Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system
Miller, J.A.; Renken, R.A.
1988-01-01
Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)
Gravity and magnetic data in the vicinity of Virgin Valley, southern Nevada
Morin, Robert L.
2006-01-01
This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional ground-water flow systems, Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical ground-water model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting ground water from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards.
Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.
2006-01-01
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.
The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States
Renken, R.A.
1984-01-01
Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)
Williams, Lester J.; Kuniansky, Eve L.
2015-04-08
The hydrogeologic framework for the Floridan aquifer system has been revised throughout its extent in Florida and parts of Georgia, Alabama, and South Carolina. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s, except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual higher and contrasting lower permeability zones within these aquifers. The system behaves as one aquifer over much of its extent; although subdivided vertically into two aquifer units, the Upper and Lower Floridan aquifers. In the previous framework, discontinuous numbered middle confining units (MCUI–VII) were used to subdivide the system. In areas where less-permeable rocks do not occur within the middle part of the system, the system was previously considered one aquifer and named the Upper Floridan aquifer. In intervening years, more detailed data have been collected in local areas, resulting in some of the same lithostratigraphic units in the Floridan aquifer system being assigned to the Upper or Lower Floridan aquifer in different parts of the State of Florida. Additionally, some of the numbered middle confining units are found to have hydraulic properties within the same order of magnitude as the aquifers. A new term “composite unit” is introduced for lithostratigraphic units that cannot be defined as either a confining or aquifer unit over their entire extent. This naming convention is a departure from the previous framework, in that stratigraphy is used to consistently subdivide the aquifer system into upper and lower aquifers across the State of Florida. This lithostratigraphic mapping approach does not change the concept of flow within the system. The revised boundaries of the Floridan aquifer system were mapped by considering results from local studies and regional correlations of lithostratigraphic and hydrogeologic units or zones. Additional zones within the aquifers have been incorporated into the framework to allow finer delineation of permeability variations within the aquifer system. These additional zones can be used to progressively divide the system for assessing groundwater and surface-water interaction, saltwater intrusion, and offshore movement of groundwater at greater detail if necessary. The lateral extent of the updip boundary of the Floridan aquifer system is modified from previous work based on newer data and inclusion of parts of the updip clastic facies. The carbonate and clastic facies form a gradational sequence, generally characterized by limestone of successively younger units that extend progressively farther updip. Because of the gradational nature of the carbonate-clastic sequence, some of the updip clastic aquifers have been included in the Floridan aquifer system, the Southeastern Coastal Plain aquifer system, or both. Thus, the revised updip limit includes some of these clastic facies. Additionally, the updip limit of the most productive part of the Floridan aquifer system was revised and indicates the approximate updip limit of the carbonate facies. The extent and altitude of the freshwater-saltwater interface in the aquifer system has been mapped to define the freshwater part of the flow system.
Miller, James A.
1986-01-01
The Floridan aquifer system of the Southeastern United States is comprised of a thick sequence of carbonate rocks that are mostly of Paleocene to early Miocene age and that are hydraulically connected in varying degrees. The aquifer system consists of a single vertically continuous permeable unit updip and of two major permeable zones (the Upper and Lower Floridan aquifers) separated by one of seven middle confining units downdip. Neither the boundaries of the aquifer system or of its component high- and low-permeability zones necessarily conform to either formation boundaries or time-stratigraphic breaks. The rocks that make up the Floridan aquifer system, its upper and lower confining units, and a surficial aquifer have been separated into several chronostratigraphic units. The external and internal geometry of these stratigraphic units is presented on a series of structure contour and isopach maps and by a series of geohydrologic cross sections and a fence diagram. Paleocene through middle Eocene units consist of an updip clastic facies and a downdip carbonate bank facies, that extends progressively farther north and east in progressively younger units. Upper Eocene and Oligocene strata are predominantly carbonate rocks throughout the study area. Miocene and younger strata are mostly clastic rocks. Subsurface data show that some modifications in current stratigraphic nomenclature are necessary. First, the middle Eocene Lake City Limestone cannot be distinguished lithologically or faunally from the overlying middle Eocene Avon Park 'Limestone.' Accordingly, it is proposed that the term Lake City be abandoned and the term Avon Park Formation be applied to the entire middle Eocene carbonate section of peninsular Florida and southeastern Georgia. A reference well section in Levy County, Fla., is proposed for the expanded Avon Park Formation. The Avon Park is called a 'formation' more properly than a 'limestone' because the unit contains rock types other than limestone. Second, like the Avon Park, the lower Eocene Oldsmar and Paleocene Cedar Keys 'Limestones' of peninsular Florida practically everywhere contain rock types other than limestone. It is therefore proposed that these units be referred to more accurately as Oldsmar Formation and Cedar Keys Formation. The uppermost hydrologic unit in the study area is a surficial aquifer that can be divided into (1) a fluvial sand-and-gravel aquifer in southwestern Alabama and westernmost panhandle Florida, (2) limestone and sandy limestone of the Biscayne aquifer in southeastern peninsular Florida, and (3) a thin blanket of terrace and fluvial sands elsewhere. The surficial aquifer is underlain by a thick sequence of fine clastic rocks and low-permeability carbonate rocks, most of which are part of the middle Miocene Hawthorn Formation and all of which form the upper confining unit of the Floridan aquifer system. In places, the upper confining unit has been removed by erosion or is breached by sinkholes. Water in the Floridan aquifer system thus occurs under unconfined, semiconfined, or fully confined conditions, depending upon the presence, thickness, and integrity of the upper confining unit. Within the Floridan aquifer system, seven low permeability zones of subregional extent split the aquifer system in most places into an Upper and Lower Floridan aquifer. The Upper Floridan aquifer, which consists of all or parts of rocks of Oligocene age, late Eocene age, and the upper half of rocks of middle Eocene age, is highly permeable. The middle confining units that underlie the Upper Floridan are mostly of middle Eocene age but may be as young as Oligocene or as old as early Eocene. Where no middle confining unit exists, the entire aquifer system is comprised of permeable rocks and for hydrologic discussions is treated as the Upper Floridan aquifer. The Lower Floridan aquifer contains a cavernous high-permeability horizon in the lower part of the early Eocene of south
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, M.H.; Helmold, K.P.
1988-02-01
The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturallymore » submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drellack, S.L.; Prothro, L.B.; Townsend, M.J.
2011-02-01
The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less
Zhai, Qingshan; Springer, J.E.; Zoback, M.D.
1990-01-01
Fractures from a 500 m deep hole in the Red River fault zone were analyzed using an ultrasonic borehole televiewer. Four hundred and eighty individual fractures were identified between 19 m and 465 m depth. Fracture frequency had no apparent relation to the major stratigraphic units and did not change systematically with depth. Fracture orientation, however, did change with stratigraphic position. The borehole intersected 14 m of Cenozoic deposits, 363 m of lower Ordovician clastic sediments, and 106 m of older ultramafic intrusions. The clastic sequence was encountered again at a depth of 484 m, suggesting a large fault displacement. Fractures in the top 162 m of the sedimentary section appear randomly distributed. Below that depth, they are steeply dipping with northerly and north-westerly strikes, parallel to the major active faults in the region. Fractures in the ultramafic section strike roughly eastwest and are steeply dipping. These orientations are confined to the ultramafic section and are parallel to an older, inactive regional fault set. ?? 1990.
Clarke, John S.; Leeth, David C.; Taylor-Harris, DaVette; Painter, Jaime A.; Labowski, James L.
2005-01-01
Hydraulic-property data for the Floridan aquifer system and equivalent clastic sediments in a 67-county area of coastal Georgia and adjacent parts of South Carolina and Florida were evaluated to provide data necessary for development of ground-water flow and solute-transport models. Data include transmissivity at 324 wells, storage coefficient at 115 wells, and vertical hydraulic conductivity of 72 core samples from 27 sites. Hydraulic properties of the Upper Floridan aquifer vary greatly in the study area due to the heterogeneity (and locally to anisotropy) of the aquifer and to variations in the degree of confinement provided by confining units. Prominent structural features in the areathe Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Troughinfluence the thickness and hydraulic properties of the sediments comprising the Floridan aquifer system. Transmissivity of the Upper Floridan aquifer and equivalent updip units was compiled for 239 wells and ranges from 530 feet squared per day (ft2/d) at Beaufort County, South Carolina, to 600,000 ft2/d in Coffee County, Georgia. In carbonate rock settings of the lower Coastal Plain, transmissivity of the Upper Floridan aquifer generally is greater than 20,000 ft2/d, with values exceeding 100,000 ft2/d in the southeastern and southwestern parts of the study area (generally coinciding with the area of greatest aquifer thickness). Transmissivity of the Upper Floridan aquifer generally is less than 10,000 ft2/d in and near the upper Coastal Plain, where the aquifer is thin and consists largely of clastic sediments, and in the vicinity of the Gulf Trough, where the aquifer consists of low permeability rocks and sediments. Large variability in the range of transmissivity in Camden and Glynn Counties, Georgia, and Nassau County, Florida, demonstrates the anisotropic distribution of hydraulic properties that may result from fractures or solution openings in the carbonate rocks. Storage coefficient of the Upper Floridan aquifer was compiled for 106 wells and ranges from about 0.00004 at Beaufort County, South Carolina, to 0.04 in Baker County, Florida. Transmissivity of the Lower Floridan aquifer and equivalent updip clastic units was compiled for 53 wells and ranges from about 170 ft2/d in Barnwell County, South Carolina, to about 43,000 ft2/d in Camden County, Georgia. Transmissivity of the Lower Floridan aquifer is greatest where the aquifer is thickest in southeastern Georgia and northeastern Floridawhere estimates are greater than 10,000 ft2/d; at one well in southeastern Georgia transmissivity was estimated to be as high as 200,000 ft2/d. Storage-coefficient data for the Lower Floridan aquifer are limited to three estimates in Barnwell and Allendale Counties, South Carolina, and to estimates determined from six multi-aquifer tests in Duval County, Florida. In the South Carolina tests, storage coefficient ranges from 0.0003 to 0.0004; this range is indicative of a confined aquifer. The storage coefficient for the combined Upper and Lower Floridan wells in Duval County, Florida, ranges from 0.00002 to 0.02. Vertical hydraulic conductivity was compiled from core samples collected at 27 sites. For the Upper Floridan confining unit, values from 39 core samples at 17 sites range from 0.0002 to 3 feet per day (ft/d). For the Lower Floridan confining unit, values from 10 core samples at 9 sites range from about 0.000004 to 0.16 ft/d. Vertical hydraulic conductivity of the Upper Floridan aquifer was compiled from 16 core samples at five sites, mostly in the Brunswick, Georgia, area and values range from 0.00134 to 160.4 ft/d. Vertical hydraulic conductivity for the semiconfining unit separating the upper and lower water-bearing zones of the Upper Floridan at Brunswick, Georgia, compiled from 6 core samples at three sites ranges from 0.000008 to 0.000134 ft/d. The vertical hydraulic conductivity of the Lower Floridan aquifer in a core sample from a well at Brunswick, G
Brahana, J.V.; Mesko, T.O.
1988-01-01
On a regional scale, the groundwater system of the northern Mississippi embayment is composed of a series of nonindurated clastic sediments that overlie a thick sequence of Paleozoic carbonate, sandstones, and shales. The units that comprise the geohydrologic framework of this study are the alluvium-lower Wilcox Aquifer the Midway confining unit, the Upper Cretaceous aquifer, the Cretaceous-Paleozoic confining unit, and the Ozark-St. Francois aquifer. The Upper Cretaceous aquifer of Late Cretaceous age is the primary focus of this investigation; the study is part of the Gulf Coast Regional Aquifer-System Analysis. A four layer finite-difference groundwater flow model enabled testing of alternative boundary concepts and provide a refined definition of the hydrologic budget of the deep aquifers. The alluvium-lower Wilcox aquifer, the Upper Cretaceous aquifer, and the Ozark-St. Francois aquifer form layers 2 through 4, respectively. Layer 1 is an inactive layer of constant heads representing shallow water levels, which are a major control on recharge to and discharge from the regional system. A matrix of leakance values simulates each confining unit, allowing vertical interchange of water between different aquifers. The model was calibrated to 1980 conditions by using the assumption that 1980 was near steady-state conditions; it was calibrated to simulate observed heads were found to be most sensitive to pumping, and least sensitive to the leakance. By using all available water quality and water level data, alternative boundary conditions were tested by comparing model simulated heads to observed heads. The results of the early modeling effort also contribute to a better understanding of the regional hydrologic budget, indicating that: upward leakage from the Ozark-St. Francois aquifer to the Upper Cretaceous aquifer is about 43 cu ft/sec; upward recharge of about 68 cu ft/sec occurs to the lower Wilcox-alluvium aquifer from the Upper Cretaceous aquifer; and the Midway is an effective regional confining unit. (Author 's abstract)
Merrill, Matthew D.
2016-03-11
U.S. Geological Survey National Oil and Gas Assessments (NOGA) of Albian aged clastic reservoirs in the U.S. Gulf Coast region indicate a relatively low prospectivity for undiscovered hydrocarbon resources due to high levels of past production and exploration. Evaluation of two assessment units (AUs), (1) the Albian Clastic AU 50490125, and (2) the Updip Albian Clastic AU 50490126, were based on a geologic model incorporating consideration of source rock, thermal maturity, migration, events timing, depositional environments, reservoir rock characteristics, and production analyses built on well and field-level production histories. The Albian Clastic AU is a mature conventional hydrocarbon prospect with undiscovered accumulations probably restricted to small faulted and salt-associated structural traps that could be revealed using high resolution subsurface imaging and from targeting structures at increased drilling depths that were unproductive at shallower intervals. Mean undiscovered accumulation volumes from the probabilistic assessment are 37 million barrels of oil (MMBO), 152 billion cubic feet of gas (BCFG), and 4 million barrels of natural gas liquids (MMBNGL). Limited exploration of the Updip Albian Clastic AU reflects a paucity of hydrocarbon discoveries updip of the periphery fault zones in the northern Gulf Coastal region. Restricted migration across fault zones is a major factor behind the small discovered fields and estimation of undiscovered resources in the AU. Mean undiscovered accumulation volumes from the probabilistic assessment are 1 MMBO and 5 BCFG for the Updip Albian Clastic AU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweetkind, D.S.; White, D.K.
Late Proterozoic through Lower Cambrian rocks in the southern Great Basin form a westward-thickening wedge of predominantly clastic deposits that record deposition on the early western shelf edge of western North America (Stewart and Poole, 1974; Poole and others, 1992). Regional analyses of geologic controls on ground-water flow in the southern Great Basin typically combined lithostratigraphic units into more general hydrogeologic units that have considerable lateral extent and distinct hydrologic properties. The Late Proterozoic through Lower Cambrian rocks have been treated as a single hydrogeologic unit, named the lower clastic aquitard (Winograd and Thordarson, 1975) or the quartzite confining unitmore » (Laczniak and others, 1996), that serves as the hydrologic basement to the flow system. Although accurate in a general sense, this classification ignores well-established facies relations within these rocks that might increase bedrock permeability and locally influence ground-water flow . This report presents a facies analysis of Late Proterozoic through Lower Cambrian rocks (hereafter called the study interval) in the Death Valley regional ground-water flow system - that portion of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain (fig. 1). The region discussed in this report, hereafter called the study area, covers approximately 100,000 km2 (lat 35 degrees-38 degrees 15'N., long 115 degrees-118 degrees W.). The purpose of this analysis is to provide a general documentation of facies transitions within the Late Proterozoic through Lower Cambrian rocks in order to provide an estimate of material properties (via rock type, grain size, and bedding characteristics) for specific hydrogeologic units to be included in a regional ground-water flow model.« less
Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico
NASA Technical Reports Server (NTRS)
Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.
1992-01-01
The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.
Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.
2006-01-01
This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting groundwater from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards. The rocks in the study area were complexly deformed by episodes of Mesozoic compression and Cenozoic extensional tectonism. Some Cretaceous thrust faults and folds of the Sevier orogenic belt form duplex zones and define areas of maximum thickness for the Paleozoic carbonate rocks. Cenozoic faults are important because they are the primary structures that control groundwater flow in the regional flow systems.
Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.
2010-01-01
Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in Brooks and Lowndes Counties, Ga., create karst features that enhance water-transmitting and storage properties of the Upper Floridan aquifer, promoting groundwater recharge and water exchange between the aquifer, land surface, and surface water. Structural control of groundwater flow and hydraulic properties combine with climatic effects and increased hydrologic stress from agricultural pumpage to yield unprecedented groundwater-level decline in the northwestern and central parts of the ASO River Basin. Hydrographs from continuous-record observation wells in these regions document declining groundwater levels, indicating diminished water-resource potential of the Upper Floridan aquifer through time. More than 24 ft of groundwater-level decline occurred along the basin's northwestern boundary with the lower Apalachicola-Chattahoochee-Flint River Basin, lowering hydraulic gradients that provide the potential for groundwater flow into the ASO River Basin and southeastward across the Gulf Trough-Apalachicola Embayment region. Slow-moving groundwater across the trough-embayment region coupled with downward-vertical flow from upper to lower limestone units composing the Upper Floridan aquifer resulted in 40-50 ft of groundwater-level decline since 1969 in southeastern Colquitt County. Multi-year episodes of dry climatic conditions during the 1980s through the early 2000s contributed to seasonal and long-term groundwater-level decline by reducing recharge to the Upper Floridan aquifer and increasing hydrologic stress by agricultural pumpage. Unprecedented and continued groundwater-level decline since 1969 caused 40-50 ft of aquifer dewatering in southeastern Colquitt County that reduced aquifer transmissivity and the ability to supply groundwater to wells, resulting in depletion of the groundwater resource.
Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, North Central Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for north central Yucca Flat, Profile 7, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T. H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Across Quartzite Ridge, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT soundings across Quartzite Ridge, Profiles 5, 6a, and 6b, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Northern Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Profile 2, (fig. 1), located in the northern Yucca Flat area. No interpretation of the data is included here.« less
Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System
NASA Astrophysics Data System (ADS)
Wheatley, D. F.; Chan, M. A.; Okubo, C. H.
2017-12-01
Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window into the subsurface by excavating subsurface sediment and waters. After emplacement, pipes can also act as fluid conduits, channeling post-depositional fluid flow. The preferential porosity and flow paths may make the pipes an ideal exploration target for microbial life.
Generalized analytical model for benthic water flux forced by surface gravity waves
King, J.N.; Mehta, A.J.; Dean, R.G.
2009-01-01
A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.
Hydrology of Polk County, Florida
Spechler, Rick M.; Kroening, Sharon E.
2007-01-01
Local water managers usually rely on information produced at the State and regional scale to make water-resource management decisions. Current assessments of hydrologic and water-quality conditions in Polk County, Florida, commonly end at the boundaries of two water management districts (South Florida Water Management District and the Southwest Florida Water Management District), which makes it difficult for managers to determine conditions throughout the county. The last comprehensive water-resources assessment of Polk County was published almost 40 years ago. To address the need for current countywide information, the U.S. Geological Survey began a 3?-year study in 2002 to update information about hydrologic and water-quality conditions in Polk County and identify changes that have occurred. Ground-water use in Polk County has decreased substantially since 1965. In 1965, total ground-water withdrawals in the county were about 350 million gallons per day. In 2002, withdrawals totaled about 285 million gallons per day, of which nearly 95 percent was from the Floridan aquifer system. Water-conservation practices mainly related to the phosphate-mining industry as well as the decrease in the number of mines in operation in Polk County have reduced total water use by about 65 million gallons per day since 1965. Polk County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer system, which is unconfined and composed primarily of clastic deposits. The surficial aquifer system is underlain by the intermediate confining unit, which grades into the intermediate aquifer system and consists of up to two water-bearing zones composed of interbedded clastic and carbonate rocks. The lowermost hydrogeologic unit is the Floridan aquifer system. The Floridan aquifer system, a thick sequence of permeable limestone and dolostone, consists of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer. The Upper Floridan aquifer provides most of the water required to meet demand in Polk County. Data from about 300 geophysical and geologic logs were used to construct hydrogeologic maps showing the tops and thicknesses of the aquifers and confining units within Polk County. Thickness of the surficial aquifer system ranges from several feet thick or less in the extreme northwestern part of the county and along parts of the Peace River south of Bartow to more than 200 feet along the southern part of the Lake Wales Ridge in eastern Polk County. Thickness of the intermediate aquifer system/intermediate confining unit is highly variable throughout the county because of past erosional processes and sinkhole formation. Thickness of the unit ranges from less than 25 feet in the extreme northwestern part of the county to more than 300 feet in southwestern Polk County. The altitude of the top of the Upper Floridan aquifer in the county ranges from about 50 feet above National Geodetic Vertical Datum of 1929 (NGVD 29) in the northwestern part to more than 250 feet below NGVD 29 in the southern part. Water levels in the Upper Floridan aquifer fluctuate seasonally, increasing during the wet season (June through September) and decreasing during the rest of the year. Water levels in the Upper Floridan aquifer also can change from year to year, depending on such factors as pumpage and climatic variations. In the southwestern part of the county, fluctuations in water use related to phosphate mining have had a major impact on ground-water levels. Hydrographs of selected wells in southwestern Polk County show a general decline in water levels that ended in the mid-1970s. This water-level decline coincides with an increase in water use associated with phosphate mining. A substantial increase in water levels that began in the mid-1970s coincides with a period of decreasing water use in the county. Despite reductions in water use since 1970, howev
Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain
Davis, M.E.
1988-01-01
Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining units. Aquifers of the Coastal Plain aquifer system are composed of fine to coarse sand, gravel, and limestone; confining beds are composed of clay, shale, chalk, marl, and metamorphic and igneous rocks.
Structure, stratigraphy, and hydrocarbons offshore southern Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, W.F.
1980-01-01
Offshore southern Kalimantan (Borneo), Indonesia, the Sunda Shelf is bounded on the south by the east-west-trending Java-Madura foreland basin and on the north by outcrops of the granitic core of Kalimantan. Major northeast-southwest-trending faults created a basin and ridge province which controlled sedimentation at least until early Miocene time. Just above the unconformity, the oldest pre-CD Limestone clastic strata are fluviatile and lacustrine, the remainder consisting largely of shallow-marine, calcareous shale with interbeds of fine-grained, quartzose sandstone. A flood of terrigenous detritus - Kudjung unit 3 - resulted from post-CD Limestone uplift, and is more widely distributed. Unit 3 consistsmore » largely of fluviatile sandstone interbedded with shale and mudstone, grading upward to marine clastics with a few thin limestones near the top. The resulting Kudjing unit 2 is largely a shallow-basinal deposit, comprising thin, micritic limestones interbedded with calcareous shale and mudstone. Infilling of the basins was nearly complete by the end of Kudjing unit 1 deposition. Eastern equivalents of Kudjing units 1 and 2 are known as the Berai limestone interval (comprising bank, reefal, basinal, and open-marine limestones, and marl). Of the three oil fields in the area, two are shut in, but one has produced nearly 100 million bbl. Gas shows were recorded in most wells of the area, but the maximum flow was 1.8 MMcf methane/day, although larger flows with high percentages of carbon dioxide and nitrogen were reported. Fine-grained clastic strata of unit 3 are continuous with those farther south, where geochemical data indicate good source and hydrocarbon-generating potential. Sandstones with reservoir capability are present in the clastic intervals, and several carbonate facies have sporadically developed porosity. A variety of structural and stratigraphic traps is present. 20 figures, 1 table.« less
Faunt, Claudia C.; Provost, Alden M.; Hill, Mary C.; Belcher, Wayne R.
2011-01-01
Carroll et al. (2009) state that the United States Geological Survey (USGS) Death Valley Regional Flow System (DVRFS) model, which is based on MODFLOW, is “conceptually inaccurate in that it models an unconfined aquifer as a confined system and does not simulate unconfined drawdown in transient pumping simulations.” Carroll et al. (2009) claim that “more realistic estimates of water availability” can be produced by a SURFACT-based model of the DVRFS that simulates unconfined groundwater flow and limits withdrawals from wells to avoid excessive drawdown. Differences in results from the original MODFLOW-based model and the SURFACT-based model stem primarily from application by Carroll et al. (2009) of head limits that can also be applied using the existing MODLOW model and not from any substantial difference in the accuracy with which the unconfined aquifer is represented in the two models. In a hypothetical 50-year predictive simulation presented by Carroll et al. (2009), large differences between the models are shown when simulating pumping from the lower clastic confining unit, where the transmissivity is nearly two orders of magnitude less than in an alluvial aquifer. Yet even for this extreme example, drawdowns and pumping rates from the MODFLOW and SURFACT models are similar when the head-limit capabilities of the MODFLOW MNW Package are applied. These similarities persist despite possible discrepancies between assigned hydraulic properties. The resulting comparison between the MODFLOW and SURFACT models of the DVRFS suggests that approximating the unconfined system in the DVRFS as a constant-saturated-thickness system (called a “confined system” by Carroll et al., 2009) performs very well.
Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada
Williams, Jackie M.; Wallin, Erin L.; Rodriguez, Brian D.; Lindsey, Charles R.; Sampson, Jay A.
2007-01-01
Introduction The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research. In early 2005 we extended that research with 26 additional MT data stations, located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations. No interpretation of the data is included here.
Stratigraphy of the Sarkisla area, Sivas basin, eastern central Anatolia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilgic, T.; Sumengen, M.; Terlemez, I.
1988-08-01
The stratigraphy of the Sarkisla area, southeastern Central Anatolian Massif, is characterized by a succession of rock units ranging from late Paleocene to Pliocene in age. The Caldag group mostly consists of deep-water units and forms the base of the Tertiary rocks. However, its relation to the basement rocks is not observed in the area. This group is represented by late Paleocene-Lutetian-age turbiditic pyroclastics and limestones, andesitic lavas and pyroclastics topped with reefal limestones, and turbiditic limestones and pyroclastics alternating with limestone blocks. During Lutetian to early Priabonian time, shallow marine clastics were deposited along the southern margin of themore » basin, while continental clastics and platform limestones accumulated along the northern margin. Late Priabonian to early Oligocene time is represented by gypsiferous deposits followed by late Oligocene-age fluvial clastics. The gypsiferous deposits conformably overlie the shallow marine formations but rest on the Caldag group unconformably. During early to middle Miocene time, alternating lacustrine limestones, gypsum, and basalts formed on the fluvial clastics; to the north, basalts formed on the platform limestones. The uppermost sequence of the basin, composed of Tortonian-early Pliocene-age fluvial clastics, lacustrine limestones, and fan deposits, unconformably overlies the older formations. The stratigraphy of the study area is similar to the Ulukisla basin, southwestern Central Anatolian Massif. Therefore, this basin can be considered to be the prolongation of the Ulukisla basin offset by the Ecemis fault.« less
Lower Miocene stratigraphy of the Gebel Shabrawet area, north Eastern desert Egypt
NASA Astrophysics Data System (ADS)
Abdelghany, Osman
2002-05-01
The Lower Miocene carbonate/siliciclastic sequence of the Shabrawet area, comprises a complex alternation of autochthonous and allogenic sediments. The sequence can be subdivided into two lithostratigraphic units. The lower unit (unit I) is equivalent to the Gharra Formation. It is mainly clastic and composed of sandstones, siltstones and shales with minor limestone intercalations. These sediments are rich in Clypeaster spp., Scutella spp., Miogypsina intermedia, Operculina complanata, and smaller foraminifera. The upper unit (unit II) was considered by previous workers as being equivalent to the Marmarica Formation. It consists mainly of non-clastic rocks, dominated by sandy and chalky limestones rich in larger foraminifera (miogypsinids and nummulitids). This unit is topped by a highly fossiliferous ( Heterostegina, Operculina and Planostegina) sandy limestone. The present study places both units in the Gharra Formation and reports for the first time M. intermedia from the Miocene sequence of the Shabrawet area.
Dean, Walter E.; Arthur, Michael A.
2011-01-01
eg 1 of the 1988 R/V Knorr expeditions to the Black Sea recovered 90 gravity and box cores. The longest recovery by gravity cores was about 3 meters, with an average of about 2.5 meters, recovering all of the Holocene and upper Pleistocene sections in the Black Sea. During the latest Pleistocene glaciation, sea level dropped below the 35-meters-deep Bosporus outlet sill of the Black Sea. Therefore throughout most of its history the Black Sea was a lake, and most of its sediments are lacustrine. The oldest sediments recovered (older than 8,000 calendar years) consist of massive to coarsely banded lacustrine calcareous clay designated as lithologic Unit III, generally containing less than 1 percent organic carbon (OC). The base of overlying Unit II marks the first incursion of Mediterranean seawater into the Black Sea, and the onset of bottom-water anoxia about 7,900 calendar years. Unit II contains as much as 15 percent OC in cores from the deepest part of the Black Sea (2,200 meters). The calcium carbonate (CaCO3) remains of the coccolith Emiliania huxleyi form the distinctive white laminae of overlying Unit I. The composition of Unit III and Unit II sediments are quite different, reflecting different terrigenous clastic sources and increased contributions from hydrogenous and biogenic components in anoxic Unit II sapropel. In Unit II, positive covariance between OC and three trace elements commonly concentrated in OC-rich sediments where sulfate reduction has occurred (molybdenum, nickel, and vanadium) and a nutrient (phosphorus) suggest a large marine source for these elements although nickel and vanadium also have a large terrigenous clastic source. The marine sources may be biogenic or hydrogenous. A large biogenic source is also suggested for copper and cobalt. Because abundant pyrite forms in the water column and sediments of the Black Sea, we expected to find a large hydrogenous iron component, but a strong covariance of iron with aluminum suggests that the dominant source of iron is from terrigenous clastic material. Most elements in lacustrine Unit III sediments have a strong covariance with Al indicating a very dominant terrigenous source. In Unit II, some elements, especially nickel, molybdenum, vanadium, and zinc, do not correlate with aluminum and have concentrations well above terrigenous clastic material, indicating a marine source.
Pickering, Robyn; Hancox, Phillip J; Lee-Thorp, Julia A; Grün, Rainer; Mortimer, Graham E; McCulloch, Malcolm; Berger, Lee R
2007-11-01
Gladysvale Cave is one of the few Plio-Pleistocene hominin-bearing cave sites in South Africa that contains a well-stratified cave fill with clastic sediments interspersed with flowstones. The clastic sediments can be divided into units based on the presence of intercalated flowstones, forming flowstone bounded units (FBU). Ten MC-ICP-MS uranium-series dates on several flowstone horizons in the Gladysvale Internal Deposit fan indicate deposition from the late mid-Pleistocene ( approximately 570 ka) to Holocene ( approximately 7 ka) during limited periods of higher effective moisture. Clastic sedimentation occurred during the interceding, presumably more arid, periods. This sequence is not consistent with earlier models for South African caves that simply assumed interglacial sedimentation and glacial erosion. (13)C/(12)C data suggest that flowstone tended to form during periods with higher proportions of C(3) plants in the local vegetation, while clastic sediments reflect higher proportions of C(4) grasses, although this is not always the case. We argue that flowstones are precipitated during periods of higher effective precipitation and restricted cave entrances, while clastic sediments accumulated during periods with more open vegetation. The sedimentary fill of the fossiliferous deposits are, therefore, highly episodic in nature, with large periods of time unlikely to be represented. This has serious implications for the other hominin-bearing caves close by, as these deposits are likely to be similarly episodic. This is especially pertinent when addressing extinction events and reconstructions of paleoenvironments, as large periods of time may be unrecorded. The Gladysvale Cave fill sediments may serve as a climatically forced chronostratigraphic model for these less well-stratified and well-dated Plio-Pleistocene sites.
Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez
2007-08-15
The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006).more » During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.« less
NASA Astrophysics Data System (ADS)
Soria, Ana R.; Liesa, Carlos L.; Mata, Maria Pilar; Arz, José A.; Alegret, Laia; Arenillas, Ignacio; Meléndez, Alfonso
2001-03-01
Slumps affecting uppermost Méndez Formation marls, as well as the spherulitic layer and basal part of the sandy deposits of the Cretaceous-Tertiary (K-T) boundary clastic unit, are described at the new K-T El Tecolote section (northeastern Mexico). These K-T clastic deposits represent sedimentation at middle-bathyal water depths in channel and nonchannel or levee areas of reworked materials coming from environments ranging from outer shelf to shallower slope via a unidirectional, high- to low-density turbidite flow. We emphasize the development and accretion of a lateral bar in a channel area from a surging low-density turbidity current and under a high-flow regime. The slumps discovered on land and the sedimentary processes of the K-T clastic unit reflect destabilization and collapse of the continental margin, support the mechanism of gravity flows in the deep sea, and represent important and extensive evidence for the impact effects in the Gulf of México triggered by the Chicxulub event.
NASA Astrophysics Data System (ADS)
Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.
2010-12-01
At Hokuri Creek, in south Westland, New Zealand, an 18 m thickness of Holocene sediments has accumulated against the upthrown side of the Alpine Fault. Recent fluvial incision has created numerous exposures of this sedimentary sequence. At a decimetre to metre scale there are two dominant types of sedimentary units: clastic-dominated, grey silt packages, and organic-dominated, light brown peaty-silt units. These units represent repeated alternations of the paleoenvironment due to fault rupture over the past 7000 years. We have located the event horizons within the sedimentary sequence, and identified evidence to support earthquake-driven paleoenvironmental change (rather than climatic variability), and developed a model of paleoenvironmental changes over a typical seismic cycle. To quantitatively characterise the sediments we use high resolution photography, x-ray imaging, magnetic-susceptibility and total carbon analysis. To understand the depositional environment we used diatom and pollen studies. The organic-rich units have very low magnetic susceptibility and density values, with high greyscale and high total carbon values. Diatoms indicate these units represent stable wetland environments with standing water and predominantly in-situ organic material deposition. The clastic-rich units are characterised by higher magnetic susceptibility and density values, with low greyscale and total carbon. The clastic-rich units represent environments of flowing water and deep pond settings that received predominantly catchment-derived silt and sand. The event horizon is located at the upper contact of the organic-rich horizons. The event horizon contact marks a drastic change in hydrologic regime as fault rupture changed the stream base level and there was a synchronous influx of clastic sediment as the catchment responded to earthquake shaking. During the interseismic period the flowing-water environment gradually stabilised and returned to an organic-rich wetland. Such cycles were repeated 18 times at Hokuri Creek. Evidence that fault rupture was responsible for the cyclical paleoenvironmental changes at Hokuri Creek include: the average time period for each organic- and clastic-rich couplet to be deposited approximately equals the long-term average Alpine Fault recurrence interval, and the most recent events recorded at Hokuri correlate to an earthquake dated in paleoseismic trenches 100 km along strike; fault rupture is the only mechanism that can create accommodation space for 18 m of sediment to accumulate, and the sedimentary units can be traced from the outcrop to the fault trace and show tectonic deformation. The record of 18 fault rupture events at Hokuri Creek is one of the longest records of surface ruptures on a major plate boundary fault. High-resolution dating and statistical treatment of the radiocarbon data (Biasi et al., this meeting) has resulted in major advances in understanding the long-term behaviour of the Alpine Fault (Berryman et al., this meeting).
NASA Astrophysics Data System (ADS)
Weissbrod, T.; Perath, I.
A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic units. Clay minerals, though subordinate, characterize certain units. Illite is usually the dominant clay mineral in the Precambrain-Paleozoic sediments, showing different degress of crystallization in different units. Kaolinite is the main, often the only clay mineral in Mesozoic units. Heavy minerals, whose species spectra reflect on parent rock and provenance terrain and whose differential response to degradation points to the sedimentary history of the deposit, show certain vertical regularities, such as the abrupt disappearance of species or whole assemblages at certain levels, indicating unconformities. Trace metals, which in places reach ore concentrations (e.g. copper), are often extensive, though of well-defined vertical distribution. They express adsorptive capacity of specific widespread lithologies, enabling the discrimination of units. Even though each of these criteria is not always by itself diagnostic, they may in conjuction with one or more other criteria amount to a petrographic fingerprint that enables fairly accurate identification of the age interval of the unit, and its relation both to the regional and the local stratigraphic sequence.
Magnetotellurics applied to the study of the Guaraní aquifer in Entre Ríos Province, N-E Argentina
NASA Astrophysics Data System (ADS)
Favetto, Alicia; Curcio, Ana; Pomposiello, Cristina
2011-07-01
The South American Guaraní Aquifer System covers the entire Parana basin and part of the Chaco-Parana basin. This system is one of the most important groundwater reservoirs; it is shared by four neighboring countries covering an area larger than one million square kilometers. The geological units closely related to the Guaraní Aquifer are the Piramboia and Botucatu Formations that consist of Triassic-Jurassic aeolian, fluvial and lacustrine sandstones, and the Serra Geral basalts with clastic intercalations. Serra Geral, an effusive Cretaceous complex, covers the sandstones and provides a high degree of confinement to the system. This paper presents the interpretation of magnetotelluric (MT) data collected during 2007-2008 in Entre Ríos Province, Argentina. These data, recorded in three profiles, mainly provide the depth to the crystalline basement, determinant for the presence of aquifer-related sediments. Models showed that the discrimination of the basalts strongly depends on local electrical characteristics. Model information is quite consistent with the information from oil and thermal wells located close to the profiles.
A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration
NASA Astrophysics Data System (ADS)
Moosdorf, N.; Richard, S. M.
2012-12-01
A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the lithologic character of such units in a meaningful way. A lithogenetic unit category scheme accessible as a GeoSciML-portrayal-based OGC Styled Layer Description resource is key to enabling OneGeology (http://oneGeology.org) geologic map services to achieve a high degree of visual harmonization.
NASA Astrophysics Data System (ADS)
Martínez-López, M.; Urrutia-Fucugauchi, J.
2007-05-01
We report results of a micropaleontological and magnetostratigraphic study of the La Ceiba section that spans the K/T boundary. La Ceiba is located in central Mexico (20o 19.8' N, 97o 41.0' W) within the Tampico-Mizantla basin. The K/T boundary is marked by a clastic unit of about one-meter thickness intercalated between the carbonate hemipelagic marls of the Cretaceous Mendez Formation and the Paleocene Velasco Formation. The clastic unit can be divided into four sub-units, according to their texture and architectural characteristics following Arenillas et al. (2002). The basal sub-unit is formed by calcareous marls and is rich in shocked quartz and millimeter size spherules with microtektites and bioclasts of shallow water origin. The second sub-unit is formed by medium-grained sandstones, with clasts and quartz fragments, feldspars, metamorphic and calcareous fragments and re-worked benthic and planktic foraminifera. The third sub-unit is composed by a single body of medium- to fine-grained sandstones with tabular geometry. In this sub-unit, cross- and parallel-lamination trough cross-stratification, current ripples and climbing ripples have been observed. The top sub-unit is a tabular body of fine-grained sandstones, showing parallel-lamination and low-angle cross-lamination, with asymmetric ripples and burrow traces to the top. For the paleontologic and paleomagnetic study we collected twenty-five oriented samples across the section. We measured the low-field susceptibility, intensity and direction of the NRM. The vectorial composition and stability of NRM were analyzed by progressive thermal and alternating field demagnetization. Vectorial orthogonal diagrams and vector subtraction and principal component analysis were used to determine the characteristic magnetization and secondary components for each sample. The characteristic NRM negative inclination and southward declination in the K/T clastic sediments indicate a reverse polarity, which is correlated to reverse chron 29r that spans the K/T boundary. Micropaleontology analyses permit identification of six biozones. Two biozones (biozone of Rugoglobigerina scootti and Abathomphalus mayaroensis) correspond to the Maastrichtian. Four biozones (Guembelitria cretácea, Parvularogoglobigerina eugubina, Parasubotina pseudobulloides and Acarina trinidadensis) correspond to the Danian.
Attanasi, E.D.; Freeman, P.A.
2016-03-02
The retention factor is the percentage of injected CO2 that is naturally retained in the reservoir. Retention factors were also estimated in this study. For clastic reservoirs, 90 percent of the estimated retention factors were between 21.7 and 32.1 percent, and for carbonate reservoirs, 90 percent were between 23.7 and 38.2 percent. The respective median values were 22.9 for clastic reservoirs and 26.1 for carbonate reservoirs. Both distributions were right skewed. The recovery and retention factors that were calculated are consistent with the corresponding factors reported in the literature.
Robinson, Gilpin R.; Peper, John D.; Steeves, Peter A.; Desimone, Leslie A.
1999-01-01
This data layer shows the generalized lithologic and geochemical (lithogeochemical) character of near-surface bedrock in the Connecticut, Housatonic, and Thames River Basins and several other small basins that drain into Long Island Sound from Connecticut. The area includes most of Connecticut, western Massachusetts, eastern Vermont, western New Hampshire, and small parts of Rhode Island, New York, and Quebec, Canada.Bedrock geologic rock units are classified into 29 lithogeochemical rock units, on the basis of the relative reactivity of their constituent minerals to dissolution and other weathering reactions and the presence of carbonate or sulfide minerals. The 29 lithogeochemical units (28 of which can be found in the study area) can be grouped into 6 major categories: (1) carbonate-rich rocks, (2) carbonate-poor, clastic sedimentary rocks restricted to distinct depositional basins, (3) metamorphosed, clastic sedimentary rocks (primarily noncalcareous), (4) mafic igneous rocks and their metamorphic equivalents, (5) ultramafic rocks, and (6) felsic igneous and plutonic rocks and their metamorphic equivalents. The lithogeochemical rock units also are grouped into nine lithologic and physiographic provinces (lithophysiographic domains), which can be further grouped into three major regions: (1) western highlands and lowlands, (2) central lowlands, and (3) eastern highlands.
NASA Astrophysics Data System (ADS)
Dunčić, Milena; Dulić, Ivan; Popov, Olivera; Bogićević, Goran; Vranjković, Alan
2017-04-01
Micropalaeontological and biostratigraphical studies included Campanian-Maastrichtian complexes from five oil exploration wells drilled in northern Serbia (Vojvodina): the first is a carbonate-clastic complex and second is a complex containing ophiolites intercalated with hemipelagic and pelagic sediments. Within the studied complexes, rich associations of planktonic and benthic foraminifera, calcareous nannoplankton, palynomorphs, as well as shallow and deep-water fossil detritus were determined. The presence of relatively rich associations of planktonic foraminifera allowed recognition of two biozones: the Globotruncana ventricosa Zone, observed in the sediments of the carbonate-clastic complex and the Gansserina gansseri Zone, observed in both complexes. Except biozones, based on documented index species, for some units in both complexes, larger benthic foraminifera species had special biostratigraphical value, and in some of them, the calcareous nannoplankton zones were recognized. The studied complexes represent deep-water formations, generated in oceanic island arc and trough zones. The presence of limestones, which originate from destroyed rudist reefs, is explained by transfer by means of gravitational transport mechanisms of shallow-water sediments to deep-water depositional environments. In this paper, the results of more detailed biostratigraphical and palaeo-ecological studies of foraminifera associations in Campanian-Maastrichtian complexes in Vojvodina are presented. Combined with lithological studies, seven units were determined within the complexes. The obtained results are important as a part of multidisciplinary, regional exploration of both complexes, generated in specific geological conditions, that today constitute a part of the pre-Neogene basement complex in the southeastern part of the Pannonian Basin. The Campanian- Maastrichtian carbonate-clastic complex represents sedimentary cover of the Eastern Vardar Ophiolitic Unit, while the ophiolites intercalated with hemipelagic and pelagic limestones belongs to the Sava Zone.
Kirschbaum, M.A.; McCabe, P.J.
1992-01-01
Alluvial strata of the Cretaceous Dakota Formation of southern Utah are part of a transgressive systems tract associated with a foreland basin developed adjacent to the Sevier orogenic belt. These strata contain valley fill deposits, anastomosed channel systems and widespread coals. The coals constitute a relatively minor part of the Dakota Formation in terms of sediment volume, but may represent a substantial amount of the time represented by the formation. The coals are separated by clastic units up to 20 m thick. The mires developed during periods when clastic influx was reduced either by high rates of subsidence close to the thrust belt or by deflection of rivers by emergent thrusts. -from Authors
Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.
2001-01-01
The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic
Pyroclastic Activity at Home Plate in Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Aharonson, O.; Clark, B. S.; Cohen, B.; Crumpler, L.; deSouza, P. A.; Farrand, W. H.; Gellert, R.; Grant, J.; Grotzinger, J. P.;
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
Pyroclastic activity at home plate in Gusev crater, Mars
Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; de Souza, P.A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; Johnson, J. R.; Klingelhofer, G.; Lewis, K.W.; Li, R.; McCoy, T.; McEwen, A.S.; McSween, H.Y.; Ming, D. W.; Moore, Johnnie N.; Morris, R.V.; Parker, T.J.; Rice, J. W.; Ruff, S.; Schmidt, M.; Schroder, C.; Soderblom, L.A.; Yen, A.
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.
Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez
2006-11-03
The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas ofmore » the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards Shoshone Mountain, to Buckboard Mesa in the south, and onto Rainier Mesa in the north. Subsequent interpretation will include a three-dimensional (3-D) character analysis and a two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for the twenty-six stations shown in figure 1. No interpretation of the data is included here.« less
Lithogeochemical character of near-surface bedrock in the New England coastal basins
Robinson, Gilpin R.; Ayotte, Joseph D.; Montgomery, Denise L.; DeSimone, Leslie A.
2002-01-01
This geographic information system (GIS) data layer shows the generalized lithologic and geochemical, termed lithogeochemical, character of near-surface bedrock in the New England Coastal Basin (NECB) study area of the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program. The area encompasses 23,000 square miles in western and central Maine, eastern Massachusetts, most of Rhode Island, eastern New Hampshire and a small part of eastern Connecticut. The NECB study area includes the Kennebec, Androscoggin, Saco, Merrimack, Charles, and Blackstone River Basins, as well as all of Cape Cod. Bedrock units in the NECB study area are classified into lithogeochemical units based on the relative reactivity of their constituent minerals to dissolution and the presence of carbonate or sulfide minerals. The 38 lithogeochemical units are generalized into 7 major groups: (1) carbonate-bearing metasedimentary rocks; (2) primarily noncalcareous, clastic sedimentary rocks with restricted deposition in discrete fault-bounded sedimentary basins of Mississipian or younger age; (3) primarily noncalcareous, clastic sedimentary rocks at or above biotite-grade of regional metamorphism; (4) mafic igneous rocks and their metamorphic equivalents; (5) ultramafic rocks; (6) felsic igneous rocks and their metamorphic equivalents; and (7) unconsolidated and poorly consolidated sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barros, J.A.; Rosencrantz, E.
The oldest Cuban sedimentary rocks, clastics of the Bajocian San Cayetano Fm. provide the earliest record of North American-Gondwana rifting as seen in Cuba. A similar clastic sequence is seen below the carbonates of the Bahamas platform. In the Pinar del Rio area, the San Cayetano is succeeded by Oxfordian limestones, the shallow water Jagua Fm. to the south and deeper water Francisco Fm. to the north. Both contain basaltic pillow lavas, related either to rifting or to leaky transform motion parallel to the margin. The Oxfordian units are overlain by Kimmeridgian to Tithonian pelagic limestones, the Guasasa and Artemisamore » Fms. The later interfingers with northerly derived calci-turbidites. North of the Escambray, silici-clastic fragments in late Jurassic pelagic limestones suggests that a basement high existed south of the platform until the Berriasian. The carbonate platform continues to shed debris along its southern edge throughout the Cretaceous. To the south an Aptian-Albian episode of turbidite deposition suggests that South America-Africa rifting caused tectonic disturbances in the Caribbean. Southerly derived volcanoclastics deposited during the Maastrichtian marks the start of the Cuban orogeny.« less
Colton, G.W.
1962-01-01
The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where the older sequence is absent, the Early Cambrian sequence rests on the basement complex. Interbedded fine- to coarse-grained noncarbonate detrital rocks comprise the bulk of the sequence, but some volcanic and carbonate rocks are included. Next above is the Cambrian-Ordovician carbonate sequence which consists largely of limestone and dolomite. Some quartzose sandstone is present in the lower part in the western half of the basin, and much shale is present in the upper part in the southeast part of the basin. The next higher sequence is the Late Ordovician clastic sequence, which consists largely of shale, siltstone, and sandstone. Coarse-grained light-gray to red rocks are common in the sequence along the eastern side of the basin, whereas fine-grained dark-gray to black calcareous rocks are common along the west side. The Late Ordovician clastic sequence is overlain--unconformably in many places--by the Early Silurian clastic sequence. The latter comprises a relatively thin wedge of coarse-grained clastic rocks. Some of the most prolific oil- and gas-producing sandstones in the Appalachian basin are included. Among these are the 'Clinton' sands of Ohio, the Medina Sandstones of New York and Pennsylvania, and the Keefer or 'Big Six' Sandstone of West Virginia and Kentucky. Conformably overlying the Early Silurian clastic sequence is the Silurian-Devonian carbonate sequence, which consists predominantly of limestone and dolomite. It also contains a salt-bearing unit in the north-central part of the basin and a thick wedge of coarse-grained red beds in the northeastern part. The sequence is absent in much of the southern part of the basin. Large volumes of gas and much oil are obtained from some of its rocks, especially from the Oriskany Sandstone and the Huntersville Chert. The Silurian-Devonian carbonate sequence is abruptly overlain by the Devonian clastic sequence--a thick succession of interbedded shale, mudrock, siltstone, and sandstone. Colors range f
NASA Astrophysics Data System (ADS)
Brookfield, M. E.
2000-12-01
The Tien Shan form a high intracontinental mountain belt, lying north of the main India-Asia collision mountains, and consist of re-activated Paleozoic orogens. The western segment of the southern Tien Shan lies northwest of the Pamir and west of the Talas-Fergana fault. The stratigraphy, lithology, igneous and metamorphic petrology and geochemistry of this segment indicate that it was formed by the assembly of Lower Paleozoic arcs which developed into microcontinents with Upper Paleozoic mature shelf and slope clastic and carbonate sediments. Precambrian continental crust is confined to two small blocks along its southern margin. The bulk of the southern Tien Shan consists of ?Vendian to Silurian oceanic and slope clastic rocks, resting on oceanic lithosphere, and overlain by thick passive margin Devonian to mid-Carboniferous mature shelf clastics and carbonates. These are unconformably overlain by syn- and post-orogenic immature clastic sediments derived from mountains on the north formed by closure of a Carboniferus southern Tajik and a northern Vendian to Carboniferous Turkestan ocean with the southern Tien Shan microcontinent sandwiched between. Associated with these collisions are late Carboniferous to Permian intrusives, which form three south to north (though overlapping) suites; a southern calc-alkaline granodiorite-granite suite, an intermediate gabbro-monzodiorite-granite suite, and a northern alkaline monzodiorite-granite-alaskite suite. The gabbro-monzodiorite-granite suite forms the earliest subduction-related magmatism of the southern Tien Shan: rare earth element patterns are consistent with derivation from a primitive or slightly enriched mantle. The other suites show more crustal contamination. Rb and Sr vary with depth and degree of partial melting and are consistent with progressive involvement of crustal material in partial melts during collision. The gradual change in composition within each complex, lasting in some cases from 295 to 250 Ma (the entire Permian), may be explained by a consecutive shift in the melting sedimentary cover of the subducting plate from oceanic crust through transitional crust to marginal continental crust. Like the Central Asian orogenic belt (the main focus of IGCP 420), the Tien Shan represent a net addition of continental crust during the Phanerozoic. Very little of the belt has any Precambrian precursor.
Determination of hydraulic properties in the vicinity of a landfill near Antioch, Illinois
Kay, Robert T.; Earle, John D.
1990-01-01
A hydrogeologic investigation was conducted in and around a landfill near Antioch, Illinois, in December 1987. The investigation consisted, in part, of an aquifer test that was designed to determine the hydraulic connection between the hydrogeologic units in the area. The hydrogeologic units consist of a shallow, unconfined, sand and gravel aquifer of variable thickness that overlies an intermediate confining unit of variable thickness composed predominantly of till. Underlying the till is a deep, confined, sand and gravel aquifer that serves as the water supply for the village of Antioch. The aquifer test was conducted in the confined aquifer. Aquifer-test data were analyzed using the Hantush and Jacob method for a leaky confined aquifer with no storage in the confining unit. Calculated transmissivity of the confined aquifer ranged from 1.96x10^4 to 2.52x10^4 foot squared per day and storativity ranged from 2.10x10^-4 to 8.71x10^-4. Leakage through the confining unit ranged from 1.29x10^-4 to 7.84x10^-4 foot per day per foot, and hydraulic conductivity of the confining unit ranged from 3.22x10^-3 to 1.96x10^-2 foot per day. The Hantush method for analysis of a leaky confined aquifer with storage in the confining unit also was used to estimate aquifer and confining-unit properties. Transmissivity and storativity values calculated using the Hantush method are in good agreement with the values calculated from the Hantush and Jacob method. Properties of the confining unit were estimated using the ratio method of Neuman and Witherspoon. The estimated diffusivity of the confining unit ranged from 50.36 to 68.13 feet squared per day, A value for the vertical hydraulic conductivity of the confining unit calculated from data obtained using both the Hantush and the Neuman and Witherspoon methods was within the range of values calculated by the Hantush and Jacob method. The aquifer-test data clearly showed that the confining unit is hydraulically connected to the confined aquifer. The aquifer-test data also indicated that the unconfined aquifer becomes hydraulically connected to the deep sand and gravel aquifer within 24 hours after the start of pumping in the confined aquifer.
