience and actual experimentation, as it accounts for cumulative annotation effects of enzyme mutant activity over time. The experimental results reported, using cross-validation, show that overall the incremental transductive method proposed, using random forest as base classifier, yields better results compared to one-shot learning methods. T2bRF is shown to yield 90% on T4 and LAC (and 86% on HIV-1). This is significantly better than state-of-the-art competing methods, whose performance yield is at 80% or less using the same datasets. PMID:22007208
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-01-01
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods. PMID:29690526
A description of the pseudorapidity distributions in heavy ion collisions at RHIC and LHC energies
NASA Astrophysics Data System (ADS)
Jiang, Z. J.; Zhang, Y.; Zhang, H. L.; Deng, H. P.
2015-09-01
The charged particles produced in nucleus-nucleus collisions are classified into two parts: One is from the hot and dense matter created in collisions. The other is from leading particles. The hot and dense matter is assumed to expand and generate particles according to BJP hydrodynamics, a theory put forward by A. Bialas, R.A. Janik and R. Peschanski. The leading particles are argued to possess a Gaussian rapidity distribution with the normalization constant equaling the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaborations at BNL-RHIC in Au-Au and Cu-Cu collisions at √{sNN} = 200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at √{sNN} = 2.76 TeV. The theoretical results are well consistent with experimental data.
Experimental measurement of stationary SS 304, SS 316L and 8630 GTA weld pool surface temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, H.G.
1989-07-01
The optical spectral radiometric/laser reflectance experimental method, previously developed by the author, was extended to obtain high-resolution surface temperature maps of stationary GTA molten weld pools using thick-plate SS 304, SS316L, and 8630 steel. Increasing the welding current from 50 to 200 A resulted in peak pool surface temperatures from 1050{sup 0} to 2400{sup 0}C for the SS 304. At a constant welding current of 150 A, the SS 304 and various heats of SS 316L and 8630 resulted in peak weld pool temperatures from 2300{sup 0} to 2700{sup 0}C. Temperature contour plots of all the welds made are given.more » Surface temperature maps are classified into types that are believed to be indicative of the convective circulation patterns present in the weld pools.« less
Yasir, Muhammad Naveed; Koh, Bong-Hwan
2018-04-21
This paper presents the local mean decomposition (LMD) integrated with multi-scale permutation entropy (MPE), also known as LMD-MPE, to investigate the rolling element bearing (REB) fault diagnosis from measured vibration signals. First, the LMD decomposed the vibration data or acceleration measurement into separate product functions that are composed of both amplitude and frequency modulation. MPE then calculated the statistical permutation entropy from the product functions to extract the nonlinear features to assess and classify the condition of the healthy and damaged REB system. The comparative experimental results of the conventional LMD-based multi-scale entropy and MPE were presented to verify the authenticity of the proposed technique. The study found that LMD-MPE’s integrated approach provides reliable, damage-sensitive features when analyzing the bearing condition. The results of REB experimental datasets show that the proposed approach yields more vigorous outcomes than existing methods.
Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions.
Arjunan, Sridhar P; Kumar, Dinesh K
2007-01-01
The paper reports the use of fractal theory and fractal dimension to study the non-linear properties of surface electromyogram (sEMG) and to use these properties to classify subtle hand actions. The paper reports identifying a new feature of the fractal dimension, the bias that has been found to be useful in modelling the muscle activity and of sEMG. Experimental results demonstrate that the feature set consisting of bias values and fractal dimension of the recordings is suitable for classification of sEMG against the different hand gestures. The scatter plots demonstrate the presence of simple relationships of these features against the four hand gestures. The results indicate that there is small inter-experimental variation but large inter-subject variation. This may be due to differences in the size and shape of muscles for different subjects. The possible applications of this research include use in developing prosthetic hands, controlling machines and computers.
Jun, Sanghoon; Kim, Namkug; Seo, Joon Beom; Lee, Young Kyung; Lynch, David A
2017-12-01
We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of 600 rectangular 20 × 20-pixel regions of interest (ROIs) on HRCT images obtained from two different scanners (GE and Siemens) and the whole lung area of 92 HRCT images were classified as one of six regional pulmonary disease patterns by two expert radiologists. Textual and shape features were extracted from each ROI and the whole lung parenchyma. For automatic classification, individual and ensemble classifiers were trained and tested with the ROI dataset. We designed the following three experimental sets: an intra-scanner study in which the training and test sets were from the same scanner, an integrated scanner study in which the data from the two scanners were merged, and an inter-scanner study in which the training and test sets were acquired from different scanners. In the ROI-based classification, the ensemble classifiers showed better (p < 0.001) accuracy (89.73%, SD = 0.43) than the individual classifiers (88.38%, SD = 0.31) in the integrated scanner test. The ensemble classifiers also showed partial improvements in the intra- and inter-scanner tests. In the whole lung classification experiment, the quantification accuracies of the ensemble classifiers with integrated training (49.57%) were higher (p < 0.001) than the individual classifiers (48.19%). Furthermore, the ensemble classifiers also showed better performance in both the intra- and inter-scanner experiments. We concluded that the ensemble classifiers provide better performance when using integrated scanner images.
Learning a Markov Logic network for supervised gene regulatory network inference
2013-01-01
Background Gene regulatory network inference remains a challenging problem in systems biology despite the numerous approaches that have been proposed. When substantial knowledge on a gene regulatory network is already available, supervised network inference is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the pairwise classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Networks (MLN) that combine features of probabilistic graphical models with the expressivity of first-order logic rules. Results We propose to learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate “regulates”, starting from a known gene regulatory network involved in the switch proliferation/differentiation of keratinocyte cells, a set of experimental transcriptomic data and various descriptions of genes all encoded into first-order logic. As training data are unbalanced, we use asymmetric bagging to learn a set of MLNs. The prediction of a new regulation can then be obtained by averaging predictions of individual MLNs. As a side contribution, we propose three in silico tests to assess the performance of any pairwise classifier in various network inference tasks on real datasets. A first test consists of measuring the average performance on balanced edge prediction problem; a second one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network. Finally our main result concerns a third test that measures the ability of the method to predict regulations with a new set of genes. As expected, MLN, when provided with only numerical discretized gene expression data, does not perform as well as a pairwise SVM in terms of AUPR. However, when a more complete description of gene properties is provided by heterogeneous sources, MLN achieves the same performance as a black-box model such as a pairwise SVM while providing relevant insights on the predictions. Conclusions The numerical studies show that MLN achieves very good predictive performance while opening the door to some interpretability of the decisions. Besides the ability to suggest new regulations, such an approach allows to cross-validate experimental data with existing knowledge. PMID:24028533
Chitsaz, Daryan; Morales, Daniel; Law, Chris; Kania, Artur
2015-01-01
During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as “collapsed” or “extended”. The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in ‘collapsed’ GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay. PMID:26496644
Positive-unlabeled learning for disease gene identification
Yang, Peng; Li, Xiao-Li; Mei, Jian-Ping; Kwoh, Chee-Keong; Ng, See-Kiong
2012-01-01
Background: Identifying disease genes from human genome is an important but challenging task in biomedical research. Machine learning methods can be applied to discover new disease genes based on the known ones. Existing machine learning methods typically use the known disease genes as the positive training set P and the unknown genes as the negative training set N (non-disease gene set does not exist) to build classifiers to identify new disease genes from the unknown genes. However, such kind of classifiers is actually built from a noisy negative set N as there can be unknown disease genes in N itself. As a result, the classifiers do not perform as well as they could be. Result: Instead of treating the unknown genes as negative examples in N, we treat them as an unlabeled set U. We design a novel positive-unlabeled (PU) learning algorithm PUDI (PU learning for disease gene identification) to build a classifier using P and U. We first partition U into four sets, namely, reliable negative set RN, likely positive set LP, likely negative set LN and weak negative set WN. The weighted support vector machines are then used to build a multi-level classifier based on the four training sets and positive training set P to identify disease genes. Our experimental results demonstrate that our proposed PUDI algorithm outperformed the existing methods significantly. Conclusion: The proposed PUDI algorithm is able to identify disease genes more accurately by treating the unknown data more appropriately as unlabeled set U instead of negative set N. Given that many machine learning problems in biomedical research do involve positive and unlabeled data instead of negative data, it is possible that the machine learning methods for these problems can be further improved by adopting PU learning methods, as we have done here for disease gene identification. Availability and implementation: The executable program and data are available at http://www1.i2r.a-star.edu.sg/∼xlli/PUDI/PUDI.html. Contact: xlli@i2r.a-star.edu.sg or yang0293@e.ntu.edu.sg Supplementary information: Supplementary Data are available at Bioinformatics online. PMID:22923290
Krüsemann, Erna Johanna Zegerina; Boesveldt, Sanne; de Graaf, Kees; Talhout, Reinskje
2018-05-18
E-liquids are available in a high variety of flavors. A systematic classification of e-liquid flavors is necessary to increase comparability of research results. In the food, alcohol and fragrance industry, flavors are classified using flavor wheels. We systematically reviewed literature on flavors related to e-cigarette use, to investigate how e-liquid flavors have been classified in research, and propose an e-liquid flavor wheel to classify e-liquids based on marketing descriptions. The search was conducted in May 2017 using PubMed and Embase databases. Keywords included terms associated with e-cigarettes, flavors, liking, learning, and wanting in articles. Results were independently screened and reviewed. Flavor categories used in the articles reviewed were extracted. Searches yielded 386 unique articles of which 28 were included. Forty-three main flavor categories were reported in these articles (e.g., tobacco, menthol, mint, fruit, bakery/dessert, alcohol, nuts, spice, candy, coffee/tea, beverages, chocolate, sweet flavors, vanilla, unflavored). Flavor classifications of e-liquids in literature showed similarities and differences across studies. Our proposed e-liquid flavor wheel contains 13 main categories and 90 subcategories, which summarize flavor categories from literature to find a shared vocabulary. For classification of e-liquids using our flavor wheel, marketing descriptions should be used. We have proposed a flavor wheel for classification of e-liquids. Further research is needed to test the flavor wheels' empirical value. Consistently classifying e-liquid flavors using our flavor wheel in research (e.g., experimental, marketing, or qualitative studies) minimizes interpretation differences and increases comparability of results. We reviewed e-liquid flavors and flavor categories used in research. A large variation in the naming of flavor categories was found and e-liquid flavors were not consistently classified. We developed an e-liquid flavor wheel and provided a guideline for systematic classification of e-liquids based on marketing descriptions. Our flavor wheel summarizes e-liquid flavors and categories used in literature in order to create a shared vocabulary. Applying our flavor wheel in research on e-liquids will improve data interpretation, increase comparability across studies, and support policy makers in developing rules for regulation of e-liquid flavors.
Identification and Classification of Facial Familiarity in Directed Lying: An ERP Study
Sun, Delin; Chan, Chetwyn C. H.; Lee, Tatia M. C.