Dean, W.E.
1997-01-01
Most of the sediment components that accumulated in Elk Lake, northwestern Minnesota, during the Holocene are autochthonous or biogenic, delivered to the sediment-water interface on a seasonal schedule, preserved in distinct annual laminae (varves). The main allochthonous component is detrital clastic material, as measured by bulk-sediment concentrations of aluminum, sodium, potassium, titanium, and quartz, that enters the lake mostly as eolian dust. The eolian clastic influx to Elk Lake was considerably greater during the mid-Holocene (8-4 ka) than it has been for the past 4000 yr, when periods of increased eolian activity correspond to the time of the Little Ice Age and the dust bowl. Geochemical records of eolian activity exhibit distinct cyclicities with dominant periodicities of 400 and 84 yr.
Tiwari, Raghavendra Prasad; Rajkonwar, Chinmoy; Patel, Satish Jaychandbhai
2013-01-01
A new ichnospecies of the ichnogenus Funalichnus Pokorný is described from the Middle Bhuban Unit, Bhuban Formation, Surma Group (Lower - Middle Miocene) of Aizawl, Mizoram, India. Funalichnus bhubani isp. Nov. Is a large burrow displaying cylindrical segments that are oriented nearly perpendicular to the bedding plane. The new ichnospecies can be identified on the basis of general form, size, unlined passive filling and twisted rod-like structure. The association of Funalichnus bhubani isp. Nov. With Arenicolites, Diplocraterion, Ophiomorpha Psilonichnus Skolithos and Thalassinoides points to its bathymetric restriction. The deep extension of the burrow in clastic sediments provides a favourable condition for preservation in the shoreface environment and occurrence in fine- to medium-grained clastic sediments may be a preservational preference. PMID:24204992
Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion
NASA Astrophysics Data System (ADS)
Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.
2008-08-01
We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions. The interval between 20 and 18 ka was marked by near-Holocene levels of clastic sediment flux, and appears to have been an interval of much reduced ice extent. An abrupt increase in clastic sediment flux 18 ka heralded the onset of an interval of expanded ice cover that lasted until ˜14 ka. Clastic sediment flux declined thereafter to reach the lowest levels of the entire length of record during the early-middle Holocene. A middle Holocene climatic transition is apparent in nearly all records and likely reflects the onset of Neoglaciation and/or enhanced soil erosion in the tropical Andes.
Leake, S.A.; Leahy, P.P.; Navoy, A.S.
1994-01-01
Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.
Effects of model layer simplification using composite hydraulic properties
Sepúlveda, Nicasio; Kuniansky, Eve L.
2010-01-01
The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.
Discrimination of lithologic units using geobotanical and LANDSAT TM spectral data
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Defeo, N. J.
1986-01-01
Thematic Mapper (TM) spectral data were correlated with lithologic units, geobotanical forest associations, and geomorphic site parameters in the Ridge and Valley Province of Pennsylvania. Both the TM and forest association data can be divided into four groups based on their lithology (sandstone or shale) and geomorphic aspect (north or south facing). In this clastic sedimentary terrane, geobotanical associations are useful indicators of lithology and these different geobotanical associations are detectable in LANDSAT TM data.
NASA Astrophysics Data System (ADS)
Queaño, Karlo L.; Dimalanta, Carla B.; Yumul, Graciano P.; Marquez, Edanjarlo J.; Faustino-Eslava, Decibel V.; Suzuki, Shigeyuki; Ishida, Keisuke
2017-07-01
The Zambales Ophiolite Complex (ZOC) on the island of Luzon, Philippines is one of the most well-studied crust-mantle sequences in the region. Several massifs comprise the ZOC, one of which is the Coto Block overlain by clastic sedimentary units previously dated as Eocene. Geochronologic studies from diabase, granodiorites and other late-stage magmatic products similarly yielded the same age. Succeeding tectonic models have therefore all been grounded on the assumption that the entire ZOC is Eocene. Recent investigations, however, revealed the presence of chert blocks within the Early to Middle Miocene clastic formation overlying the Acoje Block in the northern part of the ophiolite complex. Radiolarians extracted from the cherts yielded a stratigraphic range that suggests a Late Jurassic to Early Cretaceous age. The recognition of a much older age than previously reported of the ZOC warrants a re-examination of its actual distribution and genesis. Correlating with other similarly-aged ophiolites, we suggest defining a western Mesozoic ophiolite belt, largely extending from the west-central portion of the archipelago to the northeastern tip of Luzon island. Tentatively, we attribute the Mesozoic ophiolitic and associated rocks in western Luzon to an arc-continent collision involving the Philippine Mobile Belt and the Palawan Microcontinental Block. In addition, differences in the clastic compositions of the Cenozoic sedimentary formations provide material not only for deciphering the ZOC's unroofing history but also for constraining the timing of province linkage. The intermittent appearance of lithic fragments and detrital minerals from the ophiolite in the units of the Middle Miocene Candelaria Limestone and the Late Miocene to Early Pliocene Sta. Cruz Formation indicates significant but geographically variable contributions from the ophiolite complex. In the northern Zambales Range, the Sta. Cruz Formation caps the Coto Block and the Acoje Block of the ZOC, providing a minimum age for their amalgamation.
Krause, Richard E.
1982-01-01
A computer model using finite-difference techniques was used successfully to simulate the predevelopment flow regime within the multilayered Tertiary limestone aquifer system in Southeastern Georgia, Northeastern Florida, and Southern South Carolina as part of the U.S. Geological Survey 's Tertiary Limestone Regional Aquifer System analysis. The aquifer, of early Eocene to Miocene age, ranges from thin interbedded clastics and marl in the updip area to massive limestone and dolomite 1,500 feet thick in the downdip area. The aquifer is confined above by Miocene clay beds, and terminates at depth in low-permeability rocks or the saltwater interface. Model-simulated transmissivity of the upper permeable zone ranged from about 1 x 10 super 3 foot squared per day in the updip area and within parts of the Gulf Trough (a series of alinement basins filled by fine clastic in material) to about 1 x 10 super 6 foot squared per day in South Georgia, and area having large secondarily developed solution channels. The model results indicate that only about 540 cubic feet per second of water flowed through the predeveloped system, from the updip highland area of high altitude and in the areas north of Valdosta and southwest of Jacksonville, to discharge along streams in the updip area and diffuse upward leakage in the downdip area near the coast and offshore. (USGS)
Cover sequence stratigraphy and structure: Salem Church basement culmination, Georgia Blue Ridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L.; Tull, J.F.
The Salem Church anticline SW of Jasper, Georgia in the western Blue Ridge is roughly an oval shaped structural dome with its long axis trending NE-SW. The anticline is cored by the Grenville age Corbin Gneiss which represents allochthonous North American basement. In debate for decades has been the age and origin of several kilometers of poly-deformed cover sequence rocks which were metamorphosed to greenschist facies and were probably transported over a long distance inland after their deposition. The stratigraphy of the cover sequence exhibits rapid lithofacies changes. At most localities, the basement is overlain by a 500--600 m thickmore » coarse clastic unit sourced from the basement rocks, composed mainly of metaconglomerate, metasandstone and metadiamictite. A thin unit less than 20 m thick of sericite phyllite occurs between the basement and the coarse clastic unit along the SE limb of the anticline but pinches out to the MW. A relatively sharp stratigraphic contact occurs between quartzite unit and overlying dark colored metagreywackes and metadiamictites containing distinctive cobbles and boulders of granitic and gneissic basement rocks up to 1 meter in length. This unit is about 100 m thick in the SW but thins rapidly towards the NE. It grades up into a geographically widespread graphitic phyllite which encircles most of the anticline. Unlike the cover sequence above the corbin basement west of Waleska, Georgia, no carbonate is found in this area.« less
The Sirte Basin province of Libya; Sirte-Zelten total petroleum system
Ahlbrandt, Thomas S.
2001-01-01
The Sirte (Sirt) Basin province ranks 13th among the world?s petroleum provinces, having known reserves of 43.1 bil-lion barrels of oil equivalent (36.7 billion barrels of oil, 37.7 tril-lion cubic feet of gas, 0.1 billion barrels of natural gas liquids). It includes an area about the size of the Williston Basin of the north-ern United States and southern Canada (?490,000 square kilome-ters). The province contains one dominant total petroleum system, the Sirte-Zelten, based on geochemical data. The Upper Cretaceous Sirte Shale is the primary hydrocarbon source bed. Reservoirs range in rock type and age from fractured Precam-brian basement, clastic reservoirs in the Cambrian-Ordovician Gargaf sandstones, and Lower Cretaceous Nubian (Sarir) Sand-stone to Paleocene Zelten Formation and Eocene carbonates commonly in the form of bioherms. More than 23 large oil fields (>100 million barrels of oil equivalent) and 16 giant oil fields (>500 million barrels of oil equivalent) occur in the province. Abstract 1 Production from both clastic and carbonate onshore reservoirs is associated with well-defined horst blocks related to a triple junc-tion with three arms?an eastern Sarir arm, a northern Sirte arm, and a southwestern Tibesti arm. Stratigraphic traps in combina-tion with these horsts in the Sarir arm are shown as giant fields (for example, Messla and Sarir fields in the southeastern portion of the province). Significant potential is identified in areas marginal to the horsts, in the deeper grabens and in the offshore area. Four assessment units are defined in the Sirte Basin prov-ince, two reflecting established clastic and carbonate reservoir areas and two defined as hypothetical units. Of the latter, one is offshore in water depths greater than 200 meters, and the other is onshore where clastic units, mainly of Mesozoic age, may be res-ervoirs for laterally migrating hydrocarbons that were generated in the deep-graben areas. The Sirte Basin reflects significant rifting in the Early Cre-taceous and syn-rift sedimentary filling during Cretaceous through Eocene time, and post-rift deposition in the Oligocene and Miocene. Multiple reservoirs are charged largely by verti-cally migrating hydrocarbons along horst block faults from Upper Cretaceous source rocks that occupy structurally low posi-tions in the grabens. Evaporites in the middle Eocene, mostly post-rift, provide an excellent seal for the Sirte-Zelten hydrocarbon system. The offshore part of the Sirte Basin is complex, with subduction occurring to the northeast of the province boundary, which is drawn at the 2,000-meter isobath. Possible petroleum systems may be present in the deep offshore grabens on the Sirte Rise such as those involving Silurian and Eocene rocks; however, potential of these systems remains speculative and was not assessed.
NASA Astrophysics Data System (ADS)
Munoz, V. O. S.; Maher, A.; Jaime-Geraldo, A. J.; Niemi, T.
2017-12-01
Most geologic studies of the Santa Rosalía basin (SRB) have focused on the mineralization of the ore deposits, depositional environment of the sedimentary formations, and volcanism associated with the opening of the Gulf of California. Studies on the depositional setting, features, and patterns of the thick evaporite sequences in the SRB have been neglected even though one of the largest gypsum mines in the world is located in these deposits. Previous reports on the thick gypsum deposits suggested that the deposits were precipitated from hydrothermal submarine springs or from evaporation from bodies of water partly enclosed and cut off from the sea (Wilson and Rocha, 1955; Ochoa-Landin et al., 2000). Contemporary studies on the geochemistry of the gypsum supports an interpretation of marine deposition based on the isotopic values of δ34S and δ18O congruent with the precipitation of Miocene water (Conly et al., 2006). Nonetheless, our sedimentologic and stratigraphic descriptions suggest a more dynamic terrestrial to nearshore setting with graded fluvial beds, debris flow, and a clastic dike within a clastic unit of the gypsum along the Arroyo Boleo. This is compatible with the description of the San Marco Formation reported by Anderson (1940) composed of clastic sediments with no marine fossils, carbonized wood and leaf fragments as well as gypsum along the southeastern shore of the San Marcos Island asserting there is sufficient lithologic resemblance and proximity to indicate that they are the same formation. Furthermore, a multichannel seismic transect study of the Guaymas Basin by Miller and Lizarralde (2013) revealed an approximately 2-km-thick, 50 × 100 km evaporite body under the shelf on the eastern margin of the Guaymas Basin and suggest that this thick evaporitic unit correlates with the gypsum beds of the SRB on the Baja California peninsula. Additional research on the source of water and depositional evolution based on sedimentological characteristics and geochemistry of the gypsum unit is ongoing. Wilson & Rocha, USGS PP273; Ochoa-Landin et al., RMCG 17(2); Conly et al., Miner Deposita (41); Miller & Lizarralde, Geology, 41(2).
Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia
Ulmishek, Gregory F.
2001-01-01
The North Caspian basin is a petroleum-rich but lightly explored basin located in Kazakhstan and Russia. It occupies the shallow northern portion of the Caspian Sea and a large plain to the north of the sea between the Volga and Ural Rivers and farther east to the Mugodzhary Highland, which is the southern continuation of the Ural foldbelt. The basin is bounded by the Paleozoic carbonate platform of the Volga-Ural province to the north and west and by the Ural, South Emba, and Karpinsky Hercynian foldbelts to the east and south. The basin was originated by pre-Late Devonian rifting and subsequent spreading that opened the oceanic crust, but the precise time of these tectonic events is not known. The sedimentary succession of the basin is more than 20 km thick in the central areas. The drilled Upper Devonian to Tertiary part of this succession includes a prominent thick Kungurian (uppermost Lower Permian) salt formation that separates strata into the subsalt and suprasalt sequences and played an important role in the formation of oil and gas fields. Shallow-shelf carbonate formations that contain various reefs and alternate with clastic wedges compose the subsalt sequence on the 1 basin margins. Basinward, these rocks grade into deep-water anoxic black shales and turbidites. The Kungurian salt formation is strongly deformed into domes and intervening depressions. The most active halokinesis occurred during Late Permian?Triassic time, but growth of salt domes continued later and some of them are exposed on the present-day surface. The suprasalt sequence is mostly composed of clastic rocks that are several kilometers thick in depressions between salt domes. A single total petroleum system is defined in the North Caspian basin. Discovered reserves are about 19.7 billion barrels of oil and natural gas liquids and 157 trillion cubic feet of gas. Much of the reserves are concentrated in the supergiant Tengiz, Karachaganak, and Astrakhan fields. A recent new oil discovery on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec
NASA Astrophysics Data System (ADS)
Lebeau, Lorraine E.; Ielpi, Alessandro
2017-07-01
The interpretation of climate regimes from facies analysis of Precambrian clastic rocks has been challenging thus far, hindering full reconstructions of landscape dynamics in pre-vegetation environments. Yet, comparisons between different and co-active sedimentary realms, including fluvial-channelised, floodplain, and aeolian hold the potential to shed further light on this thematic. This research discusses a fluvial-aeolian record from the 1.2 Ga Meall Dearg Formation, part of the classic Torridonian succession of Scotland. Tentatively considered to date as a braided-fluvial deposit, this unit is here reappraised as the record of fluvial channel-belts, floodbasins, and aeolian ergs. Fluvial deposits with abundant transitional- to upper-flow regime structures (mostly cross-beds with tangential sets and plane/antidunal beds) and simple, low-relief sediment bars indicate a low-sinuosity, ephemeral style. Floodbasin deposits consist of plane and cross-beds ubiquitously bounded by symmetrical ripples, and rare sediment bars related to the progradation of splay complexes in temporary flooded depressions. Aeolian deposits occur nearby basement topography, and are dominated by large-scale, pin-stripe laminated cross-beds, indicative of intermountain ergs. Neither ephemeral-fluvial nor intermountain aeolian systems can be considered as reliable indicators of local climate, since their sedimentary style is respectively controlled by catchment size and shape, and basin topography relative to groundwater tables. Contrarily, the occurrence of purely clastic - rather than carbonate or evaporitic - floodplain strata can be more confidently related to humid regimes. In brief, this study provides new insight into an overlooked portion of the Torridonian succession of Scotland, and discusses climate inferences for Precambrian clastic terrestrial rocks.
NASA Astrophysics Data System (ADS)
Wakabayashi, John
2017-12-01
The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of the clastic OPS component. Such tectonic mélanges may include blocks and matrix derived from the olistostromes. Franciscan subduction and OPS accretion initiated in island arc crust at about 165-170 Ma, after which MORB and OIB were subducted and accreted following a long (tens of mega-ampere) gap with little or no accretion. Following subduction initiation, a ridge crest approached the trench but probably went dormant prior to its subduction (120-125 Ma), after which the subducted oceanic crust became progressively older until about 95 Ma. From 95 Ma, the age of subducted oceanic crust decreased progressively until arrival of the Pacific-Farallon spreading center led to termination of subduction and conversion to a transform plate boundary.
NASA Astrophysics Data System (ADS)
Peng, Peng; Feng, Lianjun; Sun, Fengbo; Yang, Shuyan; Su, Xiangdong; Zhang, Zhiyue; Wang, Chong
2017-05-01
There are several sedimentary units in North China that are proposed to be associated with the Paleoproterozoic Great Oxidation Event (GOE) and/or subsequent events; however, few of them have been precisely dated. In this study, deposition age of the greenschist facies Gaofan and Hutuo Groups is determined. Zircon grains liberated from a tuff layer (metamorphosed to sericite-quartz schist) in the upper part of the Mohe Formation (the second of the three formations of the Gaofan Group) yield a weighted average 207Pb/206Pb age of 2186 ± 8 Ma (n = 7, MSWD = 1.3), representing time of deposition. This age and the detrital zircon U-Pb ages of the basal feldspar quartzite (meta-siltstone), as well as the initial deposition age of the unconformably overlying Hutuo Group, confine the deposition age of the Gaofan Group to 2350-2150 Ma. This result negates the Gaofan Group as one subgroup of the 2560-2510 Ma Wutai greenstone belt. Zircons from the Banlaoyao mafic sill (meta-diabase) that intruded the Dongye Subgroup of the Hutuo Group yield an upper intercept U-Pb age of 2057 ± 25 Ma (n = 14, MSWD = 1.3), representing time of crystallization. Considering the age of the basalt in the first formation of the Doucun Subgroup and the tuff in the first formation of the Dongye Subgroup, the deposition age of the Doucun and Dongye Subgroups of the Hutuo Group is confined to 2150-2090 Ma and 2090-2060 Ma, respectively. These age brackets, as well as the available carbon and nitrogen isotope data indicate that the Zhangxianbu Formation of the Gaofan Group possibly recorded the GOE; whereas the Mohe-Yaokouqian Formations of the Gaofan Group and the Doucun-Dongye Subgroups of the Hutuo Group recorded the subsequent Lomagundi-Jatuli Event (LJE). However, the Lomagundi-Jatuli carbon excursions are hardly distinguishable from the Gaofan Group and the Doucun Subgroup (Hutuo Group) as both units consist of little inorganic carbon but terrestrial clastic turbidites.
Thickness of the Mississippi River Valley confining unit, eastern Arkansas
Gonthier, Gerard; Mahon, Gary L.
1993-01-01
Concern arose in the late 1980s over the vulnerability of the Mississippi Valley alluvial aquifer to contamination from potential surface sources related to pesticide or fertilizer use, industrial activity, landfills, or livestock operations. In 1990 a study was begun to locate areas in Arkansas where the groundwater flow system is susceptible to contamination by surface contaminants. As a part of that effort, the thickness of the clay confining unit overlying the alluvial aquifer in eastern Arkansas was mapped. The study area included all or parts of 27 counties in eastern Arkansas that are underlain by the alluvial aquifer and its overlying confining unit. A database of well attributes was compiled based on data from driller's logs and from published data and stored in computer files. A confining-unit thickness map was created from the driller's-log database using geographic information systems technology. A computer program was then used to contour the data. Where the confining unit is present, it ranges in thickness from 0 feet in many locations in the study area to 140 feet in northeastern Greene County and can vary substantially over short distances. Although general trends in the thickness of the confining unit are apparent, the thickness has great spatial variability. An apparent relation exists between thickness of the confining unit and spatial variability in thickness. In areas where the thickness of the confining unit is 40 feet or less, such as in Clay, eastern Craighead, northwestern Mississippi, and Woodruff Counties, thickness of the unit tends robe more uniform than in areas where the thickness of the unit generally exceeds 40 feet, such as in Arkansas, Lonoke, and Prairie Counties. At some sites the confining unit is very thick compared to its thickness in the immediate surrounding area. Locations of abandoned Mississippi River meander channels generally coincide with location of locally thick confining unit. Deposition of the confining unit onto the coarser alluvial aquifer deposits has reduced the relief of the land surface. Hence, the altitude of the top of the alluvial aquifer varies more than the altitude of the land surface and is indicative of a depositional setting.
NASA Technical Reports Server (NTRS)
Dressler, Burkhard O.; Sharpton, Virgil L.; Schwandt, Craig S.; Ames, Doreen
2004-01-01
The impact breccias encountered in drill hole Yaxcopoil-1 (Yax-1) in the Chicxulub impact structure have been subdivided into six units. The two uppermost units are redeposited suevite and suevite, and together are only 28 m thick. The two units below are interpreted as a ground surge deposit similar to a pyroclastic flow in a volcanic regime with a fine-grained top (unit 3; 23 m thick; nuee ardente) and a coarse breccia (unit 4; approx.15 m thick) below. As such, they consist of a melange of clastic matrix breccia and melt breccia. The pyroclastic ground surge deposit and the two units 5 and 6 below are related to the ejecta curtain. Unit 5 (approx.24 m thick) is a silicate impact melt breccia, whereas unit 6 (10 m thick) is largely a carbonate melt breccia with some clastic-matrix components. Unit 5 and 6 reflect an overturning of the target stratigraphy. The suevites of units 1 and 2 were deposited after emplacement of the ejecta curtain debris. Reaction of the super-heated breccias with seawater led to explosive activity similar to phreomagmatic steam explosion in volcanic regimes. This activity caused further brecciation of melt and melt fragments. The fallback suevite deposit of units 1 and 2 is much thinner than suevite deposits at larger distances from the center of the impact structure than the 60 km of the Yax-1 drill site. This is evidence that the fallback suevite deposit (units 1 and 2) originally was much thicker. Unit 1 exhibits sedimentological features suggestive of suevite redeposition. Erosion possibly has occurred right after the IUT impact due to seawater backsurge, but erosion processes spanning thousands of years may also have been active. Therefore, the top of the 100 m thick impactite sequence at Yaxcopoil, in our opinion, is not the K/T boundary.
NASA Astrophysics Data System (ADS)
Hangx, Suzanne; Brantut, Nicolas
2016-04-01
Mechanisms such as grain rearrangement, coupled with elastic deformation, grain breakage, grain rearrangement, grain rotation, and intergranular sliding, play a key role in determining porosity and permeability reduction during burial of clastic sediments. Similarly, in poorly consolidated, highly porous sands and sandstones, grain rotation, intergranular sliding, grain failure, and pore collapse often lead to significant reduction in porosity through the development of compaction bands, with the reduced porosity and permeability of such bands producing natural barriers to flow within reservoir rocks. Such time-independent compaction processes operating in highly porous water- and hydrocarbon-bearing clastic reservoirs can exert important controls on production-related reservoir deformation, subsidence, and induced seismicity. We performed triaxial compression experiments on sand aggregates consisting of well-rounded Ottawa sand (d = 300-400 μm; φ = 36.1-36.4%) at room temperature, to systematically investigate the effect of confining pressure (Pceff = 5-100 MPa), strain rate (10-6-10-4 s-1) and chemical environment (decane vs. water; Pf = 5 MPa) on compaction. For a limited number of experiments grain size distribution (d = 180-500 μm) and grain shape (subangular Beaujean sand; d = 180-300 μm) were varied to study their effect. Acoustic emission statistics and location, combined with microstructural and grain size analysis, were used to verify the operating microphysical compaction mechanisms. All tests showed significant pre-compaction during the initial hydrostatic (set-up) phase, with quasi-elastic loading behaviour accompanied by permanent deformation during the differential loading stage. This permanent volumetric strain involved elastic grain contact distortion, particle rearrangement, and grain failure. From the acoustic data and grain size analysis, it was evident that at low confining pressure grain rearrangement controlled compaction, with grain failure being present but occurring to a relatively limited extent. Acoustic emission localization showed that failure was focussed along a broad shear plane. At higher confining pressure pervasive grain failure clearly accommodated compaction, though no strain localization was observed and failure appeared to be through cataclastic flow. Chemical environment, i.e. chemically inert decane vs. water as a pore fluid, had no significant effect on compaction in the strain rate range tested. Grain size distribution or grain shape also appeared to not affect the observed mechanical behaviour. Our results can be used to better understand the compaction behaviour of poorly consolidated sandstones. Future research will focus on understanding the effect of cementation on strain localization in deforming artificial Ottawa sandstone.
Age and correlation of tertiary sediments in the western South Carolina Coastal Plain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, R.A.; Harris, W.B.; Zullo, V.A.
1987-01-01
Integration of coastal onlap stratigraphy, calcareous nannofossil, dinoflagellate, and megafossil biostratigraphy provide new data for interpretation of age and interregional correlation of Paleocene to Oligocene deposits of the western South Carolina Coastal Plain. Clastic and calcareous sediments examined in cores and outcrops in the vicinity of the Savannah River Plant record at least seven coastal onlap cycles. Basal Tertiary sediments of the Ellenton Formation represent cycles TA1.1 - 1.3 and contain dinoflagellates of Midwayan to Sabinian age. The overlying Williamsburg Formation probably represents deposits of cycle TA2.1. The superjacent siliciclastics of the Congaree Formation contain few fossils, but may preservemore » transgressive and highstand deposits of cycles TA2.4 - 3.3. The overlying unit is commonly calcareous, contains nannofossils indicative of zones NP16-17 (Upper Claibornian), and marks a significant change in depositional style subsequent to the 49.5 Ma eustatic fall. ''Marls'' of the overlying Griffins Landing Member of the Dry Branch Formation contain micro- and megafossils of Late Eocene (Jacksonian) age and represent transgressive deposits of cycle TA4.1. The discontinuous lateral distribution of these calcareous units and overlying clastics of the Dry Branch and Tobacco Road Formations results largely from erosion and deep incision during the mid-Oligocene eustatic fall (30 Ma). The ''Upland'' unit is interpreted as being deposited on this erosional surface.« less
Bell, C.F.
1996-01-01
In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of the Explosive Experimental Area, horizontal hydraulic conductivities of the Nanjemoy-Marlboro confining unit and the Columbia aquifer are similar (from 10-4 to 10-2 foot per day), and these units effectively combine to form a thick (greater than 50 feet) aquifer. The background water quality of the shallow aquifer system is characteristic of ground waters in the Virginia Coastal Plain Physiographic Province. Water in the Columbia aquifer is a mixed ionic type, has a median pH of 5.9, and a median total dissolved solids of 106 milligrams per liter. Water in the upper confined aquifer and Nanjemoy-Marlboro confining unit is a sodium- calcium-bicarbonate type, and generally has higher pH, dissolved solids, and alkalinity than water in the Columbia aquifer. Water in the upper confined aquifer and some parts of the Columbia aquifer is anoxic, and it has high concentrations of dissolved iron, manganese, and sulfide.
Falls, W.F.; Baum, J.S.; Prowell, D.C.
1997-01-01
Six geologic units are recognized in the Cretaceous and the Paleocene sediments of eastern Burke and Screven Counties in Georgia on the basis of lithologic, geophysical, and paleontologic data collected from three continuously cored testholes in Georgia and one testhole in South Carolina. The six geologic units are separated by regional unconformities and are designated from oldest to youngest as the Cape Fear Formation, the Middendorf Formation, the Black Creek Group (undivided), and the Steel Creek Formation in the Upper Cretaceous section, and the Ellenton and the Snapp Formations in the Paleocene section. The geologic units provide a spatial and temporal framework for the identification and correlation of a basal confining unit beneath the Midville aquifer system and five aquifers and five confining units in the Dublin and the Midville aquifer systems. The Dublin aquifer system is divided hydrostratigraphically into the Millers Pond, the upper Dublin, and the lower Dublin aquifers. The Midville aquifer system is divided hydrostratigraphically into the upper and the lower Midville aquifers. The fine-grained sediments of the Millers Pond, the lower Dublin, and the lower Midville confining units are nonmarine deposits and are present in the upper part of the Snapp Formation, the Black Creek Group (undivided), and the Middendorf Formation, respectively. Hydrologic data for specific sets of monitoring wells at the Savannah River Site in South Carolina and the Millers Pond site in Georgia confirm that these three units are leaky confining units and locally impede vertical ground-water flow between adjacent aquifers. The fine-grained sediments of the upper Dublin and the upper Midville confining units are marine-deltaic deposits of the Ellenton Formation and the Black Creek Group (undivided), respectively. Hydrologic data confirm that the upper Dublin confining unit regionally impedes vertical ground-water flow on both sides of the Savannah River. The upper Midville confining unit impedes vertical ground-water flow in the middle and downdip parts of the study area and is a leaky confining unit in the updip part of the study area. Recognition of the upper Dublin confining unit as a regional confining unit between the Millers Pond and the upper Dublin aquifers also confirms that the Millers Pond aquifer is a separate hydrologic unit from the rest of the Dublin aquifer system. This multi-aquifer framework increases the vertical hydrostratigraphic resolution of hydraulic properties and gradients in the Dublin and Midville aquifer systems for the investigation of ground-water flow beneath the Savannah River in the vicinity of the U.S. Department of Energy Savannah River Site.
NASA Astrophysics Data System (ADS)
Powerman, V.; Shatsillo, A.; Chumakov, N.; Kapitonov, I.; Hourigan, J. K.
2015-12-01
The goal of this study is to pinpoint the beginning of interaction of two gigantic crustal structures: the Siberian Craton and the Central Asian Orogenic Belt (CAOB). We hypothesize that the beginning of convergence should be recorded in the Neoproterozoic passive margin strata of Siberian Craton by the first appearance of extraregional Neoproterozoic zircons. In order to test this hypothesis, we have acquired U-Pb zircon age distributions from twelve Neoproterozoic clastic rocks from the Baikal-Patom margin of Siberia and one sample from the volcaniclastic Padrinsky Group that was deposited atop accreted CAOB crust. Stratigraphically lower strata from the Siberian margin yield Archean - Paleoproterozoic detrital zircon ages, which are similar to, and probably derived from the Siberian Precambrian craton. A few extra-regional Mesoproterozoic grains are also present. The provenance shift happens in the upper portion of the section and is marked by a strong influx of extra-regional Neoproterozoic sediments. The youngest grains of 610 Ma constrain the sedimentation age and confine the timing of interaction between CAOB and Siberia in this region. Neoproterozoic zircons also dominate the overlying sedimentary unit, suggesting the continuance of the convergence. The coeval volcanoclastic unit on the CAOB side has a similar U-Pb detrital age distribution, strengthening the provenance link. Analysis of the local tectonics suggests that the beginning of accretion might have started even before the first appearance of Neoproterozoic zircon: during the development of a regional unconformity, capped by 635 Ma (?) "Snowball Earth" tillites of Dzhemkukan Fm. The absence of Neoproterozoic zircons in Dzhemkukan Fm. is probably explained by a thin-skinned tectonics that did not result in massive orogenesis . Our data are in good correlation with other Neoproterozoic sedimentary basins of southern Siberian Craton, including Cisbaikalia and Bodaibo Synclinorium.
The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis
NASA Astrophysics Data System (ADS)
Kirkham, Christopher; Cartwright, Joe; Hermanrud, Christian; Jebsen, Christopher
2018-01-01
This paper documents the discovery of five multi-km scale lensoid bodies that directly overlie the upper surface of the thick (>1 km) Messinian Evaporite sequence. They were identified through the analysis of 3D seismic data from the western Nile Cone. The convergence of the upper and lower bounding reflections of these lensoid bodies, their external and internal reflection configuration, the positive 'depositional' relief at their upper surface, and the stratal relationship with underlying and overlying deposits supports the interpretation that these are giant clastic extrusions. The interpretations combined with the stratal position of these clastic extrusions demonstrate a prior unsuspected link between periods of major environment change and basin hydrodynamics on a plate scale. All five lensoid bodies were extruded onto a single, seismically resolvable marker horizon correlatable with the end of the Messinian Salinity Crisis (Horizon M). It is argued that the source of these clastic extrusions is pre-Messinian in origin, which implies massive sediment remobilisation at depth in the pre-evaporitic succession and intrusion through the thick evaporite layer. We propose that the scale and timing of this dramatic event was primed and triggered by near-lithostatic overpressure in the pre-evaporitic sediments generated through (1) their rapid burial and loading during the Messinian Salinity Crisis and (2) catastrophic re-flooding during its immediate aftermath. The largest of these clastic extrusions has a volume of over c. 116 km3, making it amongst the largest extruded sedimentary bodies described on Earth. The findings extend the understanding of the upper scale of other analogous clastic extrusions such as mud volcanoes and sediment-hosted hydrothermal systems. Following the 2006 eruption of the Lusi sediment-hosted hydrothermal system in Indonesia, an understanding of the upper scale limit of clastic extrusions has even greater societal relevance, in order to increase awareness of the risk posed by the potential size and longevity of future giant clastic extrusions.
Deep Resistivity Structure of Mid Valley, Nevada Test Site, Nevada
Wallin, Erin L.; Rodriguez, Brian D.; Williams, Jackie M.
2009-01-01
The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the Nevada Test Site including Pahute Mesa, Rainier Mesa/Shoshone Mountain (RM-SM), Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain (RM-SM) Corrective Action Unit (CAU) (National Security Technologies, 2007). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, and 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006) located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat, further refining what is known about the pre-Tertiary confining units. In particular, a major goal was to define the extent of the upper clastic confining unit (UCCU). The UCCU is composed of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale (National Security Technologies, 2007). The UCCU underlies the Yucca Flat area and extends southwestward toward Shoshone Mountain, westward toward Buckboard Mesa, and northwestward toward Rainier Mesa. Late in 2005 we collected data at an additional 14 MT stations in Mid Valley, CP Hills, and northern Yucca Flat. That work was done to better determine the extent and thickness of the UCCU near the boundary between the southeastern RM-SM CAU and the southwestern YF CAU, and also in the northern YF CAU. The MT data have been released in a separate U.S. Geological Survey report (Williams and others, 2007). The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2-D) resistivity modeling for each profile and inferences on the three-dimensional (3-D) character of the geology within the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winograd, I.J.; Thordarson, W.
Intensely fractured Precambrian and Paleozoic carbonate and clastic rocks and block-faulted Cenozoic volcanic and sedimentary strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these--the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard--control the regional movement of ground water. The coefficients of fracture transmissiblity of these rocks are, respectively, less than 1,000, 1,000 to 900,000, and less than 200 gallons per day per foot; interstitial permeability is negligible. Solution caverns are locally present in the carbonate aquifer, but regional movement of water is controlled by variations in fracture transmissibility and by structuralmore » juxtaposition of the aquifer and the lower clastic aquitard. Water circulates freely to depths of at least 1,500 feet beneath the top of the aquifer and up to 4,200 feet below land surface. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4,500 square miles (including 10 intermontane valleys) is hydraulically integrated into one ground-water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin--a minimum of about 17,000 acre-feet annually--occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Intrabasin movement of water between Cenozoic aquifers and the lower carbonate aquifer is controlled by the tuff aquitard, the basal Cenozoic hydrogeologic unit. Such movement significantly influences the chemistry of water in the carbonate aquifer. Ground-water velocity through the tuff aquitard in Yucca Flat is less than 1 foot per year. Velocity through the lower carbonate aquifer ranges from an estimated 0.02 to 200 feet per day, depending upon geographic position within the flow system.Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.« less
Page, Lincoln R.; Stocking, Hobart E.; Smith, Harriet B.
1956-01-01
Within the boundaries of the United States abnormal amounts of uranium have been found in rocks of nearly all geologic ages and lithologic types. Distribution of ore is more restricted. On the Colorado Plateau, the Morrison formation of Jurassic age yields 61.4 percent of the ore produced in the United States, and the Chinle conglomerate and Shinarump formation of Triassic age contribute 26.0 and 5.8 percent, respectively. Clastic, carbonaceous, and carbonate sedimentary rocks of Tertiary, Mesozoic, and Paleozoic ages and veins of Tertiary age are the source of the remaining 6.8 percent.
Controls on Middle Pennsylvanian peat-forming floras in the Eastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eble, C.F.
1992-01-01
Middle Pennsylvanian strata in the Central Appalachian Basin contain numerous coal beds that provide an opportunity to study changes in coal-spore floras on an intra- and inter-bed scale. Vertical spore abundance patterns within individual coal beds record the ecological dynamics, both biologic and edaphic, of peat-forming systems in this interval. Coal palynofloras of this interval show a stratigraphic change in composition. Early to Middle Pennsylvanian spore floras are largely dominated by Lycospora. Species of Densosporites, a small lycopsid genus, Granulatisporites, a fern/pteridosperm( )-allied genus, and Laevigatosporites, a calamite-related genus, commonly displace Lycospora vertically within these beds, reflecting patterns of ecologicalmore » succession. Spore floras from stratigraphically younger coal beds in this sequence exhibit similar intra-bed spore variation, but contain increased percentages of tree-fern spores, and tend to be more florally heterogeneous overall. Areas of clastic deposition within the swamps are also marked by changes in spore composition. These changes in coal palynology are paralleled by stratigraphic changes in coal appearance and associated strata composition. The proportion of dull'' coal lithotypes, frequency of clastic partings, and amount of coarse clastics in the enclosing strata all increase toward the top of this sequence. Climate may have been more important in determining the floral composition of Early through mid-Middle Pennsylvanian peat swamps, whereas climate, tectonics, and eustasy interacted to determine sediment volume and type in this interval.« less
Merriam, D.F.
2005-01-01
Plains-type folds are local, subtle anticlines formed in the thin sedimentary package overlying a shallow, crystalline basement on the craton. They are small in areal extent (usually less than 1-3 km 2 [0.4-1.2 mi2]), and their amplitude increases with depth (usually tens of meters), which is mainly the result of differential compaction of sediments (usually clastic units) over tilted, rigid, basement fault blocks. The development of these structural features by continuous but intermittent movement of the basement fault blocks in the late Paleozoic in the United States mid-continent is substantiated by a record of stratigraphic and sedimentological evidence. The recurrent structural movement, which reflects adjustment to external stresses, is expressed by the change in thickness of stratigraphic units over the crest of the fold compared to the flanks. By plotting the change in thickness for different stratigraphic units of anticlines on different fault blocks, it is possible to determine the timing of movement of the blocks that reflect structural adjustment. These readjustments are confirmed by sedimentological evidence, such as convolute, soft-sediment deformation features and small intraformational faults. The stratigraphic interval change in thickness for numerous structures in the Cherokee, Forest City, and Salina basins and on the Nemaha anticline of the mid-continent United States was determined and compared for location and timing of the adjustments. Most of the adjustment occurred during and after time of deposition of the Permian-Pennsylvanian clastic units, which, in turn, reflect tectonic disturbance in adjacent areas, and the largest amount of movement on the plains-type structures occurred on those nearest and semiparallel to major positive features, such as the Nemaha anticline. Depending on the time of origin and development of plains-type folds, they may control the entrapment and occurrence of oil and gas. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.
Hydrogeology of the Canal Creek area, Aberdeen Proving Ground, Maryland
Oliveros, J.P.; Vroblesky, D.A.
1989-01-01
Geologic and borehole geophysical logs made at 77 sites show that the hydrogeologic framework of the study area consists of a sequence of unconsolidated sediments typical of the Coastal Plain of Maryland. Three aquifers and two confining units were delineated within the study area. From the surface down, they are: (1) the surficial aquifer; (2) the upper confining unit; (3) the Canal Creek aquifer; (4) the lower confining unit; and (5) the lower confined aquifer. The aquifer materials range from fine sand to coarse sand and gravel. Clay lenses were commonly found interfingered with the sand, isolating parts of the aquifers. All the units are continuous throughout the study area except for the upper confining unit, which crops out within the study area but is absent in updip outcrops. The unit also is absent within a Pleistocene paleochannel, where it has been eroded. The surficial and Canal Creek aquifers are hydraulically connected where the upper confining unit is absent, and a substantial amount of groundwater may flow between the two aquifers. Currently, no pumping stresses are known to affect the aquifers within the study area. Under current conditions, downward vertical hydraulic gradients prevail at topographic highs, and upward gradients typically prevail near surface-water bodies. Regionally, the direction of groundwater flow in the confined aquifers is to the east and southeast. Significant water level fluctuations correspond with seasonal variations in rainfall, and minor daily fluctuations reflect tidal cycles. (USGS)
Ahlbrandt, Thomas S.
2002-01-01
Since the first discovery of petroleum in Yemen in 1984, several recent advances have been made in the understanding of that countrys geologic history and petroleum systems. The total petroleum resource endowment for the combined petroleum provinces within Yemen, as estimated in the recent U.S. Geological Survey world assessment, ranks 51st in the world, exclusive of the United States, at 9.8 BBOE, which includes cumulative production and remaining reserves, as well as a mean estimate of undiscovered resources. Such undiscovered petroleum resources are about 2.7 billion barrels of oil, 17 trillion cubic feet (2.8 billion barrels of oil equivalent) of natural gas and 1 billion barrels of natural gas liquids. A single total petroleum system, the Jurassic Madbi Amran/Qishn, dominates petroleum generation and production; it was formed in response to a Late Jurassic rifting event related to the separation of the Arabian Peninsula from the Gondwana supercontinent. This rifting resulted in the development of two petroleum-bearing sedimentary basins: (1) the western MaRibAl Jawf / Shabwah basin, and (2) the eastern Masila-Jeza basin. In both basins, petroleum source rocks of the Jurassic (Kimmeridgian) Madbi Formation generated hydrocarbons during Late Cretaceous time that migrated, mostly vertically, into Jurassic and Cretaceous reservoirs. In the western MaRibAl Jawf / Shabwah basin, the petroleum system is largely confined to syn-rift deposits, with reservoirs ranging from deep-water turbidites to continental clastics buried beneath a thick Upper Jurassic (Tithonian) salt. The salt initially deformed in Early Cretaceous time, and continued halokinesis resulted in salt diapirism and associated salt withdrawal during extension. The eastern Masila-Jeza basin contained similar early syn-rift deposits but received less clastic sediment during the Jurassic; however, no salt formed because the basin remained open to ocean circulation in the Late Jurassic. Thus, Madbi Formation-sourced hydrocarbons migrated vertically into Lower Cretaceous estuarine, fluvial, and tidal sandstones of the Qishn Formation and were trapped by overlying impermeable carbonates of the same formation. Both basins were formed by extensional forces during Jurassic rifting; how-ever, another rifting event that formed the Red Sea and Gulf of Aden during Oligocene and Miocene time had a strong effect on the eastern Masila-Jeza basin. Recurrent movement of basement blocks, particularly during the Tertiary, rather than halokinesis, was critical to the formation of traps.
The Virginia Coastal Plain Hydrogeologic Framework
McFarland, Randolph E.; Scott, Bruce T.
2006-01-01
A refined descriptive hydrogeologic framework of the Coastal Plain of eastern Virginia provides a new perspective on the regional ground-water system by incorporating recent understanding gained by discovery of the Chesapeake Bay impact crater and determination of other geological relations. The seaward-thickening wedge of extensive, eastward-dipping strata of largely unconsolidated sediments is classified into a series of 19 hydrogeologic units, based on interpretations of geophysical logs and allied descriptions and analyses from a regional network of 403 boreholes. Potomac aquifer sediments of Early Cretaceous age form the primary ground-water supply resource. The Potomac aquifer is designated as a single aquifer because the fine-grained interbeds, which are spatially highly variable and inherently discontinuous, are not sufficiently dense across a continuous expanse to act as regional barriers to ground-water flow. Part of the Potomac aquifer in the outer part of the Chesapeake Bay impact crater consists of megablock beds, which are relatively undeformed internally but are bounded by widely separated faults. The Potomac aquifer is entirely truncated across the inner part of the crater. The Potomac confining zone approximates a transition from the Potomac aquifer to overlying hydrogeologic units. New or revised designations of sediments of Late Cretaceous age that are present only south of the James River include the upper Cenomanian confining unit, the Virginia Beach aquifer and confining zone, and the Peedee aquifer and confining zone. The Virginia Beach aquifer is a locally important ground-water supply resource. Sediments of late Paleocene to early Eocene age that compose the Aquia aquifer and overlying Nanjemoy-Marlboro confining unit are truncated along the margin of the Chesapeake Bay impact crater. Sediments of late Eocene age compose three newly designated confining units within the crater, which are from bottom to top, the impact-generated Exmore clast and Exmore matrix confining units, and the Chickahominy confining unit. Piney Point aquifer sediments of early Eocene to middle Miocene age overlie most of the Chesapeake Bay impact crater and beyond, but are a locally significant ground-water supply resource only outside of the crater across the middle reaches of the Northern Neck, Middle, and York-James Peninsulas. Sediments of middle Miocene to late Miocene age that compose the Calvert confining unit and overlying Saint Marys confining unit effectively separate the underlying Piney Point aquifer and deeper aquifers from overlying shallow aquifers. Saint Marys aquifer sediments of late Miocene age separate the Calvert and Saint Marys confining units across two limited areas only. Sediments of the Yorktown-Eastover aquifer of late Miocene to late Pliocene age form the second most heavily used ground-water supply resource. The Yorktown confining zone approximates a transition to the overlying late Pliocene to Holocene sediments of the surficial aquifer, which extends across the entire land surface in the Virginia Coastal Plain and is a moderately used supply. The Yorktown-Eastover aquifer and the eastern part of the surficial aquifer are closely associated across complex and extensive hydraulic connections and jointly compose a shallow, generally semiconfined ground-water system that is hydraulically separated from the deeper system. Vertical faults extend from the basement upward through most of the hydrogeologic units but may be more widespread and ubiquitous than recognized herein, because areas of sparse boreholes do not provide adequate spatial control. Hydraulic conductivity probably is decreased locally by disruption of depositional intergranular structure by fault movement in the generally incompetent sediments. Localized fluid flow in open fractures may be unique in the Chickahominy confining unit. Some hydrogeologic units are partly to wholly truncated where displacements are large rela
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
Ulmishek, Gregory F.
2004-01-01
The Amu-Darya basin is a highly productive petroleum province in Turkmenistan and Uzbekistan (former Soviet Union), extending southwestward into Iran and southeastward into Afghanistan. The basin underlies deserts and semideserts north of the high ridges of the Kopet-Dag and Bande-Turkestan Mountains. On the northwest, the basin boundary crosses the crest of the Karakum regional structural high, and on the north the basin is bounded by the shallow basement of the Kyzylkum high. On the east, the Amu-Darya basin is separated by the buried southeast spur of the Gissar Range from the Afghan-Tajik basin, which is deformed into a series of north-south-trending synclinoria and anticlinoria. The separation of the two basins occurred during the Neogene Alpine orogeny; earlier, they were parts of a single sedimentary province. The basement of the Amu-Darya basin is a Hercynian accreted terrane composed of deformed and commonly metamorphosed Paleozoic rocks. These rocks are overlain by rift grabens filled with Upper Permian-Triassic rocks that are strongly compacted and diagenetically altered. This taphrogenic sequence, also considered to be a part of the economic basement, is overlain by thick Lower to Middle Jurassic, largely continental, coal-bearing rocks. The overlying Callovian-Oxfordian rocks are primarily carbonates. A deep-water basin surrounded by shallow shelves with reefs along their margins was formed during this time and reached its maximum topographic expression in the late Oxfordian. In Kimmeridgian-Tithonian time, the basin was filled with thick evaporites of the Gaurdak Formation. The Cretaceous-Paleogene sequence is composed chiefly of marine clastic rocks with carbonate intervals prominent in the Valanginian, Barremian, Maastrichtian, and Paleocene stratigraphic units. In Neogene time, the Alpine orogeny on the basin periphery resulted in deposition of continental clastics, initiation of new and rejuvenation of old faults, and formation of most structural traps. A single total petroleum system is identified in the Amu-Darya basin. The system is primarily gas prone. Discovered gas reserves are listed by Petroconsultants (1996) at about 230 trillion cubic feet, but recent discoveries and recent reserve estimates in older fields should increase this number by 40 to 50 trillion cubic feet. Reserves of liquid hydrocarbons (oil and condensate) are comparatively small, less than 2 billion barrels. Most of the gas reserves are concentrated in two stratigraphic intervals, Upper Jurassic carbonates and Neocomian clastics, each of which contains about one-half of the reserves. Reserves of other stratigraphic units?from Middle Jurassic to Paleogene in age?are relatively small. Source rocks for the gas are the Lower to Middle Jurassic clastics and coal and Oxfordian basinal black shales in the east-central part of the basin. The latter is probably responsible for the oil legs and much of the condensate in gas pools. Throughout most of the basin both source-rock units are presently in the gas-window zone. Traps are structural, paleogeomorphic, and stratigraphic, as well as a combination of these types. The giant Dauletabad field is in a combination trap with an essential hydrodynamic component. Four assessment units were identified in the total petroleum system. One unit in the northeastern, northern, and northwestern marginal areas of the basin and another in the southern marginal area are characterized by wide vertical distribution of hydrocarbon pools in Middle Jurassic to Paleocene rocks and the absence of the salt of the Gaurdak Formation. The other two assessment units are stratigraphically stacked; they occupy the central area of the basin and are separated by the regional undeformed salt seal of the Gaurdak Formation. The largest part of undiscovered hydrocarbon resources of the Amu-Darya basin is expected in older of these assessment units. The mean value of total assessed resources of the Amu-Darya basin is estimated
Petroleum geology and resources of the Baykit High province, East Siberia, Russia
Ulmishek, Gregory F.
2001-01-01
The Baykit High province consists of two principal structural units?the Baykit regional high in the west, which occupies most of the province, and the Katanga structural saddle in the east. The province is on the western margin of the Siberian craton east of theYenisey Ridge foldbelt. The province is an exploration frontier and only a few prospects have been drilled. The oldest sedimentary rocks of the province, Riphean carbonate and clastic strata of Late Proterozoic age (1,650?650 million years old) that were deposited on the passive margin, cover the Archean?Lower Proterozoic basement. Basal Vendian (uppermost Proterozoic, 650?570 million years old) clastic rocks unconformably overlie various units of the Riphean and locally lie directly on the basement. Younger Vendian and lowermost Cambrian rocks are primarily dolomites. The Vendian/Cambrian boundary is con-formable, and its exact stratigraphic position has not been identified with certainty. The Lower Cambrian section is thick, and it consists of alternating beds of dolomite and evaporites (mostly salt). Middle and Upper Cambrian strata are composed of shale and dolomite. Ordovician-Silurian and upper Paleozoic rocks are thin, and they are present only in the northern areas of the province. Structural pattern of Riphean rocks differs substantially from that of Vendian-Cambrian rocks. A single total petroleum system (TPS) was identified in the Baykit High province. Discovered oil of the system is chiefly concentrated in Riphean carbonate reservoirs of the Yurubchen-Tokhom zone that is currently being explored and that has the Abstract 1 potential to become a giant field (or group of fields). The TPS also contains about 5 trillion cubic feet of discovered recover-able gas in clastic reservoir rocks at the base of the Vendian section. Petroleum source rocks are absent in the stratigraphic succession over most of the TPS area. Riphean organic-rich shales and carbonates that crop out in the Yenisey Ridge foldbelt west of the Baykit high are probable source rocks. Their areal distribution extends from the foldbelt into the foredeep along the province?s western margin. Potential source rocks also are present in platform depressions in eastern areas of the province. Hydrocarbon generation and migration west of the province started as early as Riphean time, before the beginning of the deformation in the Yenisey Ridge foldbelt that occurred about 820?850 million years ago. However, the presently known oil and gas accumulations were formed after deposition of the Lower Cambrian salt seal. Available data allow identification of only one assessment unit, and it covers the entire TPS area. Undiscovered oil and gas resources are moderate, primarily due to the poor quality of reservoir rocks. However, the reserve growth in the Yurubchen-Tokhom zone may be large and may exceed the volume of undiscovered resources in the rest of the province. Most oil and gas resourcesareexpectedtobeinstructuralandstratigraphictrapsin Riphean carbonate reservoirs. Vendian clastic reservoirs are probably gas-prone.
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.
2012-12-01
The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87°W, 4910 m asl), a lake that has not received glacial meltwater since late glacial time. We used the clastic sediment record to determine the input from non-glacial sources, representing ambient climate. This information tests our hypothesis that increased clastic sediment is from a glacial source in the Challpacocha record. The Yanacocha cores are composed primarily of organic-rich sediment with little clastic sediment. Eight radiocarbon ages in stratigraphic order indicate a continuous sedimentation in the lake since 11,240±90 cal. yr BP. Till at the base of the core indicates likely ice recession from the basin at this time. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, and gray scale suggest only minor changes in sedimentation relative to those in the Challpacocha core. Our new continuous lake sediment record provides complementary data to the discontinuous records of QIC Holocene extents as marked by moraines and exposed sections (e.g. Buffen et al. 2009; Thompson et al. 2006). Our record has some similarities with the nearby lacustrine record from Laguna Pacococha, which also receives meltwater from QIC (Rodbell and Seltzer, 2000; Abbott et al., 2003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handford, C.R.