2012-01-01
Recognizing familiar faces is essential to social functioning, but little is known about how people identify human faces and classify them in terms of familiarity. Face identification involves discriminating familiar faces from unfamiliar faces, whereas face classification involves making an intentional decision to classify faces as “familiar” or “unfamiliar.” This study used a directed-lying task to explore the differentiation between identification and classification processes involved in the recognition of familiar faces. To explore this issue, the participants in this study were shown familiar and unfamiliar faces. They responded to these faces (i.e., as familiar or unfamiliar) in accordance with the instructions they were given (i.e., to lie or to tell the truth) while their EEG activity was recorded. Familiar faces (regardless of lying vs. truth) elicited significantly less negative-going N400f in the middle and right parietal and temporal regions than unfamiliar faces. Regardless of their actual familiarity, the faces that the participants classified as “familiar” elicited more negative-going N400f in the central and right temporal regions than those classified as “unfamiliar.” The P600 was related primarily with the facial identification process. Familiar faces (regardless of lying vs. truth) elicited more positive-going P600f in the middle parietal and middle occipital regions. The results suggest that N400f and P600f play different roles in the processes involved in facial recognition. The N400f appears to be associated with both the identification (judgment of familiarity) and classification of faces, while it is likely that the P600f is only associated with the identification process (recollection of facial information). Future studies should use different experimental paradigms to validate the generalizability of the results of this study. PMID:22363597
Novel gene sets improve set-level classification of prokaryotic gene expression data.
Holec, Matěj; Kuželka, Ondřej; Železný, Filip
2015-10-28
Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.
Yook, Sunhyun; Nam, Kyoung Won; Kim, Heepyung; Hong, Sung Hwa; Jang, Dong Pyo; Kim, In Young
2015-04-01
In order to provide more consistent sound intelligibility for the hearing-impaired person, regardless of environment, it is necessary to adjust the setting of the hearing-support (HS) device to accommodate various environmental circumstances. In this study, a fully automatic HS device management algorithm that can adapt to various environmental situations is proposed; it is composed of a listening-situation classifier, a noise-type classifier, an adaptive noise-reduction algorithm, and a management algorithm that can selectively turn on/off one or more of the three basic algorithms-beamforming, noise-reduction, and feedback cancellation-and can also adjust internal gains and parameters of the wide-dynamic-range compression (WDRC) and noise-reduction (NR) algorithms in accordance with variations in environmental situations. Experimental results demonstrated that the implemented algorithms can classify both listening situation and ambient noise type situations with high accuracies (92.8-96.4% and 90.9-99.4%, respectively), and the gains and parameters of the WDRC and NR algorithms were successfully adjusted according to variations in environmental situation. The average values of signal-to-noise ratio (SNR), frequency-weighted segmental SNR, Perceptual Evaluation of Speech Quality, and mean opinion test scores of 10 normal-hearing volunteers of the adaptive multiband spectral subtraction (MBSS) algorithm were improved by 1.74 dB, 2.11 dB, 0.49, and 0.68, respectively, compared to the conventional fixed-parameter MBSS algorithm. These results indicate that the proposed environment-adaptive management algorithm can be applied to HS devices to improve sound intelligibility for hearing-impaired individuals in various acoustic environments. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Bei; Zhong, Yanfei; Zhang, Liangpei
2016-06-01
Land-use classification of very high spatial resolution remote sensing (VHSR) imagery is one of the most challenging tasks in the field of remote sensing image processing. However, the land-use classification is hard to be addressed by the land-cover classification techniques, due to the complexity of the land-use scenes. Scene classification is considered to be one of the expected ways to address the land-use classification issue. The commonly used scene classification methods of VHSR imagery are all derived from the computer vision community that mainly deal with terrestrial image recognition. Differing from terrestrial images, VHSR images are taken by looking down with airborne and spaceborne sensors, which leads to the distinct light conditions and spatial configuration of land cover in VHSR imagery. Considering the distinct characteristics, two questions should be answered: (1) Which type or combination of information is suitable for the VHSR imagery scene classification? (2) Which scene classification algorithm is best for VHSR imagery? In this paper, an efficient spectral-structural bag-of-features scene classifier (SSBFC) is proposed to combine the spectral and structural information of VHSR imagery. SSBFC utilizes the first- and second-order statistics (the mean and standard deviation values, MeanStd) as the statistical spectral descriptor for the spectral information of the VHSR imagery, and uses dense scale-invariant feature transform (SIFT) as the structural feature descriptor. From the experimental results, the spectral information works better than the structural information, while the combination of the spectral and structural information is better than any single type of information. Taking the characteristic of the spatial configuration into consideration, SSBFC uses the whole image scene as the scope of the pooling operator, instead of the scope generated by a spatial pyramid (SP) commonly used in terrestrial image classification. The experimental results show that the whole image as the scope of the pooling operator performs better than the scope generated by SP. In addition, SSBFC codes and pools the spectral and structural features separately to avoid mutual interruption between the spectral and structural features. The coding vectors of spectral and structural features are then concatenated into a final coding vector. Finally, SSBFC classifies the final coding vector by support vector machine (SVM) with a histogram intersection kernel (HIK). Compared with the latest scene classification methods, the experimental results with three VHSR datasets demonstrate that the proposed SSBFC performs better than the other classification methods for VHSR image scenes.
Ensemble LUT classification for degraded document enhancement
NASA Astrophysics Data System (ADS)
Obafemi-Ajayi, Tayo; Agam, Gady; Frieder, Ophir
2008-01-01
The fast evolution of scanning and computing technologies have led to the creation of large collections of scanned paper documents. Examples of such collections include historical collections, legal depositories, medical archives, and business archives. Moreover, in many situations such as legal litigation and security investigations scanned collections are being used to facilitate systematic exploration of the data. It is almost always the case that scanned documents suffer from some form of degradation. Large degradations make documents hard to read and substantially deteriorate the performance of automated document processing systems. Enhancement of degraded document images is normally performed assuming global degradation models. When the degradation is large, global degradation models do not perform well. In contrast, we propose to estimate local degradation models and use them in enhancing degraded document images. Using a semi-automated enhancement system we have labeled a subset of the Frieder diaries collection.1 This labeled subset was then used to train an ensemble classifier. The component classifiers are based on lookup tables (LUT) in conjunction with the approximated nearest neighbor algorithm. The resulting algorithm is highly effcient. Experimental evaluation results are provided using the Frieder diaries collection.1
Gunavathi, Chellamuthu; Premalatha, Kandasamy
2014-01-01
Feature selection in cancer classification is a central area of research in the field of bioinformatics and used to select the informative genes from thousands of genes of the microarray. The genes are ranked based on T-statistics, signal-to-noise ratio (SNR), and F-test values. The swarm intelligence (SI) technique finds the informative genes from the top-m ranked genes. These selected genes are used for classification. In this paper the shuffled frog leaping with Lévy flight (SFLLF) is proposed for feature selection. In SFLLF, the Lévy flight is included to avoid premature convergence of shuffled frog leaping (SFL) algorithm. The SI techniques such as particle swarm optimization (PSO), cuckoo search (CS), SFL, and SFLLF are used for feature selection which identifies informative genes for classification. The k-nearest neighbour (k-NN) technique is used to classify the samples. The proposed work is applied on 10 different benchmark datasets and examined with SI techniques. The experimental results show that the results obtained from k-NN classifier through SFLLF feature selection method outperform PSO, CS, and SFL.
Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm.
Al-Saffar, Ahmed; Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-Bared, Mohammed
2018-01-01
Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.
Implementation and performance evaluation of acoustic denoising algorithms for UAV
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed Sony Kamal
Unmanned Aerial Vehicles (UAVs) have become popular alternative for wildlife monitoring and border surveillance applications. Elimination of the UAV's background noise and classifying the target audio signal effectively are still a major challenge. The main goal of this thesis is to remove UAV's background noise by means of acoustic denoising techniques. Existing denoising algorithms, such as Adaptive Least Mean Square (LMS), Wavelet Denoising, Time-Frequency Block Thresholding, and Wiener Filter, were implemented and their performance evaluated. The denoising algorithms were evaluated for average Signal to Noise Ratio (SNR), Segmental SNR (SSNR), Log Likelihood Ratio (LLR), and Log Spectral Distance (LSD) metrics. To evaluate the effectiveness of the denoising algorithms on classification of target audio, we implemented Support Vector Machine (SVM) and Naive Bayes classification algorithms. Simulation results demonstrate that LMS and Discrete Wavelet Transform (DWT) denoising algorithm offered superior performance than other algorithms. Finally, we implemented the LMS and DWT algorithms on a DSP board for hardware evaluation. Experimental results showed that LMS algorithm's performance is robust compared to DWT for various noise types to classify target audio signals.
Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm
Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-bared, Mohammed
2018-01-01
Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach. PMID:29684036
Raman, M R Gauthama; Somu, Nivethitha; Kirthivasan, Kannan; Sriram, V S Shankar
2017-08-01
Over the past few decades, the design of an intelligent Intrusion Detection System (IDS) remains an open challenge to the research community. Continuous efforts by the researchers have resulted in the development of several learning models based on Artificial Neural Network (ANN) to improve the performance of the IDSs. However, there exists a tradeoff with respect to the stability of ANN architecture and the detection rate for less frequent attacks. This paper presents a novel approach based on Helly property of Hypergraph and Arithmetic Residue-based Probabilistic Neural Network (HG AR-PNN) to address the classification problem in IDS. The Helly property of Hypergraph was exploited for the identification of the optimal feature subset and the arithmetic residue of the optimal feature subset was used to train the PNN. The performance of HG AR-PNN was evaluated using KDD CUP 1999 intrusion dataset. Experimental results prove the dominance of HG AR-PNN classifier over the existing classifiers with respect to the stability and improved detection rate for less frequent attacks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin
2015-08-01
Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.
Ensemble positive unlabeled learning for disease gene identification.
Yang, Peng; Li, Xiaoli; Chua, Hon-Nian; Kwoh, Chee-Keong; Ng, See-Kiong
2014-01-01
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.
Multiple-object tracking as a tool for parametrically modulating memory reactivation
Poppenk, J.; Norman, K.A.
2017-01-01
Converging evidence supports the “non-monotonic plasticity” hypothesis that although complete retrieval may strengthen memories, partial retrieval weakens them. Yet, the classic experimental paradigms used to study effects of partial retrieval are not ideally suited to doing so, because they lack the parametric control needed to ensure that the memory is activated to the appropriate degree (i.e., that there is some retrieval, but not enough to cause memory strengthening). Here we present a novel procedure designed to accommodate this need. After participants learned a list of word-scene associates, they completed a cued mental visualization task that was combined with a multiple-object tracking (MOT) procedure, which we selected for its ability to interfere with mental visualization in a parametrically adjustable way (by varying the number of MOT targets). We also used fMRI data to successfully train an “associative recall” classifier for use in this task: this classifier revealed greater memory reactivation during trials in which associative memories were cued while participants tracked one, rather than five MOT targets. However, the classifier was insensitive to task difficulty when recall was not taking place, suggesting it had indeed tracked memory reactivation rather than task difficulty per se. Consistent with the classifier findings, participants’ introspective ratings of visualization vividness were modulated by MOT task difficulty. In addition, we observed reduced classifier output and slowing of responses in a post-reactivation memory test, consistent with the hypothesis that partial reactivation, induced by MOT, weakened memory. These results serve as a “proof of concept” that MOT can be used to parametrically modulate memory retrieval – a property that may prove useful in future investigation of partial retrieval effects, e.g., in closed-loop experiments. PMID:28387587
NASA Astrophysics Data System (ADS)
Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Hasegawa, Yoshinori; Imaizumi, Kazuyoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi
2008-03-01
This paper presents a method for automated anatomical labeling of bronchial branches (ALBB) extracted from 3D CT datasets. The proposed method constructs classifiers that output anatomical names of bronchial branches by employing the machine-learning approach. We also present its application to a bronchoscopy guidance system. Since the bronchus has a complex tree structure, bronchoscopists easily tend to get disoriented and lose the way to a target location. A bronchoscopy guidance system is strongly expected to be developed to assist bronchoscopists. In such guidance system, automated presentation of anatomical names is quite useful information for bronchoscopy. Although several methods for automated ALBB were reported, most of them constructed models taking only variations of branching patterns into account and did not consider those of running directions. Since the running directions of bronchial branches differ greatly in individuals, they could not perform ALBB accurately when running directions of bronchial branches were different from those of models. Our method tries to solve such problems by utilizing the machine-learning approach. Actual procedure consists of three steps: (a) extraction of bronchial tree structures from 3D CT datasets, (b) construction of classifiers using the multi-class AdaBoost technique, and (c) automated classification of bronchial branches by using the constructed classifiers. We applied the proposed method to 51 cases of 3D CT datasets. The constructed classifiers were evaluated by leave-one-out scheme. The experimental results showed that the proposed method could assign correct anatomical names to bronchial branches of 89.1% up to segmental lobe branches. Also, we confirmed that it was quite useful to assist the bronchoscopy by presenting anatomical names of bronchial branches on real bronchoscopic views.