1981-09-01
The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenousmore » clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.« less
Characteristics of a young lava-hyaloclastite sheet, Snaebylisheidi, Iceland
NASA Astrophysics Data System (ADS)
White, J. D.; Gorny, C. F.; Gudmundsson, M. T.
2009-12-01
Extensive sheets of hyaloclastite volcaniclastic debris, coupled with and intruded by largely underlying layers of coherent basalt, are common in the Sida area of southeastern Iceland. They were initially interpreted as submarine deposits, but have recently been re-interpreted as nonmarine deposits formed in the presence of glaciers. Detailed interpretation of the units has been challenging, because their source areas are not preserved. A younger deposit of the same type forms an elongate flat-topped ridge in the Snaebylisheidi area. Its volume of ca. 35 cubic km is similar to that of the larger Sida units, its source area is preserved, and parts of the deposit remain unlithified. Our initial investigation reveals that the source area is dominated by clastic deposits. There is no evidence for a source edifice of pillow or sheet lavas, but there are extensive low-level intrusions near the base, and a plexus of smaller high-level intrusions showing evidence of high viscosities during emplacement. Isolated pillows and other fluidal juvenile clasts near the source lie within matrices of highly vesicular ash and lapilli, or of mixed vesicular and dense glassy fragments. Downstream in the unit, deposits are dominated by dense clasts, and these can in places be demonstrated to have been derived locally from the underlying to intruding basalt sheet. Larger dense clasts are commonly highly irregular, vuggy, and composite; in places many are rolled into subspherical forms enclosing matrix material comprising dense angular glass fragments. The clastic part of the unit has an upper subunit dominated by well-developed bedding in complex geometries with multiple internal truncation surfaces. Lower subunits include thick structureless to alignment-bedded layers, along with intrusion-dominated zones. Soft-sediment deformation is ubiquitous along the edges of the deposit, with many layers broken and tilted to subvertical inclinations. Taken together, these features indicate that little or no lava accumulated at the source area during eruption, but that much basalt was intruded into unconsolidated volcaniclastic deposits. Coherent basalt sheets extended downslope from the source, perhaps largely as intrusions into earlier-deposited tephra, and produced much of the downstream clastic material by local fragmentation of the advancing sheet. Thick beds reflecting high accumulation rates are intercalated with groups of thinner beds formed by multiple depositional pulses. Deformation along deposit tops and edges records pervasive slumping of the unconsolidated deposits. The characteristics overall are suggestive of an initially explosive subglacial origin, with much of the unit emplaced subglacially. More work is underway to better understand the source eruption, and the way in which the basalt sheet was emplaced and associated volcaniclastic deposits produced and deposited.
Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.
2016-09-29
A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.
Yager, Richard M.; Southworth, Scott C.; Voss, Clifford I.
2008-01-01
Ground-water flow was simulated using variable-direction anisotropy in hydraulic conductivity to represent the folded, fractured sedimentary rocks that underlie the Shenandoah Valley in Virginia and West Virginia. The anisotropy is a consequence of the orientations of fractures that provide preferential flow paths through the rock, such that the direction of maximum hydraulic conductivity is oriented within bedding planes, which generally strike N30 deg E; the direction of minimum hydraulic conductivity is perpendicular to the bedding. The finite-element model SUTRA was used to specify variable directions of the hydraulic-conductivity tensor in order to represent changes in the strike and dip of the bedding throughout the valley. The folded rocks in the valley are collectively referred to as the Massanutten synclinorium, which contains about a 5-km thick section of clastic and carbonate rocks. For the model, the bedrock was divided into four units: a 300-m thick top unit with 10 equally spaced layers through which most ground water is assumed to flow, and three lower units each containing 5 layers of increasing thickness that correspond to the three major rock units in the valley: clastic, carbonate and metamorphic rocks. A separate zone in the carbonate rocks that is overlain by colluvial gravel - called the western-toe carbonate unit - was also distinguished. Hydraulic-conductivity values were estimated through model calibration for each of the four rock units, using data from 354 wells and 23 streamflow-gaging stations. Conductivity tensors for metamorphic and western-toe carbonate rocks were assumed to be isotropic, while conductivity tensors for carbonate and clastic rocks were assumed to be anisotropic. The directions of the conductivity tensor for carbonate and clastic rocks were interpolated for each mesh element from a stack of 'form surfaces' that provided a three-dimensional representation of bedrock structure. Model simulations were run with (1) variable strike and dip, in which conductivity tensors were aligned with the strike and dip of the bedding, and (2) uniform strike in which conductivity tensors were assumed to be horizontally isotropic with the maximum conductivity direction parallel to the N30 deg E axis of the valley and the minimum conductivity direction perpendicular to the horizontal plane. Simulated flow penetrated deeper into the aquifer system with the uniform-strike tensor than with the variable-strike-and-dip tensor. Sensitivity analyses suggest that additional information on recharge rates would increase confidence in the estimated parameter values. Two applications of the model were conducted - the first, to determine depth of recent ground-water flow by simulating the distribution of ground-water ages, showed that most shallow ground water is less than 10 years old. Ground-water age distributions computed by variable-strike-and-dip and uniform-strike models were similar, but differed beneath Massanutten Mountain in the center of the valley. The variable-strike-and-dip model simulated flow from west to east parallel to the bedding of the carbonate rocks beneath Massanutten Mountain, while the uniform-strike model, in which flow was largely controlled by topography, simulated this same area as an east-west ground-water divide. The second application, which delineated capture zones for selected well fields in the valley, showed that capture zones delineated with both models were similar in plan view, but differed in vertical extent. Capture zones simulated by the variable-strike-and-dip model extended downdip with the bedding of carbonate rock and were relatively shallow, while those simulated by the uniform-strike model extended to the bottom of the flow system, which is unrealistic. These results suggest that simulations of ground-water flow through folded fractured rock can be constructed using SUTRA to represent variable orientations of the hydraulic-conductivity tensor and produce a
Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia
Ulmishek, Gregory F.
2001-01-01
The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.
NASA Astrophysics Data System (ADS)
Reinhardt, Lutz; von Gosen, Werner; Piepjohn, Karsten; Lückge, Andreas; Schmitz, Mark
2017-04-01
The Stenkul Fiord section on southern Ellesmere Island reveals largely fluvial clastic sediments with intercalated coal seams of the Margaret Formation of Late Paleocene/Early Eocene age according to palynology and vertebrate remains. Field studies in recent years and interpretative mapping of a high-resolution satellite image of the area southeast of Stenkul Fiord revealed that the clastic deposits consist of at least four sedimentary units (Units 1 to 4) separated by unconformities. Several centimeter-thin volcanic ash layers, recognized within coal layers and preserved as crandallite group minerals (Ca-bearing goyazite), suggest an intense volcanic ash fall activity. Based on new U-Pb zircon ages (ID-TIMS) of three ash layers, the volcanic ash fall took place at 53.7 Ma in the Early Eocene, i.e. within the Eocene Thermal Maximum 2 (ETM-2) hyperthermal. The ETM-2 is bracketed further by discrete negative excursions of carbon isotope records of both bulk coal and amber droplets collected from individual coal layers of the section. The identification of the ETM-2 hyperthermal provides a stratigraphic tie-point in the terrestrial Margaret Formation sediments enabling assignment of the lowermost sedimentary Unit 1 to the Late Paleocene-earliest Eocene, Unit 2 to the Early Eocene, whereas Unit 3 and 4 might be Early to Middle Eocene in age. Thus the timing of syn-sedimentary movements of the Eurekan deformation causal for the observed unconformities in the section can be studied and the positions of further hyperthermals like the PETM or the ETM-3 in the section can be identified in the future. The integration of structural studies, new U-Pb zircon ages, and different carbon isotope records provides a new stratigraphic framework for further examination of the unique Early Eocene flora and fauna preserved in this high-latitude outcrop.
NASA Astrophysics Data System (ADS)
Zwing, A.; Matzka, J.; Bachtadse, V.; Soffel, H. C.
Previous studies on remagnetised carbonate rocks from the North American and Eu- ropean Variscides reported characteristic rock magnetic properties which are thought to be diagnostic for a chemical remagnetisation event. Their hysteresis properties with high ratios of Mrs/Ms and Hcr/Hc indicate the presence of a mixture of single-domain and superparamagnetic magnetite (Jackson, et al. 1990). In order to test if this fin- gerprint can be identified in remagnetised carbonate and clastic rocks from the NE Rhenish Massif, Germany, a series of rock magnetic experiments has been carried out. The hysteresis properties of the remagnetised clastic rocks indicate the domi- nance of large MD particles, as can be expected for detrital sediments. The carbon- ates yield significantly higher ratios of Mrs/Ms and Hcr/Hc than the clastic rocks, but only partly correspond to the characteristic properties of remagnetised carbon- ates described above. The latter might be attributed to detrital input into the carbonate platforms. Additional low-temperature remanence measurements show a wide vari- ety of phenomena, including Verwey transitions and indications for the presence of superparamagnetic grains. However, the low-temperature experiments do not allow a straightforward discrimination between the clastic and carbonate rocks and suggest more complex magnetomineralogies than expected from the hysteresis measurements alone.
Hetcher-Aguila, Kari K.; Miller, Todd S.
2005-01-01
The confined aquifer is widely used by people living and working in the Chenango River valley. The confined aquifer consists of ice-contact sand and gravel, typically overlies bedrock, and underlies a confining unit consisting of lacustrine fine sand, silt, and clay. The confining unit is typically more than 100 feet thick in the central parts of the valley between Greene Landing Field and along the northern edge of the Chenango Valley State Park. The thickness of the confined aquifer is more than 40 feet near the Greene Landing Field.
Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption.
NASA Astrophysics Data System (ADS)
Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano
2017-04-01
Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.
Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dien, P.T.
1994-07-01
The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less
NASA Astrophysics Data System (ADS)
Brookfield, Michael E.; Hashmat, Ajruddin
2001-10-01
The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.
Aucott, Walter R.
1996-01-01
Transmissivity values used in the flow simulation range from less than 1,000 feet squared per day near the updip limit of most aquifers to about 30,000 feet squared per day in the Middendorf aquifer in the Savannah River Plant area. Vertical hydraulic conductivity values used in simulation of confining units range from about 6x10-7 feet per day for the confining unit between the Middendorf and Black Creek aquifers in coastal areas to 3x10-2 feet per day for most of the confining units near their updip limits. Storage coefficients used in transient simulations were 0.15 where unconfined conditions exist and 0.0005 where confined conditions exist.
Pollastro, R.M.
2007-01-01
Undiscovered natural gas having potential for additions to reserves in the Mississippian Barnett Shale of the Fort Worth Basin, north-central Texas, was assessed using the total petroleum system assessment unit concept and a cell-based methodology for continuous-type (Unconventional) resources. The Barnett-Paleozoic total petroleum system is defined in the Bend arch-Fort Worth Basin as encompassing the area in which the organic-rich Barnett is the primary source rock for oil and gas produced from Paleozoic carbonate and clastic reservoirs. Exploration, technology, and drilling in the Barnett Shale play have rapidly evolved in recent years, with about 3500 vertical and 1000 horizontal wells completed in the Barnett through 2005 and more than 85% of the them completed since 1999. Using framework geology and historical production data, assessment of the Barnett Shale was performed by the U.S. Geological Survey using vertical wells at the peak of vertical well completions and before a transition to completions with horizontal wells. The assessment was performed after (1) mapping critical geological and geochemical parameters to define assessment unit areas with future potential, (2) defining distributions of drainage area (cell size) and estimating ultimate recovery per cell, and (3) estimating future success rates. Two assessment units are defined and assessed for the Barnett Shale continuous gas accumulation, resulting in a total mean undiscovered volume having potential for additions to reserves of 26.2 TCFG. The greater Newark East fracture-barrier continuous Barnett Shale gas assessment unit represents a core-producing area where thick, organic-rich, siliceous Barnett Shale is within the thermal window for gas generation (Ro ??? 1.1%) and is overlain and underlain by impermeable limestone barriers (Pennsylvanian Marble Falls Limestone and Ordovician Viola Limestone, respectively) that serve to confine induced fractures during well completion to maximize gas recovery. The extended continuous Barnett Shale gas assessment unit, which had been less explored, defines a geographic area where Barnett Shale is (1) within the thermal window for gas generation, (2) greater than 100 ft (30 m) thick, and (3) where at least one impermeable limestone barrier is absent. Mean undiscovered gas having potential for additions to reserves in the greater Newark East assessment unit is estimated at 14.6 tcf, and in the less tested extended assessment unit, a mean resource is estimated at 11.6 TCFG. A third hypothetical basin-arch Barnett Shale oil assessment unit was defined but not assessed because of a lack of production data. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
Clastic rocks associated with the Midcontinent rift system in Iowa
Anderson, Raymond R.; McKay, Robert M.
1997-01-01
The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.
Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone
NASA Astrophysics Data System (ADS)
Ali, Sarmad A.; Sleabi, Rajaa S.; Talabani, Mohammad J. A.; Jones, Brian G.
2017-01-01
Marine clastic rocks occurring in the Walash and Naopurdan Groups in the Hasanbag and Qalander areas, Kurdistan region, Iraqi Zagros Suture Zone, are lithic arenites with high proportions of volcanic rock fragments. Geochemical classification of the Eocene Walash and Oligocene Naopurdan clastic rocks indicates that they were mainly derived from associated sub-alkaline basalt and andesitic basalt in back-arc and island arc tectonic settings. Major and trace element geochemical data reveal that the Naopurdan samples are chemically less mature than the Walash samples and both were subjected to moderate weathering. The seaway in the southern Neotethys Ocean was shallow during both Eocene and Oligocene permitting mixing of sediment from the volcanic arcs with sediment derived from the Arabian continental margin. The Walash and Naopurdan clastic rocks enhance an earlier tectonic model of the Zagros Suture Zone with their deposition occurring during the Eocene Walash calc-alkaline back-arc magmatism and Early Oligocene Naopurdan island arc magmatism in the final stages of intra-oceanic subduction before the Miocene closure and obduction of the Neotethys basin.
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Smith, C.; Beal, S. A., Jr.; Tapia, P. M.
2016-12-01
The past fluctuations of Quelccaya Ice Cap (QIC) are an indicator of tropical paleoclimate. At QIC, ice core and glacial geological records provide late Holocene climate constraints. However, early and middle Holocene QIC fluctuations are less well-known. To interpret past QIC fluctuations, we present Holocene-long lake sediment records from Challpacocha, a lake fed by QIC meltwater, and Yanacocha, a lake that has not received meltwater during the Holocene. To assess the clastic sediment delivered to Challpacocha by QIC meltwater, we compare visual stratigraphy, X-ray fluorescence chemistry, grainsize, loss on ignition and clastic flux records from both lakes (additional Yanacocha proxies are presented by Axford et al. (this meeting, abstract 157985)). We compare the meltwater derived clastic sediment record from Challpacocha with moraine and stratigraphic records of past ice extents during the late Holocene. This comparison indicates that clastic sediment flux in Challpacocha increased during QIC recession and decreased during QIC advance, or significantly reduced QIC extent. We then use the Challpacocha clastic sediment record to interpret early and middle Holocene QIC fluctuations. Based on the Challpacocha sediment record, combined with prior work, we suggest that from 11 to 6.5 ka QIC was similar to or smaller than its late Holocene extent. From 6.9 to 6.5 ka QIC may have been absent from the landscape. At 3-2.4 and 0.62-0.31 ka QIC experienced the most extensive Holocene fluctuations. We compare the clastic sediment fluxes from Challpacocha and Pacococha (a nearby lake fed by QIC; Rodbell et al., 2008) to infer QIC expansion between 6.5-5 ka. This is supported by 14C ages of in-situ subfossil plants which indicate ice advance at 6.3-4.7 ka (Thompson et al., 2006, 2013; Buffen et al., 2009). Our study highlights the value of using multiple datasets to improve lake sediment record interpretations.
Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia
Smith, Barry S.
2001-01-01
The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.
Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia
Smith, Barry S.; Harlow, George E.
2002-01-01
The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations. Concentrations of manganese and chloride were higher than the Secondary Drinking Water Regulations in samples from some wells.In the humid climate of Virginia Beach, the periodic recharge of freshwater through the sand units of the shallow aquifer system occurs often enough to create a dynamic equilibrium whereby freshwater flows continually down and away from the center of the ridges to mix with and sweep brackish water and saltwater back toward the tidal rivers, bays, salt marshes, and the Atlantic Ocean.The aquifers and confining units of the shallow aquifer system at Virginia Beach are heterogeneous, discontinuous, and without exact marker beds, which makes correlations in the study area difficult. Investigations using well cuttings, spot cores, or split-spoon samples with geophysical logs are not as definitive as continuous cores for determining or correlating hydrogeologic units. Future investigations of the shallow aquifer system would benefit by collecting continuous cores.
Guidebook to the Gaudalupian symposium
Rohr, D.M.; Wardlaw, B.R.; Rudine, S.F.; Haneef, Mohammad; Hall, A.J.; Grant, R.E.
2000-01-01
Compared to the Guadalupe Mountains of Texas and New Mexico the depositional environments of the Permian strata of the Glass Mountains (and adjacent Del Norte Mountains) are less well known. In general, the Guadalupian facies in the the Glass and Del Norte mountains changes from predominantly carbonate facies in the northeast to thicker clastic facies in the southwest. Philip B. Kind (1931) originally considered this trend to reflect an uplifted clastic source to the southwest, with carbonate facies developing away from the source area. Ross (1986) interpreted the eastern portion of the Road Canyon and Word formations to consist the shelf, shelf-edge bioherm, and reef facies, and the southwest area to consist of deeper water siliceous shale, clastic limestone, and basinal sandstone facies. Probably the best known controversy in the Glass Mountains involves the depositional environment of the Skinner Ranch Formation (Leonardian according to Ross, 1986; Wolfcampian according to Cooper and Grant, 1972) at its type section on Leonard Mountain. Cooper and Grant (1964) identified in situ patch reefs at the base of the section, which were subsequently interpreted as displaced limestone blocks deposited in a slope environment (Rogers, 1972; Cys and Mazzullo, 1978; Ross, 1986). Later Flores, McMillan, and Watters (1977) interpreted the same units as subtidal and intertidal deposits. The Skinner Ranch Formation illustrates the complexities involved in interpreting the paleogeography of the Glass Mountains. If the Sinner Ranch contains displaced blocks, some eroded from older units, it explains the occurrence of Wolfcampian fossils in the Skinner Ranch (Ross, 1986).The slop facies interpretation also is used to place the shelf edge at that time between Skinner Ranch outcrops at Leonard Mountain and the lagoonal, backreef deposits of the Hess Formation to the east, although most of the actual shelf edge is not preserved (Ross, 1987:30). Similar conflicting interpretations exist in younger rocks in the western facies of the Leonardian Guadalupian to the southwest in the Del Norte Mountains. Ross (1986, 1987) considered the western facies of the Road Canyon and Word formations to be basinal shales and turbidites. Wardlaw et al. (1990) and Rohr et al. (1987) have interpreted this area to be shallow intertidal to lagoonal environments adjacent to an uplifted area to the south. The type section of the Road Canyon Formation is also a subject of disagreement and will be discusses in more detail later.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna
2017-08-01
Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older carbonate-clastic mélange points to a deposition of the sedimentary ophiolitic mélange east of or on top of the Drina-Ivanjica unit.
Landon, Matthew K.; Clark, Brian R.; McMahon, Peter B.; McGuire, Virginia L.; Turco, Michael J.
2008-01-01
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs. Within the local-scale TANC study area, the High Plains aquifer is approximately 75 m (meter) thick, and includes an unconfined aquifer, an upper confining unit, an upper confined aquifer, and a lower confining unit with lower confined sand lenses (units below the upper confining unit are referred to as confined aquifers) in unconsolidated alluvial and glacial deposits overlain by loess and underlain by Cretaceous shale. From northwest to southeast, land use in the local-scale TANC study area changes from predominantly irrigated agricultural land to residential and commercial land in the small community of York (population approximately 8,100). For the purposes of comparing water chemistry, wells were classified by degree of aquifer confinement (unconfined and confined), depth in the unconfined aquifer (shallow and deep), land use (urban and agricultural), and extent of mixing in wells in the confined aquifer with water from the unconfined aquifer (mixed and unmixed). Oxygen (delta 18O) and hydrogen (delta D) stable isotopic values indicated a clear isotopic contrast between shallow wells in the unconfined aquifer (hereinafter, unconfined shallow wells) and most monitoring wells in the confined aquifers (hereinafter, confined unmixed wells). Delta 18O and delta D values for a minority of wells in the confined aquifers were intermediate between those for the unconfined shallow wells and those for the confined unmixed wells. These intermediate values were consistent with mixing of water from unconfined and confined aquifers (hereinafter, confined mixed wells). Oxidation-reduction conditions were primarily oxic in the unconfined aquifer and variably reducing in the confined aquifers. Trace amounts of volatile organic compounds (VOC), particularly tetrachloroethylene (PCE) and trichloroethylene (TCE), were widely detected in unconfined shallow urban wells and indicated the presence of young urban recharge waters in most confined mixed wells. The presence of degradation products of agricultural pesticides (acetochlor and alachlor) in some confined mixed wells suggests that some fraction of the water in these wells also was the result of recharge in agricultural areas. In the unconfined aquifer, age-tracer data (chlorofluorocarbon and sulfur hexafluoride data, and tritium to helium-3 ratios) fit a piston-flow model, with apparent recharge ages ranging from 7 to 48 years and generally increasing with depth. Age-tracer data for the confined aquifers were consistent with mixing of 'old' water, not containing modern tracers recharged in the last 60 years, and exponentially-mixed 'young' water with modern tracers. Confined unmixed wells contained less than (=) 97% of old water. Confined mixed wells contained >30% young water and mean ages ranged from 12 to 14 years. Median concentrations of nitrate (as nitrogen, hereinafter, nitrate-N) were 17.3 and 16.0 mg/L (milligram per liter) in unconfined shallow urban and agricultural wells, respectively, indicating a range of likely nitrate sources. Septic systems are most numerous near the edge of the urban area and appear to be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, R.D.; Nelson, W.J.
1993-03-01
The Mississippian Ste. Genevieve and Paoli Limestones and sandstones of the Aux Vases Formation are lateral facies of one another. This interpretation is based on comprehensive investigations of outcrops, and selected cores, samples of well cuttings, and geophysical logs conducted over a period of four years. Both units exhibit similar sedimentological characteristics and represent open marine, shallow subtidal, and intertidal environments. The presence of low-angle cross-laminae, ripple- and plane-laminae, climbing ripples, and ooid shoals suggest most deposition occurred under low energy conditions. Lenticular, channel-like scour and fill structures that contain both fine-grained quartz sand and abraded, disarticulated fossil fragments indicatemore » localized higher energy deposition. The authors studies indicate that siliciclastic vs. carbonate deposition was controlled strictly by available sediment, and not by regressive (siliciclastic) and transgressive (carbonate) events, as inferred by previous workers. This conclusion is based on lateral facies relationships, and the supplanting of carbonates by clastics occurring in the upper part of the Ste. Genevieve through the middle part of the Paoli. The Aux Vases is thickest, coarsest, and least mature in the northwestern part of the Illinois Basin, and pinches out to the southeast. This implies a northwesterly source for clastics, perhaps the Transcontinental Arch. After early Chesterian time, the Transcontinental Arch apparently supplied little or no sediment to any flanking basin. The Ste. Genevieve, Paoli, and Aux Vases are major oil-producing units in the Illinois Basin. New understanding of regional relationships should enhance exploratory success and improve recovery from established fields.« less
Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Alegret, Laia; Molina, Eustoquio; Thomas, Ellen
2001-10-01
Cretaceous-Tertiary (K-T) boundary sections in northeastern Mexico contain marly formations separated by a controversial clastic unit. Benthic foraminifera in seven sections indicate middle and lower bathyal depths of deposition for the marls, with the exception of the upper bathyal northernmost section. Mixed neritic-bathyal faunas were present in the clastic unit, indicating redeposition in the deep basin by mass-wasting processes resulting from the K-T bolide impact in the Gulf of Mexico. Benthic foraminifera in the Mexican sections, and at other deep-sea locations, were not subject to major extinction at the time of impact, but there were temporary changes in assemblage composition. Benthic faunas indicate well- oxygenated bottom waters and mesotrophic conditions during the late Maastrichtian and increased food supply during the latest Maastrichtian. The food supply decreased drastically just after the K-T boundary, possibly because of the collapse of surface productivity. Cretaceous and early Paleogene benthic foraminifera, however, did not exhibit the benthic-pelagic coupling of present-day faunas, as documented by the lack of significant extinction at the K-T collapse of surface productivity. Much of the food supplied to the benthic faunas along this continental margin might have been refractory material transported from land or shallow coastal regions. The decrease in food supply at the K-T boundary might be associated with the processes of mass wasting, which removed surface, food-rich sediment. Benthic faunas show a staggered pattern of faunal recovery in the lowermost Paleogene, consistent with a staged recovery of the vertical organic flux but also with a gradual buildup of organic matter in the sediment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-09-01
This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install andmore » make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.« less
Hydrology of the Texas Gulf Coast aquifer systems
Ryder, Paul D.; Ardis, Ann F.
1991-01-01
A complex, multilayered ground-water flow system exists in the Coastal Plain sediments of Texas. The Tertiary and Quaternary clastic deposits have an areal extent of 114,000 square miles onshore and in the Gulf of Mexico. Two distinct aquifer systems are recognized within the sediments, which range in thickness from a few feet to more than 12,000 feet The older system--the Texas coastal uplands aquifer system-consists of four aquifers and two confining units in the Claiborne and Wilcox Groups. It is underlain by the practically impermeable Midway confining unit or by the top of the geopressured zone. It is overlain by the nearly impermeable Vicksburg-Jackson confining unit, which separates it from the younger coastal lowlands aquifer system. The coastal lowlands aquifer system consists of five permeable zones and two confining units that range in age from Oligocene to Holocene. The hydrogeologic units of both systems are exposed in bands that parallel the coastline. The units dip and thicken toward the Gulf. Quality of water in the aquifer systems is highly variable, with dissolved solids ranging from less than 500 to 150,000 milligrams per liter.Substantial withdrawal from the aquifer systems began in the early 1900's and increased nearly continuously into the 1970's. The increase in withdrawal was relatively rapid from about 1940 to 1970. Adverse hydrologic effects, such as saltwater encroachment in coastal areas, land-surface subsidence in the Houston-Galveston area, and long-term dewatering in the Whiter Garden area, were among some of the factors that caused pumping increases to slow or to cease in the 1970's and 1980's.Ground-water withdrawals in the study area in 1980 were about 1.7 billion gallons per day. Nearly all of the withdrawal was from four units: Permeable zones A, B, and C of Miocene age and younger, and the lower Claiborae-upper Wilcox aquifer. Ground-water levels have declined hundreds of feet in the intensively pumped areas of Houston-Galveston, Kingsville, Winter Garden, and Lufkin-Nacogdoches. Water-level declines have caused inelastic compaction of clays which, in turn, has resulted in land-surface subsidence of more than one foot in an area of about 2,000 square miles. Maximum subsidence of nearly 10 feet occurs in the Pasadena area east of Houston.A three-dimensional, variable-density digital model was developed to simulate predevelopment and transient flow in the aquifer systems. The modeled area is larger than the study area, and includes adjacent parts of Louisiana and Mexico. The transient model calibration period was from 1910 (predevelopment) to 1982. Model-generated head distributions, water-level hydrographs, and land-surface subsidence were matched to measured data in selected, intensively pumped areas.For the study area, mean horizontal hydraulic conductivity in the calibrated model ranges from 10 feet per day for the middle Wilcox aquifer to 25 feet per day for permeable zone A. Mean transmissivity ranges from about 4,600 feet squared per day for the middle Claiborne aquifer to about 10,400 feet squared per day for permeable zone D. Mean vertical hydraulic conductivity ranges from 1.1x10-5 feet per day for the Vicksburg-Jackson confining unit, to 3.8x10-3 feet per day for permeable zone A. Mean values of calibrated storage coefficient range from 52x10-4 for the middle Claiborne aquifer to 1.7x10-3 for the middle Wilcox aquifer and permeable zone C. Calibrated inelastic specific storage values for clay beds in permeable zones A, B, and C in the Houston-Galveston area are 8.5x10-5, 8.0x10-5, and 8.0x10-6 feet-1, respectively. These values are 85, 80, and 8 times greater than the estimated elastic specific storage value for the clays in permeable zones A, B, and C, respectively.Recharge rates were mapped for predevelopment conditions as determined from a steady-state model calibration. A maximum rate of 3 inches per year was simulated in small areas, and the average rate for the study area was 034 inch per year. Total simulated recharge was 85 million cubic feet per day in the outcrop area. Recharge was equal to discharge in outcrop areas (79 million cubic feet per day) plus net lateral flow out of the study area (6 million cubic feet per day).Rates of inflow and outflow to the ground-water system have nearly tripled from predevelopment to 1982 (85 to 276 million cubic feet per day) based on model simulation. Withdrawal of 231 million cubic feet per day was supplied principally by an increase in outcrop recharge and, to a lesser extent, from a decrease in natural discharge and release of water from storage in aquifers and compacting clay beds. The average simulated 1982 recharge rate for the study area was 0.52 inch per year, with a maximum simulated rate of 6 inches per year in Jackson and Wharton Counties.Because withdrawal has caused problems such as saltwater intrusion, land-surface subsidence, and aquifer dewatering, the Texas Department of Water Resources has projected that ground-water use will decline substantially in most of the study area by the year 2030. Some areas remain favorable for development of additional ground-water supplies. Pumping from older units that are farther inland and in areas where potential recharge is greater will minimize adverse hydrologic effects.
Hydrogeologic framework of the North Fork and surrounding areas, Long Island, New York
Schubert, Christopher E.; Bova, Richard G.; Misut, Paul E.
2004-01-01
Ground water on the North Fork of Long Island is the sole source of drinking water, but the supply is vulnerable to saltwater intrusion and upconing in response to heavy pumping. Information on the area's hydrogeologic framework is needed to analyze the effects of pumping and drought on ground-water levels and the position of the freshwater-saltwater interface. This will enable water-resource managers and water-supply purveyors to evaluate a wide range of water-supply scenarios to safely meet water-use demands. The extent and thickness of hydrogeologic units and position of the freshwater-saltwater interface were interpreted from previous work and from exploratory drilling during this study.The fresh ground-water reservoir on the North Fork consists of four principal freshwater flow systems (referred to as Long Island mainland, Cutchogue, Greenport, and Orient) within a sequence of unconsolidated Pleistocene and Late Cretaceous deposits. A thick glacial-lake-clay unit appears to truncate underlying deposits in three buried valleys beneath the northern shore of the North Fork. Similar glacial-lake deposits beneath eastern and east-central Long Island Sound previously were inferred to be younger than the surficial glacial deposits exposed along the northern shore of Long Island. Close similarities in thickness and upper-surface altitude between the glacial-lake-clay unit on the North Fork and the glacial-lake deposits in Long Island Sound indicate, however, that the two are correlated at least along the North Fork shore.The Matawan Group and Magothy Formation, undifferentiated, is the uppermost Cretaceous unit on the North Fork and constitutes the Magothy aquifer. The upper surface of this unit contains a series of prominent erosional features that can be traced beneath Long Island Sound and the North Fork. Northwest-trending buried ridges extend several miles offshore from areas southeast of Rocky Point and Horton Point. A promontory in the irregular, north-facing cuesta slope extends offshore from an area southwest of Mattituck Creek and James Creek. Buried valleys that trend generally southeastward beneath Long Island Sound extend onshore northeast of Hashamomuck Pond and east of Goldsmith Inlet.An undifferentiated Pleistocene confining layer, the lower confining unit, consists of apparently contiguous units of glacial-lake, marine, and nonmarine clay. This unit is more than 200 feet thick in buried valleys filled with glacial-lake clay along the northern shore, but elsewhere on the North Fork, it is generally less than 50 feet thick and presumably represents an erosional remnant of marine clay. Its upper surface is generally 75 feet or more below sea level where it overlies buried valleys, and is generally 100 feet or less below sea level in areas where marine clay has been identified.A younger unit of glacial-lake deposits, the upper confining unit, is a local confining layer and underlies a sequence of late Pleistocene moraine and outwash deposits. This unit is thickest (more than 45 feet thick) beneath two lowland areas--near Mattituck Creek and James Creek, and near Hashamomuck Pond--but pinches out close to the northern and southern shores and is locally absent in inland areas of the North Fork. Its upper-surface altitude generally rises to near sea level toward the southern shore.Freshwater in the Orient flow system is limited to the upper glacial aquifer above the top of the lower confining unit. The upper confining unit substantially impedes the downward flow of freshwater in inland parts of the Greenport flow system. Deep freshwater within the lower confining unit in the east-central part of the Cutchogue flow system probably is residual from an interval of lower sea level. The upper confining unit is absent or only a few feet thick in the west-central part of the Cutchogue flow system and does not substantially impede the downward flow of freshwater, but the lower confining unit probably impedes the downward flow of freshwater within a southeast-trending buried valley in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Shouyeh; Humphrey, J.D.
1991-03-01
Pennsylvania cyclothems are well documented on stable continental shelves and the cyclicity has generally been attributed to glacio-eustasy. As a contrast, Atokan-Desmoinesian cyclic carbonates of the southern Sangre de Cristo Mountains developed in a tectonically active foreland basin, formed by thrusting along the Picuris-Pecos fault during early Pennsylvanian time. Strata exposed in two sections (Dalton Bluff, 260 m; Johnson Mesa, 340 m) are characterized by (1) shallowing-upward cycles, (2) cycles of variable thickness (5-20 m), (3) incomplete cycles, (4) cycles interrupted by terrigenous clastic input, and (5) noncyclic intervals. Allocyclic mechanisms alone cannot fully explain these observations; the authors hereinmore » propose that a complex interplay among eustasy, tectonism, and clastic sediment supply were responsible for the observed cycles. Lithofacies analysis indicates that location within the foreland basin played a significant role in cycle attributes. In the deeper portions of the basin (e.g., Dalton Bluff), an idealized cycle, from base to top consists of (1) shale/marl facies, (2) brachiopod wackestone facies, (3) phylloid algal facies, and (4) marine clastic facies. No evidence for subaerial exposure of cycle caps is noted. In contrast, in shallow portions of the basin near the forebulge (e.g., Johnson Mesa) the marine clastic facies is substituted by crinoidal grainstone/packstone facies that is capped by subaerial exposure surface. Each of the two cycles displays an overall grand (lower order) shallowing-upward cycle. This grand cycle developed as sediments infilled the initially starved foreland basin.« less
Petroleum geology and resources of the West Siberian Basin, Russia
Ulmishek, Gregory F.
2003-01-01
The West Siberian basin is the largest petroleum basin in the world covering an area of about 2.2 million km2. The basin occupies a swampy plain between the Ural Mountains and the Yenisey River. On the north, the basin extends offshore into the southern Kara Sea. On the west, north, and east, the basin is surrounded by the Ural, Yenisey Ridge, and Turukhan-Igarka foldbelts that experienced major deformations during the Hercynian tectonic event and the Novaya Zemlya foldbelt that was deformed in early Cimmerian (Triassic) time. On the south, the folded Caledonian structures of the Central Kazakhstan and Altay-Sayan regions dip northward beneath the basin?s sedimentary cover. The basin is a relatively undeformed Mesozoic sag that overlies the Hercynian accreted terrane and the Early Triassic rift system. The basement is composed of foldbelts that were deformed in Late Carboniferous?Permian time during collision of the Siberian and Kazakhstan continents with the Russian craton. The basement also includes several microcontinental blocks with a relatively undeformed Paleozoic sedimentary sequence. The sedimentary succession of the basin is composed of Middle Triassic through Tertiary clastic rocks. The lower part of this succession is present only in the northern part of the basin; southward, progressively younger strata onlap the basement, so that in the southern areas the basement is overlain by Toarcian and younger rocks. The important stage in tectono-stratigraphic development of the basin was formation of a deep-water sea in Volgian?early Berriasian time. The sea covered more than one million km2 in the central basin area. Highly organic-rich siliceous shales of the Bazhenov Formation were deposited during this time in anoxic conditions on the sea bottom. Rocks of this formation have generated more than 80 percent of West Siberian oil reserves and probably a substantial part of its gas reserves. The deep-water basin was filled by prograding clastic clinoforms during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o
Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA
NASA Astrophysics Data System (ADS)
Haile, Estifanos; Fryar, Alan E.
2017-12-01
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ˜300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2- reduction to methanogenesis. In particular, decreasing SO4 2- and increasing δ34S of SO4 2- along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2- reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.
Public Health and Solitary Confinement in the United States.
Cloud, David H; Drucker, Ernest; Browne, Angela; Parsons, Jim
2015-01-01
The history of solitary confinement in the United States stretches from the silent prisons of 200 years ago to today's supermax prisons, mechanized panopticons that isolate tens of thousands, sometimes for decades. We examined the living conditions and characteristics of the populations in solitary confinement. As part of the growing movement for reform, public health agencies have an ethical obligation to help address the excessive use of solitary confinement in jails and prisons in accordance with established public health functions (e.g., violence prevention, health equity, surveillance, and minimizing of occupational and psychological hazards for correctional staff). Public health professionals should lead efforts to replace reliance on this overly punitive correctional policy with models based on rehabilitation and restorative justice.
Public Health and Solitary Confinement in the United States
Drucker, Ernest; Browne, Angela; Parsons, Jim
2015-01-01
The history of solitary confinement in the United States stretches from the silent prisons of 200 years ago to today’s supermax prisons, mechanized panopticons that isolate tens of thousands, sometimes for decades. We examined the living conditions and characteristics of the populations in solitary confinement. As part of the growing movement for reform, public health agencies have an ethical obligation to help address the excessive use of solitary confinement in jails and prisons in accordance with established public health functions (e.g., violence prevention, health equity, surveillance, and minimizing of occupational and psychological hazards for correctional staff). Public health professionals should lead efforts to replace reliance on this overly punitive correctional policy with models based on rehabilitation and restorative justice. PMID:25393185
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
Sequential filling of a late paleozoic foreland basin
Mars', J. C.; Thomas, W.A.
1999-01-01
Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession that reflects no tectonic subsidence, a very minor or null sediment supply, and basinwide transgression. The temporal resolution at parasequence scale significantly improves the resolution of the tectonic history of the thrust belt-foreland basin system. Copyright ?? 1999, SEPM (Society for Sedimentary Geology).
NASA Astrophysics Data System (ADS)
Akinpelu, Oluwatosin Caleb
The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface reservoir modelling. While this approach is quite promising for detailed three-dimensional outcrop studies, it is not an all-purpose panacea; thick overburden, poor antenna-ground coupling in rough terrains typical of outcrops, low penetration and rapid signal attenuation in mudstone and diagenetic clay- rich deposits often limit the prospects of this novel technique.
NASA Astrophysics Data System (ADS)
Giunta, G.; Nigro, F.
1999-12-01
The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher proximal-to-distal (Early Miocene) Stilo-Capo d'Orlando facies on the constructing mobile belt; and (g) the presence of various thrust-faults, distinguished in a sequential order. The collected data allow us to hypothesise that the Oligo-Miocene tectono-sedimentary history was characterised by a foredeep with a deforming internal flank, probably lying in onlap on the constructing tectonic edifice (Frazzanò-lower Stilo-Capo d'Orlando Fms), and then deformed and covered by a piggy-back like sequence (middle-upper Stilo-Capo d'Orlando Fm), which was subsequently also deformed. The tectono-sedimentary evolution of the Peloritani belt has been probably developed through a progressive migration towards the foreland of a foredeep-compressional front couple and the chain body. The thrust stack progressively incorporates terrigenous foredeep deposits and in turn carried piggy-back basins.
NASA Astrophysics Data System (ADS)
Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.
2017-08-01
This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region is connected to seawater intrusion and not to old brine from the underlying Cretaceous aquitard.
Manson impact structure, Iowa: First geochemical results for drill core M-1
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe
1993-01-01
The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.
Manson impact structure, Iowa: First geochemical results for drill core M-1
NASA Astrophysics Data System (ADS)
Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe
1993-03-01
The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.
Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.
2010-01-01
The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.
The Messinian evaporites in the Levant Basin: lithology, deformation and its evolution
NASA Astrophysics Data System (ADS)
Feng, Ye; Steinberg, Josh; Reshef, Moshe
2017-04-01
The lithological composition of the Messinian evaporite in the Levant Basin remains controversial and salt deformation mechanisms are still not fully understood, due to the lack of high resolution 3D depth seismic data and well logs that record the entire evaporite sequence. We demonstrate how 3D Pre-stack depth migration (PSDM) and intra-salt tomography can lead to improved salt imaging. Using 3D PSDM seismic data with great coverage and deepwater well log data from recently drilled boreholes, we reveal intra-salt reflective units associated with thin clastic layers and a seismic transparent background consisting of uniform pure halite. Structural maps of all internal reflectors are generated for stratigraphy and attributes analysis. High amplitude fan structures in the lowermost intra-salt reflector are observed, which may indicate the source of the clastic formation during the Messinian Salinity Crisis (MSC). The Messinian evaporite in the Levant Basin comprises six units; the uppermost unit thickens towards the northwest, whereas the other units are uniform in thickness. The top of salt (TS) horizon is relatively horizontal, while all other intra-salt reflectors and base of salt (BS) dip towards the northwest. Different seismic attributes are used for identification of intra-salt deformation patterns. Maximum curvature maps show NW-striking thrust faults on the TS and upper intra-salt units, and dip azimuth maps are used to show different fold orientations between the TS and intra-salt units, which indicate a two-phase deformation mechanism: basin NW tilting as syn-depositional phase and NNE spreading of Plio-Pleistocene overburden as post-depositional phase. RMS amplitude maps are used to identify a channelized system on the TS. An evaporite evolution model during the MSC of the Levant Basin is therefore established based on all the observations. Finally the mechanical properties of the salts will be utilized to explore salt deformation in the Levant Basin. Feng, Y. E., & Reshef, M. (2016). The Eastern Mediterranean Messinian salt-depth imaging and velocity analysis considerations. Petroleum Geoscience, 22(4), 2-19. doi:http://dx.doi.org/10.1144/petgeo2015-088 Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118-131. doi:http://dx.doi.org/10.1016/j.margeo.2016.04.004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, D.E.
1990-05-01
The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlainmore » by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.« less
Potential effects of regional pumpage on groundwater age distribution
Zinn, Brendan A.; Konikow, Leonard F.
2007-01-01
Groundwater ages estimated from environmental tracers can help calibrate groundwater flow models. Groundwater age represents a mixture of traveltimes, with the distribution of ages determined by the detailed structure of the flow field, which can be prone to significant transient variability. Effects of pumping on age distribution were assessed using direct age simulation in a hypothetical layered aquifer system. A steady state predevelopment age distribution was computed first. A well field was then introduced, and pumpage caused leakage into the confined aquifer of older water from an overlying confining unit. Large changes in simulated groundwater ages occurred in both the aquifer and the confining unit at high pumping rates, and the effects propagated a substantial distance downgradient from the wells. The range and variance of ages contributing to the well increased substantially during pumping. The results suggest that the groundwater age distribution in developed aquifers may be affected by transient leakage from low‐permeability material, such as confining units, under certain hydrogeologic conditions.
Millan, C.; Wilson, T.; Paulsen, T.
2007-01-01
Microstructures in natural fractures in core recovered offshore from Cape Roberts, Ross Sea, Antarctica, provide new constraints on the relative timing of faulting and sedimentation in the Victoria Land Basin along the Transantarctic Mountain rift flank. This study characterizes the textures, fabrics and grain-scale structures from thin section analysis of samples of microfaults, veins, and clastic dikes. Microfaults are abundant and display two different types of textures, interpreted to record two different deformation modes: pre-lithification shearing and brittle faulting of cohesive sediment. Both clastic dikes and calcite veins commonly follow fault planes, indicating that injections of liquefied sediment and circulating fluids used pre-existing faults as conduits. The close association of clastic injections, diagenetic mineralization, and faulting indicates that faulting was synchronous with deposition in the rift basin
The system controlling the composition of clastic sediments
Johnsson, Mark J.
1993-01-01
The composition of clastic sediments and rocks is controlled by a complex suite of parameters operating during pedogenesis, erosion, transport, deposition, and burial. The principal first-order parameters include source rock composition, modification by chemical weathering, mechanical disaggregation and abrasion, authigenic inputs, hydrodynamic sorting, and diagenesis. Each of these first-order parameters is influenced to varying degrees by such factors as the tectonic settings of the source region, transportational system and depositional environment, climate, vegetation, relief, slope, and the nature and energy of transportational and depositional systems. These factors are not independent; rather a complicated web of interrelationships and feedback mechanisms causes many factors to be modulated by others. Accordingly, processes controlling the composition of clastic sediments are best viewed as constituting a system, and in evaluating compositional information the dynamics of the system must be considered as whole.
Inter-aquifer Dynamics in and Near a Confining Unit Window in Shelby County, Tennessee, USA
NASA Astrophysics Data System (ADS)
Gentry, R. W.; McKay, L. D.; Larsen, D.; Carmichael, J. K.; Solomon, D. K.; Thonnard, N.; Anderson, J. L.
2003-12-01
An interdisplinary research team is investigating the interaction between the surficial alluvial aquifer and the deeper confined Memphis aquifer in the Memphis area, Shelby County, Tennessee. Previous research has identified a window in the clay-rich, upper Claiborne confining unit that separates the two aquifers near a closed municipal landfill in east-central Shelby County, an area undergoing rapid urbanization. For this investigation, a combination of environmental tracers (tritium/helium-3), major and trace ion geochemistry, hydraulic response testing, measurement of hydraulic gradients, and groundwater flow modeling is being used to quantify recharge of young water from the alluvial aquifer through the window to the Memphis aquifer. The research will provide results to better understand how windows were formed and how they influence recharge and water quality in otherwise confined parts of the Memphis aquifer downdip of its outcrop/subcrop area. Examination of continuous core samples and geophysical logs from wells installed for the study using Rotasonic drilling methods confirmed the existence of a sand-dominated window that may be as much as 1 km in diameter in the upper Claiborne confining unit. The upper Claiborne confining unit is 15 to 20 m thick in most of the study area and is overlain by a 10 to 12 m thick alluvial aquifer. The window is interpreted to have formed as a result of depositional and incisional processes in an Eocene-age deltaic system. Hydraulic gradients of several feet exist vertically between the alluvial and Memphis aquifers within the window, indicating downward flow. Groundwater age-dates from tritium/helium-3 analyses indicate that groundwater in the window at the depth of the base of the surrounding confining unit (approximately 30 m) has an apparent age of 19.8 years, which confirms the occurrence of downward flow. Young groundwater age dates (less than 32 years) also were obtained from wells in the Memphis aquifer at confined sites downgradient of the window, suggesting that a plume of young water is spreading outwards from the window and mixing with the older Memphis aquifer water. Preliminary inverse modeling of the site using a genetic algorithm coupled with a central finite difference flow model indicates a probable steady-state downward flux of about 12,000 m3/d through the window. Collection and analysis of additional groundwater samples are planned to examine geochemical conditions in the confining unit and in the Memphis aquifer upgradient of the window. These analyses will aid in developing a final conceptual model and in subsequent numerical modeling of mixing of the young recharge water with the older Memphis aquifer water.
Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia
Matthews, S.E.; Krause, R.E.
1983-01-01
Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)
Hydrothermal mineralization along submarine rift zones, Hawaii
Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.
1996-01-01
Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.
NASA Astrophysics Data System (ADS)
Moscariello, Andrea; Do Couto, Damien; Lupi, Matteo; Mazzini, Adriano
2016-04-01
We investigate the subsurface data of a large sector in the Sidoarjo district (East Java, Indonesia) where the sudden catastrophic Lusi eruption started the 26th May 2006. Our goal is to understand the stratigraphic and structural features which can be genetically related to the surface manifestations of deep hydrothermal fluids and thus allow us to predict possible future similar phenomena in the region. In the framework of the Lusi Lab project (ERC grant n° 308126) we examined a series of densely spaced 2D reflection commercial seismic lines This allowed the reconstruction of the lateral variability of key stratigraphic horizons as well as the main tectonic features. In particular, we shed light on the deep structure of the Watukosek fault system and the associated fracture corridors crossing the entire stratigraphic successions. To the South-West, when approaching the volcanic complex, we could identify a clear contrast in seismic facies between chaotic volcanoclastic wedges and clastic-prone sedimentary successions as well as between the deeper stratigraphic units consisting of carbonates and lateral shales units. The latter show possible ductile deformation associated to fault-controlled diapirism which control in turns deformation of overlying stratigraphic units and deep geo-fluids circulation. Large collapse structures recognized in the study area (e.g. well PRG-1) are interpreted as the results of shale movement at depth. Similarly to Lusi, vertical deformation zones ("pipes"), likely associated with deeply rooted strike-slip systems seem to be often located at the interface between harder carbonate rocks forming isolated build ups and the laterally nearby clastic (shale-prone)-units. The mechanisms of deformation of structural features (strike vs dip slip systems) which may affect either the basement rock or the overlying deeper stratigraphic rocks is also being investigated to understand the relationship between deep and shallower (i.e. meteoric) fluid circulation. Seismic stratigraphic study of the basin margin (closer to volcanic accumulations) will also allow reconstructing the relationships between present and past volcanic activity recorded in the deep subsurface with the genesis of piercement structures and development of vertical deformation zones
Johnston, Richard H.; Bush, Peter W.
1988-01-01
The Floridan aquifer system is one of the major sources of ground-water supplies in the United States. This highly productive aquifer system underlies all of Florida, southern Georgia, and small parts of adjoining Alabama and South Carolina, for a total area of about 100,000 square miles. About 3 billion gallons of water per day is withdrawn from the aquifer for all uses, and, in many areas, the Floridan is the sole source of freshwater. The aquifer system is a sequence of hydraulically connected carbonate rocks (principally limestone and some dolomite) that generally range in age from Late Paleocene to Early Miocene. The rocks vary in thickness from a featheredge where they crop out to more than 3,500 ft where the aquifer is deeply buried. The aquifer system generally consists of an upper aquifer and a lower aquifer, separated by a less permeable confining unit of highly variable properties. In parts of north Florida and southwest Georgia, there is little permeability contrast within the aquifer system. Thus in these areas the Floridan is effectively one continuous aquifer. The upper and lower aquifers are defined on the basis of permeability, and their boundaries locally do not coincide with those for either time-stratigraphic or rock-stratigraphic units. Low-permeability clastic rocks overlie much of the Floridan aquifer system. The lithology, thickness, and integrity of these low-permeability rocks have a controlling effect on the development of permeability and ground-water flow in the Floridan locally. The Floridan aquifer system derives its permeability from openings that vary from fossil hashes and networks of many solution-widened joints to large cavernous openings in karst areas. Diffuse flow pre-dominates where the small openings occur, whereas conduit flow may occur where there are large cavernous openings. For the Upper Floridan aquifer, transmissivities are highest (greater than 1,000,000 ft squared per day) in the unconfined karst areas of central and northern Florida. Lowest transmissivities (less than 50,000 ft squared per day) occur in the Florida panhandle and southernmost Florida, where the Upper Floridan aquifer is confined by thick clay sections. The hydraulic properties of the Lower Floridan aquifer are not well known; however, this unit also contains intervals of very high transmissivity that have been attributed to paleokarst development. The dominant feature of the Floridan flow system, both before and after ground-water development, is Upper Floridan aquifer springs, nearly all of which occur in unconfined and semiconfined parts of the aquifer in Florida. Before ground-water development, spring flow and point discharge to surface-water bodies was about 88 percent of the estimated 21,500 cubic ft per second total discharge. Current discharge (early 1980's) is about 24,100 cubic ft per second, 75 percent of which is spring flow and discharge to surface-water bodies, 17 percent is withdrawal from wells, and 8 percent is diffuse upward leakage. Pumpage has been and continues to be supplied primarily by the diversion of natural outflow from the aquifer system and by induced recharge rather than by loss of water from aquifer storage. The approximately 3 billion gallons per day pumped from the Floridan aquifer system has resulted in long-term regional water-level declines of more than 10 ft in three broad areas of the flow system: (1) coastal Georgia and adjacent South Carolina and northeast Florida, (2) west-central Florida, and (3) the Florida panhandle. Saltwater has encroached as a result of pumping in a few coastal areas. In general, the water chemistry in the Upper Floridan is related to flow and proximity to the freshwater-saltwater interface. In the unconfined or semiconfined areas where flow is vigorous, dissolved-solids concentrations are low (less than 250 milligrams per liter). Where the system is more tightly confined, flow is more sluggish and concentrations are higher (grea
Kleeschulte, Michael J.; Seeger, Cheryl M.