ReLiance: a machine learning and literature-based prioritization of receptor—ligand pairings
Iacucci, Ernesto; Tranchevent, Léon-Charles; Popovic, Dusan; Pavlopoulos, Georgios A.; De Moor, Bart; Schneider, Reinhard; Moreau, Yves
2012-01-01
Motivation: The prediction of receptor—ligand pairings is an important area of research as intercellular communications are mediated by the successful interaction of these key proteins. As the exhaustive assaying of receptor—ligand pairs is impractical, a computational approach to predict pairings is necessary. We propose a workflow to carry out this interaction prediction task, using a text mining approach in conjunction with a state of the art prediction method, as well as a widely accessible and comprehensive dataset. Among several modern classifiers, random forests have been found to be the best at this prediction task. The training of this classifier was carried out using an experimentally validated dataset of Database of Ligand-Receptor Partners (DLRP) receptor—ligand pairs. New examples, co-cited with the training receptors and ligands, are then classified using the trained classifier. After applying our method, we find that we are able to successfully predict receptor—ligand pairs within the GPCR family with a balanced accuracy of 0.96. Upon further inspection, we find several supported interactions that were not present in the Database of Interacting Proteins (DIPdatabase). We have measured the balanced accuracy of our method resulting in high quality predictions stored in the available database ReLiance. Availability: http://homes.esat.kuleuven.be/~bioiuser/ReLianceDB/index.php Contact: yves.moreau@esat.kuleuven.be; ernesto.iacucci@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22962483
Efficient Fingercode Classification
NASA Astrophysics Data System (ADS)
Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang
In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.
Karinen, Ritva; Høiseth, Gudrun
2017-07-01
Interpretation of blood concentrations of new psychoactive substances (NPS) requires comparison of the results to previously published case reports; as only a few experimental studies for these substances exist. A large number of articles representing single or multiple cases have been published for a great number of substances, making a unified overview difficult. In this review we have collected all published blood concentrations from the NPS groups classified as phenethylamines, aminoindanes, arylalkylamines, arylcyclohexylamines, and indolalkylamines, and also included unpublished results for MPA, MXE, 4-FMA, 4-FA and 4-MA analyzed in our laboratory. In total, 71 publications on 35 different drugs were summarized. For most of the drugs, the total number of reported cases was very low (≤5). For some of the synthetic drugs, however, a higher number of blood concentrations are now available; especially for 5-IT (32 reported cases in total), MPA (31 reported cases in total) and MXE (36 reported cases in total), thus the published results are more substantial. The present compilation could be a helpful tool for forensic toxicologists when blood concentrations of NPS are assessed. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Cui, Binge; Ma, Xiudan; Xie, Xiaoyun; Ren, Guangbo; Ma, Yi
2017-03-01
The classification of hyperspectral images with a few labeled samples is a major challenge which is difficult to meet unless some spatial characteristics can be exploited. In this study, we proposed a novel spectral-spatial hyperspectral image classification method that exploited spatial autocorrelation of hyperspectral images. First, image segmentation is performed on the hyperspectral image to assign each pixel to a homogeneous region. Second, the visible and infrared bands of hyperspectral image are partitioned into multiple subsets of adjacent bands, and each subset is merged into one band. Recursive edge-preserving filtering is performed on each merged band which utilizes the spectral information of neighborhood pixels. Third, the resulting spectral and spatial feature band set is classified using the SVM classifier. Finally, bilateral filtering is performed to remove "salt-and-pepper" noise in the classification result. To preserve the spatial structure of hyperspectral image, edge-preserving filtering is applied independently before and after the classification process. Experimental results on different hyperspectral images prove that the proposed spectral-spatial classification approach is robust and offers more classification accuracy than state-of-the-art methods when the number of labeled samples is small.
An online sleep apnea detection method based on recurrence quantification analysis.
Nguyen, Hoa Dinh; Wilkins, Brek A; Cheng, Qi; Benjamin, Bruce Allen
2014-07-01
This paper introduces an online sleep apnea detection method based on heart rate complexity as measured by recurrence quantification analysis (RQA) statistics of heart rate variability (HRV) data. RQA statistics can capture nonlinear dynamics of a complex cardiorespiratory system during obstructive sleep apnea. In order to obtain a more robust measurement of the nonstationarity of the cardiorespiratory system, we use different fixed amount of neighbor thresholdings for recurrence plot calculation. We integrate a feature selection algorithm based on conditional mutual information to select the most informative RQA features for classification, and hence, to speed up the real-time classification process without degrading the performance of the system. Two types of binary classifiers, i.e., support vector machine and neural network, are used to differentiate apnea from normal sleep. A soft decision fusion rule is developed to combine the results of these classifiers in order to improve the classification performance of the whole system. Experimental results show that our proposed method achieves better classification results compared with the previous recurrence analysis-based approach. We also show that our method is flexible and a strong candidate for a real efficient sleep apnea detection system.
Extraction of Pharmacokinetic Evidence of Drug–Drug Interactions from the Literature
Kolchinsky, Artemy; Lourenço, Anália; Wu, Heng-Yi; Li, Lang; Rocha, Luis M.
2015-01-01
Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F1≈0.93, MCC≈0.74, iAUC≈0.99) and sentences (F1≈0.76, MCC≈0.65, iAUC≈0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in classification of evidence sentences. Based on our thorough analysis of classifiers and feature transforms and the high classification performance achieved, we demonstrate that literature mining can aid DDI discovery by supporting automatic extraction of specific types of experimental evidence. PMID:25961290
Some observations on mesh refinement schemes applied to shock wave phenomena
NASA Technical Reports Server (NTRS)
Quirk, James J.
1995-01-01
This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.
Smith, Zachary J; Strombom, Sven; Wachsmann-Hogiu, Sebastian
2011-08-29
A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.
Preliminary Investigation of a New Type of Supersonic Inlet
NASA Technical Reports Server (NTRS)
Ferri, Antonio; Nucci, Louis M
1952-01-01
A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered a particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and, therefore, is practical for use on supersonic airplanes and missiles. Experimental results confirming the theoretical analysis give pressure recoveries which vary from 95 percent for Mach number 1.33 to 86 percent for number 2.00. These results were originally presented in a classified document of the NACA in 1946.
Deep Convolutional Neural Networks for breast cancer screening.
Chougrad, Hiba; Zouaki, Hamid; Alheyane, Omar
2018-04-01
Radiologists often have a hard time classifying mammography mass lesions which leads to unnecessary breast biopsies to remove suspicions and this ends up adding exorbitant expenses to an already burdened patient and health care system. In this paper we developed a Computer-aided Diagnosis (CAD) system based on deep Convolutional Neural Networks (CNN) that aims to help the radiologist classify mammography mass lesions. Deep learning usually requires large datasets to train networks of a certain depth from scratch. Transfer learning is an effective method to deal with relatively small datasets as in the case of medical images, although it can be tricky as we can easily start overfitting. In this work, we explore the importance of transfer learning and we experimentally determine the best fine-tuning strategy to adopt when training a CNN model. We were able to successfully fine-tune some of the recent, most powerful CNNs and achieved better results compared to other state-of-the-art methods which classified the same public datasets. For instance we achieved 97.35% accuracy and 0.98 AUC on the DDSM database, 95.50% accuracy and 0.97 AUC on the INbreast database and 96.67% accuracy and 0.96 AUC on the BCDR database. Furthermore, after pre-processing and normalizing all the extracted Regions of Interest (ROIs) from the full mammograms, we merged all the datasets to build one large set of images and used it to fine-tune our CNNs. The CNN model which achieved the best results, a 98.94% accuracy, was used as a baseline to build the Breast Cancer Screening Framework. To evaluate the proposed CAD system and its efficiency to classify new images, we tested it on an independent database (MIAS) and got 98.23% accuracy and 0.99 AUC. The results obtained demonstrate that the proposed framework is performant and can indeed be used to predict if the mass lesions are benign or malignant. Copyright © 2018 Elsevier B.V. All rights reserved.
Clark, Ian A.; Niehaus, Katherine E.; Duff, Eugene P.; Di Simplicio, Martina C.; Clifford, Gari D.; Smith, Stephen M.; Mackay, Clare E.; Woolrich, Mark W.; Holmes, Emily A.
2014-01-01
After psychological trauma, why do some only some parts of the traumatic event return as intrusive memories while others do not? Intrusive memories are key to cognitive behavioural treatment for post-traumatic stress disorder, and an aetiological understanding is warranted. We present here analyses using multivariate pattern analysis (MVPA) and a machine learning classifier to investigate whether peri-traumatic brain activation was able to predict later intrusive memories (i.e. before they had happened). To provide a methodological basis for understanding the context of the current results, we first show how functional magnetic resonance imaging (fMRI) during an experimental analogue of trauma (a trauma film) via a prospective event-related design was able to capture an individual's later intrusive memories. Results showed widespread increases in brain activation at encoding when viewing a scene in the scanner that would later return as an intrusive memory in the real world. These fMRI results were replicated in a second study. While traditional mass univariate regression analysis highlighted an association between brain processing and symptomatology, this is not the same as prediction. Using MVPA and a machine learning classifier, it was possible to predict later intrusive memories across participants with 68% accuracy, and within a participant with 97% accuracy; i.e. the classifier could identify out of multiple scenes those that would later return as an intrusive memory. We also report here brain networks key in intrusive memory prediction. MVPA opens the possibility of decoding brain activity to reconstruct idiosyncratic cognitive events with relevance to understanding and predicting mental health symptoms. PMID:25151915
A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images.
Tang, Sheng; Chen, Si-ping
2009-09-01
Severe sex ratio imbalance at birth is now becoming an important issue in several Asian countries. Its leading immediate cause is prenatal sex-selective abortion following illegal sex identification by ultrasound scanning. In this paper, a fast automatic recognition and location algorithm for fetal genital organs is proposed as an effective method to help prevent ultrasound technicians from unethically and illegally identifying the sex of the fetus. This automatic recognition algorithm can be divided into two stages. In the 'rough' stage, a few pixels in the image, which are likely to represent the genital organs, are automatically chosen as points of interest (POIs) according to certain salient characteristics of fetal genital organs. In the 'fine' stage, a specifically supervised learning framework, which fuses an effective feature data preprocessing mechanism into the multiple classifier architecture, is applied to every POI. The basic classifiers in the framework are selected from three widely used classifiers: radial basis function network, backpropagation network, and support vector machine. The classification results of all the POIs are then synthesized to determine whether the fetal genital organ is present in the image, and to locate the genital organ within the positive image. Experiments were designed and carried out based on an image dataset comprising 658 positive images (images with fetal genital organs) and 500 negative images (images without fetal genital organs). The experimental results showed true positive (TP) and true negative (TN) results from 80.5% (265 from 329) and 83.0% (415 from 500) of samples, respectively. The average computation time was 453 ms per image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Juan; Liefer, Nathan C.; Busho, Colin R.
Here, the need for improved Critical Infrastructure and Key Resource (CIKR) security is unquestioned and there has been minimal emphasis on Level-0 (PHY Process) improvements. Wired Signal Distinct Native Attribute (WS-DNA) Fingerprinting is investigated here as a non-intrusive PHY-based security augmentation to support an envisioned layered security strategy. Results are based on experimental response collections from Highway Addressable Remote Transducer (HART) Differential Pressure Transmitter (DPT) devices from three manufacturers (Yokogawa, Honeywell, Endress+Hauer) installed in an automated process control system. Device discrimination is assessed using Time Domain (TD) and Slope-Based FSK (SB-FSK) fingerprints input to Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML)more » and Random Forest (RndF) classifiers. For 12 different classes (two devices per manufacturer at two distinct set points), both classifiers performed reliably and achieved an arbitrary performance benchmark of average cross-class percent correct of %C > 90%. The least challenging cross-manufacturer results included near-perfect %C ≈ 100%, while the more challenging like-model (serial number) discrimination results included 90%< %C < 100%, with TD Fingerprinting marginally outperforming SB-FSK Fingerprinting; SB-FSK benefits from having less stringent response alignment and registration requirements. The RndF classifier was most beneficial and enabled reliable selection of dimensionally reduced fingerprint subsets that minimize data storage and computational requirements. The RndF selected feature sets contained 15% of the full-dimensional feature sets and only suffered a worst case %CΔ = 3% to 4% performance degradation.« less
Researches of fruit quality prediction model based on near infrared spectrum
NASA Astrophysics Data System (ADS)
Shen, Yulin; Li, Lian
2018-04-01
With the improvement in standards for food quality and safety, people pay more attention to the internal quality of fruits, therefore the measurement of fruit internal quality is increasingly imperative. In general, nondestructive soluble solid content (SSC) and total acid content (TAC) analysis of fruits is vital and effective for quality measurement in global fresh produce markets, so in this paper, we aim at establishing a novel fruit internal quality prediction model based on SSC and TAC for Near Infrared Spectrum. Firstly, the model of fruit quality prediction based on PCA + BP neural network, PCA + GRNN network, PCA + BP adaboost strong classifier, PCA + ELM and PCA + LS_SVM classifier are designed and implemented respectively; then, in the NSCT domain, the median filter and the SavitzkyGolay filter are used to preprocess the spectral signal, Kennard-Stone algorithm is used to automatically select the training samples and test samples; thirdly, we achieve the optimal models by comparing 15 kinds of prediction model based on the theory of multi-classifier competition mechanism, specifically, the non-parametric estimation is introduced to measure the effectiveness of proposed model, the reliability and variance of nonparametric estimation evaluation of each prediction model to evaluate the prediction result, while the estimated value and confidence interval regard as a reference, the experimental results demonstrate that this model can better achieve the optimal evaluation of the internal quality of fruit; finally, we employ cat swarm optimization to optimize two optimal models above obtained from nonparametric estimation, empirical testing indicates that the proposed method can provide more accurate and effective results than other forecasting methods.
Sonic and Supersonic Jet Plumes
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.
Using experimental data to test and improve SUSY theories
NASA Astrophysics Data System (ADS)
Wang, Ting
There are several pieces of evidence that our world is described by a supersymmetric extension of the Standard Model. In this thesis, I assume this is the case and study how to use experimental data to test and improve supersymmetric standard models. Several experimental signatures and their implications are covered in this thesis: the result of the branching ratio of b → sgamma is used to put constraints on SUSY models; the measured time-dependent CP asymmetry in the B → φKS process is used to test unification scale models; the excess of positrons from cosmic rays helps us to test the property of the Lightest Supersymmetric Particle and the Cold Dark Matter production mechanisms; the LEP higgs search results are used to classify SUSY models; SUSY signatures at the Tevatron are used to distinguish different unification scale models; by considering the mu problem, SUSY theories are improved. Due to the large unknown parameter space, all of the above inputs should be used to partially reconstruct the soft Lagrangian, which is the central part of the model. Combining the results from these analysis, a significant amount of knowledge about the underlying theory has been learned. In the next several years, there will be more data coming. The methods and results in this thesis will be useful for dealing with future data.
Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes
NASA Astrophysics Data System (ADS)
Achmad, Maulana; Suhandi, Andi
2017-05-01
The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.
NASA Astrophysics Data System (ADS)
Sosa, Germán. D.; Cruz-Roa, Angel; González, Fabio A.
2015-01-01
This work addresses the problem of lung sound classification, in particular, the problem of distinguishing between wheeze and normal sounds. Wheezing sound detection is an important step to associate lung sounds with an abnormal state of the respiratory system, usually associated with tuberculosis or another chronic obstructive pulmonary diseases (COPD). The paper presents an approach for automatic lung sound classification, which uses different state-of-the-art sound features in combination with a C-weighted support vector machine (SVM) classifier that works better for unbalanced data. Feature extraction methods used here are commonly applied in speech recognition and related problems thanks to the fact that they capture the most informative spectral content from the original signals. The evaluated methods were: Fourier transform (FT), wavelet decomposition using Wavelet Packet Transform bank of filters (WPT) and Mel Frequency Cepstral Coefficients (MFCC). For comparison, we evaluated and contrasted the proposed approach against previous works using different combination of features and/or classifiers. The different methods were evaluated on a set of lung sounds including normal and wheezing sounds. A leave-two-out per-case cross-validation approach was used, which, in each fold, chooses as validation set a couple of cases, one including normal sounds and the other including wheezing sounds. Experimental results were reported in terms of traditional classification performance measures: sensitivity, specificity and balanced accuracy. Our best results using the suggested approach, C-weighted SVM and MFCC, achieve a 82.1% of balanced accuracy obtaining the best result for this problem until now. These results suggest that supervised classifiers based on kernel methods are able to learn better models for this challenging classification problem even using the same feature extraction methods.
Automatic Classification of volcano-seismic events based on Deep Neural Networks.
NASA Astrophysics Data System (ADS)
Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.
2017-12-01
Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri
2014-01-01
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2017-02-01
We propose a fully automated method for detection and segmentation of the abnormal tissue associated with brain tumour (tumour core and oedema) from Fluid- Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Imaging (MRI). The method is based on superpixel technique and classification of each superpixel. A number of novel image features including intensity-based, Gabor textons, fractal analysis and curvatures are calculated from each superpixel within the entire brain area in FLAIR MRI to ensure a robust classification. Extremely randomized trees (ERT) classifier is compared with support vector machine (SVM) to classify each superpixel into tumour and non-tumour. The proposed method is evaluated on two datasets: (1) Our own clinical dataset: 19 MRI FLAIR images of patients with gliomas of grade II to IV, and (2) BRATS 2012 dataset: 30 FLAIR images with 10 low-grade and 20 high-grade gliomas. The experimental results demonstrate the high detection and segmentation performance of the proposed method using ERT classifier. For our own cohort, the average detection sensitivity, balanced error rate and the Dice overlap measure for the segmented tumour against the ground truth are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS dataset, the corresponding evaluation results are 88.09 %, 6 % and 0.88, respectively. This provides a close match to expert delineation across all grades of glioma, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management.
Classification of optical coherence tomography images for diagnosing different ocular diseases
NASA Astrophysics Data System (ADS)
Gholami, Peyman; Sheikh Hassani, Mohsen; Kuppuswamy Parthasarathy, Mohana; Zelek, John S.; Lakshminarayanan, Vasudevan
2018-03-01
Optical Coherence tomography (OCT) images provide several indicators, e.g., the shape and the thickness of different retinal layers, which can be used for various clinical and non-clinical purposes. We propose an automated classification method to identify different ocular diseases, based on the local binary pattern features. The database consists of normal and diseased human eye SD-OCT images. We use a multiphase approach for building our classifier, including preprocessing, Meta learning, and active learning. Pre-processing is applied to the data to handle missing features from images and replace them with the mean or median of the corresponding feature. All the features are run through a Correlation-based Feature Subset Selection algorithm to detect the most informative features and omit the less informative ones. A Meta learning approach is applied to the data, in which a SVM and random forest are combined to obtain a more robust classifier. Active learning is also applied to strengthen our classifier around the decision boundary. The primary experimental results indicate that our method is able to differentiate between the normal and non-normal retina with an area under the ROC curve (AUC) of 98.6% and also to diagnose the three common retina-related diseases, i.e., Age-related Macular Degeneration, Diabetic Retinopathy, and Macular Hole, with an AUC of 100%, 95% and 83.8% respectively. These results indicate a better performance of the proposed method compared to most of the previous works in the literature.
A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.
Sarrouti, Mourad; Ouatik El Alaoui, Said
2017-05-18
Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.
Guided filter and convolutional network based tracking for infrared dim moving target
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Qin, Hanlin; Rong, Shenghui; Zhao, Dong; Du, Juan
2017-09-01
The dim moving target usually submerges in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio. A tracking algorithm that integrates the Guided Image Filter (GIF) and the Convolutional neural network (CNN) into the particle filter framework is presented to cope with the uncertainty of dim targets. First, the initial target template is treated as a guidance to filter incoming templates depending on similarities between the guidance and candidate templates. The GIF algorithm utilizes the structure in the guidance and performs as an edge-preserving smoothing operator. Therefore, the guidance helps to preserve the detail of valuable templates and makes inaccurate ones blurry, alleviating the tracking deviation effectively. Besides, the two-layer CNN method is adopted to obtain a powerful appearance representation. Subsequently, a Bayesian classifier is trained with these discriminative yet strong features. Moreover, an adaptive learning factor is introduced to prevent the update of classifier's parameters when a target undergoes sever background. At last, classifier responses of particles are utilized to generate particle importance weights and a re-sample procedure preserves samples according to the weight. In the predication stage, a 2-order transition model considers the target velocity to estimate current position. Experimental results demonstrate that the presented algorithm outperforms several relative algorithms in the accuracy.
Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine.
Riccardi, Annalisa; Fernández-Navarro, Francisco; Carloni, Sante
2014-10-01
In this paper, the well known stagewise additive modeling using a multiclass exponential (SAMME) boosting algorithm is extended to address problems where there exists a natural order in the targets using a cost-sensitive approach. The proposed ensemble model uses an extreme learning machine (ELM) model as a base classifier (with the Gaussian kernel and the additional regularization parameter). The closed form of the derived weighted least squares problem is provided, and it is employed to estimate analytically the parameters connecting the hidden layer to the output layer at each iteration of the boosting algorithm. Compared to the state-of-the-art boosting algorithms, in particular those using ELM as base classifier, the suggested technique does not require the generation of a new training dataset at each iteration. The adoption of the weighted least squares formulation of the problem has been presented as an unbiased and alternative approach to the already existing ELM boosting techniques. Moreover, the addition of a cost model for weighting the patterns, according to the order of the targets, enables the classifier to tackle ordinal regression problems further. The proposed method has been validated by an experimental study by comparing it with already existing ensemble methods and ELM techniques for ordinal regression, showing competitive results.