2003-01-01
The confining ability of the St. Francois confining unit (Derby-Doerun Dolomite and Davis Formation) was evaluated in ten townships (T. 31?35 N. and R. 01?02 W.) along the Viburnum Trend of southeastern Missouri. Vertical hydraulic conductivity data were compared to similar data collected during two previous studies 20 miles south of the Viburnum Trend, in two lead-zinc exploration areas that may be a southern extension of the Viburnum Trend. The surficial Ozark aquifer is the primary source of water for domestic and public-water supplies and major springs in southern Missouri. The St. Francois confining unit lies beneath the Ozark aquifer and impedes the movement of water between the Ozark aquifer and the underlying St. Francois aquifer (composed of the Bonneterre Formation and Lamotte Sandstone). The Bonneterre Formation is the primary host formation for lead-zinc ore deposits of the Viburnum Trend and potential host formation in the exploration areas. For most of the more than 40 years the mines have been in operation along the Viburnum Trend, about 27 million gallons per day were being pumped from the St. Francois aquifer for mine dewatering. Previous studies conducted along the Viburnum Trend have concluded that no large cones of depression have developed in the potentiometric surface of the Ozark aquifer as a result of mining activity. Because of similar geology, stratigraphy, and depositional environment between the Viburnum Trend and the exploration areas, the Viburnum Trend may be used as a pertinent, full-scale model to study and assess how mining may affect the exploration areas. Along the Viburnum Trend, the St. Francois confining unit is a complex series of dolostones, limestones, and shales that generally is 230 to 280 feet thick with a net shale thickness ranging from less than 25 to greater than 100 feet with the thickness increasing toward the west. Vertical hydraulic conductivity values determined from laboratory permeability tests were used to represent the St. Francois confining unit along the Viburnum Trend. The Derby-Doerun Dolomite and Davis Formation are statistically similar, but the Davis Formation would be the more hydraulically restrictive medium. The shale and carbonate values were statistically different. The median vertical hydraulic conductivity value for the shale samples was 62 times less than the carbonate samples. Consequently, the net shale thickness of the confining unit along the Viburnum Trend significantly affects the effective vertical hydraulic conductivity. As the percent of shale increases in a given horizon, the vertical hydraulic conductivity decreases. The range of effective vertical hydraulic conductivity for the confining unit in the Viburnum Trend was estimated to be a minimum of 2 x 10-13 ft/s (foot per second) and a maximum of 3 x 10-12 ft/s. These vertical hydraulic conductivity values are considered small and verify conclusions of previous studies that the confining unit effectively impedes the flow of ground water between the Ozark aquifer and the St. Francois aquifer along the Viburnum Trend. Previously-collected vertical hydraulic conductivity data for the two exploration areas from two earlier studies were combined with the data collected along the Viburnum Trend. The nonparametric Kruskal-Wallis statistical test shows the vertical hydraulic conductivity of the St. Francois confining unit along the Viburnum Trend, and west and east exploration areas are statistically different. The vertical hydraulic conductivity values generally are the largest in the Viburnum Trend and are smallest in the west exploration area. The statistical differences in these values do not appear to be attributed strictly to either the Derby-Doerun Dolomite or Davis Formation, but instead they are caused by the differences in the carbonate vertical hydraulic conductivity values at the three locations. The calculated effective vertical hydraulic conductivity range for the St. Franc
Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R.; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K.; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine
2016-01-01
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 – and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments – and the need to reassess the current hygiene standards. PMID:27790191
Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine
2016-01-01
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 - and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments - and the need to reassess the current hygiene standards.
NASA Astrophysics Data System (ADS)
Tang, Yongjie; Zheng, Zhuo; Chen, Cong; Wang, Mengyuan; Chen, Bishan
2018-04-01
The coastal basin deposit in the Lian River plain is among the thickest Quaternary sequences along the southeastern coast of China. The clastic sediment accumulated in a variety of environmental settings including fluvial, channel, estuary/coastal and marine conditions. Detailed investigation of lithofacies, grain-size distributions, magnetic susceptibility, microfossils and chronology of marine core CN01, compared with regional cores, and combined with offshore seismic reflection profiles, has allowed us to correlate the spatial stratigraphy in the inner and outer plain and the seismic units. Grain size distribution analysis of core CN-01 through compositional data analysis and multivariate statistics were applied to clastic sedimentary facies and sedimentary cycles. Results show that these methods are able to derive a robust proxy information for the depositional environment of the Lian River plain. We have also been able to reconstruct deltaic evolution in response to marine transgressions. On the basis of dating results and chronostratigraphy, the estimated age of the onset of deposition in the Lian River coastal plain was more than 260 kyr BP. Three transgressive sedimentary cycles revealed in many regional cores support this age model. Detailed lithological and microfossil studies confirm that three marine (M3, M2 and M1) and three terrestrial (T3, T2 and T1) units can be distinguished. Spatial correlation between the inner plain, outer plain (typical cores characterized by marine transgression cycles) and offshore seismic reflectors reveals coherent sedimentary sequences. Two major boundaries (unconformity and erosion surfaces) can be recognized in the seismic profiles, and these correspond to weathered reddish and/or variegated clay in the study core, suggesting that Quaternary sediment changes on the Lian River plain were largely controlled by sea-level variations and coastline shift during glacial/interglacial cycles.
NASA Astrophysics Data System (ADS)
Baykut, Tanyel; Koral, Hayrettin; Özkar Öngen, İzver
2016-04-01
Study area is located between Göynük (Bolu) and Nallıhan (Ankara), NW Anatolia, to the north of the Neotethyan (Izmir-Ankara-Erzincan) Suture Zone. It comprises units ranging from the Jurassic to Miocene ages. Middle Jurassic-Lower Cretaceous age pelagic limestones of the Soǧukçam Formation is the oldest rock, overlain by the Upper Cretaceous Gölpazarı Group. The Gölpazarı Group includes the Cenomanian-Campanian age turbiditic Yenipazar Formation and the Maastrichtian age Taraklı Formation. Over the Taraklı Formation lies conformably the Kızılçay Group, and it exhibits varying facies from north to south of the study area. In the north, there occurs the coral-bearing Lower Paleocene Selvipınar Formation. In the south, instead, there are clastics of the Kızılçay Group overthrust by the Soǧukçam Formation. Clastics and bituminous shales of the Kızılçay Group indicate a terrestrial setting of the study area during the Lower Paleocene-Eocene. The Soǧukçam and Yenipazar Formations represent deep marine conditions, while the Taraklı Formation a shallow one. This indicates the region underwent a rapid uplift due possibly to initial collision and overthrusting. In the post-Maastrichtian age units, the occurrence and lateral transitions of shallow marine and terrestrial sediments suggest a progress of uplift, but at different rates at different locations; at a relatively fast rate in the south and a slow rate in the north. The presence of tectonic features such as E-W oriented folds, overturned folds and faults are related to shortening during a collisional stage that affected the whole region.
Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Catuneanu, Octavian
2001-08-01
The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geotechnical Sciences Group Bechtel Nevada
2006-01-01
A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less
High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)
Wrege, B.M.; Isely, J.J.
2009-01-01
We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.
Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland
Hughes, W.B.
1993-01-01
Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.
Falls, W. Fred; Ransom, Camille; Landmeyer, James E.; Reuber, Eric J.; Edwards, Lucy E.
2005-01-01
To assess the hydrogeology, water quality, and the potential for saltwater intrusion in the offshore Upper Floridan aquifer, a scientific investigation was conducted near Tybee Island, Georgia, and Hilton Head Island, South Carolina. Four temporary wells were drilled at 7, 8, 10, and 15 miles to the northeast of Tybee Island, and one temporary well was drilled in Calibogue Sound west of Hilton Head Island. The Upper Floridan aquifer at the offshore and Calibogue sites includes the unconsolidated calcareous quartz sand, calcareous quartz sandstone, and sandy limestone of the Oligocene Lazaretto Creek and Tiger Leap Formations, and the limestone of the late Eocene Ocala Limestone and middle Avon Park Formation. At the 7-, 10-, and 15-mile sites, the upper confining unit between the Upper Floridan and surficial aquifers correlates to the Miocene Marks Head Formation. Paleochannel incisions have completely removed the upper confining unit at the Calibogue site and all but a 0.8-foot-thick interval of the confining unit at the 8-mile site, raising concern about the potential for saltwater intrusion through the paleochannel-fill sediments at these two sites. The paleochannel incisions at the Calibogue and 8-mile sites are filled with fine- and coarse-grained sediments, respectively. The hydrogeologic setting and the vertical hydraulic gradients at the 7- and 10-mile sites favored the absence of saltwater intrusion during predevelopment. After decades of onshore water use in Georgia and South Carolina, the 0-foot contour in the regional cone of depression of the Upper Floridan aquifer is estimated to have been at the general location of the 7- and 10-mile sites by the mid-1950s and at or past the 15-mile site by the 1980s. The upward vertical hydraulic gradient reversed, but the presence of more than 17 feet of upper confining unit impeded the downward movement of saltwater from the surficial aquifer to the Upper Floridan aquifer at the 7- and 10-mile sites. At the 10-mile site, the chloride concentration in the Upper Floridan borehole-water sample and the pore-water samples from the Oligocene and Eocene strata support the conclusion of no noticeable modern saltwater intrusion in the Upper Floridan aquifer. The chloride concentration of 370 milligrams per liter in the borehole-water sample at the 7-mile site from the Upper Floridan aquifer at 78 to 135 feet below North American Vertical Datum of 1988 is considerably higher than the chloride concentration of 25 milligrams per liter measured at the 10-mile site. The higher concentration probably is the result of downward leakage of saltwater through the confining unit at the 7-mile site or could reflect downward leakage of saltwater through an even thinner layer of the upper confining unit beneath the paleochannel to the northeast and lateral movement (encroachment) from the paleochannel to the 7-mile site. Carbon-14 concentrations at both sites, however, are low and indicate that most of the water is relict fresh ground water. The hydrogeology at the 15-mile site includes 17 feet of the upper confining unit. The chloride concentration in the Upper Floridan aquifer is 6,800 milligrams per liter. The setting for the Upper Floridan aquifer beneath the 15-mile site is interpreted as a transitional mixing zone between relict freshwater and relict saltwater. At the Calibogue site, 35 feet of fine-grained paleochannel-fill sediments overlies the Oligocene strata of the Upper Floridan aquifer. The vertical hydraulic conductivity of the paleochannel fill at this site is similar to the upper confining unit and effectively replaces the missing upper confining unit. Chloride concentrations and low carbon-14 and tritium concentrations in borehole water from the Upper Floridan aquifer, and low chloride concentrations in pore water from the upper confining unit indicate relict freshwater confined in the Upper Floridan aquifer at the Calibogue site. The coarse-grained paleochannel-f
NASA Astrophysics Data System (ADS)
Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.
2018-03-01
Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater.
NASA Astrophysics Data System (ADS)
Back, S.
2009-04-01
A large progradational clastic system centred on Brunei Darussalam has been present on the NW Borneo margin since the early middle Miocene. This system has many sedimentary and structural similarities with major deltaic provinces such as the Niger and Nile. It differs from these systems by being affected in the hinterland by contemporaneous compressional tectonics. Uplift partially forced strong progradation of the clastic system, but also folded older deltaic units. Erosion and the exhumation of folded strata in the area of the Jerudong Anticline resulted in the exposure of large-scale prograding clinoforms and syn-sedimentary deltaic faults of middle Miocene age along a natural cross-section of several tens of kilometres in extent. Westward of the key outcrop sites on the Jerudong Anticline, the middle Miocene deltaic units are overlain by late Miocene, Pliocene and Quaternary clastics up to 3 kilometres thick. Both, the middle Miocene target units of this study as well as the late Miocene to recent overburden are recorded in the subsurface of the Belait Syncline on regional 2D seismic lines (total line length around 1400 km) and at 7 well locations. In this study, we integrate the available geophysical subsurface information with existing structural, sedimentological and geomorphological field data of the "classic" Jerudong Anticline exposures (e.g., Back et al. 2001, Morley et al. 2003, Back et al. 2005) into a static 3D surface-subsurface model that provides quantitative constraints on the structural and stratigraphic architecture of the Miocene Belait delta and the overlying units in three dimensions, supporting basin-scale as well as reservoir-scale analysis of the subsurface rock volume. Additionally, we use the static surface-subsurface model as input for a tectonic retro-deformation of the study area, in which the 3D paleo-relief of the middle Miocene Belait delta is restored by unfolding and fault balancing (Back et al. 2008). This kinematic reconstruction ultimately provides a detailed view into the stratal architecture of middle Miocene delta clinoforms, indicating a close relationship between delta-lobe activity, clinoform morphology, and the generation of slumps and turbidites. Literature BACK, S., MORLEY, C.K., SIMMONS, M.D. & LAMBIASE, J.J. (2001): Depositional environment and sequence stratigraphy of Miocene deltaic cycles exposed along the Jerudong anticline, Brunei Darussalam. - Journal of Sedimentary Research, 71: 915-923. BACK, S., TIOE HAK JING, TRAN XUAN THANG & MORLEY, C.K. (2005): Stratigraphic development of synkinematic deposits in a large growth-fault system, onshore Brunei Darussalam. - Journal of the Geological Society, London, 162: 243-258. BACK, S., STROZYK, F., KUKLA, P.A. & LAMBIASE, J.J. (2008): 3D restoration of original sedimentary geometries in deformed basin fill, onshore Brunei Darussalam, NW Borneo. Basin Research, 20: 99-117. MORLEY, C.K., BACK, S., VANRENSBERGEN, P., CREVELLO, P. & LAMBIASE, J.J. (2003): Characteristics of repeated, detached, Miocene -Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo. - Journal of Structural Geology, 25: 1147-1169.
McDowell, R.C.; Houser, B.B.
1983-01-01
Fieldwork was done principally by vehicle along roads, but also included railroad cuts and excavation sites, such as quarries and landfills. Natural exposures are rare and provided no examples of deformation structures for this study. The geologic units exposed in the area are chiefly clastic sediments deposited in nearshore marine to continental environments. They include semi-consolidated sand, silt, clay, and rare thin impure limestone beds of Late Cretaceous to Eocene age (fig. 2). These sedimentary beds generally have a gentle regional dip to the southeast (Faye and Prowell, 1982, p. 6).
Lindgren, Richard J.
2001-01-01
The water withdrawn by pumped wells or discharged to Bear Creek is derived predominantly from areal recharge near the edge of the Decorah-Platteville-Glenwood confining unit (0.47 ft3/s), rather than from water that has leaked downward through the Decorah unit (0.03 ft3/s). Model simulated discharge through springs and seeps in the lower part of the upper carbonate aquifer (0.21 ft3/s) represents a potential source of water to the St. Peter-Prairie du Chien-Jordan aquifer.
Robinson, James L.; Carmichael, John K.; Halford, Keith J.; Ladd, David E.
1997-01-01
Naval Support Activity (NSA) Memphis is a Department of the Navy facility located at the City of Millington, Tennessee, about 5 miles north of Memphis. Contaminants have been detected in surface-water, sediment, and ground-water samples collected at the facility. As part of the Installation Restoration Program, the Navy is considering remedial-action options to prevent or lessen the effect of ground-water contamination at the facility and to control the movement and discharge of contaminants. A numerical model of the ground-water-flow system in the area of NSA Memphis was constructed and calibrated so that quantifiable estimates could be made of ground-water-flow rates, direction, and time-of-travel. The sediments beneath NSA Memphis, to a depth of about 200 feet, form a shallow aquifer system. From youngest to oldest, the stratigraphic units that form the shallow aquifer system are alluvium, loess, fluvial deposits, and the Cockfield and Cook Mountain Formations. The shallow aquifer system is organized into five hydrogeologic units: (1) a confining unit composed of the relatively low permeability sediments of the upper alluvium and the loess; (2) the A1 aquifer comprising sand and gravel of the lower alluvium and the fluvial deposits, and sand lenses in the upper part of the preserved section of the Cockfield Formation; (3) a confining unit composed of clay and silt within the upper part of the Cockfield Formation; (4) the Cockfield aquifer comprising sand lenses within the lower part of the preserved section of the Cockfield Formation; and (5) a confining unit formed by low permeability sediments of the Cook Mountain Formation that composes the upper confining unit for the Memphis aquifer. Thicknesses of individual units vary considerably across the facility. Structural and depositional features that affect the occurrence of ground water in the shallow aquifer system include faulting, an erosional scarp, and 'windows' in the confining units. Underlying the shallow aquifer system is the Memphis aquifer, the primary source of water for NSA Memphis and the City of Memphis, Tennessee. Analyses of sediment cores, aquifer and well specific-capacity tests, and numerical modeling were used to estimate the hydraulic characteristics of units of the shallow aquifer system. The vertical hydraulic conductivity of core samples of the alluvium-loess confining unit ranged from about 8.5 x 10-5 to 1.6 x 10-2 feet per day, and the total porosity of the samples ranged from about 35 to 48 percent. The results of the aquifer test were used to estimate a horizontal hydraulic conductivity of about 5 feet per day for the alluvial-fluvial deposits aquifer. The total porosity of core samples of the alluvial-fluvial deposits aquifer ranged from about 22 to 39 percent. The vertical hydraulic conductivity of core samples of the Cockfield confining unit ranged from about 4.5 x 10-5 to 2.5 x 10-3 feet per day, and the total porosity ranged from about 41 to 55 percent. Well specific-capacity tests indicate that the horizontal hydraulic conductivity of sand units that compose the Cockfield aquifer range from about 0.5 to 3 feet per day. The vertical hydraulic conductivity of core samples of the Cook Mountain confining unit ranged from about 5.0 x 10-6 to 9.9 x 10-4 feet per day. Total porosity of core samples of the Cook Mountain confining unit ranged from about 30 to 42 percent. Ground-water flow and time-of-travel in the shallow aquifer system were simulated using the MODFLOW finite-difference model and the -particle-tracking program MODPATH. A three-layer, steady-state model of the shallow aquifer system was constructed and calibrated to the potentiometric surface of the A1 aquifer. Results of numerical modeling support the proposed conceptual hydrogeologic model of the shallow aquifer system. Ground-water time-of-travel in the A1 aquifer was simulated using an assumed effective porosity of 25 percent. Typical ground-water-flow velocities were on the or
NASA Astrophysics Data System (ADS)
Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.
2009-09-01
The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.
Replication in plastic of three-dimensional fossils preserved in indurated clastic sedimentary rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapasink, H.T.; Johnston, P.A.
A new technique for replicating in plastic the fossils preserved in clastic rocks should now make available reliable morphologic and frequency data, comparable in quality to those derived from acid-prepared silicified faunas, for a major segment of the fossil record. The technique involves 3 steps: the dissolution of carbonate in fossiliferous rocks with hydrochloric acid, impregnation of resulting voids with liquid plastic, and dissolution of the rock matrix with hydrofluoric acid, leaving a concentrate of plastic-replaced fossils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pucci, A.A. Jr.
Hydrogeologic maps are typical products of ground-water investigations. The features on these maps can be used by planning commissions to optimize land use. Planners could use confining-unit outcrop maps for siting landfills and hazardous material handling facilities. This paper examines ground-water chemistry from 53 wells, field measurements, hydrogeologic conditions from a quasi-3-D flow model for predevelopment (before 1900), and 1984 flow conditions, and evaluates relationships between them. Several recent reports have examined water quality in the area. The wells for this paper were screened in the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey in amore » 184 square mile area which is undergoing rapid growth. Hydrogeologic conditions considered include aquifer sampled, well location relative to flow-path distance from the outcrop, confining-unit thickness, and confining-unit vertical hydraulic conductivity (Kv). Visual, graphical and principal component analyses were used to evaluate the relationships.« less
Petroleum geology and resources of northeastern Mexico
Peterson, James A.
1985-01-01
Petroleum deposits (primarily gas) in northeastern Mexico occur in two main basins, the Tertiary Burgos basin and the Mesozoic Sabinas basin. About 90 gas fields are present in the Burgos basin, which has undergone active exploration for the past 30-40 years. Production in this basin is from Oligocene and Eocene nearshore marine and deltaic sandstone reservoirs. Most of the fields are small to medium in size on faulted anticlinal or domal structures, some of which may be related to deep-seated salt intrusion. Cumulative production from these fields is about 4 trillion cubic feet gas and 100 million barrels condensate and oil. Since 1975, about 10 gas fields, some with large production rates, have been discovered in Cretaceous carbonate and Jurassic sandstone reservoirs in the Sabinas basin and adjacent Burro-Picachos platform areas. The Sabinas basin, which is in the early stages of exploration and development, may have potential for very large gas reserves. The Sabinas basin is oriented northwesterly with a large number of elongate northwest- or west-trending asymmetric and overturned Laramide anticlines, most of which-are faulted. Some of the structures may be related to movement of Jurassic salt or gypsum. Lower Cretaceous and in some cases Jurassic rocks are exposed in the centers of the larger anticlines, and Upper Cretaceous rocks are exposed in much of the remainder of the basin. A thick section of Upper Cretaceous clastic rocks is partly exposed in tightly folded and thrust-faulted structures of the west-east oriented, deeply subsided Parras basin, which lies south of the Sabinas basin and north of the Sierra Madre Oriental fold and thrust belt south and west of Monterrey. The sedimentary cover of Cretaceous and Jurassic rocks in the Sabinas and Parras basins ranges from about 1,550 m (5,000 ft) to 9,000 m (30,000 ft) in thickness. Upper Jurassic rocks are composed of carbonate and dark organic shaly or sandy beds underlain by an unknown thickness of Late Jurassic and older redbed clastics and evaporites, including halite. Lower Cretaceous rocks are mainly platform carbonate and fine clastic beds with some evaporites (gypsum or anhydrite) deposited in two main rudist reef-bearing carbonate cycles. Upper Cretaceous rocks are mainly continental and marine clastic beds related to early development of the Laramide orogeny. This Upper Cretaceous sequence contains a marine shale and deltaic clastic complex as much as 6,000 m (20,000 ft) or more thick in the Parras basin, which grades northward and eastward to open marine, fine clastic beds. The Burgos basin, which is an extension of the Rio Grande embayment of the western Gulf of Mexico basin province, contains an eastward-thickening wedge of Tertiary continental and marine clastics. These beds are about 1,550 to 3,000 m (5,000-10,000 ft) thick in the outcrop belt on the west side of the basin and thicken to more than 16,000 m (50,000 ft) near the Gulf Coast.
Groundwater conditions and studies in the Augusta–Richmond County area, Georgia, 2008–2009
Gonthier, Gerard; Lawrence, Stephen J.; Peck, Michael F.; Holloway, O. Gary
2011-01-01
Groundwater studies and monitoring efforts conducted during 2008–2009, as part of the U.S. Geological Survey (USGS) Cooperative Water Program with the City of Augusta in Richmond County, Georgia, provided data for the effective management of local water resources. During 2008–2009 the USGS completed: (1) installation of three monitoring wells and the collection of lithologic and geophysical logging data to determine the extent of hydrogeologic units, (2) collection of continuous groundwater-level data from wells near Well Fields 2 and 3, (3) collection of synoptic groundwater-level measurements and construction of potentiometric-surface maps in Richmond County to establish flow gradients and groundwater-flow directions in the Dublin and Midville aquifer systems, (4) completion of a 24-hour aquifer test to determine hydraulic characteristics of the lower Dublin aquifer, and upper and lower Midville aquifers in Well Field 2, and (5) collection of groundwater samples from selected wells in Well Field 2 for laboratory analysis of volatile organic compounds and groundwater tracers to assess groundwater quality and estimate the time of groundwater recharge. Potentiometric-surface maps of the Dublin and Midville aquifer systems for 2008–2009 indicate that the general groundwater flow direction within Richmond County is eastward toward the Savannah River, with the exception of the area around Well Field 2, where pumping interrupts the eastward flow of water toward the Savannah River and causes flow lines to bend toward the center of pumping. Results from a 24-hour aquifer test conducted in 2009 within the upper and lower Midville aquifers at Well Field 2 indicated a transmissivity and storativity for the upper and lower Midville aquifers, combined, of 4,000 feet-squared per day and 2x10-4, respectively. The upper and lower Midville aquifers and the middle lower Midville confining unit, which is 85-feet thick in this area, yielded horizontal hydraulic conductivity and specific storage values of about 45 feet per day and 2x10-6 ft-1, respectively. Results from the 24-hour aquifer test also indicate a low horizontal hydraulic conductivity for the lower Dublin aquifer of less than 1 foot per day. Of the 35 volatile organic compounds (VOCs) analyzed in 23 groundwater samples during 2008–2009, only six were detected above laboratory reporting limits in samples from eight wells. No concentration in groundwater samples collected during 2008–2009 exceeded drinking water standards. Trichloroethene had the maximum VOC concentration (1.9 micrograms per liter) collected from a water sample during 2008–2009. Water-quality sampling of several wells near Well Field 2 indicate that, while in operation, the northernmost production well might have diverted groundwater, containing low levels of trichloroethene from at least two other production wells. Analysis of sulfur hexafluoride data indicate the average year of recharge ranges between 1981 and 1984 for water samples from five wells open to the upper and lower Midville aquifers, and 1991 for a water sample from one shallow well open to the lower Dublin aquifer. All of these ages suggest a short flow path and nearby source of contamination. The actual source of low levels of VOCs at Well Field 2 remains unknown. Three newly installed monitoring wells indicate that hydrogeologic units beneath Well Fields 2 and 3 are composed of sand and clay layers. Hydrogeologic units, encountered at Well Field 2, in order of increasing depth are the lower Dublin confining unit, lower Dublin aquifer, upper Midville confining unit, upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer. West of Well Field 3, hydrogeologic units, in order of increasing depth are the Upper Three Runs aquifer, Gordon confining unit, Gordon aquifer, lower Dublin confining unit, lower Dublin aquifer, upper Midville confining unit, upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer.
Wasson, R.J.; Smith, G.I.; Agrawal, D.P.
1984-01-01
Variations in clastic sediment texture, mineralogy of both evaporites formed at the surface and precipitates formed below the lake floor, and the relative chemical activities of the major dissolved components of the chemical precipitates, have allowed reconstruction of the history of salinity and water-level changes in Didwana Lake, Thar Desert, India. Hypersaline conditions prevailed at about the Last Glacial Maximum, with little evidence of clastic sediments entering the lake. Between ca. 13,000 and 6000 B.P. the lake level fluctuated widely, the lake alternately hypersaline and fresh, and clastic sediments were delivered to the lake at a low rate. Deep-water conditions occurred ca. 6000 B.P. and clastic influx increased abruptly. The water level dropped towards 4000 B.P. when the lake dried briefly. Since 4000 B.P. the lake has been ephemeral with a lowered rate of sedimentation and mildly saline conditions rather like those of today. This sequence of changes documented in the lake parallels changes in vegetation recorded in published pollen diagrams from both the Thar and the Arabian Sea. Correlation of the various lines of evidence suggests that the climate of the Last Glacial Maximum at Didwana was dry and windy with a weak monsson circulation. The monsson was re-established between ca. 13,000 and a little before 6000 B.P., and, when winter rainfall increased ca. 6000 B.P., the lake filled to its maximum depth. ?? 1984.
NASA Astrophysics Data System (ADS)
Hara, Hidetoshi; Kunii, Miyuki; Hisada, Ken-ichiro; Ueno, Katsumi; Kamata, Yoshihito; Srichan, Weerapan; Charusiri, Punya; Charoentitirat, Thasinee; Watarai, Megumi; Adachi, Yoshiko; Kurihara, Toshiyuki
2012-11-01
The provenance, source rock compositions, and sediment supply system for a convergence zone of the Paleo-Tethys were reconstructed based on the petrography and geochemistry of clastic rocks of the Inthanon Zone, northern Thailand. The clastic rocks are classified into two types based on field and microscopic observations, the modal composition of sandstone, and mineral compositions: (1) lithic sandstone and shale within mélange in a Permo-Triassic accretionary complex; and (2) Carboniferous quartzose sandstone and mudstone within the Sibumasu Block. Geochemical data indicate that the clastic rocks of the mélange were derived from continental island arc and continental margin settings, which correspond to felsic volcanic rocks within the Sukhothai Zone and quartz-rich fragments within the Indochina Block, respectively. The results of a mixing model indicate the source rocks were approximately 35% volcanic rocks of the Sukhothai Zone and 65% craton sandstone and upper continental crust of the Indochina Block. In contrast, Carboniferous quartzose sedimentary rocks within the Sibumasu Block originated from a continental margin, without a contribution from volcanic rocks. In terms of Paleo-Tethys subduction, a continental island arc in the Sukhothai Zone evolved in tandem with Late Permian-Triassic forearc basins and volcanic activity during the Middle-early Late Triassic. The accretionary complex formed contemporaneously with the evolution of continental island arc during the Permo-Triassic, supplied with sediment from the Sukhothai Zone and the Indochina Block.
Ground-water flow in the New Jersey Coastal Plain
Martin, Mary
1998-01-01
Ground-water flow in 10 aquifers and 9 intervening confining units of the New Jersey Coastal Plain was simulated as part of the Regional Aquifer System Analysis. Data on aquifer and confining unit characteristics and on pumpage and water levels from 1918 through 1980 were incorporated into a multilayer finite-difference model. The report describes the conceptual hydrogeologic model of the unstressed flow systems, the methods and approach used in simulating flow, and the results of the simulations.
NASA Astrophysics Data System (ADS)
Riebe, My E. I.; Huber, Liliane; Metzler, Knut; Busemann, Henner; Luginbuehl, Stefanie M.; Meier, Matthias M. M.; Maden, Colin; Wieler, Rainer
2017-09-01
Whether or not some meteorites retain a record of irradiation by a large flux of energetic particles from the early sun in the form of excesses of cosmic-ray produced noble gases in individual crystals or single chondrules is a topic of ongoing debate. Here, we present He and Ne isotopic data for individual chondrules in Murchison, a chondritic regolith breccia of the CM group. We separated 27 chondrules from a clastic matrix portion and 26 chondrules from an adjacent single so-called "primary accretionary rock" (Metzler et al., 1992). All chondrules from the primary rock fragment are expected to share a common irradiation history, whereas chondrules from the clastic matrix were stirred in the regolith independently of each other. All "primary rock chondrules" and 23 of the "matrix chondrules" have very similar concentrations of cosmogenic 3He and 21Ne, corresponding to a cosmic-ray exposure age to galactic cosmic rays (GCR) of ∼1.3-1.9 Ma, in the range of Murchison's meteoroid exposure age determined with cosmogenic radionuclides. Four clastic matrix chondrules contain excesses of cosmogenic 3He and 21Ne, corresponding to nominal 4π exposure ages of ∼4-∼29 Ma, with a Ne isotopic composition as expected for production by GCR. If the fraction of excess cosmogenic gas bearing chondrules in the primary rock and clastic matrix were the same, we would expect this result with a statistical probability of only 0.5 - 2.7%. Therefore, the exposure age distributions for Murchison chondrules in primary rock and clastic matrix are very likely different. Such a difference is expected if the excess cosmogenic gas was acquired by some of the matrix chondrules in the regolith, but not if chondrules were irradiated in the solar nebula by the early sun before they accreted on the Murchison parent body. Therefore, Murchison does not provide evidence for irradiation by a high fluence of energetic particles from the early sun. By inference, this statement likely holds for the other regolithic meteorites for which large occasional excesses of cosmogenic noble gases have been reported. Considering pre-irradiation in a regolith (2π exposure), the pre-exposure times for these four chondrules are at least between some 4 and 40 Ma near the very surface of the parent body, and even longer if they were buried deeper in the regolith.
Chesnut, D.R.
1997-01-01
Stratigraphic analysis of Lower and Middle Pennsylvanian rocks of part of the Central Appalachian Basin reveals two orders of cycles and one overall trend in the vertical sequence of coal-bearing rocks. The smallest order cycle, the coal-clastic cycle, begins at the top of a major-resource coal bed and is composed of a vertical sequence of shale, siltstone, sandstone, seat rock, and overlying coal, which, in turn, is overlain by the next coal-clastic sequence. The average duration of the coal-clastic cycle has been calculated to be about 0.4 m.y. The major marine-transgression cycle is composed of five to seven coal-clastic cycles and is distinguished by the occurrence of widespread, relatively thick (generally thicker than 5 m) marine strata at its base. The duration of this cycle has been calculated to be about 2.5 m.y. The Breathitt coarsening-upward trend describes the general upward coarsening of the Middle Pennsylvanian part of the Breathitt Group. The Breathitt Group includes eight major marine-transgression cycles, and was deposited during a period of approximately 20 m.y. The average duration of coal-clastic cycles is of the same order of magnitude (105 year) as the Milankovitch orbital-eccentricity cycles, and matches the 0.4 m.y. second-order eccentricity cycle (Long Earth-Eccentricity cycle). These orbital periodicities are thought to modulate glacial stages and glacio-eustatic levels. The calculated periodicities of the coal-clastic cycles can be used as evidence for glacio-eustatic control of the coal-bearing rocks of the Appalachian Basin. The 2.5-m.y. periodicity of the major marine-transgression cycle does not match any known orbital or tectonic cycle; the cause of this cycle is unknown, but it might represent episodic thrusting in the orogen, propagation of intraplate stresses, or an unidentified orbital cycle. The Breathitt coarsening-upward trend is interpreted to represent the increasing intensity and proximity of the Alleghenian Orogeny. Previously, tectonic subsidence of the basin was considered to be the dominant control on deposition of the coal-bearing rocks of the basin. However, new calculations show that eustatic rates are more significant than averaged subsidence rates for the Pennsylvanian Appalachian Basin. Accordingly, sea-level changes are considered to be a dominant control on coastal sedimentation during the Pennsylvanian. However, tectonic subsidence created the accomodation space for preservation of various orders of cyclic sedimentation; the preserved order of cycles was dependent upon the rate of subsidence from basin margin to axis.
Confined space emergency response: assessing employer and fire department practices.
Wilson, Michael P; Madison, Heather N; Healy, Stephen B
2012-01-01
An emergency response plan for industrial permit-required confined space entry is essential for employee safety and is legally required. Maintaining a trained confined space rescue team, however, is costly and technically challenging. Some employers turn to public fire departments to meet their emergency response requirements. The confined space emergency response practices of employers and fire departments have not been previously assessed. We present (1) federal data on the U.S. occurrence between 1992 and 2005 of confined space fatal incidents involving toxic and/or oxygen-deficient atmospheres; (2) survey data from 21 large companies on permit-required confined space emergency response practices; (3) data on fire department arrival times; and (4) estimates by 10 senior fire officers of fire department rescue times for confined space incidents. Between 1992 and 2005, 431 confined space incidents that met the case definition claimed 530 lives, or about 0.63% of the 84,446 all-cause U.S. occupational fatal injuries that occurred during this period. Eighty-seven (20%) incidents resulted in multiple fatalities. Twelve (57%) of 21 surveyed companies reported that they relied on the fire department for permit-required confined space emergency response. Median fire department arrival times were about 5 min for engines and 7 min for technical rescue units. Fire department confined space rescue time estimates ranged from 48 to 123 min and increased to 70 and 173 min when hazardous materials were present. The study illustrates that (1) confined space incidents represent a small but continuing source of fatal occupational injuries in the United States; (2) a sizeable portion of employers may be relying on public fire departments for permit-required confined space emergency response; and (3) in the event of a life-threatening emergency, fire departments usually are not able to effect a confined space rescue in a timely manner. We propose that the appropriate role for the fire department is to support a properly trained and equipped on-site rescue team and to provide advanced life support intervention following extrication and during ambulance transportation.
NASA Astrophysics Data System (ADS)
Leverington, D. W.
2008-12-01
The use of remote-sensing techniques in the discrimination of rock and soil classes in northern regions can help support a diverse range of activities including environmental characterization, mineral exploration, and the study of Quaternary paleoenvironments. Images of low spectral resolution can commonly be used in the mapping of lithological classes possessing distinct spectral characteristics, but hyperspectral databases offer greater potential for discrimination of materials distinguished by more subtle reflectance properties. Orbiting sensors offer an especially flexible and cost-effective means for acquisition of data to workers unable to conduct airborne surveys. In an effort to better constrain the utility of hyperspectral datasets in northern research, this study undertook to investigate the effectiveness of EO-1 Hyperion data in the discrimination and mapping of surface classes at a study area on Melville Island, Nunavut. Bedrock units in the immediate study area consist of late-Paleozoic clastic and carbonate sequences of the Sverdrup Basin. Weathered and frost-shattered felsenmeer, predominantly taking the form of boulder- to pebble-sized clasts that have accumulated in place and that mantle parent bedrock units, is the most common surface material in the study area. Hyperion data were converted from at-sensor radiance to reflectance, and were then linearly unmixed on the basis of end-member spectra measured from field samples. Hyperion unmixing results effectively portray the general fractional cover of six end members, although the fraction images of several materials contain background values that in some areas overestimate surface exposure. The best separated end members include the snow, green vegetation, and red-weathering sandstone classes, whereas the classes most negatively affected by elevated fraction values include the mudstone, limestone, and 'other' sandstone classes. Local overestimates of fractional cover are likely related to the shared lithological and weathering characteristics of several clastic and carbonate units, and may also be related to the lower radiometric precision characteristic of Hyperion data. Despite these issues, the databases generated in this study successfully provide useful complementary information to that provided by maps of local bedrock geology.
A unique approach to estimating lateral anisotropy in complex geohydrologic environments
Halford, K.J.; Campbell, B.
2004-01-01
Aquifers in fractured rock or karstic settings are likely to have anisotropic transmissivity distributions. Aquifer tests that are performed in these settings also we frequently affected by leakage from adjacent confining units. Finite-difference models such as MODFLOW are convenient tools for estimating the hydraulic characteristics of the stressed aquifer and adjacent confining units but are poor tools for the estimation of lateral anisotropy. This limitation of finite-difference methods can be overcome by application of the spin method, a technique whereby the positions of the observation wells are rotated about the production well to estimate anisotropy and orientation. Formal parameter estimation is necessary to analyze aquifer tests because of the number of parameters that we estimated. As a test, transmissivity, anisotropy, and orientation were successfully estimated for a simple hypothetical problem with known properties. The technique also was applied to estimate hydraulic properties of the Santee Limestone/Black Mingo (SL/BM) aquifer and a leaky confining unit beneath Charleston, South Carolina. A 9-day aquifer test with an average discharge of 644 1/min was analyzed numerically. Drawdowns in the SL/BM aquifer and confining unit were simulated with a 12-layer MODFLOW model that was discretized into 81 rows of 81 columns. Simulated drawdowns at seven observation wells that ranged from 23 to 2700 m from the production well were matched to measured drawdowns. Transmissivity estimated along the minor axis ranged from 10 to 15 m2/day and along the major axis ranged from 80 to 100 m2/day. The major axis of transmissivity was oriented along compass heading 116?? (degrees clockwise from north), which agrees with geologic interpretations. Vertical hydraulic conductivity and specific storage estimates for the overlying confining unit were 4 ?? 10-5m/day and 2 ?? 10-4 1/m, respectively. ?? 2004 International Association of Hydraulic Engineering and Research.
Evolution of a Permo-Triassic sedimentary melange, Grindstone terrane, east-central Oregon
Blome, C.D.; Nestell, M.K.
1991-01-01
Perceives the Grindstone rocks to be a sedimentary melange composed of Paleozoic limestone slide and slump blocks that became detached from a carbonate shelf fringing a volcanic knoll or edifice in Late Permian to Middle Triassic time and were intermixed with Permian and Triassic slope to basinal clastic and volcaniclastic rocks in a forearc basin setting. Paleogeographic affinities of the Grindstone limestone faunas and volcaniclastic debris in the limestone and clastic rocks all indicate deposition in promixity to an island-arc system near the North American craton. -from Authors
NASA Astrophysics Data System (ADS)
Patočka, F.; Pruner, P.; Štorch, P.
The Barrandian area (the Teplá-Barrandian unit, Bohemian Massif) provided palaeomagnetic results on Early Palaeozoic rocks and chemical data on siliciclastic sediments of both Middle Cambrian and Early Ordovician to Middle Devonian sedimentary sequences; an outcoming interpretation defined source areas of clastic material and palaeotectonic settings of the siliciclastic rock deposition. The siliciclastic rocks of the earliest Palaeozoic sedimentation cycle, deposited in the Cambrian Příbram-Jince Basin of the Barrandian, were derived from an early Cadomian volcanic island arc developed on Neoproterozoic oceanic lithosphere and accreted to a Cadomian active margin of northwestern Gondwana. Inversion of relief terminated the Cambrian sedimentation, and a successory Prague Basin subsided nearby since Tremadocian. Source area of the Ordovician and Early Silurian shallow-marine siliciclastic sediments corresponded to progressively dissected crust of continental arc/active continental margin type of Cadomian age. Since Late Ordovician onwards both synsedimentary within-plate basic volcanics and older sediments had been contributing in recognizable proportions to the siliciclastic rocks. The siliciclastic sedimentation was replaced by deposition of carbonate rocks throughout late Early Silurian to Early Devonian period of withdrawal of the Cadomian clastic material source. Above the carbonates an early Givetian flysch-like siliciclastic suite completed sedimentation in the Barrandian. In times between Middle Cambrian and Early/Middle Devonian boundary interval an extensional tectonic setting prevailed in the Teplá-Barrandian unit. The extensional regime was related to Early Palaeozoic large-scale fragmentation of the Cadomian belt of northwestern Gondwana and origin of Armorican microcontinent assemblage. The Teplá-Barrandian unit was also engaged in a peri-equatorially oriented drift of Armorican microcontinent assemblage throughout the Early Palaeozoic: respective palaeolatitudes of 58°S (Middle Cambrian) and 17°S (Middle Devonian) were inferred for the Barrandian rocks. The Middle Devonian flysch-like siliciclastics of the Prague Basin suggest a reappearance of the deeply dissected Cadomian source area in a proximity of the Barrandian due to early Variscan convergences and collisions of the Armorican microcontinents. Significant palaeotectonic rotations are palaeomagnetically evidenced to take place during oblique convergence and final docking of the Teplá-Barrandian microplate within the Variscan terrane mosaic of the Bohemian Massif.
NASA Astrophysics Data System (ADS)
Atwia, Mohamed G.; Abu-Heleika, Mohamed M.; El-Horiny, Mohamed M.
2013-04-01
An integrated geological, hydrochemical, and geoelectrical investigation of shallow groundwater occurrence in Burg El-Arab area, northwestern coastal zone of Egypt is carried out. Groundwater of oolitic limestone and clastic aquifers is the principal source of water supply for agriculture in the area. The purpose of this study is to describe the hydrogeologic characteristics of aquifers and to provide a general evaluation of the chemical quality of water in aquifers. Chemical analysis was used to evaluate the chemical characteristics of groundwater and assessment of water quality. Electrical soundings were employed to delineate different water bearing formations and the configuration of the interface between them. Thirty-four water samples were collected and chemically analyzed from the two main aquifers in the area. Groundwaters of oolitic limestone aquifer are dominated by NaCl and have average TDS of approximately 2830 mg/l. Groundwater samples from clastic aquifer are slightly weakly mineralized (TDS approximately 2700 mg/l) and dominated by CaSO4. The hydrochemical data indicate that the groundwater is of meteoric origin. The variation in the chemistry of water is thought to be related to the weathering of minerals of the water-bearing sediments, mixing with marine water, and leaching of fertilizers in the newly reclaimed areas. Groundwater of the area can be used for irrigation under special circumstances management as the sodium hazard is medium while the salinity hazard ranges from high to very high. Thirty-four profiles of vertical electrical soundings (VESs) were obtained in Burg El-Arab area to examine the variations of subsurface geology and associated groundwater chemistry. Resistivity and thickness of aquifers, resistivity of the unsaturated zone and depth to the confining bed have been delineated from the interpretation of electrical sounding data. The range of electrical resistivity values have been assigned to different layers by calibrating electrical resistivity with the borehole data. Results of the vertical electrical soundings and the hydrochemistry of the groundwater samples show that the brackish groundwater is dominated in the study area whereas the fresh groundwater is found as isolated patches in oolitic limestone aquifer.
Wicks, C.M.; Herman, J.S.
1994-01-01
In west-central Florida, sections of the Upper Floridan aquifer system range in character from confined to leaky to unconfined. The confining unit is the Hawthorn Formation, a clay-rich sequence. The presence or absence of the Hawthorn Formation affects the geochemical evolution of the ground water in the Upper Floridan aquifer system. Mass-balance and mass-transfer models suggest that, in unconfined areas, the geochemical reactions are dolomite dissolution, ion exchange (Mg for Na, K), sulfate reduction, calcite dissolution, and CO2 exchange. In the areas in which the Hawthorn Formation is leaky, the evolution of the ground water is accounted for by ion exchange, sulfate reduction, calcite dissolution, and CO2 exchange. In the confined areas, no ion exchange and only limited sulfate reduction occur, and the chemical character of the ground water is consistent with dolomite and gypsum dissolution, calcite precipitation, and CO2 ingassing. The Hawthorn Formation acts both as a physical barrier to the transport of CO2 and organic matter and as a source of ion-exchange sites, but the carbonate-mineral reactions are largely unaffected by the extent of confinement of the Upper Floridan aquifer. ?? 1994.
Calder, J.H.; Gibling, M.R.; Eble, C.F.; Scott, A.C.; MacNeil, D.J.
1996-01-01
Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A mutidisciplinary approach was employed to interpret the origins of the coal bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of Psaronius type tree ferns co-existed with the lepidodendrids on clastic substrates, which developed as incipient gleysol soils. The entombment of the forest can be ascribed to its distributary coastal setting, local subsidence and a seasonal climate that fostered wildfire and increased sedimentation.
High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.
Blasi, Pasquale; Amato, Elena; D'Angelo, Marta
2015-09-18
The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E
28 CFR 541.49 - Review of control unit placement.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Once every 30 days, the control unit team, comprised of the control unit manager and other members... required to attend the team meeting in order to be eligible for the previous month's stay in the control unit to be credited towards the projected duration of confinement in that unit. The unit team shall...
NASA Astrophysics Data System (ADS)
Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Morales-Yáñez, Axél; de la Torre-González, Alam Israel; Nápoles-Valenzuela, Juan Ivan
2018-04-01
In the northeastern Mixteco terrane of southern Mexico, in the Ixcaquixtla-Atzumba region, the recycling of Amazonian detrital zircons records the paleogeography during the Mesozoic period in the context of the breakup of Pangea, a phenomenon that disarticulated the Sanozama-La Mora paleo-river. The clastic units of southern Mexico in the Ayuquila, Otlaltepec and Zapotitlán Mesozoic basins, as well as in the Atzumba Cenozoic basin, are characterized by detrital zircon contents with ages specific to the Amazonian craton, ranging between 3040 and 1278 Ma. The presence of zircons of Amazonian affinity suggests a provenance by recycling from carrier units such as the La Mora Formation or the Ayú Complex. In the area, the Ayú and Acatlán complexes form the Cosoltepec block, a paleogeographic element that during Early Cretaceous time acted as the divide between the slopes of the paleo-Gulf of Mexico and the paleo-Pacific Ocean. The sedimentological characteristics of the Jurassic-Cenozoic clastic successions in the Ixcaquixtla-Atzumba region denote relatively short transport in braided fluvial systems and alluvial fans. In this way, several basins are recognized around the Cosoltepec block. At the southeastern edge of the Cosoltepec block, the Ayuquila and Tecomazúchil formations accumulated in the Ayuquila continental basin on the paleo-Pacific Ocean slope. On the other hand, within the paleo-Gulf of Mexico slope, in the Otlaltepec continental basin, the Piedra Hueca and the Otlaltepec formations accumulated. The upper member of the Santa Lucía Formation accumulated in a transitional environment on the southwestern shoulder of the Zapotitlán basin, as well as on the paleo-Gulf of Mexico slope. In the Ayuquila basin, a marine transgression is recognized that advanced from south to north during the Late Jurassic. At the northeastern edge of the Cosoltepec block, we propose that the Santa Lucía formation attests to a transgression from the paleo-Gulf of Mexico during the Early Cretaceous. Thus, the Cosoltepec block flood occurred during the Albian-Cenomanian, as recognized by the Cipiapa Limestone accumulation. The subsequent uplift of the region and its incorporation into the continental slope is attested by the Atzumba Formation, which offers further evidence of the content of Amazonian detrital zircons recycled from the Ayú Complex. The Atzumba Formation accumulated as alluvial fans during the Paleogene at the hanging wall of the Chazumba fault, which displaced the Cosoltepec block. That is, the detrital zircons in the clastic successions of the Ixcaquixtla-Atzumba region bear indirect testimony to the origin and Amazonian affinity of the Ayú Complex and/or other lithodemes of the Acatlán Complex.
Geological history of the west Libyan offshore and adjoining regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.
1988-08-01
The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic.more » From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.« less
NASA Astrophysics Data System (ADS)
Shane, Timothy E.
The middle member of the Eagle Ford formation is a heterogeneous, carbonate-shale unit that is a focus of unconventional oil and gas exploration in southern Texas. Exploration results have been mixed because of the apparent heterogeneity of the member. In this study, the extent of heterogeneities in the Eagle Ford on the "bedding-scale" were examined by evaluating changes in organic and inorganic geochemistry. Samples were collected vertically in outcrop covering four non-consecutive parasequences. These samples were analyzed using a Rock Eval 6 Analyzer(TM) to determine source rock generative potential and a Niton(TM) XRF to evaluate inorganic geochemistry to identify changes in paleoredox conditions, paleoproductivity, and clastic influx. From pyrolysis data, it is determined that Parasequence 1 potentially displays an increase in source rock potential, Parasequence 2 potentially displays a constant source rock potential, and Parasequences 3 and 4 potentially display overall decreases in source rock potential during deposition. From the inferred paleoredox conditions, paleoproductivity, and clastic influx, it is determined that Parasequence 1 experienced a potential increase in oxygen abundance, Parasequence 2 experienced a potential decrease in oxygen abundance, and Parasequences 3 and 4 potentially experienced increases in oxygen abundance during deposition. It is concluded that geochemical heterogeneities do exist on a bedding scale within the parasequences of the middle member of the Eagle Ford. Additional comprehensive sampling and analysis is recommended in the future in order to tie these data to subsurface data for economic application.
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
Geohydrology and simulated ground-water flow in an irrigated area of northwestern Indiana
Arihood, L.D.; Basch, M.E.
1994-01-01
Water for irrigation in parts of Newton and Jasper Counties and adjacent areas of northwestern Indiana is pumped mostly from the carbonate- bedrock aquifer that underlies glacial drift. To help in managing the ground-water resources of the area, a three-dimensional ground-water model was developed and tested with hydrologic data collected during 1986 and 1988. Two major aquifers and a confining unit were identified. The surficial unconfined outwash aquifer consists of sand and some gravel. Saturated thickness averages about 30 feet. Estimated values of horizontal hydraulic conductivity and storage coefficient are 350 feet per day and 0.07, respectively. The generally continuous confining unit beneath the outwash aquifer is composed predominantly of till and lacustrine silt and clay and is 0 to 125 feet thick. The carbonate-bedrock aquifer is composed of Silurian and Devonian dolomitic limestone; dolomite and has a median transmissivity of 2,000 feet squared per day. A nine-layer digital model was developed to simulate flow in the ground-water system. The mean absolute errors for simulated water levels in the bedrock aquifer ranged from 5 to 7 feet for two recent periods of irrigation. The component of the flow system that most affects water-level drawdowns in the bedrock aquifer is the confining unit which controls the rate of leakage to the bedrock aquifer. The model is most accurate in areas for which data for confining-unit thickness and bedrock water levels are available.
Pre-lithification tectonic foliation development in a clastic sedimentary sequence
NASA Astrophysics Data System (ADS)
Meere, Patrick; Mulchrone, Kieran; McCarthy, David; Timmermann, Martin; Dewey, John
2016-04-01
The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case fabric development is achieved by a number of deformation mechanisms including grain rigid body rotation, crystal-plastic deformation and pressure solution (wet diffusion). The latter is believed to be the primary mechanism responsible for shortening and the domainal structure of cleavage development commonly observed in low grade metamorphic rocks. In this study we combine field observations with strain analysis and modelling to fully characterise considerable (>50%) mid-Devonian Acadian crustal shortening in a Devonian clastic sedimentary sequence from south west Ireland. Despite these high levels of shortening and associated penetrative tectonic fabric there is a marked absence of the expected domainal cleavage structure and intra-clast deformation, which are expected with this level of deformation. In contrast to the expected deformation processes associated with conventional cleavage development, fabrics in these rocks are a product of translation, rigid body rotation and repacking of extra-formational clasts during deformation of an un-lithified clastic sedimentary sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, F.A. Jr.; Vermeul, V.R.
Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated usingmore » recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.« less
The tectonic evolution of western Central Iran seen through detrital white mica
NASA Astrophysics Data System (ADS)
Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann
2015-05-01
A first order survey of 40Ar/39Ar dating of detrital white mica from Jurassic to Pliocene sandstones has been carried out in order to reveal the tectonic evolution of blocks in Central Iran. The Central Iran block was believed to represent a stable Precambrian block. Our results indicate that: (1) Only a very small proportion of Precambrian but abundant Paleozoic and Mesozoic detrital white mica indicate the Phanerozoic, mostly Mesozoic age of metamorphic crust exposed in Central Iran. The oldest but scarce detrital white mica grains have ages ranging from 524 to 826 Ma heralding a Late Precambrian and Cambrian crystalline basement or cannibalism from older clastic successions. (2) Jurassic and Cretaceous sandstones from the west and east of the Chapedony fault yield different age spectra, with a dominance of Variscan ages (ca. 308-385 Ma) in the Biabanak unit west of the Chapedony fault compared to coeval sandstones from the block east of the Chapedony fault, where Variscan ages are subordinate and Cimmerian ages predominate. The micas from the Biabanak unit are most likely derived from the Variscan accretionary complex exposed in the Anarak-Jandaq areas further northwest. This result underlines the importance of a major block boundary identified as the Chapedony fault, which is in extension of a fault previously proposed. (3) Two stages of Cimmerian events are visible in our data set from Cretaceous and Paleogene sandstones, a cluster around 170 Ma and at ca. 205 Ma. These clusters suggest a two-stage Cimmerian evolution of the largely amphibolite-grade metamorphic Posht-e-Badam and Boneh Shurow complexes. (4) The youngest micas in Paleogene conglomerates have an age of ca. 100 Ma and are most likely derived from the base of the Posht-e-Badam complex. No record of the uplifted Eocene Chapedony metamorphic core complex has been found in Eocene and Pliocene clastic rocks.
NASA Astrophysics Data System (ADS)
Sami Us, Muhammed; Tekin, Erdoǧan
2016-04-01
The Cihanbeyli-Yeniceoba Tertiary basin and other neighbouring basins such as Haymana on the NW and Tuzgölü on the east were formed after ophiolite emplacement and then evolved as tectonic controlled basins bordered with normal and oblique-slip fault systems NW-SE in extending. Where sedimentation commenced with Late Cretaceous-Early Paleocene marine transgression and ended by late Middle Eocene-Early Oligocene regression that involved thick evaporite sedimentation just before the onset of the terrestrial regime through the early Late Oligocene-Pliocene time. This study mainly was focused on the evaporitic sediments of the Late Oligocene-Middle Miocene aged Gökdaǧ Formation which unconformably overlain by fluvial and alluvial units of the Cihanbeyli Formation (Late Miocene-Early Pliocene). Typical outcrops have been seen around the Yeniceoba-Kütükuşaǧı-Kuşca region located in the western part of Tuz Gölü (Salt Lake). The study includes several targets. These are stratigraphical contact and relationship between evaporite and non-evaporite units, evaporite environments and mineralogical, petrographical and microtextural features of the evaporites. The following five evaporite facies were described: a) massive gypsum (F1), b) laminated-banded gypsum (F2), c) nodular gypsum (F3), d) clastic gypsum (F4), e) satin-spar gypsum (F5). On the other hand polarized microscope and scanning electron microscope (SEM) show that secondary gypsums are represented by alabastrine and porfiroblastic textures. Primary anhydrite relicts, euhedral celestine crystals accompanied with the secondary gypsum. Clastic gypsum is rich in fragment fossils (mostly nummulites) and kaolinite clay minerals. All data suggest that evaporites were widely deposited as basin margin evaporite that temporally underwent atmospheric conditions gave rise to detrital gypsum ranging from gypsarenite to gypsum conglomerate. Acknowledgement:This presentation was prepared MS thesis to financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK-CAYDAG) with 113 Y 090 numbered project.
28 CFR 541.41 - Institutional referral.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.41 Institutional referral. (a) The Warden shall submit a recommendation for referral of an inmate for placement in a control unit to... following factors in a recommendation for control unit placement. (1) Any incident during confinement in...
Marsh, Erin; Hitzman, Murray W.; Leach, David L.
2016-01-01
Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.
Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.
2013-12-01
Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al., 2009). Clastic sedimentation may reflect the glacier thermal regime. Relic plants now being uncovered by the receding QIC (Thompson et al., 2006, 2013) suggest advance of cold-based ice that did not produce significant meltwater or rock flour. Striations, also present on the landscape, indicate warm-based ice conditions, which would produce meltwater and rock flour. We suggest that these striations were likely produced during ice cap retreat. A small QIC during early and middle Holocene time and large QIC during late Holocene time is similar to the Holocene extents of many Northern Hemisphere glaciers and apparently follows the pattern of Northern Hemisphere summer insolation.
Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.
2017-01-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
NASA Astrophysics Data System (ADS)
Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.
2017-09-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
Ultra-high-Q three-dimensional photonic crystal nano-resonators.
Tang, Lingling; Yoshie, Tomoyuki
2007-12-10
Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.
NASA Astrophysics Data System (ADS)
Odling, N. E.; Serrano, R. P.; Hussein, M.; Guadagnini, A.; Riva, M.
2013-12-01
In confined and semi-confined aquifers, borehole water levels respond to fluctuations in barometric pressure and this response can be used to estimate the properties of aquifer confining layers. We use this response as indicator of groundwater vulnerability for the semi-confined Chalk aquifer in East Yorkshire, UK. Time series data of borehole water levels are corrected for Earth tides and recharge, and barometric response functions (BRFs) estimated using cross-spectral deconvolution-averaging techniques. The resulting BRFs are fitted using a theoretical model of the BRF gain and phase for a semi-confined aquifer (Rojstaczer, 1988) to obtain confining layer properties. For all of the boreholes, non-zero hydraulic diffusivities for the confining layer were found indicating that the aquifer is semi-confined. A ';characteristic time scale' based on the hydraulic and pneumatic diffusivities of the confining layer is introduced as a measure of the degree of aquifer confinement and therefore groundwater vulnerability. The analytical model assumes that the confining layer and aquifer are homogeneous. However, in nature, confining layers are heterogeneous and groundwater vulnerability dominated by the presence of high diffusivity, high flow pathways through the confining layer to the aquifer. A transient numerical model (MODFLOW) was constructed to test the impact of such heterogeneities on the BRF. In the model, an observed barometric pressure time series is used as a boundary condition applied to the upper surface of the top unit of the model (representing the confining layer) and BRFs determined from the time series of model heads in the bottom unit (representing the aquifer). The results from a numerical model with a homogeneous confining layer were found to accurately reproduce the BRFs from a modified version of the analytical model. The introduction of a localized, high diffusive block in the confining layer was found to modify the BRF, reducing the gain amplitude while having limited impact on the phase. It was found that the BRF reflects the presence of a fully penetrating, high diffusivity heterogeneity up to several hundred meters distant from the observation borehole, and shows little sensitivity to the heterogeneity's horizontal dimension. Heterogeneities that are 50% partially penetrating do not significantly impact on the BRF and 90% penetrating heterogeneities can only be detected when large and close to the observation borehole. These results show that BRF gain may be particularly useful in detecting the presence of fully penetrating heterogeneities of high diffusivity within confining layers that potentially enhance groundwater vulnerability. This research has been funded in part through the EU ITN ';IMVUL' (PITN-GA-2008-212298). Reference: Rojstaczer, S. (1988) Determination of fluid-flow properties from the response of water levels in wells to atmospheric loading, Water Resources Research, 24(11), 1927-1938.
Ulmishek, Gregory F.
2001-01-01
Three structural provinces of this report, the Nepa-Botuoba High, the Angara-Lena Terrace, and the Cis-Patom Foredeep, occupy the southeastern part of the Siberian craton northwest of the Baikal-Patom folded region (fig. 1). The provinces are similar in many aspects of their history of development, stratigraphic composition, and petroleum geology characteristics. The sedimentary cover of the provinces overlies the Archean?Lower Proterozoic basement of the Siberian craton. Over most of the area of the provinces, the basement is covered by Vendian (uppermost Proterozoic, 650?570 Ma) clastic and carbonate rocks. Unlike the case in the more northwestern areas of the craton, older Riphean sedimentary rocks here are largely absent and they appear in the stratigraphic sequence only in parts of the Cis-Patom Foredeep province. Most of the overlying sedimentary section consists of Cambrian and Ordovician carbonate and clastic rocks, and it includes a thick Lower Cambrian salt-bearing formation. Younger rocks are thin and are present only in marginal areas. 1 A single total petroleum system (TPS) embraces all three provinces. The TPS is unique in two aspects: (1) its rich hydro-carbon reserves are derived from Precambrian source rocks and (2) preservation of oil and gas fields is extremely long owing to the presence of the Lower Cambrian undeformed salt seal. Discovered reserves of the TPS are about 2 billion barrels of oil and more than 30 trillion cubic feet of gas. The stratigraphic distribution of oil and gas reserves is narrow; all fields are in Vendian to lowermost Cambrian clastic and carbonate reservoirs that occur below Lower Cambrian salt. Both structural and stratigraphic traps are known. Source rocks are absent in the sedimentary cover of the provinces, with the possible exception of a narrow zone on the margin of the Cis-Patom Foredeep province. Source rocks are interpreted here to be Riphean and Vendian organic-rich shales of the Baikal-Patom folded region. These rocks presently are deformed and metamorphosed, but they generated oil and gas before the deformation occurred in Late Silurian and Devonian time. Generated hydrocarbons migrated updip onto the craton margin. The time of migration and formation of fields is constrained by the deposition of Lower Cambrian salt and by the Late Silurian or Devonian metamorphism of source rocks. This time frame indicates that the TPS is one of the oldest petroleum systems in the world. All three provinces are exploration frontiers, and available geologic data are limited; therefore, only one assessment unit has been identified. The largest undiscovered hydrocarbon resources are expected to be in Vendian clastic reservoirs in both structural and stratigraphic traps of the Nepa-Botuoba High province. The petroleum potential of Vendian?lowermost Cambrian carbonate reservoirs is smaller. Nevertheless, these reservoirs may contain significant resources. Gas is expected to dominate over oil in the resource base.
Aquifer-nomenclature guidelines
Laney, R.L.; Davidson, C.B.
1986-01-01
Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)
Structure of the North American Atlantic Continental Margin
Schlee, J.S.; Klitgord, K.K.
1986-01-01
Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors
Gonthier, Gerard
2012-01-01
Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d), respectively. Horizontal hydraulic conductivity of 4 ft/d for the Lower Floridan confining unit, derived from aquifer-test analyses, is near the midrange for values derived from packer-isolated slug tests. The transmissivity of the entire Floridan aquifer system derived from aquifer-test analyses totals about 51,000 ft2/d, similar to the value of 58,000 ft2/d derived from open slug tests on the entire Floridan aquifer system. Water-level data for each aquifer test were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small (less than 1 foot) water-level responses to aquifer-test pumping. During the 72-hour aquifer test of pumping the Lower Floridan aquifer, a drawdown response of 51.7 ft was observed in the Lower Floridan pumped well and a drawdown response of 0.9 foot was observed in the Upper Floridan observation well located 85 ft from the pumped well.
Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; ,; Lautier, J.C.
2012-01-01
Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, L.S.; Ettensohn, F.R.
The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence ofmore » benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.« less
Subglacial Depositional Processes in the Port Askaig Formation (Neoproterozoic) of Ireland
NASA Astrophysics Data System (ADS)
Knight, J.
2004-12-01
The Port Askaig Formation was deposited during the Vendian glaciation (c. 650 Ma) and is a range of tillites that outcrop discontinuously from Banffshire (Scotland) to Connemara (Ireland). Sedimentary structures commonly observed include dropstones and sediment drapes, interpreted as deposition from a floating glacial ice shelf in a shallow marginal sea. Other structures, such as intersecting clastic dikes, have been interpreted as evidence for subaerial exposure of the tillite surface. Exposures of the Port Askaig Formation were examined at its Irish type area at Kiltyfanned Lough, County Donegal. Here, homogeneous sandy beds with internal planar bedding structures are separated by laminated fine sand beds which have erosional upper surfaces. The laminated beds are clast-free and individual laminae are laterally continuous and undisturbed. Larger clasts lie bed-parallel and are draped by overlying beds. Occasionally drapes are asymmetric with a thickened sediment prow, suggestive of flow direction. The clastic dikes are polygonal in plan view, may be isolated or interconnected, and are often arranged in parallel sheets which pinch out laterally. Internally, the clastic dikes are infilled with coarse sand to gravel. Infills are often aligned parallel to dike margins. The presence of draped and deformed sediments suggest a subglacial environment with free water availability. The flat-lying morphology of clasts also favours a subglacial rather than a full marine environment. The morphology and disposition of clastic dikes is interpreted as due to subglacial hydrofracturing of a till sheet and upward passage of sediment-charged water through the fracture zone, which is known from late Pleistocene and Precambrian tillites elsewhere. Variations in water availability can be reconciled by a sub-ice shelf depositional model with spatial and temporal changes in tidally-induced ice-bed coupling.
Diatremes of the Hopi Buttes, Arizona; chemical and statistical analyses
Wenrich, K.J.; Mascarenas, J.F.
1982-01-01
Lacustrine sediments deposited in maar lakes of the Hopi Buttes diatremes are hosts for uranium mineralization of as much as 1500 ppm. The monchiquites and limburgite turfs erupted from the diatremes are distinguished from normal alkalic basalts of the Colorado Plateau by their extreme silica undersaturation and high water, TiO2, and P2O5 contents. Many trace elements are also unusually abundant, including Ag, As, Ba, Be, Ce, Dy, Eu, F, Gd, Hf, La, Nd, Pb, Rb, Se, Sm, Sn, Sr, Ta, Tb, Th, U, V, Zn, and Zr. The lacustrine sediments, which consist predominantly of travertine and clastic rocks, are the hosts for syngenetic and epigenetic uranium mineralization of as much as 1500 ppm uranium. Fission track maps show the uranium to be disseminated within the travertine and clastic rocks, and although microprobe analyses have not, as yet, revealed discrete uranium-bearing phases, the clastic rocks show a correlation of high Fe, Ti, and P with areas of high U. Correlation coefficients show that for the travertines, clastics, and limburgite ruffs, Mo, As, Sr, Co, and V appear to have the most consistent and strongest correlations with uranium. Many elements, including many of the rare-earth elements, that are high in these three rocks are also high in the monchiquites, as compared to the average crustal abundance for the respective rock type. This similar suite of anomalous elements, which includes such immobile elements as the rare earths, suggests that Fluids which deposited the travertines were related to the monchiquitic magma. The similar age of about 5 m.y. for both the lake beds and the monchiquites also appears to support this source for the mineralizing fluids.
Use of aluminum sulfate (alum) to decrease ammonia emissions from beef cattle bedded manure packs
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains of the United States. Ammonia volatilization from the surface of the floor and bedding in these confined facilities depends on several variables including pH, temperature, and moisture content. When pH ...
Enhanced Preliminary Assessment Report: Old Bridge Army Housing Units, Old Bridge, New Jersey
1989-11-01
overlain by the Old Bridge (or Magothy ) aquifer. The basement rock in Middlesex County consists of basalt, sandstone, and shale of Triassic age. The...Woodbury Clay and Merchantville formations form a confining layer above the Magothy aquifer; the thickness of this confining layer is less than 100 feet
Snyder, G.L.
1995-01-01
Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.
Estimating hydraulic properties using a moving-model approach and multiple aquifer tests
Halford, K.J.; Yobbi, D.
2006-01-01
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously. Copyright ?? 2005 National Ground Water Association.
Estimating hydraulic properties using a moving-model approach and multiple aquifer tests.
Halford, Keith J; Yobbi, Dann
2006-01-01
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.
Hosman, R.L.
1991-01-01
Although Cenozoic deposits are not uniformly differentiated, interstate correlations of major Paleocene and Eocene units are generally established throughout the area. Younger deposits are not as well differentiated. Some stratigraphic designations made at surface exposures cannot be extended into the sub-surface, and the scarcity of distinct geologic horizons has hampered differentiation on a regional scale. The complexities of facies development in Oligocene and younger coastal deposits preclude the development of extensive recognizable horizons needed for stratigraphic applications. Coastal deposits are a heterogeneous assemblage of deltaic, lagoonal, lacustrine, palustrine, eolian, and fluvial clastic facies and local calcareous reef facies. Even major time boundaries, as between geologic series, are not fully resolved. Surficial Quaternary deposits overlie the truncated subcrops of Tertiary strata and generally are distinguishable, although some contacts between Pleistocene and underlying Pliocene deposits have been a ?lstoncal source of controversy. Glacially related terraces are characteristic of the Pleistocene Epoch, and alluvium of aggrading streams typifies the Holocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebi, F.H.; Korkmaz, S.; Akcay, M.
The majority of coal deposits in the world are of Carboniferous and Tertiary age but Jurassic coals are seldom present. They are also exposed in northern Turkey and occur both at the lower and upper sections of the Liassic-Dogger volcanic- and volcani-clastic series. The coals at the base of the Jurassic units are characterized by higher Ba, Th, Zr, and Cr-Ni and lower S values than those at the top of the units, indicating, in general, laterally consistent trace element contents. The vertical distribution of trace elements in individual coal seams is also rather consistent. The B contents of coalsmore » from the Godul and Norsun areas vary from 1.5 to 4.3 ppm whereas those from the Alansa area are in the range of 95 to 138 ppm. This suggests that the coals in the Godul and Norsun areas were deposited in a swamp environment inundated by the sea from time to time, whereas coals of the Alansa were deposited in a saline environment.« less
Edgar, N. Terence; Cecil, C. Blaine
2003-01-01
Traditionally, an abrupt and massive influx of siliciclastic sediments into an area of deposition has been attributed to tectonic uplift without consideration of the influence of climate or climatic change on rates of weathering, erosion, transportation, and deposition. With few exceptions, fluvial sediment transport is minimal in both extremely arid climates and in perhumid (everwet) climates. Maximum sediment transport occurs in climates characterized by strongly seasonal rainfall, where the effect of vegetation on erosion is minimal. The Peru–Chile trench and Andes Mountain system (P–CT/AMS) of the eastern Pacific Ocean clearly illustrates the effects of climate on rates of weathering, erosion, transport, and deep-sea sedimentation. Terrigenous sediment is virtually absent in the arid belt north of lat. 30° S in the P–CT, but in the belt of seasonal rainfall south of lat. 30° S terrigenous sediment is abundant. Spatial variations in the amount and seasonality of annual precipitation are now generally accepted as the cause for this difference. The spatial variation in sediment supply to the P–CT appears to be an excellent modern analogue for the temporal variation in sediment supply to certain ancient systems, such as the Ouachita Trough in the southern United States. By comparison, during the Ordovician through the early Mississippian, sediment was deposited at very slow rates as the Ouachita Trough moved northward through the southern hemisphere dry belt (lat. 10° S to lat. 30° S). The deposystem approached the tropical humid zone during the Mississippian, coincident with increased coarse clastic sedimentation. By the Middle Pennsylvanian (Atokan), the provenance area and the deposystem moved well into the tropical humid zone, and as much as 8,500 m of mineralogically mature (but texturally immature) quartz sand was introduced and deposited. This increase in clastic sediment deposition traditionally has been attributed solely to tectonic activity. However, we contend that the principal control on the introduction of abundant terrigenous sediment was the movement of the deposystem from an arid or semiarid climate into a seasonally wetter climatic regime. The physical and mineralogical maturity of the quartz sand is the result of tropical weathering in provenance areas.
NASA Astrophysics Data System (ADS)
El-Azabi, M. H.; El-Araby, A.
2005-01-01
The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo-Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.
Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin
2017-10-30
The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.
NASA Astrophysics Data System (ADS)
Eichhorn, Luise; Pirrung, Michael; Zolitschka, Bernd; Büchel, Georg
2017-09-01
Differentiating between regularly seasonal, irregular and event-based clastic sedimentation is difficult if sedimentation structures resemble and dating methods are imprecise. In this study - clastic light and dark laminae from lava-dammed Paleolake Alf in the Late Pleistocene in the Quaternary West Eifel Volcanic Field are analyzed to clarify how they formed and if they are of annual origin and comparable to assumed periglacial varves from neighboring Lake Holzmaar. Therefore, a multiproxy approach is applied combining sediment thin section analysis which focuses on composition and structure with 14C dates. The results are compared to recently-formed annually-laminated clastic sediments of, e.g., the High Canadian Arctic. Observed sedimentation structures reveal sediment delivery by over- and interflows and deposition from suspension forming two characteristic microfacies: Type I graded laminae and Type II laminae with graded sublayers. Additionally, erosional bases and event deposits indicate episodic underflows. Thus, lamination is potentially seasonal but is significantly veiled by extreme runoff causing erosion and resuspension processes or a mixed water body preventing sediment delivery into the lake basin. However, sedimentation processes between watershed and lake could be reconstructed by comparing recent and paleosediment structures.
Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau
NASA Astrophysics Data System (ADS)
Sun, Jimin; Ding, Zhongli; Xia, Xiaoping; Sun, Min; Windley, Brian F.
2018-04-01
The provenance of Chinese loess is fundamental for understanding its origin, transportation and climatic significance. In this paper, eight samples were collected for detrital zircon age analysis, five from different deserts, and three from the Jingbian Section in the northern Chinese Loess Plateau, covering an age range of 2.6-0.03 Ma. The new results, integrated with knowledge of relevant topography and wind patterns, demonstrate that the age spectra of the detrital zircons in the loess are different from those of the sands from the Tarim, Junggar and Qaidam basins, implying that these basins were not the sources of the silts of the Loess Plateau. Further analysis suggests that the three sources for the loess are: (1) clastic materials eroded from the mountains of the Central Asian Orogenic Belt (especially the Gobi Altai and Hangay), (2) clastic loess-sized materials generated by erosion of the Qilian Mountains in the NE Tibetan Plateau, and (3) minor clastic debris derived from the mountains of the North China Craton. Thus, silts of the Loess Plateau have a complex origin, although inland basins, long believed to be important sources, have only a minor role at most.
The paleomagnetism of clastic and precipitate deposits in limestone and dolomite caves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latham, A.G.; Ford, D.C.
1991-03-01
Clastic sediments and calcite precipitates (stalagmites, flowstones, etc.) are abundant in modern limestone caves and normally are the dominant infillings in buried (paleokarst) caves. Clastic sediment fillings are chiefly of fluviatile or local breakdown origin, but lacustrine, colluvial, eolian, and glacial deposits are known. Paleomagnetism has been studied in the fluviatile and lacustrine types: (1) reversal stratigraphy aids dating of geomorphic and paleoclimatic events in the late Pliocene/Pleistocene; (2) fine magnetostratigraphy has yielded estimates of the westward drift. Calcite precipitates (speleothems) may display natural remanent magnetism of either depositional (DRM) or chemical (CRM) origin. NRMs of modern speleothems are primary,more » not diagenetic; CRMs are invariably associated with the degradation of surface organic matter. (1) Coarse reversal stratigraphy dates geomorphic, etc., events and erosion rates. (2) Fine stratigraphy combined with {sup 230}Th:{sup 234}U dating gives high precision estimates of secular variation, westward drift, and rate of change of geomagnetic anomalies in upper Pleistocene and Holocene deposits. Magnetostratigraphy of paleokarst speleothem fillings associated with hydrocarbons in Ordovician limestones suggest a Permian age for the karstification. Potential applications of magnetostratigraphy to paleokarst deposits of many different scales are considerable.« less
NASA Astrophysics Data System (ADS)
Stansell, N.; Rodbell, D. T.; Moy, C. M.
2010-12-01
Pro-glacial lake sediments from the Cordillera Blanca, Peru contain continuous records of climate variability spanning the Last Glacial Maximum to present day. Here we present results from two alpine lake basins in the Queshgue Valley (9.8°S, 77.3°W) that contain high-resolution records of clastic sediment deposition for the last ~20,000 years. Radiocarbon-dated sediment cores were scanned at 0.5 to 1.0 cm resolution using a profiling x-ray fluorescence scanner for major and minor element distributions. In addition, we measured down-core variations in magnetic susceptibility, organic carbon, biogenic silica and calcium carbonate. Samples of bedrock and sediments from glacial moraines in the Queshgue watershed were analyzed using an ICP-MS in order to fingerprint and trace the source of glacial sediments deposited in the lakes. The bedrock is dominated by a combination of granodiorite with high Sr concentrations and meta-sedimentary rocks with high Zr values. Because the glacial sediments proximal to the modern glacier terminus are composed mostly of the granodiorite end-member, we interpret changes in Sr and clastic sediment concentrations in the lake sediment profiles as proxies for past glacial variability. Preliminary results indicate that glaciers retreated soon after ~14,500 cal yr BP and remained less extensive during the remaining late Glacial Stage and early Holocene. Gradually increasing clastic sediments through the middle and late Holocene indicate that glaciers became progressively larger, or more erosive towards present day. However, this overall Holocene trend of increasing glacier extent was interrupted by multiple periods of centennial- to millennial-scale ice margin retreat. For example, relative peaks in clastic sediments occurred from ~14,500 to 6000, 5600 to 5000, 4600 to 4200, 3600 to 3200, 2800 to 2700, 2400 to 2200, 1750 to 1550, 1100 to 900 cal yr BP, and during the Little Ice Age (~700 to 50 cal yr BP), while periods of low clastic sedimentary influx took place from between ~6000 to 5600, 5000 to 4600, 4200 to 3600, 3200 to 2800, 2700 to 2400, and 2200 to 1750, 1550 to 1100, and 900 to 700 cal yr BP. Periods of ice advance in the Cordillera Blanca generally correspond to times of increased moisture-balance and lower temperatures that are recorded in other regional, terrestrial proxy records.
NASA Astrophysics Data System (ADS)
Minderhoud, Philip S. J.; Cohen, Kim M.; Toonen, Willem. H. J.; Erkens, Gilles; Hoek, Wim Z.
2017-04-01
Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation. The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from 4.7 to 2.9 ka cal BP and consists of 5.5 meters of laminated lacustrine, organo-clastic mud, covered by 1 meter of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in sedimentation rate. Especially the organo-clastic muddy facies subdivides in centennial intervals of relative faster and slower accumulation. For such intervals, sedimentation rates are produced that deviate 10 to 20% from that in simpler stepped linear age-models. For irregularly laminated muddy intervals of the oxbow fill - from which meaningful sampling for radiocarbon dating is more difficult than from peaty or slowly accumulating organic lake sediments - supplementing spotty radiocarbon sampling with continuous sedimentary proxy data creates more realistic age-depth modelling results.
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
Jones, Sonya A.; Paillet, Frederick L.
1997-01-01
The results of borehole geophysical log analysis indicate that two of the production wells could have vertically connected intervals where cement bonding in the well annulus is poor. The other production wells have overall good bonding. Temperature logs do not indicate flow behind casing except in the screened interval of one well. Geophysical logs show the Eagle Ford Shale ranges from 147 to 185 feet thick at the site. The Eagle Ford Shale has low permeability and a high plasticity index. These physical characteristics make the Eagle Ford Shale an excellent confining unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, V.A.; Dubinov, A.E.; Zhuravlev, S.S.
A new type of magnetic confinement system--a Galathea with a myxine in the shape of a convex polyhedron--is proposed. The system was modeled experimentally by passing an RF current through the myxine. On the one hand, the myxine acts as an inductor whose electric field ionizes the gas and, on the other, it acts as an RF magnetic confinement system. A steady-state plasma produced and confined in this system is almost spherical in shape. The electron density and specific (per unit volume) glow intensity of the plasma produced are found to be higher than those in conventional helical inductors.
Buono, Anthony; Spechler, R.M.; Barr, G.L.; Wolansky, R.M.
1979-01-01
This map presents the thickness of the confining bed overlying the Floridan aquifer in the Southwest Florida Water Management District and adjacent areas. The bed separates the surficial aquifer from the underlying Floridan aquifer. Lithologic logs and information from quarries were used in conjunction with an unpublished map to compile this map at 1:250,000 scale. Units included in the confining bed are: clay, sandy clay and marl, undifferentiated with respect to age, the Hawthorn Formation, and the unconsolidated sections of the Tampa Limestone. (Kosco-USGS)
Reese, Ronald S.
2014-01-01
The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.
77 FR 8875 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
.... Changes to the data collection related to the confinement of dogs upon arrival to the United States are also requested. The CDC form 75.37, ``Notice of Importers of Dogs'' will now be identified as CDC form 75.37 ``NOTICE TO OWNERS AND IMPORTERS OF DOGS: Requirement for Dog Confinement.'' The form has been...
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Pope, Daryll A.; Gordon, Alison D.
1999-01-01
The confined aquifers of the New Jersey Coastal Plain are sands that range in thickness from 50 to 600 feet and are separated by confining units. The confining units are composed of silts and clays that range in thickness from 500 to 1,000 feet. The aquifers are recharged by precipitation on their outcrop areas. This water then flows laterally downdip and vertically to the deeper confined aquifers. The confined aquifers ultimately discharge to the Raritan and Delaware Bays and to the Atlantic Ocean. In 1988, ground-water withdrawals from confined and unconfined New Jersey Coastal Plain aquifers were approximately 345 million gallons per day, more than 75 percent of which was pumped from the confined aquifers. These withdrawals have created large cones of depression in several Coastal Plain aquifers near populated areas, particularly in Camden and Monmouth Counties. The continued decline of water levels in confined aquifers can cause saltwater intrusion, reduce stream discharge near the outcrop areas, and threaten the quality of the ground-water supply. SHARP, a quasi-three-dimensional finite-difference computer model that can simulate freshwater and saltwater flow, was used to simulate the ground-water flow system in the New Jersey Coastal Plain, including the location and movement of the freshwater-saltwater interface in nine aquifers and eight intervening confining units. The freshwater-saltwater interface is defined as the hypothetical line seaward of which the chloride concentration is equal to or greater than 10,000 milligrams per liter. Model simulations were used to estimate the location and movement of the freshwater-saltwater interface resulting from (1) eustatic sea-level changes over the past 84,000 years, (2) ground-water withdrawals from 1896 through 1988, (3) and future ground-water withdrawals from 1988 to 2040 from Coastal Plain aquifers. Simultion results showed that the location and movement of the freshwater-saltwater interface are more dependent on the historical sea level than on the stresses imposed on the flow system by ground-water withdrawals from the Coastal Plain aquifers from 1896 to 1988. Results of a predictive simulation in which pumpage from existing wells was increased by 30 percent indicate that additional withdrawals from each of the eight confined aquifers in the Coastal Plain would broaden and deepen the existing cones of depression and result in significant drawdowns from the 1988 potentiometric surfaces. Drawdowns of 30 feet were simulated at the center of the cone of depression in the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers in Camden and Ocean Counties. Simulated drawdowns exceeded 80 feet at the center of the cone of depression in the Wenonah-Mount Laurel and Englishtown aquifers in Monmouth County. Drawdowns of 30 feet were simulated in the lower Kirkwood-Cohansey and confined Kirkwood aquifers in Cape May County. Simulation results showed that the increase in ground-water withdrawals would result in only minimal movement of the freshwater-saltwater interface by 2040, despite large drawdowns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuz, H.H.; Oercen, S.
1988-08-01
The continental and shallow marine clastics and carbonates exposed around the towns of Kale and Acipayam in southwestern Anatolia were investigated to interpret the depositional environments in the northern margin of the Mediterranean in terms of lithofacies and biozones. These deposits include Miogypsina intermedia and M. irregularis, indicating Burdigalian age when correlated with the same species in the different parts of the Tethys Sea and Indian-Pacific Oceans. The clastic lower part of the succession is characterized by sheet flow and braided-stream deposits of an alluvial-fan/fan-delta complex. Marine carbonates overlie these deposits, but in some places a transgressive lag deposit liesmore » between the unconformity surface and the carbonates. The lag deposit unit corresponds to the Gastropoda biozone, including Ostrea, Terebralia, and Pecten. Four carbonate facies are recognized: (1) Clayey limestones with ahermatypic corals, ostracods, macrofossils, and foraminifers. This facies corresponds to the Textularia-Rotalia biozone. (2) Packstones and grainstones with abundant nearshore and some offshore foraminifers, corresponding to the Miliolidae biozone. (3) Packstones and wackestones with offshore foraminifers. This facies includes the Miogypsina irregularis-Miogypsina intermedia biozone. (4) Boundstones and very poorly sorted reef-talus conglomerates including hermatypic corals, foraminifers, and binding foraminifers. This facies is the coral biozone. These sediments define the northern extent of the Tethys Sea in the investigated area during the Burdigalian. They were deposited in a shallow carbonate platform at the southern margin of the Anatolian mainland, which had a steep coast characterized by an alluvial-fan/fan-delta complex.« less
Stratigraphy and depositional environment of upper Cambrian Red Lion Formation, southwestern Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, L.L.; Bush, J.H.
1987-08-01
The Red Lion Formation was examined along a northwest-southeast transect from Missoula to Bozeman, Montana. Lateral equivalents are the Snowy Range Formation east of Bozeman and the upper Fishtrap Dolomite in northwest Montana. The basal Dry Creek Member (0-5 m) consists of shale interbedded with quartz siltstones and sandstones. The overlying Sage Member, up to 115 meters in thickness, is characterized by ribbon carbonate beds containing lime mudstone and quartzose calcisiltite couplets arranged in fining-upward sequences 1-5 cm thick. Couplets are interlayered in places with thin (1-5 cm) to medium bedded (6-70 cm) units of laminated and non-laminated calcareous siltstones,more » flat-pebble conglomerates, trilobite packstones, cryptalgal boundstones, bioturbated lime mudstones and shales. In places, the upper Sage contains columnar and domal algal features. The Red Lion Formation is considered to be one Grand Cycle with the Dry Creek representing a lower inner detrital half-cycle and the Sage an upper carbonate half-cycle. The Dry Creek formed as the result of a westward clastic pulse from the inner detrital belt across an intrashelf basin onto outer middle carbonate peritidal complexes of the underlying Pilgrim Formation. Lower Sage ribbon rocks were deposited in storm-crossed, below wave-base areas. During deposition of the upper Sage, shallowing formed discontinuous algal-peritidal complexes over much of western and central Montana. These complexes were less extensive than earlier Cambrian buildups owing to slower rates of basin subsidence and clastic input suppressing carbonate production.« less
Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny
Ketner, Keith B.
2013-01-01
Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.
Spechler, R.M.
1995-01-01
The lower St. Johns River, a 101-mile long segment of the St. Johns River, begins at the confluence of the Ocklawaha River and ends where the river discharges into the Atlantic Ocean at Mayport. The St. Johns River is affected by tides as far upstream as Lake George, 106 miles from the mouth. Saltwater from the ocean advances inland during each incoming tide and recedes during each outgoing tide. The chemical quality of the lower St. Johns River is highly variable primarily because of the inflow of saltwater from the ocean, and in some areas, from the discharge of mineralized ground water. Three hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The surficial aquifer system overlies the intermediate confining unit and consists of deposits containing sand, clay, shell, and some limestone and dolomite. The intermediate confining unit underlies all of the study area and retards the vertical movement of water between the surficial aquifer system and the Floridan aquifer system. The intermediate confining unit consists of beds of relatively low permeability sediments that vary in thickness and areal extent and can be breached by sinkholes, fractures, and other openings. The Floridan aquifer system primarily consists of limestone and dolomite. The quality of water in the Upper Floridan aquifer varies throughout the study area. Dissolved solids in water range from about 100 to more than 5,000 milligrams per liter. Chloride and sulfate concentrations in water from the Upper Floridan aquifer range from about 4 to 3,700 milligrams per liter and from 1 to 1,300 milligrams per liter, respectively. The rate of leakage through the intermediate confining unit is controlled by the leakance coefficient of the intermediate confining unit and by the head difference between the Upper Floridan aquifer and the surficial aquifer system. The total ground-water discharge from the Upper Floridan aquifer to the St. Johns River within the lower St. Johns River drainage basin, based on the potentiometric surface of the Upper Floridan aquifer in September 1990, was estimated to be 86 cubic feet per second. Total estimated ground-water discharge to the lower St. Johns River in September 1991, when heads in the Upper Floridan aquifer averaged about 4 feet higher than in 1990, was 133 cubic feet per second. The load of dissolved-solids that discharged from the Upper Floridan aquifer into the lower St. Johns River on the basis of September 1990 heads is estimated to be 47,000 tons per year. Estimated chloride and sulfate loads are 18,000 and 9,500 tons per year, respectively. Dissolved-solids, chloride, and sulfate loads discharging into the lower St. Johns River are estimated to be 81,000, 39,000, and 15,000 tons per year, respectively, on the basis of September 1991 heads.
Petroleum geology and resources of the Volga-Ural province, U.S.S.R.
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is, in general, coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) Platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oilfields of the province. The Komi-Perm arch forms the northeastern part of the regional high, and the Zhigulevsko-Pugachev and Orenburg arches make up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles. (1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds, from 500 to 5,000 m thick, were deposited in aulacogens. (2) Vendian (upper Bavly) continental and marine shale and sandstone are up to 3,000 m thick. (3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates and abundant reefs in the upper part, range from 300 to 1,000 m in thickness. The upper carbonate part includes the Kamsko-Kinel trough system, which consists of narrow, interconnected, deepwater troughs. (4) The Visean-Namurian-Bashkirian cycle began with deposition of Visean clastic deposits, which draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastic deposits are overlain by marine carbonate beds. The cycle is from 50 to 800 m thick. (5) The lower Moscovian-Lower Permian cycle consists of 1,000 to 3,000 m of terrigenous clastic deposits and marine carbonate beds. (6) The upper Lower Permian-Upper Permian cycle reflects the maximum growth of the Ural Mountains and the associated Ural foredeep. Evaporite deposits were first laid down, followed by marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. (7) Continental red beds of Triassic age and mixed continental and marine clastic beds of Jurassic and Cretaceous age were deposited on the western, southwestern, and northern margins of the Russian Platform; they are generally absent in the Volga-Ural province, however. Approximately 600 oilfields and gasfields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized; these are, in general, the same as the sedimentation cycles, although some subdivisions have been added. The clastic section of Middle and early Late Devonian age contains the major recoverable oil accumulations, including the supergiant Romashkino field. Cumulative production to 1980 is estimated at 30 to 35 billion barrels of oil equivalent, identified reserves at about 10 billion barrels of oil equivalent, and undiscovered resources at about 7 billion barrels of oil equivalent. Identified reserves of natural gas are estimated at 100 trillion cubic feet and undiscovered resources at 63 trillion cubic feet.
How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings (1) highlight the large variability of MAR potential across the landscape, wherein the recharge capacity in select areas far exceeds recharge potential over most of the landscape, and (2) elucidate important physical processes that control MAR potential in alluvial aquifer systems.
Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?
Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie
2015-09-08
Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.
Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?
Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie
2015-01-01
Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation. PMID:26346067
NASA Astrophysics Data System (ADS)
Li, Jie; Jin, Aiwen; Hou, Guiting
2017-12-01
The Lingshan Island in Shandong Province in the eastern North China Craton, well known for the Late Mesozoic multi-scale slide-slump structures is related to paleo-earthquake. Terrigenous clastic rocks, volcanic clastic rocks and volcanic lavas are extensively exposed in the Lingshan Island and its adjacent regions of the Shandong Province, which led to fierce debates on their ages, sedimentary characteristics and tectono-sedimentary evolution. In this contribution, we present the characteristics of the Late Mesozoic stratigraphy in the Lingshan Island. Whole-rock K-Ar dating of dyke at Beilaishi and rhyolites at Laohuzui of the Lingshan Island yielded ages of 159 Ma and 106-92 Ma which coincides with the Laiyang Period rifting and the Qingshan Period rifting in the Jiaolai Basin, respectively. On the basis of the analysis to the Late Mesozoic sedimentary environment of `flysch' and `molasse'-like formations as well as tectonic stress fields reconstruction, four episodes of the tectono-sedimentary evolution were established in the Lingshan Island and its adjacent regions in the eastern North China Craton. They consist of two episodes of extensional events for the syn-rift, and two episodes of compression events for the inversion of the post-rift. The entire episodes can be summarized as follows: (1) the first syn-rift NW-SE extension in Laiyang Period can be identified by the `flysch' formation (Unit 1) and by emplacement of the NE-trending dyke in the Laiyang Group. This syn-rift episode can be related to the NW-SE post-orogenic extension resulted from the gravity collapse of the thickened lithosphere along the Sulu Orogen. (2) The first post-rift NW-SE inversion, which was caused by the NW-directed subduction of Izanaqi Plate, can be well documented by the `X' type conjugate joints as well as slide slump folds in Unit 1. (3) The second syn-rift NW-SE extension in Qingshan Period is characterized by rhyolite rocks (Unit 2). This syn-rift episode can be considered to be associated with lithospheric delamination of the thickened lithosphere in the eastern North China Craton. And finally, (4) the second post-rift NW-SE inversion which resulted from the subduction of the Pacific Plate under the eastern North China Craton in the NW direction at the end of the Qingshan Period is recorded by `molasse'-like formation (Unit 3).
Kuniansky, Eve L.; Jones, Sonya A.; Brock, Robert D.; Williams, M.D.
1996-01-01
Ground water in the surficial terrace alluvial aquifer is contaminated at Air Force Plant 4, Fort Worth, Texas, and at the adjacent Naval Air Station. Some of the contaminated water has leaked from the terrace alluvial aquifer to an uppermost interval of the Paluxy Formation (the Paluxy "upper sand") beneath the east parking lot, east of the assembly building, and to the upper and middle zones of the Paluxy aquifer near Bomber Road, west of the assembly building. Citizens are concerned that contaminants from the plant, principally trichloroethylene and chromium might enter nearby municipal and domestic wells that pump water from the middle and lower zones of the Paluxy aquifer. Geologic formations that crop out in the study area, from oldest to youngest, are the Paluxy Formation (aquifer), Walnut Formation (confining unit), and Goodland Limestone (confining unit). Beneath the Paluxy Formation is the Glen Rose Formation (confining unit) and Twin Mountains Formation (aquifer). The terrace alluvial deposits overlie these Cretaceous rocks. The terrace alluvial aquifer, which is not used for municipal water supply, is separated from the Paluxy aquifer by the Goodland-Walnut confining unit. The confining unit restricts the flow of ground water between these aquifers in most places; however, downward leakage to the Paluxy aquifer might occur through the "window," where the confining unit is thin or absent. The Paluxy aquifer is divided into upper, middle, and lower zones. The Paluxy "upper sand" underlying the "window" is an apparently isolated, mostly unsaturated, sandy lens within the uppermost part of the upper zone. The Paluxy aquifer is recharged by leakage from Lake Worth and by precipitation on the outcrop area. Discharge from the aquifer primarily occurs as pumpage from municipal and domestic wells. The Paluxy aquifer is separated from the underlying Twin Mountains aquifer by the Glen Rose confining unit. Water-level maps indicate that (1) ground water in the terrace alluvial aquifer appears to flow outward, away from Air Force Plant 4; (2) a ground-water mound, possibly caused by downward leakage from the terrace alluvial aquifer, is present in the Paluxy "upper sand" beneath the "window;" and (3) lateral ground-water flow in regionally extensive parts of the Paluxy aquifer is from west to east-southeast. Trichloroethylene concentrations at Air Force Plant 4 have ranged from about 10,000 to about 100,000 micrograms per liter in the terrace alluvial aquifer, from 8,000 to 11,000 micrograms per liter in the Paluxy "upper sand," and from 2 to 50 micrograms per liter in the upper and middle zones of the Paluxy aquifer. Chromium concentrations at Air Force Plant 4 have ranged from 0 to 629 micrograms per liter in the terrace alluvial aquifer. The seven municipal wells mostly west and south of Air Force Plant 4 are not along a flowpath for leakage of contaminants from the plant because ground-water flow in the Paluxy aquifer is toward the east-southeast. Furthermore, trichloroethylene was not detected in any of these wells in 1993 when all were sampled for water quality. The results of water-quality sampling at 10 domestic wells northwest of the Air Force Plant 4 during April 1993 and April 1995 indicated that neither trichloroethylene nor chromium had migrated off-site to these wells.
MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-08-01
This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors andmore » hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.« less
Banks, W.S.; Smith, B.S.; Donnelly, C.A.
1996-01-01
The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.
Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan
Ulmishek, Gregory F.
2001-01-01
The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum system area; therefore, the oil could have migrated from the adjacent North Caspian basin. The North Ustyurt Jurassic Total Petroleum System encompasses the rest of the basin area and includes Jurassic and younger rocks. Several oil and gas fields have been discovered in this total petroleum system. Oil accumulations are in Jurassic clastic reservoirs, in structural traps at depths of 2.5?3 km. Source rocks for the oil are lacustrine beds and coals in the continental Jurassic sequence. Gas fields are in shallow Eocene sandstones in the northern part of the total petroleum system. The origin of the gas is unknown. The North Ustyurt Paleozoic Total Petroleum System stratigraphically underlies the North Ustyurt Jurassic system and occupies the same geographic area. The total petroleum system is almost unexplored. Two commercial flows of gas and several oil and gas shows have been tested in Carboniferous shelf carbonates in the eastern part of the total petroleum system. Source rocks probably are adjacent Carboniferous deep-water facies interpreted from seismic data. The western extent of the total petroleum system is conjectural. Almost all exploration drilling in the North Ustyurt basin has been limited to Jurassic and younger targets. The underlying Paleozoic-Triassic sequence is poorly known and completely unexplored. No wells have been drilled in offshore parts of the basin. Each of three total petroleum systems was assessed as a single assessment unit. Undiscovered resources of the basin are small to moderate. Most of the undiscovered oil probably will be discovered in Jurassic and Neocomian stratigraphic and structural traps on the Buzachi arch, especially on its undrilled off-shore extension. Most of the gas discoveries are expected to be in Paleozoic carbonate reservoirs in the eastern part of the basin.
Long, Andrew J.; Putnam, Larry D.
2002-01-01
The conceptual model of the Madison and Minnelusa aquifers in the Rapid City area synthesizes the physical geography, hydraulic properties, and ground-water flow components of these important aquifers. The Madison hydrogeologic unit includes the karstic Madison aquifer, which is defined as the upper, more permeable 100 to 200 ft of the Madison Limestone, and the Madison confining unit, which consists of the lower, less permeable part of the Madison Limestone and the Englewood Formation. Overlying the Madison hydrogeologic unit is the Minnelusa hydrogeologic unit, which includes the Minnelusa aquifer in the upper, more permeable 200 to 300 ft and the Minnelusa confining unit in the lower, less permeable part. The Madison and Minnelusa hydrogeologic units outcrop in the study area on the eastern flank of the Black Hills where recharge occurs from streamflow losses and areal recharge. The conceptual model describes streamflow recharge, areal recharge, ground-water flow, storage in aquifers and confining units, unsaturated areas, leakage between aquifers, discharge from artesian springs, and regional outflow. Effective transmissivities estimated for the Madison aquifer range from 500 to 20,000 ft2/d and for the Minnelusa aquifer from 500 to 10,000 ft2/d. Localized anisotropic transmissivity in the Madison aquifer has tensor ratios as high as 45:1. Vertical hydraulic conductivities for the Minnelusa confining unit determined from aquifer tests range from 1.3x10-3 to 3.0x10-1 ft/d. The confined storage coefficient of the Madison and Minnelusa hydrogeologic units was estimated as 3x10-4 ft/d. Specific yield was estimated as 0.09 for the Madison and Minnelusa aquifers and 0.03 for the Madison and Minnelusa confining units. Potentiometric surfaces for the Madison and Minnelusa aquifers have a general easterly gradient of about 70 ft/mi with local variations. Temporal change in hydraulic head in the Madison and Minnelusa aquifers ranged from about 5 to 95 ft in water years 1988-97. The unconfined areas were estimated at about 53 and 36 mi2 for the Madison and Minnelusa hydrogeologic units, respectively, in contrast to an aquifer analysis area of 629 mi2. Dye-tracer tests, stable isotopes, and hydrogeologic features were analyzed conjunctively to estimate generalized ground-water flowpaths in the Madison aquifer and their influences on the Minnelusa aquifer. The western Rapid City area between Boxelder Creek and Spring Creek was characterized as having undergone extensive tectonic activity, greater brecciation in the Minnelusa Formation, large transmissivities, generally upward hydraulic gradients from the Madison aquifer to the Minnelusa aquifer, many karst springs, and converging flowpaths. Water-budget analysis included: (1) a dry-period budget for declining water levels; October 1, 1987, to March 31, 1993; (2) a wet-period budget for rising water levels, April 1, 1993, to September 30, 1997; and (3) a full 10-year period budget for water years 1988-97. By simultaneously balancing these water budgets, initial estimates of recharge, discharge, change in storage, and hydraulic properties were refined. Inflow rates for the 10-year budget included streamflow recharge of about 45 ft3/s or 61 percent of the total budget and areal recharge of 22 ft3/s or 30 percent. Streamflow recharge to the Madison hydrogeologic unit was about 86 percent of the total streamflow recharge. Outflow for the 10-year budget included springflow of 31 ft3/s or 42 percent of the total budget, water use of about 10 ft3/s or 14 percent, and regional outflow of 22 ft3/s or 30 percent. Ground-water storage increased 9 ft3/s during the 10-year period, and net ground-water movement from the Madison to Minnelusa hydrogeologic unit was about 8 ft3/s.
NASA Astrophysics Data System (ADS)
Mundra, Manish K.
2005-03-01
It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.
Geldon, Arthur L.
2003-01-01
The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.
Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.
2001-01-01
The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.
Clastic sedimentary rocks of the Michipicoten Volcanic-sedimentary belt, Wawa, Ontario
NASA Technical Reports Server (NTRS)
Ojakangas, R. W.
1983-01-01
The Wawa area, part of the Michipicoten greenstone belt, contains rock assemblages representative of volcanic sedimentary accumulations elsewhere on the shield. Three mafic to felsic metavolcanic sequences and cogenetic granitic rocks range in age from 2749 + or - 2Ma to 2696 + or - 2Ma. Metasedimentary rocks occur between the metavolcanic sequences. The total thickness of the supracrustal rocks may be 10,000 m. Most rocks have been metamorphosed under greenschist conditions. The belt has been studied earlier and is currently being remapped by Sage. The sedimentrologic work has been briefly summarized; two mainfacies associations of clastic sedimentary rocks are present - a Resedimented (Turbidite) Facies Association and a Nonmarine (Alluvial Fan Fluvial) Facies Association.
Recent Trends and Advances in Sedimentology.
ERIC Educational Resources Information Center
Suttner, Lee J.
1979-01-01
Briefly surveys recent trends and developments in sedimentology. Includes Clastic sedimentary petrology, petrology of argillaceous rocks, terrigenous depositional environments, and chemical sedimentology. (MA)
NASA Astrophysics Data System (ADS)
Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.
2014-11-01
This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.
Deep seated carbonates and their vulnerability - are they isolated or hydrodynamically interacted?
NASA Astrophysics Data System (ADS)
Mádl-Szőnyi, Judit; Czauner, Brigitta; Iván, Veronika; Tóth, Ádám; Simon, Szilvia; Erőss, Anita; Havril, Tímea; Bodor, Petra
2017-04-01
The vulnerability of carbonate systems is basically determined by their confinement (Mádl-Szőnyi and Füle 1998). Confined carbonate units are traditionally considered to be aquifer systems hydrodynamically independent of their siliciclastic cover and unconfined parts. This is due to the widely accepted view, that confining layers are generally impermeable relative to the underlying carbonate aquifers. The nature of how deep confined carbonate units are linked to unconfined gravity-driven regional groundwater flow (GDRGF) is poorly understood. The very first study of Mádl-Szőnyi and Tóth (2015) examined the flow systems for unconfined and for marginal areas of confined carbonate settings and adapted the Tóthian-flow pattern for unconfined and adjoining confined cases. The modified GDRGF pattern with considering further driving forces (such as buoyancy) was used as a working hypothesis for the numerical understanding of evolution of hydrodynamics of marginal areas of unconfined and confined carbonate aquifer systems by Havril et al. (2016). In the recent study the main aim is the application of the GDRGF concepts to confined deep carbonates. Here the focal point is the handling of the karstified carbonate rock matrix and its siliciclastic cover as a whole. If we simplify the problem we can focus on to reveal the hydrodinamically interacted or insulated nature of confined carbonate systems. Beside hydrodynamic character of an area the salinity pattern can also reflect the potential connections. The interpretation of salinity in the context of GDRGF hydrodynamics therefore can assist in the determination of replenishment of formation waters with meteoric infiltration and can help to understand the flow pattern of the system. These hydrodynamic interactions also determine the vulnerability of carbonate systems not only in conventional sense but in relation to geothermal and hydrocarbon production. The study area is located in the Hungarian Paleogene Basin of the Pannonian Basin (Báldi and Báldi-Beke 1985), in which the Pre-Cenozoic aquifers are mostly covered by Paleogene and Neogene formations. The study displays the flow pattern for the region; reveals the interrelationships between siliciclastic confining layers and carbonate aquifer system and shows the salinity character of fluids. The regional fluid pattern reveals the efficient interaction of unconfined and confined carbonates, the boundaries of the communication; in addition to demonstrate the protection role of confining layers which are important to understand the vulnerability. However, the interaction between confining layers and underlying aquifers were also recognized. It reflects the geological and tectonic pattern of the area. These research are significant for the understanding of vulnerability not only for surface human activity but also for geothermal and hydrocarbon intervention. The research was supported by the Hungarian OTKA Research Fund (NK 101356).
NASA Astrophysics Data System (ADS)
Lofi, J.; Inwood, J.; Proust, J.; Monteverde, D.; Loggia, D.; Basile, C.; Hayashi, T.; Stadler, S.; Fehr, A.; Pezard, P.