NASA Astrophysics Data System (ADS)
Itoh, Hayato; Mori, Yuichi; Misawa, Masashi; Oda, Masahiro; Kudo, Shin-ei; Mori, Kensaku
2018-02-01
This paper presents a new classification method for endocytoscopic images. Endocytoscopy is a new endoscope that enables us to perform conventional endoscopic observation and ultramagnified observation of cell level. This ultramagnified views (endocytoscopic images) make possible to perform pathological diagnosis only on endo-scopic views of polyps during colonoscopy. However, endocytoscopic image diagnosis requires higher experiences for physicians. An automated pathological diagnosis system is required to prevent the overlooking of neoplastic lesions in endocytoscopy. For this purpose, we propose a new automated endocytoscopic image classification method that classifies neoplastic and non-neoplastic endocytoscopic images. This method consists of two classification steps. At the first step, we classify an input image by support vector machine. We forward the image to the second step if the confidence of the first classification is low. At the second step, we classify the forwarded image by convolutional neural network. We reject the input image if the confidence of the second classification is also low. We experimentally evaluate the classification performance of the proposed method. In this experiment, we use about 16,000 and 4,000 colorectal endocytoscopic images as training and test data, respectively. The results show that the proposed method achieves high sensitivity 93.4% with small rejection rate 9.3% even for difficult test data.
Grimsley, Jasmine M S; Gadziola, Marie A; Wenstrup, Jeffrey J
2012-01-01
Mouse pups vocalize at high rates when they are cold or isolated from the nest. The proportions of each syllable type produced carry information about disease state and are being used as behavioral markers for the internal state of animals. Manual classifications of these vocalizations identified 10 syllable types based on their spectro-temporal features. However, manual classification of mouse syllables is time consuming and vulnerable to experimenter bias. This study uses an automated cluster analysis to identify acoustically distinct syllable types produced by CBA/CaJ mouse pups, and then compares the results to prior manual classification methods. The cluster analysis identified two syllable types, based on their frequency bands, that have continuous frequency-time structure, and two syllable types featuring abrupt frequency transitions. Although cluster analysis computed fewer syllable types than manual classification, the clusters represented well the probability distributions of the acoustic features within syllables. These probability distributions indicate that some of the manually classified syllable types are not statistically distinct. The characteristics of the four classified clusters were used to generate a Microsoft Excel-based mouse syllable classifier that rapidly categorizes syllables, with over a 90% match, into the syllable types determined by cluster analysis.
Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella
2016-12-09
Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.
Gametes or organs? How should we legally classify ovaries used for transplantation in the USA?
Campo-Engelstein, Lisa
2011-01-01
Ovarian tissue transplantation is an experimental procedure that can be used to treat both infertility and premature menopause. Working within the current legal framework in the USA, I examine whether ovarian tissue should be legally treated like gametes or organs in the case of ovarian tissue transplantation between two women. One option is to base classification upon its intended use: ovarian tissue used to treat infertility would be classified like gametes, and ovarian tissue used to treat premature menopause would be classified like organs. In the end, however, I argue that this approach will not work because it engenders too many legal, cultural and logistical concerns and that, at least for the near future, we should treat ovarian tissue like gametes. PMID:21245477
Ferguson, J Scott; Van Wert, Ryan; Choi, Yoonha; Rosenbluth, Michael J; Smith, Kate Porta; Huang, Jing; Spira, Avrum
2016-05-17
Bronchoscopy is frequently used for the evaluation of suspicious pulmonary lesions found on computed tomography, but its sensitivity for detecting lung cancer is limited. Recently, a bronchial genomic classifier was validated to improve the sensitivity of bronchoscopy for lung cancer detection, demonstrating a high sensitivity and negative predictive value among patients at intermediate risk (10-60 %) for lung cancer with an inconclusive bronchoscopy. Our objective for this study was to determine if a negative genomic classifier result that down-classifies a patient from intermediate risk to low risk (<10 %) for lung cancer would reduce the rate that physicians recommend more invasive testing among patients with an inconclusive bronchoscopy. We conducted a randomized, prospective, decision impact survey study assessing pulmonologist recommendations in patients undergoing workup for lung cancer who had an inconclusive bronchoscopy. Cases with an intermediate pretest risk for lung cancer were selected from the AEGIS trials and presented in a randomized fashion to pulmonologists either with or without the patient's bronchial genomic classifier result to determine how the classifier results impacted physician decisions. Two hundred two physicians provided 1523 case evaluations on 36 patients. Invasive procedure recommendations were reduced from 57 % without the classifier result to 18 % with a negative (low risk) classifier result (p < 0.001). Invasive procedure recommendations increased from 50 to 65 % with a positive (intermediate risk) classifier result (p < 0.001). When stratifying by ultimate disease diagnosis, there was an overall reduction in invasive procedure recommendations in patients with benign disease when classifier results were reported (54 to 41 %, p < 0.001). For patients ultimately diagnosed with malignant disease, there was an overall increase in invasive procedure recommendations when the classifier results were reported (50 to 64 %, p = 0.003). Our findings suggest that a negative (low risk) bronchial genomic classifier result reduces invasive procedure recommendations following an inconclusive bronchoscopy and that the classifier overall reduces invasive procedure recommendations among patients ultimately diagnosed with benign disease. These results support the potential clinical utility of the classifier to improve management of patients undergoing bronchoscopy for suspect lung cancer by reducing additional invasive procedures in the setting of benign disease.
Meng, Jun; Shi, Lin; Luan, Yushi
2014-01-01
Background Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided. PMID:25051153
Machine learning algorithms for the creation of clinical healthcare enterprise systems
NASA Astrophysics Data System (ADS)
Mandal, Indrajit
2017-10-01
Clinical recommender systems are increasingly becoming popular for improving modern healthcare systems. Enterprise systems are persuasively used for creating effective nurse care plans to provide nurse training, clinical recommendations and clinical quality control. A novel design of a reliable clinical recommender system based on multiple classifier system (MCS) is implemented. A hybrid machine learning (ML) ensemble based on random subspace method and random forest is presented. The performance accuracy and robustness of proposed enterprise architecture are quantitatively estimated to be above 99% and 97%, respectively (above 95% confidence interval). The study then extends to experimental analysis of the clinical recommender system with respect to the noisy data environment. The ranking of items in nurse care plan is demonstrated using machine learning algorithms (MLAs) to overcome the drawback of the traditional association rule method. The promising experimental results are compared against the sate-of-the-art approaches to highlight the advancement in recommendation technology. The proposed recommender system is experimentally validated using five benchmark clinical data to reinforce the research findings.
Jiménez-Xarrié, Elena; Davila, Myriam; Candiota, Ana Paula; Delgado-Mederos, Raquel; Ortega-Martorell, Sandra; Julià-Sapé, Margarida; Arús, Carles; Martí-Fàbregas, Joan
2017-01-13
Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).
Active learning based segmentation of Crohns disease from abdominal MRI.
Mahapatra, Dwarikanath; Vos, Franciscus M; Buhmann, Joachim M
2016-05-01
This paper proposes a novel active learning (AL) framework, and combines it with semi supervised learning (SSL) for segmenting Crohns disease (CD) tissues from abdominal magnetic resonance (MR) images. Robust fully supervised learning (FSL) based classifiers require lots of labeled data of different disease severities. Obtaining such data is time consuming and requires considerable expertise. SSL methods use a few labeled samples, and leverage the information from many unlabeled samples to train an accurate classifier. AL queries labels of most informative samples and maximizes gain from the labeling effort. Our primary contribution is in designing a query strategy that combines novel context information with classification uncertainty and feature similarity. Combining SSL and AL gives a robust segmentation method that: (1) optimally uses few labeled samples and many unlabeled samples; and (2) requires lower training time. Experimental results show our method achieves higher segmentation accuracy than FSL methods with fewer samples and reduced training effort. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks
Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes
2016-01-01
Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches. PMID:27792136
A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks.
Ponce, Hiram; Miralles-Pechuán, Luis; Martínez-Villaseñor, María de Lourdes
2016-10-25
Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches.
Multi-Band Received Signal Strength Fingerprinting Based Indoor Location System
NASA Astrophysics Data System (ADS)
Sertthin, Chinnapat; Fujii, Takeo; Ohtsuki, Tomoaki; Nakagawa, Masao
This paper proposes a new multi-band received signal strength (MRSS) fingerprinting based indoor location system, which employs the frequency diversity on the conventional single-band received signal strength (RSS) fingerprinting based indoor location system. In the proposed system, the impacts of frequency diversity on the enhancements of positioning accuracy are analyzed. Effectiveness of the proposed system is proved by experimental approach, which was conducted in non line-of-sight (NLOS) environment under the area of 103m2 at Yagami Campus, Keio University. WLAN access points, which simultaneously transmit dual-band signal of 2.4 and 5.2GHz, are utilized as transmitters. Likewise, a dual-band WLAN receiver is utilized as a receiver. Signal distances calculated by both Manhattan and Euclidean were classified by K-Nearest Neighbor (KNN) classifier to illustrate the performance of the proposed system. The results confirmed that Frequency diversity attributions of multi-band signal provide accuracy improvement over 50% of the conventional single-band.
Adhikari, Shyam Prasad; Yang, Changju; Slot, Krzysztof; Kim, Hyongsuk
2018-01-10
This paper presents a vision sensor-based solution to the challenging problem of detecting and following trails in highly unstructured natural environments like forests, rural areas and mountains, using a combination of a deep neural network and dynamic programming. The deep neural network (DNN) concept has recently emerged as a very effective tool for processing vision sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image patches into "trail" and "non-trail" categories, and reshaped to a fully convolutional architecture to produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification, and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail detection for real-world trail datasets captured with a head mounted vision system are presented.
Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.
Kassiri, Hossein; Chemparathy, Aditi; Salam, M Tariqus; Boyce, Richard; Adamantidis, Antoine; Genov, Roman
2017-02-01
First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.
Bashir, Mohamed Ezzeldin A; Lee, Dong Gyu; Li, Meijing; Bae, Jang-Whan; Shon, Ho Sun; Cho, Myung Chan; Ryu, Keun Ho
2012-07-01
Coronary heart disease is being identified as the largest single cause of death along the world. The aim of a cardiac clinical information system is to achieve the best possible diagnosis of cardiac arrhythmias by electronic data processing. Cardiac information system that is designed to offer remote monitoring of patient who needed continues follow up is demanding. However, intra- and interpatient electrocardiogram (ECG) morphological descriptors are varying through the time as well as the computational limits pose significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is, therefore, a promising new intelligent diagnostic tool.
Combining multiple features for color texture classification
NASA Astrophysics Data System (ADS)
Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo
2016-11-01
The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.
NASA Astrophysics Data System (ADS)
Watanabe, Tatsuhito; Katsura, Seiichiro
A person operating a mobile robot in a remote environment receives realistic visual feedback about the condition of the road on which the robot is moving. The categorization of the road condition is necessary to evaluate the conditions for safe and comfortable driving. For this purpose, the mobile robot should be capable of recognizing and classifying the condition of the road surfaces. This paper proposes a method for recognizing the type of road surfaces on the basis of the friction between the mobile robot and the road surfaces. This friction is estimated by a disturbance observer, and a support vector machine is used to classify the surfaces. The support vector machine identifies the type of the road surface using feature vector, which is determined using the arithmetic average and variance derived from the torque values. Further, these feature vectors are mapped onto a higher dimensional space by using a kernel function. The validity of the proposed method is confirmed by experimental results.
Utilizing gamma band to improve mental task based brain-computer interface design.
Palaniappan, Ramaswamy
2006-09-01
A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.
Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.
Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang
2015-01-01
Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.
SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306
Gas Chromatography Data Classification Based on Complex Coefficients of an Autoregressive Model
Zhao, Weixiang; Morgan, Joshua T.; Davis, Cristina E.