2012-12-01
For the first time in the history of international scientific drillings, the Integrated Ocean Drilling Program (IODP) mission-specific platform (MSP) Expedition 313 drilled three 631-755 m-deep boreholes on the middle shelf of a clastic passive margin. This expedition gathered a full set of geophysical data tied to drillcores with 80% of recovery. It offers a unique opportunity to access the internal structure of a siliciclastic system, at scales ranging from the matrix to the margin, and to correlate the geological skeleton with the spatial distribution and salinity of saturating fluids. In addition to the discovery of very low salinity pore water (<3g/l) at depths exceeding 400 m below the middle shelf, this expedition provides evidence for a multi-layered reservoir, with fresh/brackish water intervals alternating vertically with salty intervals. Our observations suggest that the processes controlling salinity distribution are strongly influenced by lithology, porosity and permeability. Saltier pore waters are recovered in less porous, more permeable, intervals whereas fresher pore waters are recovered in more porous, less permeable, intervals. Pore water concentrations are inversely correlated to the Thorium content, with high salinities in low Th intervals (i.e. sandy formations). The transition from fresher to saltier intervals is often marked by cemented horizons acting as permeability barrier. In the lower part of some holes, the salinity varies independently of lithology, suggesting different mechanisms and/or sources of salinity. We have developed a 2D model of permeability distribution along a dip transect of the margin, extrapolated from combined clinoform geometries observed on seismic data and sedimentary facies described on cores. This model clearly illustrates the importance of taking into account the spatial heterogeneity of geological system at several scales. Lithology reflects permeability at a small scale whereas seismic facies and system tracts can be used to infer the reservoir geometry at a larger scale. Four main reservoirs (R1 to R4) that are relatively disconnected have been identified. These are essentially developed in coarse-grained deposits observed either in some clinoform topsets (R4), in upper foresets (R2, R3), or in both of them (R1). R2 to R4 contain salty water while the most proximal reservoir R1, located close to the coastline, is saturated with fresh water, and may form the seaward extension of onshore aquifers. Each of these four reservoirs is separated by confining units of varied thicknesses and of relatively broad spatial extension. At the Expedition 313 drilling sites, the fresh waters stored in confining units have a post-deposition age and may have a fossil origin (Pleistocene low-stands?), whereas saltier water recovered in distal reservoirs (R2 to R4) penetrated at a later stage. Further work must be done to clarify the emplacement mechanisms. Future studies should focus on the inclusion of our 2D permeability model in a groundwater model, in order to examine the specific flow processes that are active in this environment. This research used samples and data provided by the Integrated Ocean Drilling Program (IODP) and the International Continental Scientific Drilling Program (ICDP).
Williams, Lester J.; Gill, Harold E.
2010-01-01
The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer includes all permeable strata that lie below the middle confining unit and above the base of the aquifer system. Beneath Hilton Head Island, South Carolina, the middle Floridan aquifer is now included as part of the Lower Floridan aquifer. The base of the Floridan aquifer system generally is located at the top of lower Eocene rocks in Georgia and the top of Paleocene rocks in South Carolina. The Upper and Lower Floridan aquifers are interconnected to varying degrees depending on the thickness and permeability of the middle confining unit that separates these aquifers. In most places, hydraulic head differences between the two aquifers range from a few inches to a few feet or more. Monitoring at several vertically clustered well-point sites where wells were set at different depths in the aquifer revealed variations in the degree of hydraulic separation with depth. In general, the head separation between the Upper and Lower Floridan aquifers increases with depth, which indicates that the deeper zones are more hydraulically separated than the shallower parts of the Lower Floridan aquifer.
NASA Astrophysics Data System (ADS)
Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans
2016-04-01
Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore water (u1-u0), and total vertical stress (σvo), suggesting that the overburden strongly controls the vertical differential susceptibility of peat layers to consolidation.
NASA Astrophysics Data System (ADS)
Ojala, A.; Kosonen, E.; Weckstrom, J.; Korkonen, S.
2013-12-01
Annually laminated (varved) sediments are excellent archives for studies of past climate and environmental changes, as they allow analysis of the undisturbed 'in-situ' sediment composition and structure with a seasonal-scale resolution. Among those, clastic-biogenic varved lake sediments have been found and investigated in Finland and Sweden during the last decades. An important prerequisite for applying varved sediments in palaeoenvironmental studies is understanding the mechanism of rhythmic sedimentation and the composition of different laminae representing annual sedimentation events. This knowledge is essential for verifying the annual nature of varves, for investigating the main factors controlling seasonal sedimentation, and for the interpretations of past environmental changes. Here, we report detailed information on the seasonal sedimentation of different varve components and palaeolimnological indicators (diatoms, chrysophycaean cysts) in Lake Nautajärvi, Finland, using near-bottom sediment trap monitoring. The monitoring results strongly support previous interpretations of the formation of clastic-biogenic varves in Fennoscandian lakes. The results also indicate that seasonal sediment fluxes correspond with regional climate and environmental changes. They clearly reveal differences in the amount of seasonal sediment flux between two climatologically and hydrologically different years. For example, higher snow storage in winter and the discharge intensity during the following spring snow melt clearly increases the suspended sediment load, transportation, and net accumulation of detrital mineral matter during spring and early summer. A prolonged autumn and subsequent freezing and thawing cycles in winter, conversely, results in an incremental but slow accumulation of assorted mineral matter and organic particles during winter, whereas the subsequent spring flooding and detrital sediment yield are diminished and thinner clastic laminae are formed. The accumulation rates of diatoms and chrysophyte cysts suggest these algal groups are more dependent on seasonal processes (e.g. spring and autumnal overturn) than on rapid, short-lived environmental episodes such as the spring discharge peak.
Cox, R; Lowe, D R
1995-01-02
Both sediment recycling and first-cycle input influence the composition of clastic material in sedimentary systems. This paper examines conceptually the roles played by these processes in governing the composition of clastic sediment on a regional scale by outlining the expected effects on sediment composition of protracted sediment recycling and of continuous first-cycle input on a maturing continental block. Generally speaking, long-term recycling tends to enrich sediments in the most chemically and mechanically stable components: quartz in the sand and silt size fractions, and illite among the clay minerals. Sandstones trend towards pure quartz arenites, and mudrocks become more potassic and aluminous. The average grain size of clastic sediment decreases by a combination of progressive attrition of sand grains and ongoing breakdown of primary silicate minerals to finer-grained clay minerals and oxides. Sandstones derived by continuous first-cycle input from an evolving continental crustal source also become increasingly rich in quartz, but in addition become more feldspathic as the proportion of granitic material in the upper continental crust increases during crustal stabilization. Associated mudrocks also become richer in potassium and aluminum, but will have higher K2O/Al2O3 ratios than recycled muds. The average grain size of the sediment may increase with time as the proportion of sand-prone granitic source rocks increases at the expense of more mud-prone volcanic sources. In general, except in instances where chemical weathering is extreme, first-cycle sediments lack the compositional maturity of recycled detritus, and are characterized by the presence of a variety of primary silicate minerals. Sedimentary systems are not usually completely dominated by either recycling or first-cycle detritus. Generally, however, sedimentary systems associated with the earliest phases of formation and accretion of continental crust are characterized by first-cycle input from igneous and metamorphic rocks, whereas those associated with more mature cratons tend to be dominated by recycled sedimentary material.
Relativistic Confinement Resonances
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Photoionization of confined atoms in a C60 fullerene have been under intense investigation in the recent years, in particular the confinement induced resonances, termed confinement resonances. The effects of the C60 potential are modeled by a static spherical well, with (in atomic units) inner radius r0 = 5.8, width Δ = 1.9, and depth U0 = -0.302, which is reasonable in the energy region well above the C60 plasmons. At very high Z, relativistic interactions become important contributors to even the qualitative nature of atomic properties; this is true for confined atomic properties as well. To explore the extent of these interactions, a theoretical study of several heavy atoms has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. The existence of the second subshell of the spin-orbit-split doublets can induce new confinement resonances in the total cross section, which is the sum of the spin-orbit-split doublets, due to the shift in the doublet's threshold. Several examples for confined high-Z atoms are presented. Work supported by DOE and NSF.
Smith, Barry S.
2003-01-01
Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer compose the hydrogeologic units of the shallow aquifer system of Virginia Beach. The Columbia and Yorktown-Eastover aquifers are poorly confined throughout most of the southern watersheds of Virginia Beach. The freshwater-to-saline-water distribution probably is in a dynamic equilibrium throughout most of the shallow aquifer system. Freshwater flows continually down and away from the center of the higher altitudes to mix with saline water from the tidal rivers, bays, salt marshes, and the Atlantic Ocean. Fresh ground water from the Columbia aquifer also leaks down through the Yorktown confining unit into the upper half of the Yorktown-Eastover aquifer and flows within the Yorktown-Eastover above saline water in the lower half of the aquifer. Ground-water recharge is minimal in much of the southern watersheds because the land surface generally is low and flat.
NASA Astrophysics Data System (ADS)
Oliveira, E. P.; McNaughton, N. J.; Windley, B. F.; Carvalho, M. J.; Nascimento, R. S.
2015-11-01
SHRIMP U-Pb detrital zircon geochronology and depleted-mantle Nd-model ages of clastic rocks were combined to understand the sediment provenance in the Neoproterozoic Sergipano Belt. The Sergipano is the main orogenic belt between the Borborema province and the São Francisco Craton, eastern South America; it is divisible into several lithostratigraphic domains from North to South: Canindé, Poço Redondo-Marancó, Macururé, Vaza Barris, and Estância. Nd model ages (TDM) and detrital zircon U-Pb SHRIMP geochronology indicate that the protoliths of clastic metasedimentary rocks from the Marancó and Macururé domains were mostly derived from eroded late Mesoproterozoic to early Neoproterozoic rocks (1000-900 Ma), whereas detritus of similar rocks from the Canindé domain came from a younger source (ca. 700 Ma and 1000 Ma). Samples from the Vaza Barris domain show the greatest scatter of both TDM and zircon ages amongst all domains, but with important contributions from Proterozoic sources (690-1050 Ma and ca. 2100 Ma) and less from Archaean sources. The Estância domain samples have zircon population peaks at 570 Ma, 600 Ma, and 920-980 Ma, with a few older grains; one diamictite contains only ca. 2150 Ma zircon grains. Our preliminary results support a model in which sediments of the Marancó and Macururé domains were deposited on a continental margin of the ancient Borborema plate before its collision with the São Francisco Craton; the Canindé domain is likely to be an aborted Neoproterozoic rift assemblage within the southern part of the Borborema plate (Pernambuco-Alagoas massif). The basal units of the Vaza Barris and Estância domains have clast sources from the São Francisco Craton and are best interpreted as passive margin sediments. However, the uppermost units of the Estância and Vaza Barris domains come from foreland basins formed during collision of Borborema plate with the São Francisco Craton.
Link between Neogene and modern sedimentary environments in the Zagros foreland basin
NASA Astrophysics Data System (ADS)
Pirouz, Mortaza; Simpson, Guy; Bahroudi, Abbas
2010-05-01
The Zagros mountain belt, with a length of 1800 km, is located in the south of Iran and was produced by collision between the Arabian plate and the Iran micro plate some time in the early Tertiary. After collision, the Zagros carbonate-dominated sedimentary basin has been replaced by a largely clastic system. The Neogene Zagros foreland basin comprises four main depositional environments which reflect the progressive southward migration of the deformation front with time. The oldest unit - the Gachsaran formation - is clastic in the northern part of the basin, but is dominated by evaporates in southern part, being deposited in a supratidal Sabkha-type environment. Overlying the Gachsaran is the Mishan formation, which is characterized by the Guri limestone member at the base, overlain by marine green marls. The thickness of the Guri member increases dramatically towards the southeast. The next youngest unit is the Aghajari Formation which consists of well sorted lenticular sandstone bodies in a red silty-mudstone. This formation is interpreted as representing the floodplain of dominantly meandering rivers. Finally, the Bakhtiari formation consists of mainly coarse-grained gravel sheets which are interpreted to represent braided river deposits. Each of these Neogene depositional environments has a modern day equivalent. For example, the braided rivers presently active in the Zagros mountains are modern analogues of the Bakhtiari. In the downstream direction, these braided rivers become meandering systems, which are equivalents of the Aghajari. Eventually, the meandering rivers meet the Persian gulf which is the site of the ‘modern day' Mishan shallow marine marls. Finally, the modern carbonate system on the southern margin of Persian Gulf represents the Guri member paleo-environment, behind which Sabkha-type deposits similar to the Gachsaran are presently being deposited. One important implication of this link between the Neogene foreland basin deposits and the modern environments is that all formation boundaries are strongly diachronous. Thus, for example, although the Mishan is Burdigalian-Messinian in regions where it is currently undergoing subaerial erosion in the Fars zone, it is presumably still forming today in the modern Persian gulf foredeep.
Force, E.R.; Barr, S.M.
2006-01-01
Anomalously thick and coarse clastic sedimentary successions, including over 5000 m of conglomerate, are exposed on Isle Madame off the southern coast of Cape Breton Island. Two steeply to moderately dipping stratigraphic packages are recognized: one involving Horton and lower Windsor groups (Tournasian-Visean); the other involving upper Windsor and Mabou (Visean-Namurian) groups. Also anomalous on Isle Madame are three long narrow belts of "basement" rocks, together with voluminous chloritic microbreccia and minor semi-ductile mylonite, which are separated from the conglomerate-dominated successions by faults. The angular relations between the cataclastic rocks and the conglomerate units, combined with the presence of cataclasite clasts in the conglomerate units and evidence of dip-slip faults within the basin, suggest an extensional setting, where listric normal faults outline detachment allochthons. Allochthon geometry requires two stages of extension, the older stage completed in early Windsor Group time and including most of the island, and the more local younger stage completed in Mabou Group time. Domino-style upper-plate faulting in the younger stage locally repeated the older detachment relation of basement and conglomerate to form the observed narrow belts. Re-rotation of older successions in the younger stage also locally overturned the Horton Group. These features developed within a broad zone of Carboniferous dextral transcurrent faulting between already-docked Avalon and Meguma terranes. Sites of transpression and transtension alternated along the Cobequid-Chedabucto fault zone that separated these terranes. The earlier extensional features in Isle Madame likely represent the northern headwall and associated clastic debris of a pull-apart or other type of transtensional basin developed along part of this fault zone that had become listric; they were repeated and exposed by being up-ended in the second stage of extension, also on listric faults. The two-stage history on Isle Madame exposes the deeper parts of one of the Horton-age extensional basins of the Maritimes, others of which have been described as half-grabens based on their shallower exposures.
NASA Astrophysics Data System (ADS)
Cochran, U. A.; Clark, K. J.; Howarth, J. D.; Biasi, G. P.; Langridge, R. M.; Villamor, P.; Berryman, K. R.; Vandergoes, M. J.
2017-04-01
Discovery and investigation of millennial-scale geological records of past large earthquakes improve understanding of earthquake frequency, recurrence behaviour, and likelihood of future rupture of major active faults. Here we present a ∼2000 year-long, seven-event earthquake record from John O'Groats wetland adjacent to the Alpine fault in New Zealand, one of the most active strike-slip faults in the world. We linked this record with the 7000 year-long, 22-event earthquake record from Hokuri Creek (20 km along strike to the north) to refine estimates of earthquake frequency and recurrence behaviour for the South Westland section of the plate boundary fault. Eight cores from John O'Groats wetland revealed a sequence that alternated between organic-dominated and clastic-dominated sediment packages. Transitions from a thick organic unit to a thick clastic unit that were sharp, involved a significant change in depositional environment, and were basin-wide, were interpreted as evidence of past surface-rupturing earthquakes. Radiocarbon dates of short-lived organic fractions either side of these transitions were modelled to provide estimates for earthquake ages. Of the seven events recognised at the John O'Groats site, three post-date the most recent event at Hokuri Creek, two match events at Hokuri Creek, and two events at John O'Groats occurred in a long interval during which the Hokuri Creek site may not have been recording earthquakes clearly. The preferred John O'Groats-Hokuri Creek earthquake record consists of 27 events since ∼6000 BC for which we calculate a mean recurrence interval of 291 ± 23 years, shorter than previously estimated for the South Westland section of the fault and shorter than the current interseismic period. The revised 50-year conditional probability of a surface-rupturing earthquake on this fault section is 29%. The coefficient of variation is estimated at 0.41. We suggest the low recurrence variability is likely to be a feature of other strike-slip plate boundary faults similar to the Alpine fault.
NASA Astrophysics Data System (ADS)
Paschall, O. C.; Carmichael, S. K.; Dombrowski, A. D.; Batchelor, C. J.; Coleman, D. S.; Waters, J. A.; Königshof, P.
2017-12-01
The Devonian-Carboniferous (D-C) transition is a period of mass extinction and rapid global faunal changes that affected both marine and terrestrial ecosystems. Although the paleontology and carbon and oxygen isotopes across of the D-C boundary have been studied in detail, there is very little continuous 87Sr/86Sr isotope data for this time iteration due to unconformities and/or diagenetic alteration in many sections. Conodont biostratigraphy indicates that the D-C boundary is present within the Pho Han Formation on Cat Ba Island in northeastern Vietnam. This unit represents a starved basinal facies on the South China carbonate platform, and has continuous sedimentation across the D-C boundary. Whole rock geochemical results indicate increased clastic input at the D-C transition, potentially due to the regression observed in many Hangenberg Event localities around the world, but the isolated nature of the basin could instead indicate complete shutdown of the carbonate factory. New 87Sr/86Sr measurements of carbonate across the D-C boundary in the Pho Han Formation indicate oscillating fluctuations from 0.708052 to 0.708672. Many of these values are within the McArthur et al. (2012) LOWESS fit for seawater, with excursions towards higher values tentatively identified at the boundary between the Palmatolepis expansa and lower Siphonodella praesulcata conodont zones, and within the Siphonodella duplicata zone. There is a lack of correlation between 87Sr/86Sr values with whole rock geochemistry and δ18O isotope values across the section, suggesting that these 87Sr/86Sr values are not due to clastic contamination and that the samples have not experienced major diagenetic alteration. The continuous sedimentation in this section and its location in an area far from the Variscan orogeny make this unit a valuable site in which to compare 87Sr/86Sr ratios to existing studies in Europe and North America which experienced substantial sediment shedding from the Appalachian Mountains. McArthur et al. (2012) The Geologic Time Scale, 1: 127-144.
The Lusi mud eruption dynamics: constraints from field data.
NASA Astrophysics Data System (ADS)
Mazzini, Adriano; Sciarra, Alessandra; Lupi, Matteo; Mauri, Guillaume; Karyono, Karyono; Husein, Alwi; Aquino, Ida; Ricco, Ciro; Obermann, Anne; Hadi, Soffian
2017-04-01
The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Since its birth Lusi erupted with a pulsating behavior showing intermittent periods of stronger activity resulting in higher fluids and solid emissions intervals. Since 2010 two active vents are constantly active. We conducted detailed monitoring of such clastic geysering activity and this allowed us to distinguish four distinct phases that follow each other and that reoccur every 30 minutes: (1) regular bubbling activity (constant emission of water, mud breccia, and gas); (2) clastic geysering phase with intense bubbling (consisting in reduced vapor emission and more powerful diffused mud bursting); (3) clastic geysering with mud bursts and intense vapour discharge (typically dense plume that propagates up to 100 m in height); (4) quiescent phase marking the end of the geysering activity (basically no gas emissions or bursts observed). In order to better understand this pulsating behavior and to constrain the mechanisms controlling its activity, we designed a multidisciplinary monitoring of the eruption site combining the deployment of numerous instruments around the crater site. Processing of the collected data reveals the dynamic activity of Lusi's craters. Satellite images show that the location of these vents migrated along a NE-SW direction. This is subparallel to the direction of the Watukosek fault system that is the zone of (left) lateral deformation upon which Lusi developed in 2006. Coupling HR camera images with broadband and short period seismic stations allowed us to describe the seismic signal generated by clastic geysering and to constrain the depth of the source generating the signal. We measure a delay between the seismic (harmonic) record and the associated clastic geyser explosion of approximately 3 s. This, in agreement with previous studies, corresponds to a source located some tens of meters depth inside the conduits. We ascribe the harmonic seismic signal to rise of batches of H2O-CO2-CH4 fluids inside the conduit. Once they approach the water-vapour region the sudden pressure drop triggers flashing and the exsolution of the dissolved CO2 and CH4. In the last part of our study we verified whether the powerful clastic geysering (emitting jets up to 20 m high) may induce local deformation of the mud edifice. During the stronger geysering events we measure an increase and drop of gravity overtime that are related to change of mud density within the feeder conduit. We process continuous camera recordings with a video magnifying tool capable of enhancing small variations in the recorded images. Results highlight that major eruptive events are preceded by a deformation of the mud edifice surrounding the vents. Ongoing studies aim to verify if these events are also captured by the tiltmeter measurements. This study represents a step forward to better understand the activity that characterizes Lusi. Further studies will help to better constrain the reactions and dynamics ongoing inside the conduit.
Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parameswaran, N. A. Vijay; Chornyy, Igor; Owen, Rob
2013-07-01
On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress ismore » the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)« less
Peterson, James A.; Clarke, James W.
1983-01-01
The Volga-Ural petroleum province is in general coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oil fields of the province. The Perm-Bashkir arch forms the northeastern part of the regional high, and the Zhigulevsko-Orenburg arch makes up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles as follows: 1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds from 500 to 5,000 m thick deposited in aulacogens. 2) Vendian (upper Bavly) continental and marine shale and sandstone up to 3,000 m thick. 3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates with abundant reefs in the upper; thickness is 300-1,000 m. In the upper carbonate part is the Kamsko-Kinel trough system, which consists of narrow interconnected deep-water troughs. 4) The Visean-Namurian-Bashkirian cycle, which began with deposition of Visean clastics that draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastics are overlain by marine carbonates. Thickness of the cycle is 50-800 m. 5) Early Moscovian-Early Permian terrigenous clastic deposits and marine carbonate beds 1,000-3,000 m thick. 6) The late Early Permian-Late Permian cycle, which reflects maximum growth of the Ural Mountains and associated Ural foredeep. Evaporites were first deposited, then marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. 7) Continental redbeds of Triassic age and mixed continental and marine elastic beds of Jurassic and Cretaceous age, which were deposited on the southern, southwestern, and northern margins of the Russian platform; they are generally absent in the Volga-Ural province, however. The Volga-Ural oil and gas basin is a single artesian system that contains seven aquifers separated by seals. The areas of greatest hydraulic head are in the eastern parts of the basin near areas where the aquifers crop out on the western slopes of the Ural Mountains. The Peri-Caspian basin is the principal drainage area of the artesian system. Approximately 600 oil and gas fields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized as follows: 1) Upper Proterozoic (Bavly beds), which are promising but not yet commercial. 2) Clastic Devonian, which contains the major reserves and includes the main pays of the super-giant Romashkino field. 3) Carbonate Upper Devonian and lowermost Carboniferous, which is one of the main reef-bearing intervals. 4) Visean (Lower Carboniferous) elastics, which are the main pays in the super-giant Arian field. 5) Carbonate Lower and Middle Carboniferous. 6) Clastic Middle Carboniferous Moscovian. 7) Carbonate Middle and Upper Carboniferous. 8) Carbonate-evaporite Lower Permian, which contains the major gas reserves and the lower part of the Melekess tar deposits. 9) Clastic-carbonate Upper Permian, which contains the major part of the Melekess tar deposits. The Volga-Ural province is divided into several productive regions on a basis of differences in structure, distribution of reservoir and source-rock facies, and general composition of the petroleum accumulations. These regions are the Tatar arch, Birsk saddle, Upper Kama depression, Perm-Bashkir arch, Ufa-Orenburg monocline, Melekess-Sernovodsko-Abdulino basin, Zhligulevsko-Orenburg arch, Ural foredeep, and north borders of the Peri-Casplan depression. Exploration activity has declined in recent years; however, interest remains high in several parts of the province, particula
Geldon, Arthur L.
2003-01-01
The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer system and the overlying Canyonlands aquifer. Composed of the uppermost Paleozoic rocks, the Canyonlands aquifer consists, in ascending order, of the Cutler-Maroon, Weber-De Chelly, and Park City-State Bridge zones. The Paleozoic rocks are underlain by a basal confining unit consisting of Precambrian sedimentary, igneous, and metamorphic rocks and overlain throughout most of the Upper Colorado River Basin by the Chinle-Moenkopi confining unit, which consists of Triassic formations composed mostly of shale. The largest values of porosity, permeability, hydraulic conductivity, transmissivity, and artesian yield are exhibited by the Redwall-Leadville zone of the Madison aquifer and the Weber-De Chelly zone of the Canyonlands aquifer. The former consists almost entirely of Devonian and Mississippian carbonate rocks: the latter consists mostly of Pennsylvanian and Permian quartz sandstone. Unit-averaged porosity in hydrogeologic units composed of Paleozoic rocks ranges from less than 1 to 28 percent. Permeability ranges from less than 0.0001 to 3,460 millidarcies. Unit-averaged hydraulic conductivity ranges from 0.000005 to 200 feet per day. The composite transmissivity of Paleozoic rocks ranges from 0.0005 to 47,000 feet squared per day. Artesian yields to wells and springs (excluding atypical springflows) from these hydrogeologic units range from less than 1 to 10,000 gallons per minute. The permeability and watersupply capabilities of all hydrogeologic units progressively decrease from uplifted areas to structural basins. Recharge to the Paleozoic rocks is provided by direct infiltration of precipitation, leakage from streams, and ground-water inflows from structurally continuous areas west and north of the Upper Colorado River Basin. The total recharge available flom ground-water systems in the basin from direct precipitation and stream leakage is estimated to be 6,600,000 acre-feet per year. However, little of this recharge directly enters the Paleozoic rocks
NASA Astrophysics Data System (ADS)
Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan
2016-12-01
The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamero de Villarroel, H.; Lowe, D.R.
1993-02-01
The Upper Archean Pongola Supergroup is a succession of clastic and volcanic rocks that represents the oldest relatively unmetamorphosed sedimentary sequence deposited on the basement of the 3.5-3.2 Ga-old Kaapvaal Craton. The Pongola Supergroup includes two subdivisions, the Nsuze and the Mozaan Groups. The Nsuze Group is composed of clastic rocks, minor carbonate units, and basalt. Nsuze sandstones are dominated by granite-derived sediments, and minor basaltic-derived detritus. Most Nsuze sedimentary rocks are sandstones that include both quartz-fieldspar and lithic-rich varieties. The mineralogy of Nsuze sandstones reflects the mixing of debris derived from two distinctive sources: (1) a sialic plutonic sourcemore » yielding quartz and microcline and (2) a basaltic source yielding basaltic lithic detritus and plagioclase. The most likely source rocks for the Nsuze sandstones in the Wit M'folozi Inlier were Archean granitic basement, represented by the Mpuluzi batholith, and Nsuze basaltic volcanic rocks. Both continental arc and rift settings have been proposed for the Pongola Supergroup. Nsuze sandstones show similarities to continental arc sandstone suites. However, there is no report of the existence of high standing stratovolcanoes, calc-alkaline plutonism, or contact and regional metamorphism of the intruded volcanic-sedimentary and basement rocks in the Pongola basin, features that are typically associated with continental arcs. The dominance of continent-derived detritus in the Nsuze Group argues that volcanic rocks made up a minor part of the exposed source area and that volcanism was largely restricted to the basin of deposition. Collectively, available evidence favors an intracratonic rift for the depositional setting of the Nsuze Group.« less
Ryals, G.N.
1984-01-01
Regional geohydrologic maps show the altitude of the base and the thickness of the aquifers of Tertiary age and related confining layers in the northern Louisiana salt-dome basin. The limit of freshwater in aquifers is also shown. The basin has an area of about 3,000 square miles, and four geologic units of Tertiary age contain regional aquifers. From oldest (deepest) to youngest, the aquifers are in the Wilcox Group, Carrizo Sand, Sparta Sand, and Cockfield Formation. As the Wilcox is hydraulically interconnected with the overlying Carrizo, they are treated as one hydrologic unit, the Wilcox-Carrizo aquifer. The aquifers are separated by confining layers that retard water movement. In the northwestern part of the area, the Wilcox-Carrizo aquifer is separated from the underlying sand facies of the Nacatoch Sand (Cretaceous age) by a confining layer composed of the Midway Group (Tertiary age) and the underlying Arkadelphia Marl and an upper clay and marl facies of the Nacatoch Sand (both of Cretaceous age). In the remainder of the area, the Wilcox-Carrizo aquifer is separated from an underlying Cretaceous aquifer comprised of the Tokio Formation and Brownstown Marl by the Midway Group and several underlying Cretaceous units which in order of increasing age are the Arkadelphia Maril, Nacatoch Sand, Saratoga Chalk, Marlbrook Marl , and Annona Chalk. The Wilcox-Carrizo aquifer is separated from the Sparta aquifer by the overyling Cane River Formation. The Sparta aquifer is separated from the Cockfield aquifer by the overlying Cook Mountain Formation. (USGS)
Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah
Rush, F.E.; Whitfield, M.S.; Hart, I.M.
1984-01-01
The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and over- lying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sand- stone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of ground- water outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated.The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds o£ salt probably is very slow in most parts of the area. No brine discharges' have been identified.
Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Pressly, James; Riggleman, Robert; Winey, Karen
The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.
Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas
NASA Astrophysics Data System (ADS)
Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.
2018-02-01
Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.
NASA Technical Reports Server (NTRS)
Lowe, D. R.; Byerly, G. R.
1986-01-01
The sedimentological and stratigraphic evolution of the 3.5 to 3.3 Ga Barberton Greenstone Belt can be divided into three principal stages: (1) the volcanic platform stage during which at least 8 km of mafic and ultramafic volcanic rocks, minor felsic volcanic units, and thin sedimentary layers (Onverwacht Group) accumulated under generally anorogenic conditions; (2) a transitional stage of developing instability during which widespread dacitic volcanism and associated pyroclastic and volcaniclastic sedimentation was punctuated by the deposition of terrigenous debris derived by uplift and shallow erosion of the belt itself (Fig Tree Group); (3) an orogenic stage involving cessation of active volcanism, extensive thrust faulting, and widespread deposition of clastic sediments representing deep erosion of the greenstone belt sequence as well as sources outside of the belt (Moodies Group).
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.
2009-06-01
Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.
Kahle, Sue C.; Olsen, Theresa D.; Fasser, Elisabeth T.
2013-01-01
A study of the hydrogeologic framework of the Little Spokane River Basin was conducted to identify and describe the principal hydrogeologic units in the study area, their hydraulic characteristics, and general directions of groundwater movement. The Little Spokane River Basin includes an area of 679 square miles in northeastern Washington State covering parts of Spokane, Stevens, and Pend Oreille Counties. The groundwater system consists of unconsolidated sedimentary deposits and isolated, remnant basalt layers overlying crystalline bedrock. In 1976, a water resources program for the Little Spokane River was adopted into rule by the State of Washington, setting instream flows for the river and closing its tributaries to further uses. Spokane County representatives are concerned about the effects that additional groundwater development within the basin might have on the Little Spokane River and on existing groundwater resources. Information provided by this study will be used in future investigations to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources in the basin. The hydrogeologic framework consists of eight hydrogeologic units: the Upper aquifer, Upper confining unit, Lower aquifers, Lower confining unit, Wanapum basalt unit, Latah unit, Grande Ronde basalt unit, and Bedrock. The Upper aquifer is composed mostly of sand and gravel and varies in thickness from 4 to 360 ft, with an average thickness of 70 ft. The aquifer is generally finer grained in areas farther from main outwash channels. The estimated horizontal hydraulic conductivity ranges from 4.4 to 410,000 feet per day (ft/d), with a median hydraulic conductivity of 900 ft/d. The Upper confining unit is a low-permeability unit consisting mostly of silt and clay, and varies in thickness from 5 to 400 ft, with an average thickness of 100 ft. The estimated horizontal hydraulic conductivity ranges from 0.5 to 5,600 ft/d, with a median hydraulic conductivity of 8.2 ft/d. The Lower aquifers unit consists of localized confined aquifers or lenses consisting mostly of sand that occur at depth in various places in the basin; thickness of the unit ranges from 8 to 150 ft, with an average thickness of 50 ft. The Lower confining unit is a low-permeability unit consisting mostly of silt and clay; thickness of the unit ranges from 35 to 310 ft, with an average thickness of 130 ft. The Wanapum basalt unit includes the Wanapum Basalt of the Columbia River Basalt Group, thin sedimentary interbeds, and, in some places, overlying loess. The unit occurs as isolated remnants on the basalt bluffs in the study area and ranges in thickness from 7 to 140 ft, with an average thickness of 60 ft. The Latah unit is a mostly low-permeability unit consisting of silt, clay, and sand that underlies and is interbedded with the basalt units. The Latah unit ranges in thickness from 10 to 700 ft, with an average thickness of 250 ft. The estimated horizontal hydraulic conductivity ranges from 0.19 to 15 ft/d, with a median hydraulic conductivity of 0.56 ft/d. The Grande Ronde unit includes the Grande Ronde Basalt of the Columbia River Basalt Group and sedimentary interbeds. Unit thickness ranges from 30 to 260 ft, with an average thickness of 140 ft. The estimated horizontal hydraulic conductivity ranges from 0.03 to 13 ft/d, with a median hydraulic conductivity of 2.9 ft/d. The Bedrock unit is the only available source of groundwater where overlying sediments are absent or insufficiently saturated. The estimated horizontal hydraulic conductivity ranges from 0.01 to 5,000 ft/d, with a median hydraulic conductivity of 1.4 ft/d. The altitude of the buried bedrock surface ranges from about 2,200 ft to about 1,200 ft. Groundwater movement in the Little Spokane River Basin mimics the surface-water drainage pattern of the basin, moving from the topographically high tributary-basin areas toward the topographically lower valley floors. Water-level altitudes range from more than 2,700 ft to about 1,500 ft near the basin’s outlet.
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
"Doing School": A New Unit of Analysis for Schools Serving Marginalized Students
ERIC Educational Resources Information Center
Atkinson, Helen
2009-01-01
This study asserts a new unit of analysis for school reform that goes beyond the mental representations of individuals, beyond the isolated lesson, and beyond the confines of a school building. I argue that the special case of expanding time and space as a method of engagement for marginalized students requires that the unit of analysis change to…
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
28 CFR 505.4 - Calculation of assessment by unit staff.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to or less than the poverty level, as established by the United States Department of Health and Human... above the poverty level, Unit Team staff are to impose a fee equal to the inmate's assets above the poverty level up to the average cost to the Bureau of Prisons of confining an inmate for one year. (c) If...
28 CFR 505.4 - Calculation of assessment by unit staff.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to or less than the poverty level, as established by the United States Department of Health and Human... above the poverty level, Unit Team staff are to impose a fee equal to the inmate's assets above the poverty level up to the average cost to the Bureau of Prisons of confining an inmate for one year. (c) If...
NASA Astrophysics Data System (ADS)
Meere, Patrick; Mulchrone, Kieran; McCarthy, David
2017-04-01
The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.
Anatomy of an embayment in an Ordovician epeiric sea, Upper Mississippi Valley, USA
NASA Astrophysics Data System (ADS)
Simo, J. A. Toni; Emerson, Norlene R.; Byers, Charles W.; Ludvigson, Gregory A.
2003-06-01
The integration of stratigraphic, geochemical, and biostratigraphic data from Middle Ordovician carbonates and shales indicates that the North American epeiric sea was partitioned into shelf areas with distinct characteristics. The Upper Mississippi Valley part of the epeiric sea was appraised by using regionally traceable and geochemically “fingerprinted” K-bentonites, as well as detailed lithologic correlation. In the Midcontinent, the Decorah Formation records a time of high clastic sediment influx and abundant freshwater runoff from the Transcontinental Arch that created a salinity-stratified water column and led to episodic dysoxia. Later, relative flooding of the clastic source areas greatly reduced both the clastic sediment and freshwater runoff. As a result, the salinity stratification broke down, oxygenating the seafloor and permitting carbonates to form. Associated with this change, clarity of the water improved and the photic zone expanded, allowing seasonal blooms of Gloeocapsomorpha prisca to occur, resulting in increased burial of organic matter. The increase in G. prisca and total organic carbon coincided with, but lagged behind, a regional δ13C excursion. In addition, the timing of the initiation of the isotopic anomaly is different across the studied area, suggesting that local environmental conditions influenced the isotopic record. Data presented in this study support the partitioning of distinct areas within epeiric seas and the importance of this setting in storing inorganic and organic carbon and recording environmental and biological changes.
Westjohn, David B.; Weaver, Thomas L.
1996-01-01
Late Mississippian and Pennsylvanian sedimentary rocks form part of a regional system of aquifers and confining units in the central Lower Peninsula of Michigan. The upper part of the Pennsylvanian rock sequence constitutes the Saginaw aquifer, which consists primarily of sandstone. This sandstone aquifer overlies the Saginaw confining unit, which consists primarily of shale. The Saginaw confining unit separates the Saginaw aquifer from the Parma-Bayport aquifer, which consists primarily of permeable sandstones and carbonates; these permeable units are interpreted to be hydraulically connected and stratigraphically continuous at the scale of the regional aquifer system. The Saginaw aquifer ranges in thickness from 100 to 370 feet along a 30- to 45-milewide south-trending corridor through the approximate center of the aquifer system. The Saginaw aquifer typically contains freshwater along this corridor of thick sandstone. Most municipalities that use water from the Saginaw aquifer are located along this corridor. On either side of this corridor, the Saginaw aquifer generally is less than 100-feet thick, and typically contains saline water. Altitude of the surface of the Saginaw aquifer ranges from 800 to 900 feet in the northern part of the aquifer system, and from 500 to 600 feet in the southern part. Altitude of the top of the Saginaw aquifer is lower in the western and eastern parts of the aquifer system (typically 400 to 500 feet). The Saginaw confining unit is thickest in the northwestern part of the aquifer system (100 to 240 feet thick); however, thickness decreases to 50 feet in the southeast. Thickness of the Parma-Bayport aquifer generally ranges from 100 to 150 feet. The surface configuration of this aquifer is similar in shape to the Saginaw aquifer; altitudes are highest in the southern and northern parts of the aquifer system (900 and 500 feet, respectively). Lowest altitude (approximately -100 feet) of the Parma-Bayport aquifer is in the east-central part of the basin. The Parma-Bayport aquifer contains freshwater in subcrop areas where it is in direct-hydraulic connection to permeable glacial deposits; however, this aquifer contains saline water or brine down dip from subcrop areas.
Computational Nanotribology of Nanometer Confined Liquid Films
2012-02-29
Nanotribology of Nanometer Confined Liquid Films 5b. GRANT NUMBER FA9550-08-1-0214 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Yongsheng Leng & Peter T. Cummings 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Joycelyn Harrison AFOSR/RSA 875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT
High-resolution seismic reflection to delineate shallow gas in Eastern Kansas
Miller, R.D.; Watney, W.L.; Begay, D.K.; Xia, J.
2000-01-01
Unique amplitude characteristics of shallow gas sands within Pennsylvanian clastic-carbonate dominated sequences are discernible on high-resolution seismic reflection data in eastern Kansas. Upward grading sequences of sand into shale represent a potential gas reservoir with a low-impedence acoustic contrast at the base of the encasing layer. The gas sand and encasing shale, which define the gas reservoir studied here, are part of an erosional incised valley where about 30 m of carbonates and shale have been replaced by sandstone and shale confined to the incised valley. These consolidated geologic settings would normally possess high impedence gas sand reservoirs as defined by abrupt contacts between the gas sand and encasing shale. Based orr core and borehole logs, the gas sand studied here grades from sand into shale in a fashion analogous to that observed in classic low-impedance environments. Amplitude and phase characteristics of high-resolution seismic data across this approximately 400-m wide gas sand are indicative of a low-impedance reservoir. Shot gathers possess classic amplitude with offsett-dependent characteristics which are manifeted on the stacked section as "bright spots." Dominant Frequencies of around 120 Hz allow detection of several reflectors within the 30+ meters of sand/shale that make up this localized gas-rich incised valley fill. The gradational nature of the trapping mechanism observed in this gas reservoir would make detection with conventional seismic reflection methods unlikely.
NASA Astrophysics Data System (ADS)
Zhang, Penghui; Zhang, Jinliang; Wang, Jinkai; Li, Ming; Liang, Jie; Wu, Yingli
2018-05-01
Flow units classification can be used in reservoir characterization. In addition, characterizing the reservoir interval into flow units is an effective way to simulate the reservoir. Paraflow units (PFUs), the second level of flow units, are used to estimate the spatial distribution of continental clastic reservoirs at the detailed reservoir description stage. In this study, we investigate a nonroutine methodology to predict the external and internal distribution of PFUs. The methodology outlined enables the classification of PFUs using sandstone core samples and log data. The relationships obtained between porosity, permeability and pore throat aperture radii (r35) values were established for core and log data obtained from 26 wells from the Funing Formation, Gaoji Oilfield, Subei Basin, China. The present study refines predicted PFUs at logged (0.125-m) intervals, whose scale is much smaller than routine methods. Meanwhile, three-dimensional models are built using sequential indicator simulation to characterize PFUs in wells. Four distinct PFUs are classified and located based on the statistical methodology of cluster analysis, and each PFU has different seepage ability. The results of this study demonstrate the obtained models are able to quantify reservoir heterogeneity. Due to different petrophysical characteristics and seepage ability, PFUs have a significant impact on the distribution of the remaining oil. Considering these allows a more accurate understanding of reservoir quality, especially within non-marine sandstone reservoirs.
Compositional characteristics of some Apollo 14 clastic materials.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Duncan, A. R.; Fruchter, J. S.; Mckay, S. M.; Stoeser, J. W.; Goles, G. G.; Lindstrom, D. J.
1972-01-01
Eighty-two subsamples of Apollo 14 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 25 elements. In many cases, it was necessary to develop new procedures to allow analyses of small specimens. Compositional relationships among Apollo 14 materials indicate that there are small but systematic differences between regolith from the valley terrain and that from Cone Crater ejecta. Fragments from 1-2 mm size fractions of regolith samples may be divided into compositional classes, and the 'soil breccias' among them are very similar to valley soils. Multicomponent linear mixing models have been used as interpretive tools in dealing with data on regolith fractions and subsamples from breccia 14321. These mixing models show systematic compositional variations with inferred age for Apollo 14 clastic materials.
Nature of the H chondrite parent body regolith - Evidence from the Dimmitt breccia
NASA Technical Reports Server (NTRS)
Rubin, A. E.; Scott, E. R. D.; Taylor, G. J.; Keil, K.; Allen, J. S. B.; Mayeda, T. K.; Clayton, R. N.; Bogard, D. D.
1983-01-01
Meteorite regolith breccias are clastic rocks which formed by lithification of fragmental regolith material that once resided at the surface of a meteorite parent body. A study is reported of the matrix and 21 clasts of various sizes (0.2-24 mm) in the Dimmitt H chondrite regolith breccia using petrographic and electron microprobe techniques. In addition, oxygen isotope studies of three clasts and instrumental neutron activation analysis (INAA) and Ar-39/Ar-40 age dating of one clast are reported. The Dimmitt meteorite was found about 1942 near Dimmitt, Texas. Attention is given to analytical procedures, the clastic matrix, equilibrated clasts, poikilitic melt-rock clast, clasts of different chondrite groups, graphite-magnetite aggregates, the origin of exotic clasts, and the complexity of parent body surfaces processes.
Effects of model layer simplification using composite hydraulic properties
Kuniansky, Eve L.; Sepúlveda, Nicasio; Elango, Lakshmanan
2011-01-01
Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with simplified layering and hydraulic properties will depend on the effectiveness of the methods used to determine composite hydraulic properties from a number of lithologic units.
NASA Astrophysics Data System (ADS)
Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.
2006-12-01
The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have been designed to determine likely mechanisms for vertical fluid migration as well as predict future movement of the effluent. Two alternative mechanisms for upward fluid migration are being tested with the model: (1) site-wide, diffuse upward movement through the Delray Dolomite and middle confining unit with all 17 injection wells; and (2) localized upward movement from the shallow casing depths at 10 of the 17 wells. The parameter estimation program, PEST, has estimated two different hydraulic conductivity configurations for the Delray Dolomite, middle confining unit, and other layers under these two possible conditions. The different parameter sets have yielded two satisfactory model calibrations. Results of these calibrations indicate that vertical effluent migration potentially is occurring either from (1) the 10 wells open above the Delray Dolomite, with virtually no effluent migration through the Delray Dolomite; or (2) all 17 wells open above and below the Delray Dolomite, with effluent migration through the Delray Dolomite.
Flexible drive allows blind machining and welding in hard-to-reach areas
NASA Technical Reports Server (NTRS)
Harvey, D. E.; Rohrberg, R. G.
1966-01-01
Flexible power and control unit performs welding and machining operations in confined areas. A machine/weld head is connected to the unit by a flexible transmission shaft, and a locking- indexing collar is incorporated onto the head to allow it to be placed and held in position.
NASA Astrophysics Data System (ADS)
Royhan Gani, M.; Mustafa Alam, M.
2003-02-01
The Tertiary basin-fill history of the Bengal Basin suffers from oversimplification. The interpretation of the sedimentary history of the basin should be consistent with the evolution of its three geo-tectonic provinces, namely, western, northeastern and eastern. Each province has its own basin generation and sediment-fill history related mainly to the Indo-Burmese and subordinately to the Indo-Tibetan plate convergence. This paper is mainly concerned with facies and facies sequence analysis of the Neogene clastic succession within the subduction-related active margin setting (oblique convergence) in the southeastern fold belt of the Bengal Basin. Detailed fieldwork was carried out in the Sitapahar anticline of the Rangamati area and the Mirinja anticline of the Lama area. The study shows that the exposed Neogene succession represents an overall basinward progradation from deep marine through shallow marine to continental-fluvial environments. Based on regionally correlatable erosion surfaces the entire succession (3000+ m thick) has been grouped into three composite sequences C, B and A, from oldest to youngest. Composite sequence C begins with deep-water base-of-slope clastics overlain by thick slope mud that passes upward into shallow marine and nearshore clastics. Composite sequence B characteristically depicts tide-dominated open-marine to coastal depositional systems with evidence of cyclic marine regression and transgression. Repetitive occurrence of incised channel, tidal inlet, tidal ridge/shoal, tidal flat and other tidal deposits is separated by shelfal mudstone. Most of the sandbodies contain a full spectrum of tide-generated structures (e.g. herringbone cross-bedding, bundle structure, mud couplet, bipolar cross-lamination with reactivation surfaces, 'tidal' bedding). Storm activities appear to have played a subordinate role in the mid and inner shelf region. Rizocorallium, Rosselia, Planolites and Zoophycos are the dominant ichnofacies within the shelfal mudstone. This paralic sedimentation of Neogene succession in the study area can serve as a good point of reference for tide-dominated regressive shelf depositional systems. The top of the composite sequence B is marked by a pronounced erosion surface indicating the final phase of marine regression followed by the gradual establishment of continental-fluvial depositional systems represented by composite sequence A. In this composite sequence, stacked channel bars of low-sinuosity braided rivers gradually pass upsequence into high-sinuosity meandering river deposits. A sequence stratigraphic approach has been adopted to interpret the basin-fill history with respect to relative sea-level changes; and to subdivide the rock record into several sequences and units (systems tracts and parasequences) based on identified bounding discontinuities, such as transgressive erosion surface (TES), regressive erosion surface (RES), marine flooding surface (MFS), and incised valley floor (IVF). This approach provides new insight for both exploration and exploitation strategy for hydrocarbon plays that may prove vital to the oil companies engaged in exploration activities in the Bengal Basin. It is strongly recommended here that the traditional lithostratigraphic classification of this part of the basin, which is based on the Assam stratigraphy, be abandoned or at least revised. A tentative allostratigraphic scheme is presented, and it is suggested that to formalize the scheme further study, both surface and subsurface, is needed.
NASA Astrophysics Data System (ADS)
Marsaglia, K. M.
2010-12-01
New Zealand river sources and their submarine sinks are excellent examples for modeling source-to-sink systems. In particular, the sand fractions of these systems can be used as tracers to document links and/or disconnects between fluvial, shelf, slope, and bathyal components. Within any given system, the ability to use sand as a tracer depends on the nature of the rocks exposed in source river drainage basins. In evolving systems, the potential for erosional unroofing, change of outcrop lithology through time, can be important. Additionally, the ability of a given lithology to generate sediment of a certain size may also vary. For example in the New Zealand examples, Cenozoic mudstones generate mostly mud but can liberate recycled sand grains (if present), as well as a smaller proportion of mudstone lithic fragments depending on degree of mudstone induration; schist generates copious sand and quartz-vein pebbles; and thin-bedded sandy turbidites can generate significant gravel, as well as mud and sand. Sediment production mode also comes into play with glacial processes (South Island) generating rock flour, as well as coarser debris. The major outcropping unit across both islands is a sedimentary to metasedimentary forearc succession, the Torlesse Terrane. It served as the protolith of the Otago schist (South Island) and the source of detritus for Cretaceous and Cenozoic sedimentary units on both islands. Local magmatism also supplied sand-sized material: intraplate (South Island) volcanism produced intrabasinal epiclastic debris and magmatic arc (North Island) volcanism produced extrabasinal pyroclastic debris. Various lithologies have characteristic detrital signatures. For example, in the Cenozoic units of the Waipaoa system, Pliocene calcareous mudstone fragments are key lithic components in tracing sediment transport from source-to sink, whereas the major fingerprint of Otago schist input into the Bounty System of South Island is mica. Critical to defining sedimentary budgets in both New Zealand systems is defining the net proportion of dip-fed vs. strike-fed clastic components. The former are supplied directly to the system by coast-perpendicular rivers, and the latter are transported into or out of the system by coast-parallel currents (e.g., longshore, shelf, slope). Tectonic events in the fluvial drainage basin can also have major influences on the supply of sediment to offshore basins. There is evidence for lacustrine sediment traps in each New Zealand system and evidence, in at least one case, that they modified sediment input to the marine part of the system (Bounty Fan).
Hydrogeologic Framework of Onslow County, North Carolina, 2008
Fine, Jason M.
2008-01-01
The unconsolidated sediments that underlie the Onslow County area are composed of interlayered permeable and impermeable beds, which overlie the crystalline basement rocks. The aquifers, composed mostly of sand and limestone, are separated by confining units composed mostly of clay and silt. The aquifers from top to bottom are the surficial, Castle Hayne, Beaufort, Peedee, Black Creek, and Upper and Lower Cape Fear aquifers. For this study, the Castle Hayne aquifer is informally divided into the upper and lower Castle Hayne aquifers. The eight aquifers and seven confining units of the Tertiary and Cretaceous strata beneath Onslow County are presented in seven hydrogeologic sections. The hydrogeologic framework was refined from existing interpretations by using geophysical logs, driller's logs, and other available data from 123 wells and boreholes.
Rotational and constitutional dynamics of caged supramolecules
Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.
2010-01-01
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Hydrogeology and groundwater quality of Highlands County, Florida
Spechler, Rick M.
2010-01-01
Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or sand, or relatively impermeable layers of clay, clayey sand, or clayey carbonates. The thickness of the intermediate aquifer system/ intermediate confining unit ranges from about 200 feet in northwestern Highlands County to more than 600 feet in the southwestern part. Although the intermediate aquifer system is present in the county, it is unclear where the aquifer system grades into a confining unit in the eastern part of the county. Up to two water-bearing units are present in the intermediate aquifer system within the county. The lateral continuity and water-bearing potential of the various aquifers within the intermediate aquifer system are highly variable. The Floridan aquifer system is composed of a thick sequence of limestone and dolostone of Upper Paleocene to Oligocene age. The top of the aquifer system ranges from less than 200 feet below NGVD 29 in extreme northwestern Highlands County to more than 600 feet below NGVD 29 in the southwestern part. The principal source of groundwater supply in the county is the Upper Floridan aquifer. As of 2005, about 89 percent of the groundwater withdrawn from the county was obtained from this aquifer, mostly for agricultural irrigation and public supply. Over most of Highlands County, the Upper Floridan aquifer generally contains freshwater, and the Lower Floridan aquifer contains more mineralized water. The potentiometric surface of the Upper Floridan aquifer is constantly fluctuating, mainly in response to seasonal variations in rainfall and groundwater withdrawals. The potentiometric surface of the Upper Floridan aquifer in May 2007, which represents the hydrologic conditions near the end of the dry season when water levels generally are near their lowest, ranged from about 79 feet above NGVD 29 in northwestern Highlands County to about 40 feet above NGVD 29 in the southeastern part of the county. The potentiometric surface of the Upper Floridan aquifer in September 2007 was about 3 to 10 feet high
Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.
2013-01-01
Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated, arsenic, manganese, and zinc were detected in one or more water samples at concentrations greater than established human health-based criteria. Arsenic concentrations typically were less than 1 microgram per liter (µg/L) in most groundwater samples; however, concentrations of arsenic greater than 1 µg/L frequently were detected in groundwater from clastic lacustrine sedimentary rocks of the Early Mesozoic basin aquifers and from metamorphosed clastic sedimentary rocks of the Piedmont and Blue Ridge crystalline rock aquifers. Groundwater from these rock units had elevated pH compared to other rock units evaluated in this study. Of the nine samples for which arsenic concentration was greater than 10 µg/L, six were classified as oxic and three as anoxic, and seven had pH of 7.2 or greater. Manganese concentrations typically were less than 10 µg/L in most samples; however, 8.3 percent of samples from the Piedmont and Blue Ridge crystalline-rock aquifers and 3.0 percent of samples from the Early Mesozoic basin siliciclastic rock aquifers had manganese concentrations greater than the 300-µg/L health-based screening level. The positive correlation of manganese with iron and ammonia and the negative correlation of manganese with dissolved oxygen and nitrate are consistent with the reductive dissolution of manganese oxides in the aquifer. Zinc concentrations typically were less than 10 µg/L in the groundwater samples considered in the study, but 0.4 percent and 5.5 percent of the samples had concentrations greater than the health-based screening level of 2,000 µg/L and one-tenth of the health-based screening level, respectively. The mean rank concentration of zinc in groundwater from the quartz-rich sedimentary rock lithologic group was greater than that for other lithologic groups even after eliminating samples collected from wells constructed with galvanized casing. Approximately 90 percent of 275 groundwater samples had radon-222 concentrations that were greater than the proposed alternative maximum contaminant level of 300 picocuries per liter. In contrast, only 2.0 percent of 98 samples had combined radium (radium-226 plus radium-228) concentrations greater than the maximum contaminant level of 5.0 picocuries per liter, and 0.6 percent of 310 samples had uranium concentrations greater than the maximum contaminant level of 30 µg/L. Radon concentrations were highest in the Piedmont and Blue Ridge crystalline-rock aquifers, especially in granite, and elevated median concentrations were noted in the Piedmont Early Mesozoic basin aquifers, but without the extreme maximum concentrations found in the crystalline rocks (granites). Although the siliciclastic lithologies had a greater frequency of elevated uranium concentrations, radon and radium were commonly detected in water from both siliciclastic and crystalline lithologies. Uranium concentrations in groundwater from clastic sedimentary and clastic lacustrine/evaporite sedimentary lithologic groups within the Early Mesozoic basin aquifers, which had median concentrations of 3.6 and 3.1 µg/L, respectively, generally were higher than concentrations for other siliciclastic lithologic groups, which had median concentrations less than 1 µg/L. Although 89 percent of the 260 samples from crystalline-rock aquifers had uranium concentrations less than 1 µg/L, 0.8 percent had uranium concentrations greater than the 30-µg/L maximum contaminant level, and 6.5 percent had concentrations greater than 3 µg/L.
Grantz, Arthur; Eittreim, Stephen L.; Whitney, O.T.
1979-01-01
The continental margin north of Alaska is of Atlantic type. It began to form probably in Early Jurassic time but possibly in middle Early Cretaceous time, when the oceanic Canada Basin of the Arctic Ocean is thought to have opened by rifting about a pole of rotation near the Mackenzie Delta. Offsets of the rift along two fracture zones are thought to have divided the Alaskan margin into three sectors of contrasting structure and stratigraphy. In the Barter Island sector on the east and the Chukchi sector on the west the rift was closer to the present northern Alaska mainland than in the Barrow sector, which lies between them. In the Barter Island and Chukchi sectors the continental shelf is underlain by prisms of clastic sedimentary rocks that are inferred to include thick sections of Jurassic and Neocomian (lower Lower Cretaceous) strata of southern provenance. In the intervening Barrow sector the shelf is underlain by relatively thin sections of Jurassic and Neocomian strata derived from northern sources that now lie beneath the outer continental shelf. The rifted continental margin is overlain by a prograded prism of Albian (upper Lower Cretaceous) to Tertiary clastic sedimentary rocks that comprises the continental terrace of the western Beaufort and northern Chukchi Seas. On the south the prism is bounded by Barrow arch, which is a hingeline between the northward-tilted basement surface beneath the continental shelf of the western Beaufort Sea and the southward-tilted Arctic Platform of northern Alaska. The Arctic platform is overlain by shelf clastic and carbonate strata of Mississippian to Cretaceous age, and by Jurassic and Cretaceous clastic strata of the Colville foredeep. Both the Arctic platform and Colville foredeep sequences extend from northern Alaska beneath the northern Chukchi Sea. At Herald fault zone in the central Chukchi Sea they are overthrust by more strongly deformed Cretaceous to Paleozoic sedimentary rocks of Herald arch, which trends northwest from Cape Lisburne. Hope basin, an extensional intracontinental sedimentary basin of Tertiary age, underlies the Chukchi Sea south of Herald arch.
Liu, Jinbao; Han, Jichang; Zhang, Yang; Wang, Huanyuan; Kong, Hui; Shi, Lei
2018-06-05
The storage of soil organic carbon (SOC) should improve soil fertility. Conventional determination of SOC is expensive and tedious. Visible-near infrared reflectance spectroscopy is a practical and cost-effective approach that has been successfully used SOC concentration. Soil spectral inversion model could quickly and efficiently determine SOC content. This paper presents a study dealing with SOC estimation through the combination of soil spectroscopy and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), principal component regression (PCR). Spectral measurements for 106 soil samples were acquired using an ASD FieldSpec 4 standard-res spectroradiometer (350-2500 nm). Six types of transformations and three regression methods were applied to build for the quantification of different parent materials development soil. The results show that (1)the basaltic volcanic clastics development of SOC spectral response bands located in 500 nm, 800 nm; Trachyte spectral response of the soil quality, and the volcanic clastics development at 405 nm, 465 nm, 575 nm, 1105 nm. (2) Basaltic volcanic debris soil development, first deviation of maximum correlation coefficient is 0.8898; thick surface soil of the development of rocky volcanic debris from bottom reflectivity logarithm of first deviation of maximum correlation coefficient is 0.9029. (3) Soil organic matter content of basaltic volcanic clastics development optimal prediction model based on spectral reflectance inverse logarithms of first deviation of SMLR. Independent variable number is 7, Rv 2 = 0.9720, RMSEP = 2.0590, sig = 0.003. Trachyte qualitative volcanic clastics developed soil organic matter content of the optimal prediction model based on spectral reflectance inverse logarithms of first deviation of PLSR. Model number of the independent variables Pc = 5, Rc = 0.9872, Rc 2 = 0.9745, RMSEC = 0.4821, SEC = 0.4906, forecasts determine coefficient Rv 2 = 0.9702, RMSEP = 0.9563, SEP = 0.9711, Bias = 0.0637. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Fenelon
2005-10-05
Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significantmore » trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.« less
Fenelon, Joseph M.
2005-01-01
Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.
"The Role of the Unit in Physics and Psychometrics": Rejoinder
ERIC Educational Resources Information Center
Humphry, Stephen M.
2011-01-01
This article presents Stephen Humphry's response to the commentaries for his article "The Role of the Unit in Physics and Psychometrics." The commentaries covered a range of important considerations and implications. Given that the author fully agrees with the majority of the content, attention will be confined mainly to points that call…
Subsurface stratigraphy of upper Devonian clastics in southern West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, D.W.; Patchen, D.G.
Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less
NASA Technical Reports Server (NTRS)
Rao, Y. J. B.
1986-01-01
The two fold stratigraphic subdivision of the Archean-Proterozoic greenstone-gneiss association of Dharwar craton into an older Sargur group (older than 2.9 Ga.) and a younger Dharwar Supergroup serves as an a priori stratigraphic model. The concordant greenstone (schist)-gneiss (Peninsular gneiss) relationships, ambiguities in stratigraphic correlations of the schist belts assigned to Sargur group and difficulties in deciphering the older gneiss units can be best appreciated if the Sargur group be regarded as a trimodal association of: (1) ultrabasic-mafic metavolcanics (including komatiites), (2) clastic and nonclastic metasediments and paragneisses and (3) mainly tonalite/trondhemite gneisses and migmatites of diverse ages which could be as old as c. 3.4 ga. or even older. The extensive occurrence of this greenstone-gneiss complex is evident from recent mapping in many areas of central and southern Karnataka State.
Tysdal, R.G.; Marvin, R.F.; Dewitt, E.
1986-01-01
Dating of orogenic rock units in the central part of the Madison Range shows that Laramide deformation was virtually completed by the end of the Cretaceous. Early Campanian K-Ar dates of about 79 m.y. were obtained from welded tuffs in the basal part of the Livingston Formation, a volcanic and volcaniclastic assemblage that is conformable with underlying Cretaceous clastic rocks and with the overlying Sphinx Conglomerate. The Sphinx and the Livingston were deformed by the Hilgard fault system which extends along the western side of the southern two-thirds of the range. This north-trending fault system represents the culmination of Laramide shortening within the range. Dating of hornblende indicates an approximate date of 68-69 m.y. B.P. for emplacement of the igneous suite. The dacite postdates movement along faults of the Hilgard fault system, and postdates the synorogenic Sphinx Conglomerate. -from Authors
NASA Astrophysics Data System (ADS)
Sharbazheri, Khalid Mahmood; Ghafor, Imad Mahmood; Muhammed, Qahtan Ahmad
2009-10-01
The Cretaceous/Tertiary (K/T) boundary sequence, which crops out in the studied area is located within the High Folded Zone, in the Sirwan Valley, northeastern Iraq. These units mainly consist of flysch and flysch-type successions of thick clastic beds of Tanjero/Kolosh Formations. A detailed lithostratigraphic study is achieved on the outcropping uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the lowermost part of the Kolosh Formation. On the basis of the identified planktonic foraminiferal assemblages, five biozones are recorded from the uppermost part of Tanjero Formation and four biozones from the lower part of the Kolosh Formation (Lower Paleocene) in the Sirwan section. The biostratigraphic correlations based on planktonic foraminiferal zonations showed a comparison between the biostratigraphic zones established in this study and other equivalents of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside Iraq.
Quality assessment of groundwater from the south-eastern Arabian Peninsula.
Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P
2017-08-01
Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.
Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.
2009-01-01
Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick. ?? US Government 2008.
Bartos, Timothy T.; Diehl, Sharon F.; Hallberg, Laura L.; Webster, Daniel M.
2014-01-01
The geologic and hydrogeologic characteristics of Tertiary lithostratigraphic units (Ogallala Formation and White River Group) that typically compose or underlie the High Plains aquifer system in southeastern Wyoming were described physically and chemically, and evaluated at a location on the Belvoir Ranch in Laramie County, Wyoming. On the basis of this characterization and evaluation, three Tertiary lithostratigraphic units were identified using physical and chemical characteristics determined during this study and previous studies, and these three units were determined to be correlative with three identified hydrogeologic units composing the groundwater system at the study site—a high-yielding aquifer composed of the entire saturated thickness of the heterogeneous and coarse-grained fluvial sediments assigned to the Ogallala Formation (Ogallala aquifer); an underlying confining unit composed primarily of very fine-grained volcaniclastic sediments and mudrocks assigned to the Brule Formation of the White River Group and some additional underlying sediments that belong to either the Brule or Chadron Formation, or both (Brule confining unit); and an underlying low-yielding aquifer composed primarily of poorly sorted fluvial sediments assigned to the Chadron Formation of the White River Group (Chadron aquifer). Despite widely varying sediment heterogeneity and consolidation, some limited hydraulic connection throughout the full vertical extent of the Ogallala aquifer was indicated but not conclusively proven by interpretation of similar chemical and isotopic characteristics, modern apparent groundwater ages, and similar hydraulic-head responses measured continuously in two Ogallala aquifer monitoring wells installed for this study at two different widely separated (83 feet) depth intervals. Additional work beyond the scope of this study, such as aquifer tests, would be required to conclusively determine hydraulic connection within the Ogallala aquifer. Groundwater levels (hydraulic heads) measured continuously using water-level recorders in both monitoring wells completed in the Ogallala aquifer showed a consistent strong upward vertical gradient in the Ogallala aquifer, indicating the potential for water to move from deeper to shallower parts of the aquifer, regardless of the time of year and the presumed effects of pumping of public-supply and industrial wells in the area. Continuous measurement of groundwater levels in the shallowest monitoring well, installed near the water table, and examination of subsequently constructed water-level hydrographs indicated substantial groundwater recharge is likely during the spring of 2009 and 2010 from the ephemeral stream (Lone Tree Creek) located adjacent to the study site that flows primarily in response to spring snowmelt from the adjacent Laramie Mountains and surface runoff from precipitation events. Using the water-table fluctuation method, groundwater recharge was estimated to be about 13 inches for the period beginning in early October 2009 and ending in late June 2010, and about 4 inches for the period beginning in March 2011 and ending in early July 2011. Comparison of previously measured groundwater levels (hydraulic heads) and groundwater-quality characteristics in nearby monitoring wells completed in the Chadron aquifer with those measured in the two monitoring wells installed for this study in the Ogallala aquifer, combined with detailed lithologic characterization, strongly indicated the Brule confining unit hydraulically confines and isolates the Chadron aquifer from the overlying Ogallala aquifer, thus likely limiting hydraulic connection between the two units. Consequently, because of the impermeable nature of the Brule confining unit and resulting hydraulic separation of the Ogallala and Chadron aquifers, and compared with local and regional hydrostratigraphic definitions of the High Plains aquifer system, the groundwater system in Tertiary lithostratigraphic units overlying the Upper Cretaceous Lance Formation at the location studied on the Belvoir Ranch was defined as being composed of, from shallowest to deepest, the High Plains aquifer system (high-yielding Ogallala aquifer only, composed of the saturated Ogallala Formation); the Brule confining unit composed of the Brule Formation of the White River Group and an underlying fine-grained depth interval with sediments that belong to either the Brule or Chadron Formation, or both; and the low-yielding Chadron aquifer (composed of poorly sorted coarse-grained sediments with substantial fine-grained matrix material assigned to the Chadron Formation of the White River Group).
APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.
Ruppert, Leslie F.
1987-01-01
Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, J.A. Jr.
1983-08-01
Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formationmore » - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.« less
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
Bondarkov, Mikhail D; Zheltonozhsky, Viktor A; Zheltonozhskaya, Maryna V; Kulich, Nadezhda V; Maksimenko, Andrey M; Farfán, Eduardo B; Jannik, G Timothy; Marra, James C
2011-10-01
Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified, and the fuel burn-up in these samples was determined. A systematic deviation in the burn-up values based on the cesium isotopes in comparison with other radionuclides was observed. The studies conducted were the first ever performed to demonstrate the presence of significant quantities of 242Cm and 243Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from 241Am (and going higher) in comparison with the theoretical calculations.
Fenelon, Joseph M.; Sweetkind, Donald S.; Elliott, Peggy E.; Laczniak, Randell J.
2012-01-01
Contaminants introduced into the subsurface of Yucca Flat, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a set of contour maps developed to represent the hydraulic-head distribution within the two major aquifer systems underlying the area. Aquifers and confining units within these systems were identified and their extents delineated by merging and analyzing hydrostratigraphic framework models developed by other investigators from existing geologic information. Maps of the hydraulic-head distributions in the major aquifer systems were developed from a detailed evaluation and assessment of available water-level measurements. The maps, in conjunction with regional and detailed hydrogeologic cross sections, were used to conceptualize flow within and between aquifer systems. Aquifers and confining units are mapped and discussed in general terms as being one of two aquifer systems: alluvial-volcanic or carbonate. The carbonate aquifers are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater flow directions, approximated from potentiometric contours, are indicated on the maps and sections and discussed for the alluvial-volcanic and regional carbonate aquifers. Flow in the alluvial-volcanic aquifer generally is constrained by the bounding volcanic confining unit, whereas flow in the regional carbonate aquifer is constrained by the siliceous confining unit. Hydraulic heads in the alluvial-volcanic aquifer typically range from 2,400 to 2,530 feet and commonly are elevated about 20-100 feet above heads in the underlying regional carbonate aquifer. Flow directions in the alluvial-volcanic aquifer are variable and are controlled by localized areas where small amounts of water can drain into the regional carbonate aquifer. These areas commonly are controlled by geologic structures, such as Yucca fault. Flow in the regional carbonate aquifer generally drains to the center of the basin; from there flow is to the south-southeast out of the study area toward downgradient discharge areas. Southward flow in the regional carbonate aquifer occurs in a prominent potentiometric trough that results from a faulted zone of enhanced permeability centered about Yucca fault. Vertical hydraulic gradients between the aquifer systems are downward throughout the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer is believed to be minor because of the intervening confining unit. Transient water levels were identified and analyzed to understand hydraulic responses to stresses in Yucca Flat. Transient responses have only a minimal influence on the general predevelopment flow directions in the aquifers. The two primary anthropogenic stresses on the groundwater system since about 1950 are nuclear testing and pumping. Most of the potentiometric response in the aquifers to pumping or past nuclear testing is interim and localized. Persistent, long-lasting changes in hydraulic head caused by nuclear testing occur only in confining units where groundwater fluxes are negligible. A third stress on the groundwater system is natural recharge, which can cause minor, short- and long-term changes in water levels. Long-term hydrographs affected by natural recharge, grouped by similar trend, cluster in distinct areas of Yucca Flat and are controlled primarily by spatial differences in local recharge patterns.
NASA Astrophysics Data System (ADS)
Rousell, Don H.; Fedorowich, John S.; Dressler, Burkhard O.
2003-02-01
The Sudbury Structure, formed by meteorite impact at 1850 Ma, consists of three major components: (1) the Sudbury Basin; (2) the Sudbury Igneous Complex, which surrounds the basin as an elliptical collar; and (3) breccia bodies in the footwall known as Sudbury Breccia. In general, the breccia consists of subrounded fragments set in a dark, fine-grained to aphanitic matrix. A comparison of the chemical composition of host rocks, clasts and matrices indicates that brecciation was essentially an in-situ process. Sudbury Breccia forms irregular-shaped bodies or dikes that range in size from mm to km scale. Contacts with the host rocks are commonly sharp. The aspect ratio of most clasts is approximately 2 with the long axes parallel to dike walls. The fractal dimension (Dr)=1.55. Although there appears to be some concentration of brecciation within concentric zones, small Sudbury Breccia bodies within and outside these zones have more or less random strikes and steep dips. Sudbury Breccia bodies near an embayment structure tend to be subparallel to the base of the Sudbury Igneous Complex. Sudbury Breccia occurs as much as 80 km from the outer margin of the Sudbury Igneous Complex. In an inner zone, 5 to 15 km wide, breccia comprises 5% of exposed bedrock with an increase in brecciation intensity in embayment structures. Sudbury Breccia may be classified into three types based on the nature of the matrix: clastic, pseudotachylite and microcrystalline. Clastic Sudbury Breccia, the dominant type in the Southern Province, is characterized by flow-surface structures. Possibly, a sudden rise in pore pressure caused explosive dilation and fragmentation, followed by fluidization and flowage into extension fractures. Pseudotachylite Sudbury Breccia, mainly confined to Archean rocks, apparently formed by comminution and frictional melting. Microcrystalline Sudbury Breccia formed as a result of the thermal metamorphism, of the North Range footwall, by the Sudbury Igneous Complex. This produced a zone, approximately 1.2 km wide, wherein the matrix of the breccia either recrystallized or, locally, melted. An overprint of regional metamorphism obliterated contact effects in the South Range footwall. The Ni-Cu-PGE magmatic sulphide deposits may be classified into four types based on structural setting: Sudbury Igneous Complex-footwall contact, footwall, offset, and sheared deposits. Sudbury Breccia is the main host for footwall deposits (e.g., McCreedy East, Victor, Lindsley). Sudbury Breccia locally hosts mineralization in radial (e.g., Parkin and Copper Cliff) and concentric (e.g., Frood-Stobie) offset dikes.
Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)
NASA Astrophysics Data System (ADS)
McMahon, P. B.
2010-12-01
Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.
Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas
NASA Astrophysics Data System (ADS)
Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.
2007-05-01
Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.
Graham, Jay P; Nachman, Keeve E
2010-12-01
Confined food-animal operations in the United States produce more than 40 times the amount of waste than human biosolids generated from US wastewater treatment plants. Unlike biosolids, which must meet regulatory standards for pathogen levels, vector attraction reduction and metal content, no treatment is required of waste from animal agriculture. This omission is of concern based on dramatic changes in livestock production over the past 50 years, which have resulted in large increases in animal waste and a high degree of geographic concentration of waste associated with the regional growth of industrial food-animal production. Regulatory measures have not kept pace with these changes. The purpose of this paper is to: 1) review trends that affect food-animal waste production in the United States, 2) assess risks associated with food-animal wastes, 3) contrast food-animal waste management practices to management practices for biosolids and 4) make recommendations based on existing and potential policy options to improve management of food-animal waste.
Devonian of the Northern Rocky Mountains and plains
Sandberg, Charles A.; Mapel, William J.
1967-01-01
5. Undivided uppermost Devonian (Famennian, to V-VI) and lowermost Mississippian (Tournaisian, cuI-lower cuIIα) carbonaceous and clastic rocks deposited in six shallow basins interspersed among areas uplifted during the penecontemporaneous Antler orogeny.
Surficial aquifer system in eastern Lee County, Florida
Boggess, D.H.; Watkins, F.A.
1986-01-01
The surficial aquifer system in eastern Lee County consists of an upper water bearing unit, which is generally unconfined, and a lower water bearing unit, which is confined and is the major source tapped by most wells. The top of the lower unit, which is of primary interest in this report, ranges in depth from 40 to 60 ft below land surface in the east-central part of the county to more than 120 ft in the southern part. In the extreme southern part of the county, a middle water bearing unit also contains water under artesian pressure. Recharge to the lower unit occurs primarily by leakage from the overlying saturated section through the confining beds. Water levels in the lower unit fluctuate similarly to those in the upper (unconfined) unit. Groundwater in the lower unit moves from areas of highest water level in the south part of Lehigh acres, northward toward the Caloosahatchee River, and toward the coast. The lower unit contains freshwater throughout much of its extent and is the source of public water supply at Lehigh Acres and Green Meadows where an average of about 3 mil gal/day was withdrawn in 1980. In several areas, the concentrations of chlorides and dissolved solids exceed drinking water standards. Yields of wells that tap the lower unit range from 10 to 1,100 gal/min. Transmissivities ranging from about 17,700 to 7,750 sq ft/day were determined for different areas of the unit. Storage coefficients range from 0.0001 to 0.0003. (Author 's abstract)
Eimers, J.L.; Daniel, C. C.; Coble, R.W.
1994-01-01
Geophysical and lithologic well-log data from 30 wells and chloride data, and water-level data from oil-test wells, supply wells, and observation wells were evaluated to define the hydrogeologic framework at the U.S. Marine Corps Air Station, Cherry Point, North Carolina. Elements of the hydrogeologic framework important to this study include six aquifers and their respective confining units. In descending order, these aquifers are the surficial, Yorktown, Pungo River, upper and lower Castle Hayne, and Beaufort. The upper and lower Castle Hayne and Beaufort aquifers and related confining units are relatively continuous throughout the study area. The surficial, Yorktown, Pungo River, and upper and lower Castle Hayne aquifers contain freshwater. The upper and lower Castle Hayne aquifers serve as the Air Station?s principal supply of freshwater. However, the lower Castle Hayne aquifer contains brackish water near its base and there is potential for upward movement of this water to supply wells completed in this aquifer. The potential for brackish-water encroachment is greatest if wells are screened too deep in the lower Castle Hayne aquifer or if pumping rates are too high. Lateral movement of brackish water into aquifers incised by estuarine streams is also possible if ground-water flow gradients toward these bodies are reversed by pumping. The potential for the reversed movement of water from the surficial aquifer downward to the water-supply aquifer is greatest in areas where clay confining units are missing. These missing clay units could indicate the presence of a paleochannel of the Neuse River. A quasi three-dimensional finite-difference ground-water flow model was constructed and calibrated to simulate conditions at and in the vicinity of the Air Station for the period of 1987-90. Comparisons of 94 observed and computed heads were made, and the average difference between them is -0.2 feet with a root mean square error of 5.7 feet. An analysis was made to evaluate the sensitivity of the model to the absence of the Yorktown and Pungo River confining units in a 1-square-mile area in the southern part of the Air Station. This analysis resulted in a maximum simulated head increase of 2 feet in one 0.11-square-mile model cell in the Pungo River aquifer.
Holm-Denoma, Christopher S.; Hofstra, Albert H.; Rockwell, Barnaby W.; Noble, Paula J.
2012-01-01
Geologic mapping and remote sensing across north-central Nevada enable recognition of a thick sheet of Middle and Upper Ordovician Valmy Formation quartzite that structurally overlies folded and faulted Ordovician through Devonian stratigraphic units of the Roberts Mountains allochthon. In the northern Independence Mountains and nearby Double Mountain area, the Valmy Formation is in fault contact with Ordovician through Silurian, predominantly clastic, sedimentary rocks of the Roberts Mountains allochthon that were deformed prior to, or during, emplacement of the Valmy thrust sheet. Similar structural relations are recognized discontinuously for 200 kilometers along the strike of the Roberts Mountains allochthon in mapping guided by regional remote-sensing-based (ASTER) quartz maps. Overall thicknesses of deformed Roberts Mountains allochthon units between the base of the Valmy and the top of underlying carbonate rocks that host large Carlin-type gold deposits varies on the order of hundreds of meters but is not known to exceed 700 meters. The base of the Valmy thrust sheet is a complimentary datum in natural resource exploration and mineral resource assessment for concealed Carlin-type gold deposits.
Schöner, R.; Viereck-Goette, L.; Schneider, J.; Bomfleur, B.
2007-01-01
Field investigations in North Victoria Land, Antarctica during GANOVEX IX (2005/2006) allow the revision of the Triassic-Jurassic stratigraphy of ~300 m thick continental deposits in between the crystalline basement and the Kirkpatrick lava flows of the Ferrar Group. The lower stratigraphic unit (Section Peak Formation) is characterised by braided river-type quartzose sandstone deposits with intercalations of shale and coal occurring at the top. It is overlain by a homogeneous unit of reworked tuffs composed of fine-grained silicic shards, quartz and feldspar (new name: "Shafer Peak Formation"). These deposits can be correlated with parts of the Hanson Formation in the Central Transantarctic Mountains and require a distal yet unknown source of massive silicic volcanism. Clastic products of mafic volcanic eruptions, formerly described as a separate stratigraphic formation (Exposure Hill Formation), occur within local diatreme structures as well as intercalated at various stratigraphic levels within the sedimentary succession. These dominantly hydroclastic eruptions are the first subaerial expression of Ferrar magmatism. The initial Kirkpatrick lavas/pillow lavas were generated from local eruptive centres and again may be overlain by thin sediments, which are covered by the thick plateau lava succession known throughout the Transantarctic Mountain Range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, P.R.; Baum, G.R.
1991-03-01
Early Eocene to late Oligocene marine sedimentary units in southwestern Alabama were sampled at closely spaced intervals to derive a precise time-stratigraphic framework and to determine the paleoecological and mineralogical responses to fluctuations in sea level. Paleontologic control consisted of planktonic, smaller and larger benthonic foraminifera, calcareous nannofossils, dinoflagellates, and megafossils. Paleomagnetic reversals were delineated in two boreholes which, when supplemented by strontium isotope dates and the biostratigraphic control, provided a robust in situ chronostratigraphy for the Gulf Coast lower Tertiary. Paleoecologic trends in regression and transgression can be clearly correlated across major regional facies changes. Using the chronostratigraphy developedmore » here, the second-, third-, and fourth-orders of Vail's global sea-level cycles can be recognized and demonstrate the influence of sea-level change on sedimentation. Stratigraphic systems tracts (SSTs) and bounding surfaces in outcrop were determined by lithologic variations and paleoecologic trends, and additionally by gamma logs in the cores. The lower sequence boundary occurs at a contact where an older, relatively fine-grained, deep-water, fossiliferous unit was abruptly succeeded by a coarse-grained, shallow-water, poorly fossiliferous unit. The transgressive surface occurs at the base of a fining- and deepening-upwards unit that was commonly glauconitic and very fossiliferous. Transgression culminated with a pulse of planktonic microfossils in a bed having reduced clastic sedimentation; on the log the surface of maximum starvation was marked by a gamma spike.« less
Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood
NASA Astrophysics Data System (ADS)
Yochum, Steven E.; Sholtes, Joel S.; Scott, Julian A.; Bledsoe, Brian P.
2017-09-01
The Colorado Front Range flood of September 2013 induced a diverse range of geomorphic changes along numerous stream corridors, providing an opportunity to assess responses to a large flood in a semiarid landscape. We defined six classes of geomorphic change related to peak unit stream power and valley confinement for 531 stream reaches over 226 km, spanning a gradient of channel scales and slope. Geomorphic change was generally driven by erosion of channel margins in confined reaches and by a combination of deposition and erosion in unconfined reaches. The magnitude of geomorphic change typically increased with unit stream power (ω), with greater responses observed in unconfined channels. Cumulative logit modeling indicated that total stream power or unit stream power, unit stream power gradient, and valley confinement are significant predictors of geomorphic response for this flood event. Based on this dataset, thresholds for geomorphic adjustment were defined. For channel slopes < 3%, we noted a credible potential for substantial channel widening with ω > 230 W/m2 (16 lb/ft-s; at least 10% of the investigated sites experienced substantial channel widening) and a credible potential for avulsions, braiding, and loss of adjacent road embankments associated with ω > 480 W/m2 (33 lb/ft-s; at least 10% of the investigated sites experienced such geomorphic change). Infrequent to numerous eroded banks were very likely with ω > 700 W/m2 (48 lb/ft-s), with substantial channel widening or major geomorphic change shifting from credible to likely. Importantly, in reaches where there were large reductions in ω as the valley form shifted from confined to relatively unconfined, large amounts of deposition-induced, reach-scale geomorphic change occurred in some locations at relatively low ω. Additionally, alluvial channels with slopes > 3% had greater resistance to geomorphic change, likely caused by armoring by larger bed material and increased flow resistance from enhanced bedforms. Finally, we describe how these results can potentially be used by practitioners for assessing the risk of geomorphic change when evaluating current or planned conditions.
Tenbus, F.J.; Phillips, S.W.
1996-01-01
Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.
Amphibious Ready Group/Marine Expeditionary Unit Readiness Training Final Environmental Assessment
2003-04-11
above and below by the Pensacola Clay confining bed. This clay layer restricts the downward migration of pollutants and restricts saline water from...separates the Upper and Lower Limestone units. Because it is saline , the Lower Limestone unit is not used as a water source (U.S. Air Force, 1995...and a freshwater species, Ruppia maritima (widgeon grass). Widgeon grass is most common in brackish waters but can tolerate higher salinities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breedon, D.; Droste, J.B.; Murray, H.H.
1983-09-01
The Ste. Genevieve Limestone and Cedar Bluff Group of Mississippian age, both important sources of hydrocarbons in the Illinois basin, were traced from a subsurface stratigraphic section in White County, Illinois (described by Swan in 1963, across Gibson and Daviess Counties, Indiana, using electric logs and sample descriptions from 84 wells. The Ste. Genevieve Limestone is subdivided into four members and the Cedar Bluff Group into three formations. Six cross sections and nine isopach maps based on 300 wells show that these units comprise a succession of alternating fine- and coarse-grained carbonate rocks with only minor interruptions of sandstone andmore » shale. Two complete coarsening-upward cycles are apparent, and a third cycle is incomplete. Each cycle consists of a lower sequence of lime mudstones and wackestones, and an upper sequence of oolitic and skeletal grainstones. These cycles are the record of successive shoaling-upward cycles of sedimentation on a shallow marine platform. The lower mudstone-wackestone sequence represents deposition in a shallow subtidal environment, and the upper oolitic-skeletal grainstone unit represents development of oolite shoals and tidal channels in very shallow waters. Terrigenous clastic sediments brought into the basin by the Michigan river periodically encroached into the marine environment. Dolomitization of the fine-grained carbonate sediments is largely restricted to areas which are overlain by oolitic grainstones. In eastern Daviess County, indentification of the individual stratigraphic units in this interval is somewhat tenuous, but tracing the units from eastern Illinois into Indiana made correlation and identification of the individual stratigraphic units possible by using electric logs and sample descriptions.« less
Space analogue studies in Antarctica
NASA Technical Reports Server (NTRS)
Lugg, D.; Shepanek, M.
1999-01-01
Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.
Space analogue studies in Antarctica
NASA Astrophysics Data System (ADS)
Lugg, D.; Shepanek, M.
1999-09-01
Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.
Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado
Ackerman, D.J.; Rush, F.E.
1984-01-01
The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)
Harlow, G.E.; Bell, C.F.
1996-01-01
Lithologic and geophysical logs of boreholes at 29 sites show that the hydrogeologic framework of the Mainside of the Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, consists of un-consolidated sedimentary deposits of gravel, sand, silt, and clay. The upper 220 feet of these sediments are divided into five hydrogeologic units, including the (1) Columbia (water-table) aquifer, (2) upper confining unit, (3) upper confined aquifer, (4) Nanjemoy-Marlboro confining unit, and (5) Aquia aquifer. The Columbia aquifer in the study area is a local system that is not affected by regional pumping. Ground-water recharge occurs at topographic highs in the northern part of the Mainside, and ground-water discharge occurs at topographic lows associated with adjacent surface-water bodies. Regionally, the direction of ground-water flow in the upper confined and Aquia aquifers is toward the southwest and southeast, respectively. A downward hydraulic gradient exists between the aquifers in the shallow system, and stresses on the Aquia aquifer are indicated by heads that range between 2 and 12 feet below sea level. The ratio of median horizontal hydraulic conductivity of the Columbia aquifer to median vertical hydraulic con-ductivity of the upper confining unit, however, is approximately 2,600:1; therefore, under natural- flow conditions, most water in the Columbia aquifer probably discharges to adjacent surface- water bodies. The composition and distribution of major ions vary in the Columbia aquifer. In general, water samples from wells located along the inland perimeter roads of the study area have chloride or a combination of chloride and sulfate as the dominant anions, and water samples from wells located in the interior of the study area have bicarbonate or a combination of bicarbonate and sulfate as the dominant anions. Sodium and calcium were the dominant cations in most samples. Dissolved solids and four inorganic constituents are present in water from the Columbia aquifer at concentrations that exceed the secondary maximum contaminant levels (SMCL's) for drinking water established by the U.S. Environmental Protection Agency. Concentration of dissolved solids exceed the SMCL of 500 milligrams per liter in 3 of 29 samples from the Columbia aquifer. An elevated concentration of sodium is present in one water sample, and elevated concentrations of chloride are present in two water samples. Concentrations of dissolved iron and manga-nese exceed the SMCL in 10 and 17 of 29 water samples, respectively, and are the most extensive water-quality problem with regard to inorganic constituents in the Columbia aquifer.
New Advances in Re-Os Geochronology of Organic-rich Sedimentary Rocks.
NASA Astrophysics Data System (ADS)
Creaser, R. A.; Selby, D.; Kendall, B. S.
2003-12-01
Geochronology using 187Re-187Os is applicable to limited rock and mineral matrices, but one valuable application is the determination of depositional ages for organic-rich clastic sedimentary rocks like black shales. Clastic sedimentary rocks, in most cases, do not yield depositional ages using other radioactive isotope methods, but host much of Earth's fossil record upon which the relative geological timescale is based. As such, Re-Os dating of black shales has potentially wide application in timescale calibration studies and basin analysis, if sufficiently high precision and accuracy could be achieved. This goal requires detailed, systematic studies and evaluation of factors like standard compound stoichiometry, geologic effects, and the 187Re decay constant. Ongoing studies have resulted in an improved understanding of the abilities, limitations and systematics of the Re-Os geochronometer in black shales. First-order knowledge of the effects of processes like hydrocarbon maturation and low-grade metamorphism is now established. Hydrocarbon maturation does not impact the ability of the Re-Os geochronometer to determine depositional ages from black shales. The Re-Os age determined for the Exshaw Fm of western Canada is accurate within 2σ analytical uncertainty of the known age of the unit (U-Pb monazite from ash, conodont biostratigraphy). This suggests that the large improvement in precision attained for Re-Os dating of black shales by Cohen et al (ESPL 1999) over the pioneering work of Ravizza & Turekian (GCA 1989), relates to advances in analytical methodologies and sampling strategies, rather than a lack of disturbance by hydrocarbon maturation. We have found that a significant reduction in isochron scatter can be achieved by using an alternate dissolution medium, which preferentially attacks organic matter in which Re and Os are largely concentrated. This likely results from a more limited release of detrital Os and Re held in silicate materials during dissolution, compared with the inverse aqua regia medium used for Carius tube analysis. Using these "organic-selective" dissolution techniques, precise depositional ages have now been obtained from samples with very low TOC contents ( ˜0.5%), meaning that a greater range of clastic sedimentary rocks is amenable for Re-Os age dating. Well-fitted Re-Os isochrons of plausible geological age have also been determined from low-TOC shales subjected to chlorite-grade regional metamorphism. These results further illustrate the wide, but currently underutilized, potential of the Re-Os geochronometer in shales. The precision of age data attainable by the Re-Os system directly from black shales can be better than +/- 1% uncertainty (2σ , derived from isochron regression analysis), and the derived ages are demonstrably accurate.
NASA Astrophysics Data System (ADS)
El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared
2010-05-01
Borehole water levels fluctuate in response to deformation of the surrounding aquifer caused by surface loading due to barometric pressure or strain caused by Earth and ocean tides. The magnitude and nature of this response mainly depend on the hydraulic properties of the aquifer and overlying units and borehole design. Thus water level responses reflect the effectiveness of a confining unit as a protective layer against aquifer contamination (and therefore groundwater vulnerability) and to potential aquifer recharge/discharge zones. In this study, time series of borehole water levels and barometric pressure are being investigated using time series analysis and signal processing techniques with the aim of developing a methodology for assessing recharge/discharge distribution and groundwater vulnerability in the confined/semi-confined part of the Chalk aquifer in East Yorkshire, UK. The chalk aquifer in East Yorkshire is an important source for industrial and domestic water supply. The aquifer water quality is threatened by surface pollution particularly by nitrates from agricultural fertilizers. The confined/semi-confined part of this aquifer is covered by various types of superficial deposits resulting in a wide range of the aquifer's degree of confinement. A number of boreholes have been selected for monitoring to cover all these various types of confining units. Automatic pressure transducers are installed to record water levels and barometric pressure measurements at each borehole on 15 minutes recording intervals. In strictly confined aquifers, borehole water level response to barometric pressure is an un-drained instantaneous response and is a constant fraction of the barometric pressure changes. This static confined constant is called the barometric efficiency which can be estimated simply by the slope of a regression plot of water levels versus barometric pressure. However, in the semi confined aquifer case this response is lagged due to water movement between the aquifer and the confining layer. In this case the static constant barometric efficiency is not applicable and the response is represented by a barometric response function which reflects the timing and frequency of the barometric pressure loading. In this study, the barometric response function is estimated using de-convolution techniques both in the time domain (least squares regression de-convolution) and in the frequency domain (discrete Fourier transform de-convolution). In order to estimate the barometric response function, borehole water level fluctuations due to factors other than barometric pressure should be removed (de-trended) as otherwise they will mask the response relation of interest. It is shown from the collected borehole data records that the main four factors other than barometric pressure contribute to borehole water level fluctuations. These are the rainfall recharge, Earth tides, sea tides and pumping activities close to the borehole location. Due to the highly variable nature of the UK weather, rainfall recharge shows a wide variation throughout the winter and summer seasons. This gives a complicated recharge signal over a wide range of frequencies which must be de-trended from the borehole water level data in order to estimate the barometric response function. Methods for removing this recharge signal are developed and discussed. Earth tides are calculated theoretically at each borehole location taking into account oceanic loading effects. Ocean tide effects on water levels fluctuations are clear for the boreholes located close to the coast. A Matlab code has been designed to calculate and de-trend the periodic fluctuations in borehole water levels due to Earth and ocean tides using the least squares regression technique based on a sum of sine and cosine fitting model functions. The program results have been confirmed using spectral analysis techniques.
NASA Astrophysics Data System (ADS)
Garcés, Miguel; Krijgsman, Wout; Agustí, Jorge
1998-11-01
The magnetostratigraphy of the mammal-bearing alluvial fan-fan delta sequences of the Fortuna basin (SE Spain) has yielded an accurate chronology for the late Turolian (Messinian) basin infill. From early to late Messinian (at least between 6.8 and 5.7 Ma), the Fortuna basin records the sedimentation of alluvial-palustrine deposits over a confined shallow basin. Changing environmental conditions in the latest Messinian are illustrated by the retreat of palustrine facies. A rapid progradation of the marginal clastic wedges and the initiation of an efficient basin drainage at ˜5.8 Ma (lower part of chron C3r) most likely represents the onshore response to the drastic drop of base level taking place during the Messinian salinity crisis. This study further provides improved age estimates for the late Turolian land mammal events in southern Spain. The oldest MN 13 locality in the studied sections is correlated to chron C3Ar at an age of 6.8 Ma. The entry of camels and the murid Paraethomys in southern Spain occurs in chron C3An.1n at 6.1 Ma, and gives further support for land mammal exchange between Africa and the Iberian peninsula prior to the salinity crisis, in good agreement with results from northern Africa [M. Benammi, M. Calvo, M. Prévot, J.J. Jaeger, Magnetostratigraphy and paleontology of Aı̈t Kandoula basin (High Atlas, Morocco) and the African-European late Miocene terrestrial fauna exchanges, Earth Planet. Sci. Lett. 145 (1996) 15-29]. The age of the studied sequences provides important constraints on the understanding of the sedimentary evolution of the eastern Betic margin, and shows that previous interpretations of the evaporitic-diatomitic sequences of the Fortuna basin, as being coeval to the late Messinian salinity crisis in the Mediterranean, are not correct. The confinement leading to the emergence of the Fortuna basin occurred in the late Tortonian to earliest Messinian, similar to other intramontane basins in the Betics. Therefore, the inclusion of the Fortuna basin in a hypothetical marine Betic Corridor during the late Messinian is no longer tenable.
Stanin, S. Anthony; Wahid, M.A.; Khan, Shamsher
1975-01-01
Showings of magnetite, copper, and possible nickel mineralization in the Hindubagh chromite mining district are near Wulgai and Tor Tangi. Several hundred samples of clastic material from dry streambeds in these areas were sieved for the minus-80-mesh fraction and analyzed for copper using 2, 2'-biquinoline and for nickel using alpha-furildioxime. The copper threshold is 75 ppm, and the nickel threshold is 400 ppm. A geochemical map has been prepared that shows nine areas of anomalously high copper and six areas of high nickel. The nickel anomalies may represent secondary dispersion patterns derived from the erosion of nickeliferous ultramafic rocks of the Hindubagh intrusive complex. Copper showings in and near four of the anomalous copper areas indicate that detailed geological investigation and detailed geochemical sampling of rocks, soil, and unconsolidated clastic material are required to determine the source of the anomalies.
Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt
NASA Astrophysics Data System (ADS)
Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir
2015-02-01
Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.
Sarsa, Antonio; Le Sech, Claude
2011-09-13
Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.
Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.
2007-01-01
In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic Upper Floridan aquifer (0.06 milligram per liter) under sulfate-reducing conditions. High concentrations of radon-222 and uranium in the public-supply well compared to those in monitoring wells in the Upper Floridan aquifer appear to originate from water moving downward through sands and discontinuous clay lenses that overlie the aquifer. Water samples also were collected from three overlapping depth intervals (38-53, 43-53, and 49-53 meters below land surface) in the public-supply well. The 49- to 53-meter interval was identified as a high-flow zone during geophysical logging of the wellbore. Water samples were collected from these depth intervals at a low pumping rate by placing a low-capacity submersible pump (less than 0.02 cubic meter per minute) at the top of each interval. To represent higher pumping conditions, a large-capacity portable submersible pump (1.6 cubic meters per minute) was placed near the top of the open interval; water-chemistry samples were collected using the low-capacity submersible pump. The 49- to 53-meter depth interval had distinctly different chemistry than the other two sampled intervals. Higher concentrations of nitrate-N, atrazine, radon, trichloromethane (chloroform), and arsenic (and high arsenic (V)/arsenic (III) ratios); lower concentrations of dissolved solids, strontium, iron, manganese, and lower nitrogen and sulfur isotope ratios were found in this highly transmissive zone in the limestone than in water from the two other depth intervals. Movement of water likely occurs from the overlying sands and clays of the oxic surficial aquifer system and intermediate confining unit (that contains high radon-222 and nitrate-N concentrations) into the anoxic Upper Floridan aquifer (that contains low radon-222 and nitrate-N concentrations). Differences in arsenic concentrations in water from the various depth intervals in the public-supply well (3.2-19.0 micrograms per liter) were related to pumping conditions. The high arsenic
Juvenile Solitary Confinement as a Form of Child Abuse.
Clark, Andrew B
2017-09-01
Placing incarcerated juveniles into solitary confinement continues to occur in certain states of the United States, despite the accumulating evidence that it may cause substantial psychological damage to the teenagers who must endure it. The practice has been widely condemned by professional and human rights organizations, amid a growing appreciation of the immaturity and vulnerability of the adolescent brain. Although several states and the federal government have been successful in abolishing or dramatically reducing the use of juvenile solitary confinement, it remains common practice in many facilities. Clinicians working in correctional facilities where juvenile solitary confinement is employed are therefore faced with difficult questions of ethics, as to how best to balance their competing duties, and how to respond to such state-sanctioned ill treatment of their patients. Given the emerging consensus around the psychological damage wrought by sustained solitary confinement, clinicians may well reach the difficult conclusion that they are both legally mandated and ethically bound to file a report of suspected child abuse. Such a report would be unlikely to be investigated for administrative reasons, but it would allow clinicians to communicate the gravity of their concern effectively. © 2017 American Academy of Psychiatry and the Law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starr, R.C.; Green, T.S.; Hull, L.C.
2001-02-28
A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that themore » geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles
2001-02-01
A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that themore » geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.« less
Hydrogeologic Framework of the New Jersey Coastal Plain
Zapecza, Otto S.
1989-01-01
This report presents the results of a water-resources, oriented subsurface mapping program within the Coastal Plain of New Jersey. The occurrence and configuration of 15 regional hydrogeologic units have been defined, primarily on the basis of an interpretation of borehole geophysical data. The nine aquifers and six confining beds are composed of unconsolidated clay, silt, sand, and gravel and range in age from Cretaceous to Quaternary. Electric and gamma-ray logs from more than 1,000 Coastal Plain wells were examined. Of these, interpretive data for 302 sites were selected, on the basis of logged depth, quality of data, and data distribution, to prepare structure contour and thickness maps for each aquifer and a thickness map for each confining bed. These maps, together with 14 hydrogeologic sections, show the geometry, lateral extent, and vertical and horizontal relationships among the 15 hydrogeologic units. The hydrogeologic maps and sections show that distinct lower, middle, and upper aquifers are present within the Potomac, Raritan-Magothy aquifer system near the Delaware River from Burlington County to Salem County. Although the lower aquifer is recognized only in this area, the middle aquifer extends into the northeastern Coastal Plain of New Jersey, where it is stratigraphically equivalent to the Farrington aquifer. The upper aquifer extends throughout most of the New Jersey Coastal Plain and is stratigraphically equivalent to the Old Bridge aquifer in the northeastern Coastal Plain. The overlying Merchantville-Woodbury confining bed is the most regionally extensive confining bed within the New Jersey Coastal Plain. Its thickness ranges from less than 100 feet near the outcrop to more than 450 feet along the coast. The Englishtown aquifer system acts as a single aquifer throughout most of its subsurface extent, but it contains two water-bearing sands in pars of Monmouth and Ocean Counties. The overlying Marshalltown-Wenonah confining bed is a thin, leaky unit ranging in thickness from approximately 20 to 80 feet. The Wenonah-Mount Laurel aquifer is identified in the subsurface throughout the New Jersey Coastal Plain southeast of its outcrop area. Sediments that overlie the Wenonah-Mount Lauren aquifer and that are subjacent to the major aquifers within the Kirkwood Formation and the Cohansey Sand are described hydrologically as a composite confining bed. These include the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, and Piney Point Formation and the basal clay of the Kirkwood Formation.. The Vincentown Formation functions as n aquifer within 3 to 10 miles downdip of its outcrop area. In areas farther downdip the Vincentown Formation functions as a confining bed. The Piney Point aquifer is laterally persistent from the southern New Jersey Coastal Plain northward into parts of Burlington and Ocean Counties. The Atlantic City 800-foot sand of the Kirkwood Formation can be recognized in the subsurface along coastal areas of Cape May, Atlantic, and southern Ocean Counties, but inland only as far west as the extent of the overlying confining bed. In areas west of the extent of the overlying confining bed, the Kirkwood Formation is in hydraulic connection with the overlying Cohansey Sand and younger surficial deposits and functions as an unconfined aquifer.
Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina
Cardinell, A.P.; Howe, S.S.
1997-01-01
A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.
Pedraza, Diana E.; Shah, Sachin D.
2010-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, developed a geodatabase of geologic and hydrogeologic information for selected wells penetrating the Austin Group in central Bexar County, Texas. The Austin Group functions as an upper confining unit to the Edwards aquifer and is the thickest and most permeable of the Edwards aquifer confining units. The geologic and hydrogeologic information pertains to a 377-square-mile study area that encompasses central Bexar County. Data were compiled primarily from drillers' and borehole geophysical logs from federal, State, and local agencies and published reports. Austin Group characteristics compiled for 523 unique wells are documented (if known), including year drilled, well depth, altitude of top and base of the Austin Group, and thickness of the Austin Group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.; Marra, J.
2011-10-01
Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) 4th Reactor Unit Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified and the fuel burnup in these samples was determined. A systematic deviation in the burnup values based on the cesium isotopes, in comparison with other radionuclides, was observed. The conducted studies were the first ever performed to demonstrate the presence of significant quantities of {sup 242}Cm and {sup 243}Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuelmore » samples from inside of the ChNPP Confinement Shelter, starting from {sup 241}Am (and going higher), in comparison with the theoretical calculations.« less
The key to commercial-scale geological CO2 sequestration: Displaced fluid management
Surdam, R.C.; Jiao, Z.; Stauffer, P.; Miller, T.
2011-01-01
The Wyoming State Geological Survey has completed a thorough inventory and prioritization of all Wyoming stratigraphic units and geologic sites capable of sequestering commercial quantities of CO2 (5-15 Mt CO 2/year). This multi-year study identified the Paleozoic Tensleep/Weber Sandstone and Madison Limestone (and stratigraphic equivalent units) as the leading clastic and carbonate reservoir candidates for commercial-scale geological CO2 sequestration in Wyoming. This conclusion was based on unit thickness, overlying low permeability lithofacies, reservoir storage and continuity properties, regional distribution patterns, formation fluid chemistry characteristics, and preliminary fluid-flow modeling. This study also identified the Rock Springs Uplift in southwestern Wyoming as the most promising geological CO2 sequestration site in Wyoming and probably in any Rocky Mountain basin. The results of the WSGS CO2 geological sequestration inventory led the agency and colleagues at the UW School of Energy Resources Carbon Management Institute (CMI) to collect available geologic, petrophysical, geochemical, and geophysical data on the Rock Springs Uplift, and to build a regional 3-D geologic framework model of the Uplift. From the results of these tasks and using the FutureGen protocol, the WSGS showed that on the Rock Springs Uplift, the Weber Sandstone has sufficient pore space to sequester 18 billion tons (Gt) of CO2, and the Madison Limestone has sufficient pore space to sequester 8 Gt of CO2. ?? 2011 Published by Elsevier Ltd.
Hydrocarbon potential of Upper Devonian black shale, eastern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, I.M.; Frankie, W.T.; Moody, J.R.
The gas-producing Upper Devonian black shales of eastern Kentucky represent cycles of organic units alternating with less-organic units that were dominated by an influx of clastics from a northeastern source. This pattern of sedimentation is typical throughout the southern Appalachian basin in areas basinal to, yet still influenced by, the Catskill delta to the northwest. These black shales, which thin westward onto the Cincinnati arch, dip eastward into the Appalachian basin. To evaluate the future gas potential of Devonian shale, a data base has been compiled, consisting of specific geologic and engineering information from 5920 Devonian shale wells in Letcher,more » Knott, Floyd, Martin, and Pike Counties, Kentucky. The first successful gas completion in eastern Kentucky was drilled in Martin County in 1901. Comparison of initial open-flow potential (IP) and long-term production data for these wells demonstrates that higher IP values generally indicate wells of higher production potential. Areas of higher IP are aligned linearly, and these lineaments are interpreted to be related to fracture systems within the Devonian shale. These fractures may be basement influenced. Temperature log analyses indicate that the greatest number of natural gas shows occur in the lower Huron Member of the Ohio Shale. Using both the temperature log to indicate gas shows and the gamma-ray log to determine the producing unit is a workable method for selecting the interval for treatment.« less
Dubiel, R.F.