2008-01-01
This paper introduces autoregressive (AR) modeling as a novel method to classify outputs from gas chromatography (GC). The inverse Fourier transformation was applied to the original sensor data, and then an AR model was applied to transform data to generate AR model complex coefficients. This series of coefficients effectively contains a compressed version of all of the information in the original GC signal output. We applied this method to chromatograms resulting from proliferating bacteria species grown in culture. Three types of neural networks were used to classify the AR coefficients: backward propagating neural network (BPNN), radial basis function-principal component analysismore » (RBF-PCA) approach, and radial basis function-partial least squares regression (RBF-PLSR) approach. This exploratory study demonstrates the feasibility of using complex root coefficient patterns to distinguish various classes of experimental data, such as those from the different bacteria species. This cognition approach also proved to be robust and potentially useful for freeing us from time alignment of GC signals.« less
Classification of time-series images using deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Hatami, Nima; Gavet, Yann; Debayle, Johan
2018-04-01
Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.
Gender classification of running subjects using full-body kinematics
NASA Astrophysics Data System (ADS)
Williams, Christina M.; Flora, Jeffrey B.; Iftekharuddin, Khan M.
2016-05-01
This paper proposes novel automated gender classification of subjects while engaged in running activity. The machine learning techniques include preprocessing steps using principal component analysis followed by classification with linear discriminant analysis, and nonlinear support vector machines, and decision-stump with AdaBoost. The dataset consists of 49 subjects (25 males, 24 females, 2 trials each) all equipped with approximately 80 retroreflective markers. The trials are reflective of the subject's entire body moving unrestrained through a capture volume at a self-selected running speed, thus producing highly realistic data. The classification accuracy using leave-one-out cross validation for the 49 subjects is improved from 66.33% using linear discriminant analysis to 86.74% using the nonlinear support vector machine. Results are further improved to 87.76% by means of implementing a nonlinear decision stump with AdaBoost classifier. The experimental findings suggest that the linear classification approaches are inadequate in classifying gender for a large dataset with subjects running in a moderately uninhibited environment.
Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering
NASA Astrophysics Data System (ADS)
Maiden, M. D.; Bookman, L. D.; Hoefer, M. A.
2014-05-01
The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.
Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi
2009-01-01
This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.
Color image segmentation with support vector machines: applications to road signs detection.
Cyganek, Bogusław
2008-08-01
In this paper we propose efficient color segmentation method which is based on the Support Vector Machine classifier operating in a one-class mode. The method has been developed especially for the road signs recognition system, although it can be used in other applications. The main advantage of the proposed method comes from the fact that the segmentation of characteristic colors is performed not in the original but in the higher dimensional feature space. By this a better data encapsulation with a linear hypersphere can be usually achieved. Moreover, the classifier does not try to capture the whole distribution of the input data which is often difficult to achieve. Instead, the characteristic data samples, called support vectors, are selected which allow construction of the tightest hypersphere that encloses majority of the input data. Then classification of a test data simply consists in a measurement of its distance to a centre of the found hypersphere. The experimental results show high accuracy and speed of the proposed method.
An integrated condition-monitoring method for a milling process using reduced decomposition features
NASA Astrophysics Data System (ADS)
Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin
2017-08-01
Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.
Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi
2016-09-01
The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
NASA Astrophysics Data System (ADS)
Hong, Pengyu; Sun, Hui; Sha, Long; Pu, Yi; Khatri, Kshitij; Yu, Xiang; Tang, Yang; Lin, Cheng
2017-08-01
A major challenge in glycomics is the characterization of complex glycan structures that are essential for understanding their diverse roles in many biological processes. We present a novel efficient computational approach, named GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph specifying how to interpret each peak using preceding interpreted peaks. It then reconstructs the topologies of peaks that contribute to interpreting the precursor ion. We theoretically prove that GlycoDeNovo is highly efficient. A major innovative feature added to GlycoDeNovo is a data-driven IonClassifier which can be used to effectively rank candidate topologies. IonClassifier is automatically learned from experimental spectra of known glycans to distinguish B- and C-type ions from all other ion types. Our results showed that GlycoDeNovo is robust and accurate for topology reconstruction of glycans from their tandem mass spectra. [Figure not available: see fulltext.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Single-trial laser-evoked potentials feature extraction for prediction of pain perception.
Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo
2013-01-01
Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
Detection of Suspicious Persons using Internet Camera
NASA Astrophysics Data System (ADS)
Terada, Kenji; Kamogashira, Daisuke
Recently, many brutal crimes have shocked us. Therefore, the importance of security and self-defense have increased more and more. It is necessary to develop an automatic method of detecting suspicious persons. In this paper, we propose a method of detecting suspicious persons using the internet camera. An image sequence is obtained by the internet camera. By using these images, the recognition of suspicious persons is carried out. Our method classifies the condition of the target person into 3 postures: walking, staying and sitting. The system employs the subspace method which uses three features: the value of movement, the number of looking around restlessly, and the rate of stopping and going. Some experimental results using a simple experimental system are also reported, which indicate effectiveness of the proposed method. In most scenes, the suspicious persons are able to be detected by the proposed method.
Yun, Yeoung-Sang; Park, Jong Moon
2003-08-05
Light-dependent photosynthesis of Chlorella vulgaris was investigated by using a novel photosynthesis measurement system that could cover wide ranges of incident light and cell density and reproduce accurate readings. Various photosynthesis models, which have been reported elsewhere, were classified and/or reformulated based upon the underlying hypotheses of the light dependence of the algal photosynthesis. Four types of models were derived, which contained distinct light-related variables such as the average or local photon flux density (APFD or LPFD) and the average or local photon absorption rate (APAR or LPAR). According to our experimental results, the LPFD and LPAR models could predict the experimental data more accurately although the APFD and APAR models have been widely used for the kinetic study of microalgal photosynthesis. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 303-311, 2003.
Quantum State Tomography via Reduced Density Matrices.
Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond
2017-01-13
Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.
Spontaneous curvature as a regulator of the size of virus capsids
NASA Astrophysics Data System (ADS)
Šiber, Antonio; Majdandžić, Antonio
2009-08-01
We investigate the physical reasons underlying the high monodispersity of empty virus capsids assembled in thermodynamical equilibrium in conditions of favorable pH and ionic strength. We propose that the high fidelity of the assembly results from the effective spontaneous curvature of the viral protein assemblies and the corresponding bending rigidity that penalizes curvatures which are larger and smaller from the spontaneous one. On the example of hepatitis B virus, which has been thoroughly studied experimentally in the context of interest to us, we estimate the magnitude of bending rigidity that is needed to suppress the appearance of aberrant capsid structures (˜60kBT) . Our approach also demonstrates that the aberrant capsids that can be classified within the Caspar-Klug framework are in most circumstances likely to be smaller from the regular ones, in agreement with the experimental findings.
Probabilistic modeling of discourse-aware sentence processing.
Dubey, Amit; Keller, Frank; Sturt, Patrick
2013-07-01
Probabilistic models of sentence comprehension are increasingly relevant to questions concerning human language processing. However, such models are often limited to syntactic factors. This restriction is unrealistic in light of experimental results suggesting interactions between syntax and other forms of linguistic information in human sentence processing. To address this limitation, this article introduces two sentence processing models that augment a syntactic component with information about discourse co-reference. The novel combination of probabilistic syntactic components with co-reference classifiers permits them to more closely mimic human behavior than existing models. The first model uses a deep model of linguistics, based in part on probabilistic logic, allowing it to make qualitative predictions on experimental data; the second model uses shallow processing to make quantitative predictions on a broad-coverage reading-time corpus. Copyright © 2013 Cognitive Science Society, Inc.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-12-08
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the "small sample size" (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0-1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system.
Zhang, Cuicui; Liang, Xuefeng; Matsuyama, Takashi
2014-01-01
Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samples during the training phrase. This is difficult to fulfill due to the limitation of the camera hardware system and the unconstrained image capturing conditions. Conventional face recognition algorithms often encounter the “small sample size” (SSS) problem arising from the small number of training samples compared to the high dimensionality of the sample space. To overcome this problem, interest in the combination of multiple base classifiers has sparked research efforts in ensemble methods. However, existing ensemble methods still open two questions: (1) how to define diverse base classifiers from the small data; (2) how to avoid the diversity/accuracy dilemma occurring during ensemble. To address these problems, this paper proposes a novel generic learning-based ensemble framework, which augments the small data by generating new samples based on a generic distribution and introduces a tailored 0–1 knapsack algorithm to alleviate the diversity/accuracy dilemma. More diverse base classifiers can be generated from the expanded face space, and more appropriate base classifiers are selected for ensemble. Extensive experimental results on four benchmarks demonstrate the higher ability of our system to cope with the SSS problem compared to the state-of-the-art system. PMID:25494350
Shao, Wei; Liu, Mingxia; Zhang, Daoqiang
2016-01-01
The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chiu, Shih-Hau; Chen, Chien-Chi; Yuan, Gwo-Fang; Lin, Thy-Hou
2006-01-01
Background The number of sequences compiled in many genome projects is growing exponentially, but most of them have not been characterized experimentally. An automatic annotation scheme must be in an urgent need to reduce the gap between the amount of new sequences produced and reliable functional annotation. This work proposes rules for automatically classifying the fungus genes. The approach involves elucidating the enzyme classifying rule that is hidden in UniProt protein knowledgebase and then applying it for classification. The association algorithm, Apriori, is utilized to mine the relationship between the enzyme class and significant InterPro entries. The candidate rules are evaluated for their classificatory capacity. Results There were five datasets collected from the Swiss-Prot for establishing the annotation rules. These were treated as the training sets. The TrEMBL entries were treated as the testing set. A correct enzyme classification rate of 70% was obtained for the prokaryote datasets and a similar rate of about 80% was obtained for the eukaryote datasets. The fungus training dataset which lacks an enzyme class description was also used to evaluate the fungus candidate rules. A total of 88 out of 5085 test entries were matched with the fungus rule set. These were otherwise poorly annotated using their functional descriptions. Conclusion The feasibility of using the method presented here to classify enzyme classes based on the enzyme domain rules is evident. The rules may be also employed by the protein annotators in manual annotation or implemented in an automatic annotation flowchart. PMID:16776838
NASA Astrophysics Data System (ADS)
Law, Yan Nei; Lieng, Monica Keiko; Li, Jingmei; Khoo, David Aik-Aun
2014-03-01
Breast cancer is the most common cancer and second leading cause of cancer death among women in the US. The relative survival rate is lower among women with a more advanced stage at diagnosis. Early detection through screening is vital. Mammography is the most widely used and only proven screening method for reliably and effectively detecting abnormal breast tissues. In particular, mammographic density is one of the strongest breast cancer risk factors, after age and gender, and can be used to assess the future risk of disease before individuals become symptomatic. A reliable method for automatic density assessment would be beneficial and could assist radiologists in the evaluation of mammograms. To address this problem, we propose a density classification method which uses statistical features from different parts of the breast. Our method is composed of three parts: breast region identification, feature extraction and building ensemble classifiers for density assessment. It explores the potential of the features extracted from second and higher order statistical information for mammographic density classification. We further investigate the registration of bilateral pairs and time-series of mammograms. The experimental results on 322 mammograms demonstrate that (1) a classifier using features from dense regions has higher discriminative power than a classifier using only features from the whole breast region; (2) these high-order features can be effectively combined to boost the classification accuracy; (3) a classifier using these statistical features from dense regions achieves 75% accuracy, which is a significant improvement from 70% accuracy obtained by the existing approaches.
Cervantes-Sanchez, Fernando; Hernandez-Aguirre, Arturo; Solorio-Meza, Sergio; Ornelas-Rodriguez, Manuel; Torres-Cisneros, Miguel
2016-01-01
This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (A z) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with A z = 0.9502 over a training set of 40 images and A z = 0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms. PMID:27738422
PLASMID DNA DAMAGE CAUSED BY STIBINE AND TRIMETHYLSTIBINE
The in vitro genotoxicity of stibine and trimethylstibine
Abstract
Antimony is classified as `possibly carcinogenic to humans' and there is also sufficient evidence for antimony carcinogenicity in experimental animals. Stibine is a volatile inorganic antimony compound t...
Flow field and friction factor of slush nitrogen in a horizontal circular pipe
NASA Astrophysics Data System (ADS)
Jin, Tao; Li, Yijian; Wu, Shuqin; Wei, Jianjian
2018-04-01
Slush nitrogen is the low-temperature two-phase fluid with solid nitrogen particle suspended in the liquid nitrogen. The flow characteristics of slush nitrogen in a horizontal pipe with the diameter of 16 mm have been experimentally and numerically investigated, under the operating conditions with the inlet flow velocity of 0-4 m/s and the solid volume fraction of 0-23%. The numerical results for pressure drop agree well with those of the experiments, with the relative errors of ±5%. The experimental and numerical results both show that the pressure drop of slush nitrogen is greater than that of subcooled liquid nitrogen and rises with the increasing particle concentration, under the working conditions in present work. Based on the simulation result, the flow pattern evolution of slush nitrogen with the increasing slush Reynolds number has been discussed, which can be classified into homogenous flow, heterogeneous flow and moving bed. The slush effective viscosity and the slush Reynolds number are calculated with Cheng & Law formula, which includes the effects of particle shape, size and type and has a high accuracy for high concentration slurries. Based on the slush Reynolds number, an experimental empirical correlation considering particle conditions for the friction factor of slush nitrogen flow is obtained.
Two-dimensional fruit ripeness estimation using thermal imaging
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2013-06-01
Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.
Semisupervised learning using Bayesian interpretation: application to LS-SVM.
Adankon, Mathias M; Cheriet, Mohamed; Biem, Alain
2011-04-01
Bayesian reasoning provides an ideal basis for representing and manipulating uncertain knowledge, with the result that many interesting algorithms in machine learning are based on Bayesian inference. In this paper, we use the Bayesian approach with one and two levels of inference to model the semisupervised learning problem and give its application to the successful kernel classifier support vector machine (SVM) and its variant least-squares SVM (LS-SVM). Taking advantage of Bayesian interpretation of LS-SVM, we develop a semisupervised learning algorithm for Bayesian LS-SVM using our approach based on two levels of inference. Experimental results on both artificial and real pattern recognition problems show the utility of our method.
NASA Astrophysics Data System (ADS)
Ianson, I. K.
1991-03-01
Research in the field of high-temperature superconductors based on methods of tunneling and microcontact spectroscopy is reviewed in a systematic manner. The theoretical principles of the methods are presented, and various types of contacts are described and classified. Attention is given to deviations of the measured volt-ampere characteristics from those predicted by simple theoretical models and those observed for conventional superconductors. Results of measurements of the energy gap and fine structure of volt ampere characteristic derivatives are presented for La(2-x)Sr(x)CuO4.
Non-coaxial superposition of vector vortex beams.
Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P
2016-02-10
Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.
Use of artificial neural networks on optical track width measurements.
Smith, Richard J; See, Chung W; Somekh, Mike G; Yacoot, Andrew
2007-08-01
We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.
Use of artificial neural networks on optical track width measurements
NASA Astrophysics Data System (ADS)
Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew
2007-08-01
We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.
Imbalanced Learning for Functional State Assessment
NASA Technical Reports Server (NTRS)
Li, Feng; McKenzie, Frederick; Li, Jiang; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
This paper presents results of several imbalanced learning techniques applied to operator functional state assessment where the data is highly imbalanced, i.e., some function states (majority classes) have much more training samples than other states (minority classes). Conventional machine learning techniques usually tend to classify all data samples into majority classes and perform poorly for minority classes. In this study, we implemented five imbalanced learning techniques, including random undersampling, random over-sampling, synthetic minority over-sampling technique (SMOTE), borderline-SMOTE and adaptive synthetic sampling (ADASYN) to solve this problem. Experimental results on a benchmark driving lest dataset show thai accuracies for minority classes could be improved dramatically with a cost of slight performance degradations for majority classes,
Diffusion in inhomogeneous polymer membranes
NASA Astrophysics Data System (ADS)
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Classification Studies in an Advanced Air Classifier
NASA Astrophysics Data System (ADS)
Routray, Sunita; Bhima Rao, R.
2016-10-01
In the present paper, experiments are carried out using VSK separator which is an advanced air classifier to recover heavy minerals from beach sand. In classification experiments the cage wheel speed and the feed rate are set and the material is fed to the air cyclone and split into fine and coarse particles which are collected in separate bags. The size distribution of each fraction was measured by sieve analysis. A model is developed to predict the performance of the air classifier. The objective of the present model is to predict the grade efficiency curve for a given set of operating parameters such as cage wheel speed and feed rate. The overall experimental data with all variables studied in this investigation is fitted to several models. It is found that the present model is fitting good to the logistic model.
Classification Influence of Features on Given Emotions and Its Application in Feature Selection
NASA Astrophysics Data System (ADS)
Xing, Yin; Chen, Chuang; Liu, Li-Long
2018-04-01
In order to solve the problem that there is a large amount of redundant data in high-dimensional speech emotion features, we analyze deeply the extracted speech emotion features and select better features. Firstly, a given emotion is classified by each feature. Secondly, the recognition rate is ranked in descending order. Then, the optimal threshold of features is determined by rate criterion. Finally, the better features are obtained. When applied in Berlin and Chinese emotional data set, the experimental results show that the feature selection method outperforms the other traditional methods.
Deformation effect on spectral statistics of nuclei
NASA Astrophysics Data System (ADS)
Sabri, H.; Jalili Majarshin, A.
2018-02-01
In this study, we tried to get significant relations between the spectral statistics of atomic nuclei and their different degrees of deformations. To this aim, the empirical energy levels of 109 even-even nuclei in the 22 ≤ A ≤ 196 mass region are classified as their experimental and calculated quadrupole, octupole, hexadecapole and hexacontatetrapole deformations values and analyzed by random matrix theory. Our results show an obvious relation between the regularity of nuclei and strong quadrupole, hexadecapole and hexacontatetrapole deformations and but for nuclei that their octupole deformations are nonzero, we have observed a GOE-like statistics.
Rubber hose surface defect detection system based on machine vision
NASA Astrophysics Data System (ADS)
Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng
2018-01-01
As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.
1991-01-01
A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.
Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification.
Wang, Qiangchang; Zheng, Yuanjie; Yang, Gongping; Jin, Weidong; Chen, Xinjian; Yin, Yilong
2018-01-01
We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.
Predict and Analyze Protein Glycation Sites with the mRMR and IFS Methods
Gu, Wenxiang; Zhang, Wenyi; Wang, Jianan
2015-01-01
Glycation is a nonenzymatic process in which proteins react with reducing sugar molecules. The identification of glycation sites in protein may provide guidelines to understand the biological function of protein glycation. In this study, we developed a computational method to predict protein glycation sites by using the support vector machine classifier. The experimental results showed that the prediction accuracy was 85.51% and an overall MCC was 0.70. Feature analysis indicated that the composition of k-spaced amino acid pairs feature contributed the most for glycation sites prediction. PMID:25961025
Physical layer security in fiber-optic MIMO-SDM systems: An overview
NASA Astrophysics Data System (ADS)
Guan, Kyle; Cho, Junho; Winzer, Peter J.
2018-02-01
Fiber-optic transmission systems provide large capacities over enormous distances but are vulnerable to simple eavesdropping attacks at the physical layer. We classify key-based and keyless encryption and physical layer security techniques and discuss them in the context of optical multiple-input-multiple-output space-division multiplexed (MIMO-SDM) fiber-optic communication systems. We show that MIMO-SDM not only increases system capacity, but also ensures the confidentiality of information transmission. Based on recent numerical and experimental results, we review how the unique channel characteristics of MIMO-SDM can be exploited to provide various levels of physical layer security.
Heuristic algorithm for optical character recognition of Arabic script
NASA Astrophysics Data System (ADS)
Yarman-Vural, Fatos T.; Atici, A.
1996-02-01
In this paper, a heuristic method is developed for segmentation, feature extraction and recognition of the Arabic script. The study is part of a large project for the transcription of the documents in Ottoman Archives. A geometrical and topological feature analysis method is developed for segmentation and feature extraction stages. Chain code transformation is applied to main strokes of the characters which are then classified by the hidden Markov model (HMM) in the recognition stage. Experimental results indicate that the performance of the proposed method is impressive, provided that the thinning process does not yield spurious branches.
Precise and rapid isotopomic analysis by (1)H-(13)C 2D NMR: Application to triacylglycerol matrices.
Merchak, Noelle; Silvestre, Virginie; Rouger, Laetitia; Giraudeau, Patrick; Rizk, Toufic; Bejjani, Joseph; Akoka, Serge
2016-08-15
An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins. Copyright © 2016 Elsevier B.V. All rights reserved.
Revealed distributional preferences: Individuals vs. teams☆☆☆
Balafoutas, Loukas; Kerschbamer, Rudolf; Kocher, Martin; Sutter, Matthias
2014-01-01
We compare experimentally the revealed distributional preferences of individuals and teams in allocation tasks. We find that teams are significantly more benevolent than individuals in the domain of disadvantageous inequality while the benevolence in the domain of advantageous inequality is similar across decision makers. A consequence for the frequency of preference types is that while a substantial fraction of individuals is classified as inequality averse, this type disappears completely in teams. Spiteful types are markedly more frequent among individuals than among teams. On the other hand, by far more teams than individuals are classified as efficiency lovers. PMID:25843995
Wang, Tao; He, Fuhong; Zhang, Anding; Gu, Lijuan; Wen, Yangmao; Jiang, Weiguo; Shao, Hongbo
2014-01-01
This paper took a subregion in a small watershed gully system at Beiyanzikou catchment of Qixia, China, as a study and, using object-orientated image analysis (OBIA), extracted shoulder line of gullies from high spatial resolution digital orthophoto map (DOM) aerial photographs. Next, it proposed an accuracy assessment method based on the adjacent distance between the boundary classified by remote sensing and points measured by RTK-GPS along the shoulder line of gullies. Finally, the original surface was fitted using linear regression in accordance with the elevation of two extracted edges of experimental gullies, named Gully 1 and Gully 2, and the erosion volume was calculated. The results indicate that OBIA can effectively extract information of gullies; average range difference between points field measured along the edge of gullies and classified boundary is 0.3166 m, with variance of 0.2116 m. The erosion area and volume of two gullies are 2141.6250 m(2), 5074.1790 m(3) and 1316.1250 m(2), 1591.5784 m(3), respectively. The results of the study provide a new method for the quantitative study of small gully erosion.
Yu, Hualong; Hong, Shufang; Yang, Xibei; Ni, Jun; Dan, Yuanyuan; Qin, Bin
2013-01-01
DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.
Application of hidden Markov models to biological data mining: a case study
NASA Astrophysics Data System (ADS)
Yin, Michael M.; Wang, Jason T.
2000-04-01
In this paper we present an example of biological data mining: the detection of splicing junction acceptors in eukaryotic genes. Identification or prediction of transcribed sequences from within genomic DNA has been a major rate-limiting step in the pursuit of genes. Programs currently available are far from being powerful enough to elucidate the gene structure completely. Here we develop a hidden Markov model (HMM) to represent the degeneracy features of splicing junction acceptor sites in eukaryotic genes. The HMM system is fully trained using an expectation maximization (EM) algorithm and the system performance is evaluated using the 10-way cross- validation method. Experimental results show that our HMM system can correctly classify more than 94% of the candidate sequences (including true and false acceptor sites) into right categories. About 90% of the true acceptor sites and 96% of the false acceptor sites in the test data are classified correctly. These results are very promising considering that only the local information in DNA is used. The proposed model will be a very important component of an effective and accurate gene structure detection system currently being developed in our lab.
Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597
Tian, Weidong; Zhang, Lan V; Taşan, Murat; Gibbons, Francis D; King, Oliver D; Park, Julie; Wunderlich, Zeba; Cherry, J Michael; Roth, Frederick P
2008-01-01
Background: Learning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-association', which transfers function from one gene to another via biological relationships. Results: We have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-by-association and combines the results. Using a benchmark set of functional categories and input data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms. In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics and 12 functional linkage graphs based on 23 biological relationships. Conclusion: Funckenstein outperforms a previous combined strategy using a common benchmark dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant improvement over the component classifiers, showing the greatest synergy for the most specific functions. Performance was evaluated by cross-validation and by literature examination of the top-scoring novel predictions. These quantitative predictions should help prioritize experimental study of yeast gene functions. PMID:18613951
Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.
Tsai, Hsun-Heng; Tseng, Chyuan-Yow
2010-01-01
The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.
Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.
Vamsikrishna, K M; Dogra, Debi Prosad; Desarkar, Maunendra Sankar
2016-05-01
Physical rehabilitation supported by the computer-assisted-interface is gaining popularity among health-care fraternity. In this paper, we have proposed a computer-vision-assisted contactless methodology to facilitate palm and finger rehabilitation. Leap motion controller has been interfaced with a computing device to record parameters describing 3-D movements of the palm of a user undergoing rehabilitation. We have proposed an interface using Unity3D development platform. Our interface is capable of analyzing intermediate steps of rehabilitation without the help of an expert, and it can provide online feedback to the user. Isolated gestures are classified using linear discriminant analysis (DA) and support vector machines (SVM). Finally, a set of discrete hidden Markov models (HMM) have been used to classify gesture sequence performed during rehabilitation. Experimental validation using a large number of samples collected from healthy volunteers reveals that DA and SVM perform similarly while applied on isolated gesture recognition. We have compared the results of HMM-based sequence classification with CRF-based techniques. Our results confirm that both HMM and CRF perform quite similarly when tested on gesture sequences. The proposed system can be used for home-based palm or finger rehabilitation in the absence of experts.
The Role of Coping and Race in Healthy Children’s Experimental Pain Responses
Evans, Subhadra; Lu, Qian; Tsao, Jennie C. I.; Zelter, Lonnie K.
2009-01-01
This study examined the relationship between race, laboratory-based coping strategies and anticipatory anxiety and pain intensity for cold, thermal (heat) and pressure experimental pain tasks. Participants were 123 healthy children and adolescents, including 33 African Americans (51% female; mean age =13.9 years) and 90 Caucasians (50% female; mean age = 12.6 years). Coping in response to the cold task was assessed with the Lab Coping Style interview; based on their interview responses, participants were categorized as ‘attenders’ (i.e., those who focused on the task) vs. ‘distractors’ (i.e., those who distracted themselves during the task). Analysis of covariance (ANCOVA) revealed significant interactions between race (African-American vs. Caucasian) and lab-based coping style after controlling for sex, age and socioeconomic status. African-American children classified as attenders reported less anticipatory anxiety for the cold task and lower pain intensity for the cold, heat and pressure tasks compared to those categorized as distractors. For these pain outcomes, Caucasian children classified as distractors reported less anticipatory anxiety and lower pain intensity relative to those categorized as attenders. The findings point to the moderating effect of coping in the relationship between race and experimental pain sensitivity. PMID:20352035
Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys
Werner, Jeffrey J; Koren, Omry; Hugenholtz, Philip; DeSantis, Todd Z; Walters, William A; Caporaso, J Gregory; Angenent, Largus T; Knight, Rob; Ley, Ruth E
2012-01-01
Taxonomic classification of the thousands–millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naïve Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized. We compared classification results obtained using three different publicly available databases as training sets, applied to five different bacterial 16S rRNA gene pyrosequencing data sets generated (from human body, mouse gut, python gut, soil and anaerobic digester samples). We observed numerous advantages to using the largest, most diverse training set available, that we constructed from the Greengenes (GG) bacterial/archaeal 16S rRNA gene sequence database and the latest GG taxonomy. Phylogenetic clusters of previously unclassified experimental sequences were identified with notable improvements (for example, 50% reduction in reads unclassified at the phylum level in mouse gut, soil and anaerobic digester samples), especially for phylotypes belonging to specific phyla (Tenericutes, Chloroflexi, Synergistetes and Candidate phyla TM6, TM7). Trimming the reference sequences to the primer region resulted in systematic improvements in classification depth, and greatest gains at higher confidence thresholds. Phylotypes unclassified at the genus level represented a greater proportion of the total community variation than classified operational taxonomic units in mouse gut and anaerobic digester samples, underscoring the need for greater diversity in existing reference databases. PMID:21716311
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.
Abbasi, Elham; Ghatee, Mehdi; Shiri, M E
2013-09-01
In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ankışhan, Haydar; Yılmaz, Derya
2013-01-01
Snoring, which may be decisive for many diseases, is an important indicator especially for sleep disorders. In recent years, many studies have been performed on the snore related sounds (SRSs) due to producing useful results for detection of sleep apnea/hypopnea syndrome (SAHS). The first important step of these studies is the detection of snore from SRSs by using different time and frequency domain features. The SRSs have a complex nature that is originated from several physiological and physical conditions. The nonlinear characteristics of SRSs can be examined with chaos theory methods which are widely used to evaluate the biomedical signals and systems, recently. The aim of this study is to classify the SRSs as snore/breathing/silence by using the largest Lyapunov exponent (LLE) and entropy with multiclass support vector machines (SVMs) and adaptive network fuzzy inference system (ANFIS). Two different experiments were performed for different training and test data sets. Experimental results show that the multiclass SVMs can produce the better classification results than ANFIS with used nonlinear quantities. Additionally, these nonlinear features are carrying meaningful information for classifying SRSs and are able to be used for diagnosis of sleep disorders such as SAHS. PMID:24194786
NASA Astrophysics Data System (ADS)
Gao, Feng; Dong, Junyu; Li, Bo; Xu, Qizhi; Xie, Cui
2016-10-01
Change detection is of high practical value to hazard assessment, crop growth monitoring, and urban sprawl detection. A synthetic aperture radar (SAR) image is the ideal information source for performing change detection since it is independent of atmospheric and sunlight conditions. Existing SAR image change detection methods usually generate a difference image (DI) first and use clustering methods to classify the pixels of DI into changed class and unchanged class. Some useful information may get lost in the DI generation process. This paper proposed an SAR image change detection method based on neighborhood-based ratio (NR) and extreme learning machine (ELM). NR operator is utilized for obtaining some interested pixels that have high probability of being changed or unchanged. Then, image patches centered at these pixels are generated, and ELM is employed to train a model by using these patches. Finally, pixels in both original SAR images are classified by the pretrained ELM model. The preclassification result and the ELM classification result are combined to form the final change map. The experimental results obtained on three real SAR image datasets and one simulated dataset show that the proposed method is robust to speckle noise and is effective to detect change information among multitemporal SAR images.
Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S
2003-01-01
In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar
2013-01-01
Background Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. Objective To develop a clinical decision–support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. Methods A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. Results The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision–support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k = 0.68 (p < 0.0001) with good agreement. The same accuracy was achieved in the comparison between the physician’s diagnostic impression and the gold standard k = 0. 64 (p < 0.0001). There was moderate agreement between the physician’s diagnostic impression and CDSS k = 0.46 (p = 0.0008). Conclusions The study results suggest that CDSS could be used to help in diagnosing CD, since the algorithm tested achieved excellent accuracy in differentiating possible positive from negative CD diagnoses. This study may contribute towards developing of a computer-assisted environment to support CD diagnosis. PMID:21917512
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Chen, Yang; Luo, Yan; Huang, Wei; Hu, Die; Zheng, Rong-Qin; Cong, Shu-Zhen; Meng, Fan-Kun; Yang, Hong; Lin, Hong-Jun; Sun, Yan; Wang, Xiu-Yan; Wu, Tao; Ren, Jie; Pei, Shu-Fang; Zheng, Ying; He, Yun; Hu, Yu; Yang, Na; Yan, Hongmei
2017-10-01
Hepatic fibrosis is a common middle stage of the pathological processes of chronic liver diseases. Clinical intervention during the early stages of hepatic fibrosis can slow the development of liver cirrhosis and reduce the risk of developing liver cancer. Performing a liver biopsy, the gold standard for viral liver disease management, has drawbacks such as invasiveness and a relatively high sampling error rate. Real-time tissue elastography (RTE), one of the most recently developed technologies, might be promising imaging technology because it is both noninvasive and provides accurate assessments of hepatic fibrosis. However, determining the stage of liver fibrosis from RTE images in a clinic is a challenging task. In this study, in contrast to the previous liver fibrosis index (LFI) method, which predicts the stage of diagnosis using RTE images and multiple regression analysis, we employed four classical classifiers (i.e., Support Vector Machine, Naïve Bayes, Random Forest and K-Nearest Neighbor) to build a decision-support system to improve the hepatitis B stage diagnosis performance. Eleven RTE image features were obtained from 513 subjects who underwent liver biopsies in this multicenter collaborative research. The experimental results showed that the adopted classifiers significantly outperformed the LFI method and that the Random Forest(RF) classifier provided the highest average accuracy among the four machine algorithms. This result suggests that sophisticated machine-learning methods can be powerful tools for evaluating the stage of hepatic fibrosis and show promise for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deep transfer learning for automatic target classification: MWIR to LWIR
NASA Astrophysics Data System (ADS)
Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun
2016-05-01
Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.
Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos
2016-01-01
Background: Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. Methods: It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. Results: There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. Conclusions: The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands. PMID:27833725
Rabani-Bavojdan, Marjan; Rabani-Bavojdan, Mozhgan; Rajabizadeh, Ghodratollah; Kaviani, Nahid; Bahramnejad, Ali; Ghaffari, Zohreh; Shafiei-Bafti, Mehdi
2017-07-01
The aim of this study was to investigate the effectiveness of the harm reduction group therapy based on Bandura's self-efficacy theory on risky behaviors of sex workers in Kerman, Iran. A quasi-experimental two-group design (a random selection with pre-test and post-test) was used. A risky behaviors questionnaire was used to collect. The sample was selected among sex workers referring to drop-in centers in Kerman. Subjects were allocated to two groups and were randomly classified into two experimental and control groups. The sample group consisted of 56 subjects. The experimental design was carried out during 12 sessions, and the post-test was performed one month and two weeks after the completion of the sessions. The results were analyzed statistically. By reducing harm based on Bandura's self-efficacy theory, the risky behaviors of the experimental group, including injection behavior, sexual behavior, violence, and damage to the skin, were significantly reduced in the pre-test compared to the post-test (P < 0.010). The harm reduction group therapy based on Bandura's self-efficacy theory can reduce the risky behaviors of sex workers.
Feature extraction for ultrasonic sensor based defect detection in ceramic components
NASA Astrophysics Data System (ADS)
Kesharaju, Manasa; Nagarajah, Romesh
2014-02-01
High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.