2013-01-01
The Lewis Shale Total Petroleum System (TPS) in the San Juan Basin Province contains a continuous gas accumulation in three distinct stratigraphic units deposited in genetically related depositional environments: offshore-marine shales, mudstones, siltstones, and sandstones of the Lewis Shale, and marginal-marine shoreface sandstones and siltstones of both the La Ventana Tongue and the Chacra Tongue of the Cliff House Sandstone. The Lewis Shale was not a completion target in the San Juan Basin (SJB) in early drilling from about the 1950s through 1990. During that time, only 16 wells were completed in the Lewis from natural fracture systems encountered while drilling for deeper reservoir objectives. In 1991, existing wells that penetrated the Lewis Shale were re-entered by petroleum industry operators in order to fracture-stimulate the Lewis and to add Lewis gas production onto preexisting, and presumably often declining, Mesaverde Group production stratigraphically lower in the section. By 1997, approximately 101 Lewis completions had been made, both as re-entries into existing wells and as add-ons to Mesaverde production in new wells. Based on recent industry drilling and completion practices leading to successful gas production from the Lewis and because new geologic models indicate that the Lewis Shale contains both source rocks and reservoir rocks, the Lewis Shale TPS was defined and evaluated as part of this U.S. Geological Survey oil and gas assessment of the San Juan Basin. Gas in the Lewis Shale Total Petroleum System is produced from shoreface sandstones and siltstones in the La Ventana and Chacra Tongues and from distal facies of these prograding clastic units that extend into marine rocks of the Lewis Shale in the central part of the San Juan Basin. Reservoirs are in shoreface sandstone parasequences of the La Ventana and Chacra and their correlative distal parasequences in the Lewis Shale where both natural and artificially enhanced fractures produce gas. The Lewis Continuous Gas Assessment Unit (AU 50220261) is thought to be self-sourced from and self-sealed by marine shales and mudstones deposited within the Lewis Shale that enclose clastic parasequences in the La Ventana and Chacra Tongues. The gas resource is thought to be a continuous accumulation sourced from the Lewis Shale throughout the depositional basin. In the Lewis Continuous Gas Assessment Unit (AU 50220261), for continuous gas resources, there is an F95 of 8,315.22 billion cubic feet of gas (BCFG) and an F5 of 12,282.31 BCFG, with a mean value of 10,177.24 BCFG. There is an F95 of 18.08 million barrels of natural gas liquids (MMBNGL) and an F5 of 47.32 MMBNGL, with a mean of 30.53 MMBNGL.
Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locker, S.D.; Doyle, L.J.; Hine, A.C.
1990-05-01
The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zonemore » extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryer, T.A.
1991-03-01
The Neuquen basin of western Argentina is a back-arc basin that was occupied by epeiric seas during much of Jurassic and Cretaceous time. The Avile Sandstone Member of the Agrio Formation records a pronounced but short-lived regression of the Agrio sea during middle Hauterivian (Early Cretaceous) time. Abrupt lowering of relative sea level resulted in emergence and erosion of the Agrio sea floor; shoreline and fluvial facies characteristic of the Centenario Formation shifted basinward. The Avile rests erosionally upon lower Agrio shale over a large area; well-sorted, porous sandstones within the member pinch out laterally against the base-Avile erosional surface.more » Avile deposition closed with an abrupt transgression of the shoreline to the approximate position it had occupied prior to the Avile regression. The transgressive deposits are carbonate rich, reflecting starvation of the basin as a consequence of sea-level rise. The Avile lowstand clastic wedge consists predominantly of sandstones deposited in fluvial to shallow-marine paleoenvironments; eolian sandstones probably constitute an important component in the eastern part of the area. The sandstones locally have excellent reservoir characteristics; they constitute the reservoirs in the Puesto Hernandez, Chihuido de la Sierra Negra, and Filo Morado fields. The pinch-out of the Avile lowstand clastic wedge has the potential to form stratigraphic traps in favorable structural positions. The depositional model indicates that there may be a viable stratigraphic play to be made along the Avile pinch-out in the deep, relatively undrilled, northwestern part of the Neuquen basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, N.R.; Reuter, S.G.
1989-03-01
The Lower Permian (lower Wolfcampian) along the eastern edge of the Midland basin, west Texas, is characterized by ramp-type shelf margins. During eustatic lowstand, nearshore sedimentation shifted drastically to the west into a basinal setting below the Pennsylvanian (Canyon) shelf margin. Core descriptions demonstrate that lowstand systems tract (LST) and transgressive systems tract (TST) siliciclastics were deposited in deltaic and coastal-plain environments. Prodelta, delta-front, and stream-mouth bar facies are associated with the LST. Coastal-plain and distributary channels are preserved in the TST. The sequence stratigraphic framework indicates type 1 sequence boundaries at 287 Ma, 282 Ma, and 280 Ma inmore » the lower Wolfcampian clastics. This lower Wolfcampian package of sedimentary rocks overlies the Pennsylvanian and is capped by the 279-Ma middle Wolfcampian unconformity. All three sequence boundaries and associated systems tract deposits exhibit a prograding stacking pattern within the sequence stratigraphic framework. Basinally restricted prograding LST deltaic rocks are overlain by backstepping TST deltaics and highstand systems tract (HST) outer marine shales. Production in lower Wolfcampian clastic fields is associated with fine-grained quartzarenites up to 45 ft thick which were deposited in stream-mouth bars. Delta-front and prodelta low-permeability shales encase the reservoir facies, forming lateral permeability barriers. HST outer marine shales deposited over the stream-mouth-bar sandstones act as a top seal, creating a stratigraphic trap and providing source for the high-BTU gas and oil produced from these basinally restricted LST deltaics.« less
Mixing mechanisms in siliciclastic-carbonate successions of Khan Formation (Permian), Central Iran
NASA Astrophysics Data System (ADS)
Shadan, Mahdi; Hosseini-Barzi, Mahboubeh
2010-05-01
Mixing mechanisms in siliciclastic-carbonate successions of Khan Formation (Permian), Central Iran M. Shadan & M. Hosseini-Barzi Geology Department, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran shadangeo@gmail.com Mixing mechanisms in siliciclastic-carbonate successions of Khan Formation (Permian) have been studied in two sections (Chahroof with 197 m thick in north and Cheshmeh Bakhshi with 204 m thick in south) along basement Kalmard fault in Posht-e-Badam block, Central Iran. Siliciclastic units are characterized by well sorted, fine to medium grain quartzarenites with laterite interbeds, deposited in shoreline zone (foreshore, upper and lower shoreface) influencing wave and longshore currents. Longshore sands which have been transported along the coast made the sand bars in the shoreface. Further along the coast, returning of these currents as rip currents produced erosive channel inlets and caused to carry fine grain into the deeper regions of the basin. Based on this sedimentary model we introduced longshore currents as a probable agent for mixing, by transporting some volumes of sands into the adjacent carbonate environments. Vertically, clastic units of Khan Formation underlined by carbonate units of a tidal flat and high-energy inner ramp system. Repeating of this pattern produced 3 cycles in each section. Cyclic evolution, in studied sections, is accompanied with discrepancy in erosion and sedimentation. These factors caused to disperse local sub-aerial exposures in successions which are recognizable by laterite and conglomerate interbeds. These horizons of sub-aerial exposures are more often in Chahroof section than in Cheshmeh Bakhshi section and indicate more fluctuations of relative sea level probably due to more local tectonic activity in the northern part of the Kalmard fault than in the southern part of it. Also, thicker siliciclastic units in Chahroof section show higher rate of sediment supply and/or more accommodation space there. Moreover, the late Paleozoic glacial conditions in Gondwana lands supported the large volume of clastic supply into the basin by intense weathering and erosion of vast exposed regions in Posht-e-Badam block. Also, tectonic activity along Kalmard basement fault mainly controlled local sea level changes and lithology of outcrops in the hinterlands. Therefore, interplay of these factors during lowstand of relative sea level, with lower accommodation space and higher gradient led to high rate of sediment input and distribution of siliciclastics in the base of each cycles. In contrast, relative sea level rises have been corresponded to the more accommodation space and reducing of siliciclastic entrance into the sedimentary basin that made a suitable condition for carbonate production. Therefore, during relative sea level rise, verities of carbonate-producing organisms tend to more rates of biogenic carbonate products and eventually formation of carbonate units upon the preexistence silisiclastics. Therefore, mixing of siliciclastics with carbonate deposits in Khan Formation have mainly been controlled temporally by sea level fluctuations due to local and/or eustatic sea level changes and spatially by variations in local tectonic activities and lateral facies mixing by longshore currents.
High pressure system for 3-D study of elastic anisotropy
NASA Astrophysics Data System (ADS)
Lokajicek, T.; Pros, Z.; Klima, K.
2003-04-01
New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This project was supported by Grant Agency of the Czech Republic No.: 205/01/1430.
Gonthier, Gerard
2012-01-01
An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.
Initial Visions of Paradise: Antebellum U.S. Government Documents on the South Pacific
ERIC Educational Resources Information Center
Chapman, Bert
2004-01-01
During the first half of the 19th century, the United States grew from a nation confined to the Atlantic seaboard to a country on the verge of becoming a global power. One factor prompting this growth was the United States' growing intellectual, economic, and strategic interests in the Pacific Ocean. These growing interests were fueled by the…
Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch
NASA Astrophysics Data System (ADS)
Schäfer, J.; Neuroth, H.; Ahrendt, H.; Dörr, W.; Franke, W.
The Saxothuringian flysch basin, on the north flank of the Central European Variscides, was fed and eventually overthrust by the northwestern, active margin of the Tepla-Barrandian terrane. Clast spectra, mineral composition and isotopic ages of detrital mica and zircon have been analyzed in order to constrain accretion and exhumation of rocks in the orogenic wedge. The earliest clastic sediments preserved are of early Famennian age (ca. 370Ma). They are exposed immediately to the NW of the suture, and belong to the par-autochthon of the foreland. Besides ultramafic (?ophiolite) material, these rocks contain clasts derived from Early Paleozoic continental slope sediments, originally deposited at the NW margin of the Saxothuringian basin. These findings, together with the paleogeographic position of the Famennian clastics debris on the northwestern passive margin, indicate that the Saxothuringian narrow ocean had been closed by that time. Microprobe analyses of detrital hornblendes suggest derivation from the ``Randamphibolit'' unit, now present in the middle part of the Saxothuringian allochthon (Münchberg nappes). Detrital zircons of metamorphic rocks formed a little earlier (ca. 380Ma) indicate rapid recycling at the tectonic front. The middle part of the flysch sequence (ca. early to middle Viséan), both in the par-autochthon and in the allochthon, contains abundant clasts of Paleozoic rocks derived from the northwestern slope and rise, together with debris of Cadomian basement, 500-Ma granitoids and 380Ma (early Variscan) crystalline rocks. All of these source rocks were still available in the youngest part of the flysch (c. middle to late Viséan), but some clasts record, in addition, accretion of the northwestern shelf. Our findings permit deduction of minimum rates of tectonic shortening well in excess of 10-30mm per year, and rates of exhumation of ca. 3mm/a, and possibly more.
Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, M.D.
1993-08-01
During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit,more » Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.« less
NASA Astrophysics Data System (ADS)
Clark, D. H.
2011-12-01
Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic particles when a glacier is present upstream, the signal can be highly variable and complex, most likely the result of stochastic processes in the basin. Our analyses indicate that although particle size reflects glacier activity upstream, it is rarely the best record of glacier change and is most useful in combination with other proxies, most notably MS, color, and organic content.
NASA Astrophysics Data System (ADS)
Hoffman, P. F.; Domack, E. W.; Maloof, A. C.; Halverson, G. P.
2006-05-01
In Neoproterozoic time, East Greenland and East Svalbard (EGES) occupied landward and seaward positions, respectively, on the southern subtropical margin of Laurentia. In both areas, thick clastic-to-carbonate successions are overlain by two discrete glacial and/or periglacial formations, separated by fine basinal clastics. In Svalbard, the younger glacial has a characteristic Marinoan (basal Ediacaran) cap dolostone, but the older glacial is underlain by a 10-permil negative carbon isotope excursion that is indistinguishable from excursions observed exclusively beneath Marinoan glacials in Australia, Namibia and western Laurentia. This led us to propose (Basin Research 16, 297-324, 2004) that the paired glacials in EGES represent the onset and climax of a single, long-lived, Marinoan glaciation. The intervening fine clastics, which contain ikaite pseudomorphs, presumptively accumulated beneath permanent shorefast sea ice (sikussak), analogous to East Greenland fjords during the Younger Dryas and Little Ice Age. In this model, the top of the older glacial signals the start of Snowball Earth. We conducted a preliminary field test of the sikussak hypothesis in Strindberg Land (SL), Andrée Land (AL) and Ella O (EO), East Greenland. We confirmed the correlation of the paired glacials and the Marinoan cap dolostone (missing on EO). In SL, the older glacial (Ulveso Fm) is a thin diamictite overlain by conglomerate lag and a set of megavarves composed of alternating siltstone and ice-rafted debris. In AL and EO, the Ulveso is a sub-glacial diamictite overlain by aeolian and/or marine sandstone. In Bastion Bugt on EO, it is a transgressive shoreface sandstone. This proves that glacial recession occurred under open-water conditions and did not result from permanent sea-ice formation, as stipulated in the sikussak model. There is no evidence that the fine clastic sequence between the glacials formed under an ice cover, or for a single glacial period. This brings us back to the original problem: either the younger glacial is post-Marinoan, or the older one is Sturtian. We think the first possibility is unlikely because the cap strata compare in detail with Marinoan equivalents in Canada. If the older glacial is Sturtian, then large negative carbon isotope excursions directly preceded two successive "snowball earth" episodes.
Hinaman, Kurt
2005-01-01
The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a second volume of ground water for each hydrogeologic unit. Significant figure considerations limited estimates of ground-water volumes to two significant digits. A total ground-water volume of 2.0x1014 ft3 (cubic feet) was calculated using porosity values, and a total ground-water volume of 3.6x1013 ft3 was calculated using specific yield and specific storage values. These results are consistent with retention properties, which would have some of the total water being retained in the sediments. Sensitivity analysis shows that the estimates of ground-water volume are most sensitive to porosity. The estimates also are sensitive to confined thickness and saturated thickness. Better spatial information for hydrogeologic units could help refine the ground-water volume estimates.
Lewis-Brown, Jean C.; Rice, Donald E.; Rosman, Robert; Smith, Nicholas P.
2005-01-01
Production wells in the Westmoreland well field, Fair Lawn, Bergen County, New Jersey (the 'Fair Lawn well field Superfund site'), are contaminated with volatile organic compounds, particularly trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. In 1983, the U.S. Environmental Protection Agency (USEPA) placed the Westmoreland well field on its National Priority List of Superfund sites. In an effort to determine ground-water flow directions, contaminant-plume boundaries, and contributing areas to production wells in Fair Lawn, and to evaluate the effect of present pump-and-treat systems on flowpaths of contaminated ground water, the U.S. Geological Survey (USGS), in cooperation with the USEPA, developed a conceptual hydrogeologic framework and ground-water flow model of the study area. MODFLOW-2000, the USGS three-dimensional finite-difference model, was used to delineate contributing areas to production wells in Fair Lawn and to compute flowpaths of contaminated ground water from three potential contaminant sources to the Westmoreland well field. Straddle-packer tests were used to determine the hydrologic framework of, distribution of contaminants in, and hydrologic properties of water-bearing and confining units that make up the fractured-rock aquifer underlying the study area. The study area consists of about 15 square miles in and near Fair Lawn. The area is underlain by 6 to 100 feet of glacial deposits and alluvium that, in turn, are underlain by the Passaic Formation. In the study area, the Passaic Formation consists of brownish-red pebble conglomerate, medium- to coarse-grained feldspathic sandstone, and micaceous siltstone. The bedrock strata strike N. 9o E. and dip 6.5o to the northwest. The bedrock consists of alternating layers of densely fractured rocks and sparsely fractured rocks, forming a fractured-rock aquifer. Ground-water flow in the fractured-rock aquifer is anisotropic as a result of the interlayering of dipping water-bearing and confining units. Wells of similar depth aligned along the strike of the bedding intersect the same water-bearing units, but wells aligned along the dip of the bedding may intersect different water-bearing units. Consequently, wells aligned along strike are in greater hydraulic connection than wells aligned along dip. The Borough of Fair Lawn pumps approximately 770 million gallons per year from 13 production wells. Hydrographs from six observation wells ranging in depth from 162 to 505 feet in Fair Lawn show that water levels in much of the study area are affected by pumping. Straddle packers were used to isolate discrete intervals within six open-hole observation wells owned by the Fair Lawn Water Department. Transmissivity, water-quality, and static-water-level data were obtained from the isolated intervals. Measured transmissivity ranged from near 0 to 8,900 feet squared per day. The broad range in measured transmissivity is a result of the heterogeneity of the fractured-rock aquifer. Eight water-bearing units and eight confining units were identified in the study area on the basis of transmissivity. The water-bearing units range in thickness from 21 to 95 feet; the mean thickness is 50 feet. The confining units range in thickness from 22 to 248 feet; the mean thickness is 83 feet. Water-level and water-quality data indicate effective separation of water-bearing units by the confining units. Water-quality samples were collected from the six observation wells at 16 depth intervals isolated by the straddle packers in 2000 and 2001. Concentrations of volatile organic compounds generally were low in samples from four of the wells, but were higher in samples from a well in Fair Lawn Industrial Park and in a well in the Westmoreland well field. The digital ground-water flow model was used to simulate steady-state scenarios representing conditions in the study area in 1991 and 2000. These years were chosen because during the intervening period,
NASA Astrophysics Data System (ADS)
Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.
2012-12-01
Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.
28 CFR 527.46 - Receiving United States citizens from other countries.
Code of Federal Regulations, 2010 CFR
2010-07-01
... appropriate, competent judicial authority of the transferring country and any modifications thereof; (2) A... credits to which the offender is entitled, such as work done, good behavior, pre-trial confinement, etc...
Edwards, L.E.; Weedman, S.D.; Simmons, R.; Scott, T.M.; Brewster-Wingard, G. L.; Ishman, S.E.; Carlin, N.M.
1998-01-01
In 1996, seven cores were recovered in western Collier County, southwestern Florida, to acquire subsurface geologic and hydrologic data to support ground-water modeling efforts. This report presents the lithostratigraphy, X-ray diffraction analyses, petrography, biostratigraphy, and strontium-isotope stratigraphy of these cores. The oldest unit encountered in the study cores is an unnamed formation that is late Miocene. At least four depositional sequences are present within this formation. Calculated age of the formation, based on strontium-isotope stratigraphy, ranges from 9.5 to 5.7 Ma (million years ago). An unconformity within this formation that represents a hiatus of at least 2 million years is indicated in the Old Pump Road core. In two cores, Collier-Seminole and Old Pump Road, the uppermost sediments of the unnamed formation are not dated by strontium isotopes, and, based on the fossils present, these sediments could be as young as Pliocene. In another core (Fakahatchee Strand-Ranger Station), the upper part of the unnamed formation is dated by mollusks as Pliocene. The Tamiami Formation overlies the unnamed formation throughout the study area and is represented by the Ochopee Limestone Member. The unit is Pliocene and probably includes the interval of time near the early/late Pliocene boundary. Strontium-isotope analysis indicates an early Pliocene age (calculated ages range from 5.1 to 3.5 Ma), but the margin of error includes the latest Miocene and the late Pliocene. The dinocyst assemblages in the Ochopee typically are not age-diagnostic, but, near the base of the unit in the Collier-Seminole, Jones Grade, and Fakahatchee Strand State Forest cores, they indicate an age of late Miocene or Pliocene. The molluscan assemblages indicate a Pliocene age for the Ochopee, and a distinctive assemblage of Carditimera arata and Chione cortinaria in several of the cores specifically indicates an age near the early/late Pliocene boundary. Undifferentiated sands overlie the Pliocene limestones in two cores in the southern part of the study area. Artificial fill occurs at the top of most of the cores. The hydrologic confining units penetrated by these cores are different in different parts of the study area. To the west, a hard tightly cemented dolostone forms the first major confining unit below the water table. In the eastern part of the study area, confinement is more difficult to determine. A tightly cemented sandstone, much younger than the dolostones to the west and probably not laterally connected to them, forms a slight confining unit in one core. Thick zones of poorly sorted muddy unconsolidated sands form a slight confining unit in other cores; these probably are not correlative to either the sandstone or the dolostones to the west. The age and sedimentologic observations suggest a complex compartmentalization of the surficial aquifer system in southwestern Florida. The calibrations of dinocyst and molluscan occurrences with strontium-isotope stratigraphy allows us to expand and document the reported ranges of many taxa. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Recent Developments in Facies Models for Siliciclastic Sediments.
ERIC Educational Resources Information Center
Miall, Andrew D.
1982-01-01
Discusses theory of facies models (attempts to synthesize/generalize information about depositional environments), strengths/weaknesses of facies modelling, recent advances in facies models for siliciclastic sediments (focusing on fluvial, lacustrine, eolian and glacial environments, clastic shorelines and continental shelves, and clastic…
Barton, G.J.; Krebs, M.M.
1990-01-01
Groundwater beneath a former chemical reclamation facility in New Jersey is contaminated with metals and organic compounds. The off-site migration of these compounds has not been studied; however, a nearby public-supply well is contaminated, and a public-supply well 1,400 ft downgradient from the site may be threatened. The study area, in the New Jersey part of the Atlantic Coastal Plain, is underlain by alluvial deposits composed of gravel, sand, silt, and clay. These deposits comprise the water table aquifer, the confining units, and the confined aquifer throughout the study area. The water table beneath the Swope Oil Superfund site is approximately 17 ft below sea level and groundwater levels throughout the study area are below the stage of the Delaware River. The aquifer system is recharged by precipitation, leakage of water through confining units, and the water induced from the Delaware River. Five public supply-well fields, primarily adjacent to the Delaware River, and four waste disposal sites with observation well networks are located in the study area. Both the water table and confined aquifers are contaminated in several locations. The concentration of metals and/or purgeable organic compounds in more than 20 wells exceeds the U.S. Environmental Protection Agency primary drinking-water standard and the New Jersey Department of Environmental Protection recommended drinking water criteria. Selected data from wells and test borings are presented, including well construction details; drillers ', geologists ', and geophysical logs; water levels; specific-capacity and slug test data; and chemical analysis of groundwater samples. (USGS)
Reducing Youth Incarceration in the United States. KIDS COUNT Data Snapshot
ERIC Educational Resources Information Center
Annie E. Casey Foundation, 2013
2013-01-01
A sea change is underway in the nation's approach to dealing with young people who get in trouble with the law. Although the country still leads the industrialized world in the rate at which it locks up young people, the youth confinement rate in the United States is rapidly declining. In 2010 this rate reached a new 35-year low, with almost every…
ERIC Educational Resources Information Center
Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse
2014-01-01
Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…
Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.
Fuller, D C; Suruda, A J
2000-09-01
Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities.
Optimisation of confinement in a fusion reactor using a nonlinear turbulence model
NASA Astrophysics Data System (ADS)
Highcock, E. G.; Mandell, N. R.; Barnes, M.
2018-04-01
The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.
Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina
Giese, G.I.; Eimers, J.L.; Coble, R.W.
1997-01-01
A three-dimensional finite-difference digital model was used to simulate ground-water flow in the 25,000-square-mile aquifer system of the North Carolina Coastal Plain. The model was developed from a hydrogeologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which make up a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in the State of North Carolina. The model was calibrated by comparing observed and simulated water levels. The model calibration was achieved by adjusting model parameters, primarily leakance of confining units and transmissivity of aquifers, until differences between observed and simulated water levels were within acceptable limits, generally within 15 feet. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 feet squared per day in a part of the Castle Hayne aquifer, which consists predominantly of limestone. The maximum value for simulated vertical hydraulic conductivity in a confining unit was 2.5 feet per day, in a part of the confining unit overlying the upper Cape Fear aquifer. The minimum value was 4.1x10-6 feet per day, in part of the confining unit overlying the lower Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakance near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 inches per year in areas having clay at the surface to about 20 inches per year in areas having sand at the surface. Most of this recharge moves laterally to streams, and only about 1 inch per year moves downward to the confined parts of the aquifer system. Under predevelopment conditions, the confined aquifers were generally recharged in updip interstream areas and discharged through streambeds and in downdip coastward areas. Hydrologic analysis of the flow system using the calibrated model indicated that, because of ground-water withdrawals, areas of ground-water recharge have expanded and encroached upon some major stream valleys and into coastal area. Simulations of pumping conditions indicate that by 1980 large parts of the former coastal discharge areas had become areas of potential or actual recharge. Declines of ground-water level, which are the result of water taken from storage, are extensive in some areas and minimal in others. Hydraulic head declines of more than 135 feet have occurred in the northern Coastal Plain since 1940 primarily due to withdrawals in the Franklin area in Virginia. Declines of ground-water levels greater than 110 feet have occurred in aquifers in the central Coastal Plain due to combined effects of pumpage for public and industrial water supplies. Water-level declines exceeding 100 feet have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 feet in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. In 1980, contribution from aquifer storage was 14 cubic feet per second, which is about 4.8 percent of pumpage and about 0.05 percent of ground-water recharge. A water-budget analysis using the model simulations indicates that much of the water removed from the ground-water system by pumping ultimately is made up by a reduction in water leaving the aquifer system, which discharges to streams as base flow. The reduction in stream base flow was 294 cubic feet per second in 1980 and represents about 1.1 percent of the ground-water recharge. The net reduction to streamflow is not large, however, because most pumped ground water is eventually discharged to streams. In places, such as at rock quarries in Onslow and Craven Counties, water is lost from st
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-yoon; Browne, Michael C; Rael, Carlos D
2010-01-01
In early 2009, preliminary excavation work has begun in preparation for the construction of the New Safe Confinement (NSC) at the Chernobyl Nuclear Power Plant (ChNPP) in Ukraine. The NSC is the structure that will replace the present containment structure and will confine the radioactive remains of the ChNPP Unit-4 reactor for the next 100 years. It is expected that special nuclear material (SNM) that was ejected from the Unit-4 reactor during the accident in 1986 could be uncovered and would therefore need to be safeguarded. ChNPP requested the assistance of the United States Department of Energy/National Nuclear Security Administrationmore » (NNSA) with developing a new non-destructive assay (NDA) system that is capable of assaying radioactive debris stored in 55-gallon drums. The design of the system has to be tailored to the unique circumstances and work processes at the NSC construction site and the ChNPP. This paper describes the Chernobyl Drum Assay System (CDAS), the solution devised by Los Alamos National Laboratory, Sonalysts Inc., and the ChNPP, under NNSA's International Safeguards and Engagement Program (INSEP). The neutron counter measures the spontaneous fission neutrons from the {sup 238}U, {sup 240}Pu, {sup 244}Cm in a waste drum and estimates the mass contents of the SNMs in the drum by using of isotopic compositions determined by fuel burnup. The preliminary evaluation on overall measurement uncertainty shows that the system meets design performance requirements imposed by the facility.« less
A technician monitors the CHeX, a USMP-4 experiment which will be flown on STS-87, in the SSPF
NASA Technical Reports Server (NTRS)
1997-01-01
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC.
Comparison of deformation mechanics for two different carbonates: oolitic limestone and laminites
NASA Astrophysics Data System (ADS)
Zihms, Stephanie; Lewis, Helen; Couples, Gary; Hall, Stephen; Somerville, Jim
2016-04-01
Carbonate rocks form under a range of conditions which leads to a diverse rock group. Even though carbonates are overall mineralogically simple, the solid-space distribution ranges from simple compositions such as oolitic limestones to highly complex networks of pores and solids as seen in coquinas. Their fundamental mechanical behaviour has been identified to be like clastic rocks (Vajdova 2004, Brantut, Heap et al. 2014). However it is very likely that this observation is not true for more complex carbonates. Triaxial tests were performed on cylindrical samples of two different carbonates; a) oolitic limestone (Bicqueley quarry, France) and b) laminite (Ariripe basin, Brazil). The samples were deformed under confining pressures of 8, 12 and 20MPa, and 20, 30 and 40MPa, respectively. All tests were stopped as soon as peak load was observed to preserve as many deformation characteristics as possible. Photographs of the samples were taken before and after deformation to allow surface analysis of deformation features. Additionally, samples were analysed post-deformation with X-ray tomography (XRT) (using the Zeiss XRadia XRM 520 at the 4D Imaging Lab at Lund University). The 3D tomography images represent the post-deformation samples' density distribution, allowing detailed, non-destructive, 3D analysis of the deformation features that developed in the triaxial testing, including the complex geometries and interactions of fractures, deformation bands and sedimentary layering. They also provide an insight into the complexity of deformation features produced due to the carbonate response. Initial results show that the oolitic limestone forms single shear bands almost the length of the sample, exhibiting similar characteristics to sandstones deformed under similar conditions. These features are observed for all three applied loads. The laminate sample deformed at the lowest confining pressure exhibits compactive features. However, the laminite samples deformed at the two higher confining pressures both show highly complex fracture networks comprising open fractures and fracture propagation. This suggests that the laminate changes from compactive to dilational responses over the selected confining conditions. The XRT analysis indicates that a more complex fracture distribution could be linked to rock component properties e.g. grain size and composition. For the laminite these are variable with the layers. This is in agreement with field observations of laminite microfabrics (Calvo, Rodriguez-Pascua et al. 1998). Additionally, the typical grain size of the laminate (μm) is much smaller than the oolitic limestone (mm), which suggests that fracture network complexity can also be linked to bulk system complexity i.e. pore & grain network. These deformation experiments show that, as previously observed, oolitic limestones seem to behave similarly to sandstones. However this observation is not true for laminites and it is very likely that more complex carbonates will develop even more complicated deformation behaviour. It is therefore necessary to systematically test different carbonate rocks to understand the impact of geometry and composition, as well as the interplay with the pore network. Brantut, N., et al. (2014). Journal of Geophysical Research: Solid Earth 119(7): 5444-5463. Calvo, J. P., et al. (1998). Sedimentology 45: 279-292. Vajdova, V. (2004). Journal of Geophysical Research 109(B5).
NASA Astrophysics Data System (ADS)
Schweinsberg, A.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.
2013-12-01
Records of past fluctuations in climatically sensitive tropical glaciers are among the best indicators of regional paleoclimatic trends and forcings. However, continuous sediment records in this region remain limited, particularly during the Holocene. Here we present the first continuous records of glacier activity in the Cordillera Vilcabamba (13°20'S) of southern Peru from lake and bog sediment cores in stratigraphic contact with 10Be-dated moraines. Completed analyses include sediment lithostratigraphy, magnetic susceptibility, and biogenic silica, in conjunction with AMS radiocarbon dates on charcoal. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Visually distinct sedimentological variations, magnetic susceptibility peaks, and radiocarbon dates were correlated among adjacent cores to construct one composite record representative of each coring site. Three composite cores are presented: two from the Rio Blanco valley and one from the Yanama valley. Sediment records from these two glaciated valleys suggest a series of environmental changes during the last ~12,000 calendar years BP. Clastic sediment flux trends are broadly consistent with published evidence that the early to middle Holocene was relatively warm and arid in the southern Peruvian Andes. An episode of high clastic flux in the late Holocene may reflect enhanced glacial activity in response to the onset of cooler and wetter conditions. A prominent peak in magnetic susceptibility at 1660 cal yr BP is present in all composite cores and serves as a chronostratigraphic marker. In addition, our new basal radiocarbon ages place limits on the cosmogenic 10Be production rate in the high Andes, suggesting the cosmogenic 10Be production rate is considerably lower than previously published estimates.
Geology and tectonic development of the continental margin north of Alaska
Grantz, A.; Eittreim, S.; Dinter, D.A.
1979-01-01
The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.
Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun
2016-02-01
High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.
NASA Astrophysics Data System (ADS)
Mueller-Mohr, V.
Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.
NASA Technical Reports Server (NTRS)
Mueller-Mohr, V.
1992-01-01
Sudbury breccias occur as discordant dike breccias within the footwall rocks of the Sudbury structure, which is regarded as the possible remnant of a multiring basin. Exposures of Sudbury breccias in the North Range are known up to a radial distance of 60-80 km from the Sudbury Igneous Complex (SIC). The breccias appear more frequent within a zone of 10 km adjacent to the SIC and a further zone located about 20-33 km north of the structure. From differences in the structure of the breccias, as for example the size of the breccia dikes, contact relationships between breccia and country rock as well as between different breccia dikes, fragment content, and fabric of the ground mass, as seen in this section, the Sudbury Breccias have been classified into four different types. (1) Early breccias with a clastic/crystalline matrix comprise small dikes ranging in size from approx. 1 cm to max. 20 cm. (2) Polymict breccias with a clastic matrix represent the most common type of Sudbury breccia. The thickness of the dikes varies from several tens of centimeters to a few meters but can also extend to more than 100 m in the case of the largest known breccia dike. Contacts with country rock are sharp or gradational. Heterogenous matrix consisting of a fine-grained rock flour displays nonoriented textures as well as extreme flow lines. Chemical analysis substantiates at least some mixing with allochthonous material. (3) Breccias with a crystalline matrix are a subordinate type of Sudbury breccia. According to petrographical and chemical differences, three subtypes have been separated. (4) Late breccias with a clastic matrix are believed to represent the latest phase of brecciation. Two subtypes have been distinguished due to differences in the fragment content.
Recent Results from the Mars Exploration Rover Spirit Mission
NASA Astrophysics Data System (ADS)
Squyres, S. W.
2005-05-01
Since arriving at the Columbia Hills, the Spirit rover's primary area of geologic investigation has been the West Spur of Husband Hill. Pancam images of West Spur rocks show morphology ranging from massive to finely layered. Microscopic Imager images show the rocks to be clastic in nature, with a substantial range in grain sizes. Grains vary from rounded to angular. Mini-TES data show little variability from one rock to the next, and the best fit to the IR spectral signature of the rocks is dominated by basaltic glass. The chemistry revealed by the APXS is broadly basaltic in nature, but substantially enhanced in P, S, Cl, and Br relative to plains rocks. Moessbauer data show that olivine is absent in West Spur rocks, and pyroxene signatures are weak. Fe oxides and oxyhydroxides are present. We interpret the rocks of the West Spur to be aqueously altered basaltic materials of volcaniclastic or impact origin. Since leaving the West Spur, Spirit has explored toward the northeast, higher onto Husband Hill. Loose rocks ("float") on the north flank of the hill are dominated by another poorly sorted clastic lithology that contains olivine and that has strikingly high abundances of Ti and P. Only a few bedrock outcrops have been identified on the main body of Husband Hill. All of these examined to date consist of a coarse-grained clastic rock dominated by basaltic chemistry and cemented by sulfate salts. Grain sizes range up to several mm, and sub-cm layering is present. Moessbauer data show pyroxene, olivine, and a high abundance of magnetite in the basaltic component. APXS data are consistent with the rock being up to 20 percent magnesium sulfate salts by mass, and microscopic images show a high degree of cementation by these salts.
NASA Astrophysics Data System (ADS)
Capella, W.; Hernández-Molina, F. J.; Flecker, R.; Hilgen, F. J.; Hssain, M.; Kouwenhoven, T. J.; van Oorschot, M.; Sierro, F. J.; Stow, D. A. V.; Trabucho-Alexandre, J.; Tulbure, M. A.; de Weger, W.; Yousfi, M. Z.; Krijgsman, W.
2017-06-01
The Rifian Corridor was a seaway between the Atlantic Ocean and the Mediterranean Sea during the late Miocene. The seaway progressively closed, leading to the Messinian Salinity Crisis in the Mediterranean Sea. Despite the key palaeogeographic importance of the Rifian Corridor, patterns of sediment transport within the seaway have not been thoroughly studied. In this study, we investigated the upper Miocene sedimentation and bottom current pathways in the South Rifian Corridor. The planktic and benthic foraminifera of the upper Tortonian and lower Messinian successions allow us to constrain the age and palaeo-environment of deposition. Encased in silty marls deposited at 150-300 m depth, there are (i) 5 to 50 m thick, mainly clastic sandstone bodies with unidirectional cross-bedding; and (ii) 50 cm thick, mainly clastic, tabular sandstone beds with bioturbation, mottled silt, lack of clear base or top, and bi-gradational sequences. Furthermore, seismic facies representing elongated mounded drifts and associated moat are present at the western mouth of the seaway. We interpret these facies as contourites: the products of a westward sedimentary drift in the South Rifian Corridor. The contourites are found only on the northern margin of the seaway, thus suggesting a geostrophic current flowing westward along slope and then northward. This geostrophic current may have been modulated by tides. By comparing these fossil examples with the modern Gulf of Cadiz, we interpret these current-dominated deposits as evidence of late Miocene Mediterranean overflow into the Atlantic Ocean, through the Rifian Corridor. This overflow may have affected late Miocene ocean circulation and climate, and the overflow deposits may represent one of the first examples of mainly clastic contourites exposed on land.
Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.
1999-01-01
We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.
Ground vibration monitoring for construction blasting in urban areas.
DOT National Transportation Integrated Search
2001-04-01
The primary objectives of this study were to determine a recommendation for the preblast : area for surveys, and to obtain actual field vibrations from rock blasting : operations, in populated regions within specific geologic units. The area confined...
Archean sedimentary styles and early crustal evolution
NASA Technical Reports Server (NTRS)
Lowe, D. R.
1986-01-01
The distinctions between and implications of early and late Archean sedimentary styles are presented. Early Archean greenstone belts, such as the Barberton of South Africa and those in the eastern Pilbar Block of Australia are characterized by fresh or slightly reworked pyroclastic debris, orthochemical sediments such as carbonates, evaporites, and silica, and biogenic deposits including cherts and stromatolitic units. Terrigenous deposits are rare, and it is suggested that early Archean sediments were deposited on shallow simatic platforms, with little or no components derived from sialic sources. In contrast, late Archean greenstone belts in the Canadian Shield and the Yilgarn Block of Australia contain coarse terrigenous clastic rocks including conglomerate, sandstone, and shale derived largely from sialic basement. Deposition appears to have taken place in deepwater, tectonically unstable environments. These observations are interpreted to indicate that the early Archean greenstone belts formed as anorogenic, shallow water, simatic platforms, with little or no underlying or adjacent continental crust, an environment similar to modern oceanic islands formed over hot spots.
O'Brien, D; Capper, J L; Garnsworthy, P C; Grainger, C; Shalloo, L
2014-03-01
Life-cycle assessment (LCA) is the preferred methodology to assess carbon footprint per unit of milk. The objective of this case study was to apply an LCA method to compare carbon footprints of high-performance confinement and grass-based dairy farms. Physical performance data from research herds were used to quantify carbon footprints of a high-performance Irish grass-based dairy system and a top-performing United Kingdom (UK) confinement dairy system. For the US confinement dairy system, data from the top 5% of herds of a national database were used. Life-cycle assessment was applied using the same dairy farm greenhouse gas (GHG) model for all dairy systems. The model estimated all on- and off-farm GHG sources associated with dairy production until milk is sold from the farm in kilograms of carbon dioxide equivalents (CO2-eq) and allocated emissions between milk and meat. The carbon footprint of milk was calculated by expressing GHG emissions attributed to milk per tonne of energy-corrected milk (ECM). The comparison showed that when GHG emissions were only attributed to milk, the carbon footprint of milk from the Irish grass-based system (837 kg of CO2-eq/t of ECM) was 5% lower than the UK confinement system (884 kg of CO2-eq/t of ECM) and 7% lower than the US confinement system (898 kg of CO2-eq/t of ECM). However, without grassland carbon sequestration, the grass-based and confinement dairy systems had similar carbon footprints per tonne of ECM. Emission algorithms and allocation of GHG emissions between milk and meat also affected the relative difference and order of dairy system carbon footprints. For instance, depending on the method chosen to allocate emissions between milk and meat, the relative difference between the carbon footprints of grass-based and confinement dairy systems varied by 3 to 22%. This indicates that further harmonization of several aspects of the LCA methodology is required to compare carbon footprints of contrasting dairy systems. In comparison to recent reports that assess the carbon footprint of milk from average Irish, UK, and US dairy systems, this case study indicates that top-performing herds of the respective nations have carbon footprints 27 to 32% lower than average dairy systems. Although differences between studies are partly explained by methodological inconsistency, the comparison suggests that potential exists to reduce the carbon footprint of milk in each of the nations by implementing practices that improve productivity. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dubey, N.; Bheemalingeswara, K.
2009-04-01
Mesozoic sedimentary successions produced by marine transgression and regression of sea in northeastern part of Africa are well preserved in Mekelle basin of Ethiopia. Here, a typical second order sequence is well developed and preserved overlying the Precambrian basement rocks or patchy Palaeozoic sedimentary successions. Initiation of Mesozoic sedimentation in Mekelle basin has started with deposition of Adigrat Sandstone Formation (ASF). It is a retrogradational succession of siliciclastics in coastline/beach environment due to transgression of sea from southeast. ASF is followed by Antallo Limestone Formation (ALF)- an aggradational succession of carbonates in tidal flat environment; Agula Shale/Mudstone Formation (AMF); and Upper/Ambaradom Sandstone Formation (USF)- a progradational succession formed during regression in ascending order (Dubey et al., 2007). AMF is deposited in a lagoonal evaporatic environment whereas USF in a fluvial coastal margin. ASF is an aggregate of cyclically stacked two lithologies ASF1 and ASF2 produced by sea-level rise and fall of a lower order mini-cycle. ASF1 is a thick, multistoried, pink to red, friable, medium to fine grained, cross-bedded sandstone deposited in a high energy environment. ASF2 is a thin, hard and maroon colored iron-rich mudstone (ironstones) deposited in a low energy environment. ASF1 has resulted during regressive phase of the mini-cycle when rate of sedimentation was extremely high due to abundant coarser clastic supply from land to the coastal area. On the other hand, ASF2 has resulted during transgressive phase of the mini-cycle which restricted the supply of the coarser clastic to the coastal area and deposited the muddy ferruginous sediments in low energy offshore part of the basin where sedimentation rate was very low. Apart from these two major lithologies, there are also few other minor lithologies like fine-grained white sandstone, carbonate (as bands), claystone and mudstone present in ASF. ASF is a well developed lithostratigraphic unit of northern Ethiopia and represents the Jurassic transgressive clastic succession of Mekelle basin. The physical and biogenic sedimentary structures reported in this paper are observed from the terminal part of ASF. Their occurrence is unusual, rare, unknown so far and unreported. It includes (i) mud cracks (including their casts filled with overlying lithology) representing subaerial exposure which is unusual during transgressive phase, (ii) vertical traces of Skolithos burrows in ASF2 produced by suspension feeders in high energy environment of deposition (Dubey et al., 2007), (iii) tiny bivalve moulds and casts (external- and internal-moulds) of body fossils, and (iv) elliptical negative epirelief (potato shaped empty depressions - external moulds of eggs or nodules?). Fifty two such randomly oriented external moulds are noticed within 2 m2 area on an upper bedding plane of thin, white and fine- grained sandstone. Their in- fills are missing/removed as they are present on a gently dipping bed. Therefore, it is difficult to ascertain their biogenic (egg) or abiogenic (nodule) origin. Their detail investigation is under progress. Since ASF developed during marine transgression, presence of mud cracks in its terminal part indicates subaerial exposure. This provides suitable sites for nesting eggs (reptile?) in wet sands. Removal of such preserved eggs can provide potato depressions. Though it is difficult to relate these moulds to the eggs because of the missing in-fills, their shape, size and restricted occurrence supports biogenic origin. Reference Dubey, N., Bheemalingeswara, K. and Tadesse, N. (2007). Sedimentology and lithostratigraphy of the Mesozoic successions of Mekelle Basin, Ethiopia, Norteastern Africa. Geophysical Research Abstracts, Vol.9, 11471. (SRef-ID: 1607-7962/gra/EGU2007-A-11471).
Geology of Mount Rainier National Park, Washington
Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement
1963-01-01
Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass shards, which compacted and welded into thick massive units during emplacement and cooling. Subordinate water-laid clastic rocks occur t(ward the top of the formation, and thin-bedded pyroclastic layers occur between some of the ash flows. Exposures on Backbone Ridge and on Carbon River below the mouth of Cataract Creek show that in places the thick basal Stevens Ridge ash flows swept with great violence over an old erosion surface developed on rocks of the Ohanapecosh Formation. Masses of mud, tree trunks, and other surface debris were swirled upward into the base of the lowermost ash fiery, and lobes and tongues of hot ash were forced downward into. the saprolitic mud. The Stevens Ridge Formation is concordantly overlain by the Fifes Peak Formation of probable early Miocene age, which consists of lava flows, subordinate mudflows, and minor quantities of tuffaceous clastic rocks. The lavas are predominantly olivine basalt and basaltic andesite, but they include a little rhyolite. They are slightly to moderately altered: the ferromagnesian phenocrysts are generally replaced by saponite, chiprite, or carbonate ; the glass is devitrified ; and the rocks are locally permeated by veinlets of zeolite. Swarms of diabase sills and dikes are probably intrusive equivalents of the Fifes Peak lavas. The upper part of the Fifes Peak Formation has been mostly eroded from Mount Rainier National Park, but farther north, in the Cedar Lake quadrangle, it attains a thickness of more than 5,000 feet. The Fifes Peak and earlier formations were gently folded, faulted, uplifted, and eroded before the. late Miocene Tatoosh pluton worked its way upward to shallow depths and eventually broke through to the surface. The rise of the pluton was accompanied by .the injection of a complicated melange of satellitic stocks, sills, and dikes. A favored horizon for intrusion of sills was along or near the unconfo
Watts, K.R.
1995-01-01
Anticipated increases in pumping from the bedrock aquifers in El Paso County potentially could affect the direction and rate of flow between the alluvial and bedrock aquifers and lower water levels in the overlying alluvial aquifer. The alluvial aquifer underlies about 90 square miles in the upper Black Squirrel Creek Basin of eastern El Paso County. The alluvial aquifer consists of unconsolidated alluvial deposits that unconformably overlie siltstones, sandstones, and conglomerate (bedrock aquifers) and claystone, shale, and coal (bedrock confining units) of the Denver Basin. The bedrock aquifers (Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers) are separated by confining units (upper and lower Denver and the Laramie confining units) and overlie a relatively thick and impermeable Pierre confining unit. The Pierre confining unit is assumed to be a no-flow boundary at the base of the alluvial/ bedrock aquifer system. During 1949-90, substantial water-level declines, as large as 50 feet, in the alluvial aquifer resulted from withdrawals from the alluvial aquifer for irrigation and municipal supplies. Average recharge to the alluvial aquifer from infiltration of precipitation and surface water was an estimated 11.97 cubic feet per second and from the underlying bedrock aquifers was an estimated 0.87 cubic foot per second. Water-level data from eight bedrock observation wells and eight nearby alluvial wells indicate that, locally, the alluvial and bedrock aquifers probably are hydraulically connected and that the alluvial aquifer in the upper Black Squirrel Creek Basin receives recharge from the Denver and Arapahoe aquifers but-locally recharges the Laramie-Fox Hills aquifer. Subsurface-temperature profiles were evaluated as a means of estimating specific discharge across the bedrock surface (the base of the alluvial aquifer). However, assumptions of the analytical method were not met by field conditions and, thus, analyses of subsurface-temperature profiles did not reliably estimate specific discharge across the bedrock surface. The vertical hydraulic diffusivity of a siltstone and sandstone in the lower Denver confining unit was estimated, by an aquifer test, to be about 8 x 10'4 square foot per day. Physical and chemical characteristics of water from the bedrock aquifers in the study area generally differ from the physical and chemical characteristics of water from the alluvial aquifer, except for the physical and chemical characteristics of water from one bedrock well, which is completed in the Laramie-Fox Hills aquifer. In the southern part of the study area, physical and chemical characteristics of ground water indicate downward flow of water from the alluvial aquifer to the Laramie-Fox Hills aquifer. A three-dimensional numerical model was used to evaluate flow of water between the alluvial aquifer and underlying bedrock. Simulation of steady-state conditions indicates that flow from the bedrock aquifers to the alluvial aquifer was about 7 percent of recharge to the alluvial aquifer, about 0.87 cubic foot per second. The potential effects of withdrawal from the alluvial and bedrock aquifers at estimated (October 1989 to September 1990) rates and from the bedrock aquifers at two larger hypothetical rates were simulated for a 50-year projection period. The model simulations indicate that water levels in the alluvial aquifer will decline an average of 8.6 feet after 50 years of pumping at estimated October 1989 to September 1990 rates. Increases in withdrawals from the bedrock aquifers in El Paso County were simulated to: (1) Capture flow that currently discharges from the bedrock aquifers to springs and streams in upland areas and to the alluvial aquifer, (2) induce flow downward from the alluvial aquifer, and (3) accelerate the rate of waterlevel decline in the alluvial aquifer.
Realistic Expectations for Rock Identification.
ERIC Educational Resources Information Center
Westerback, Mary Elizabeth; Azer, Nazmy
1991-01-01
Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…
Pope, Jason P.; Andreasen, David C.; Mcfarland, E. Randolph; Watt, Martha K.
2016-08-31
Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of the Northern Atlantic Coastal Plain study area.
Gunst, V; Mavridou, A; Huybrechts, B; Van Gorp, G; Bergmans, L; Lambrechts, P
2013-09-01
To provide a three-dimensional representation of external cervical resorption (ECR) with microscopy, stereo microscopy, cone beam computed tomography (CT), microfocus CT and scanning electron microscopy (SEM). External cervical resorption is an aggressive form of root resorption, leading to a loss of dental hard tissues. This is due to clastic action, activated by a damage of the covering cementum and stimulated probably by infection. Clinically, it is a challenging situation as it is characterized by a late symptomatology. This is due to the pericanalar protection from a resorption-resistant sheet, composed of pre-dentine and surrounding dentine. The clastic activity is often associated with an attempt to repair, seen by the formation of osteoid tissue. Cone beam CT is extremely useful in the diagnoses and treatment planning of ECR. SEM analyses provide a better insight into the activity of osteoclasts. The root canal is surrounded by a layer of dentine that is resistant to resorption. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Petroleum systems of the Malay Basin Province, Malaysia
Bishop, Michele G.
2002-01-01
The offshore Malay Basin province is a Tertiary oil and gas province composed of a complex of half grabens that were filled by lacustrine shales and continental clastics.These deposits were overlain by clastics of a large delta system that covered the basin.Delta progradation was interupted by transgressions of the South China Sea to the southeast, which finally flooded the basin to form the Gulf of Thailand.Oil and gas from the Oligocene to Miocene lacustrine shales and Miocene deltaic coals is trapped primarily in anticlines formed by inversion of the half grabens during the late Miocene.Hydrocarbon reserves that have been discovered amount to 12 billion barrels of oil equivalent.The U.S. Geological Survey assessment of the estimated quantities of conventional oil, gas and condensate that have the potential to be added to reserves by the year 2025 for this province is 6.3 billion barrels of oil equivalent (BBOE) (U. S. Geological Survey World Energy Assessment Team, 2000).
Potter, Christopher J.; Moore, Thomas E.; O'Sullivan, Paul B.; Miller, John J.
2002-01-01
The transects, along with other seismic-reflection examples, illustrate four play concepts being used in the deformed area for the 2002 U.S. Geological Survey oil and gas assessment of the National Petroleum Reserve-Alaska (NPRA). The Brookian topset structural play includes broad west-northwest-trending anticlines in the Cretaceous Nanushuk Group, developed above structurally thickened Torok mudstones in the incipiently-deformed, most northerly part of the thrust system. The Torok structural play includes prominent anticlines affecting deep-basin sandstones, many of which are detached from folds exposed at the surface. The Ellesmerian structural play includes closures developed in the clastic part of the Ellesmerian sequence, mainly above a detachment in the Shublik Formation. The thrust belt play includes antiformal stacks of allochthonous Endicott Group clastic rocks and Lisburne Group carbonates; these stacks were assembled at about 120 Ma, and were transported to their present positions in the foothills at about 60 Ma.
Clastic Breccias at the Slates Islands Complex Impact Structure, Northern Lake Superior
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Sharpton, V. L.; Schnieders, B.; Scott, J.
1996-01-01
About 150 impact craters are known on Earth and each year several structures are added to this number. The general geology of the Slate Islands archipelago has been described by Sage (1991) and a short summary based on Sage's work is given in Dressler et al. (1995). The reader is referred to these publications for information on the bedrock geology of the island group. Early studies on the Slate Islands impact structure include: Halls and Grieve (1976), Grieve and Robertson (1976) and Stesky and Halls (1983). In this report, we provide a summary of the impact process as presently understood. We also present some of the results of our laboratory investigations conducted in 1995 and 1996. We describe in some detail the various clastic breccias encountered on the islands during our 1994 and 1995 field work and relate them to the various phases of the impact process. A more encompassing treatise on the breccias has been submitted for publication. (Dressler and Sharpton 1996).
NASA Astrophysics Data System (ADS)
Maghari, A.; Kermani, M. M.
2018-04-01
A system of two interacting atoms confined in 1D harmonic trap and perturbed by an absorbing boundary potential is studied using the Lippmann-Schwinger formalism. The atom-atom interaction potential was considered as a nonlocal separable model. The perturbed absorbing boundary potential was also assumed in the form of Scarf II complex absorbing potential. The model is used for the study of 1D optical lattices that support the trapping of a pair atom within a unit cell. Moreover, it allows to describe the scattering particles in a tight smooth trapping surface and to analyze the bound and resonance states. The analytical expressions for wavefunctions and transition matrix as well as the absorption probabilities are calculated. A demonstration of how the complex absorbing potential affecting the bound states and resonances of particles confined in a harmonic trap is described.
Vertical movement of ground water under the Merrill Field landfill, Anchorage, Alaska
Nelson, Gordon L.; Dearborn, L.L.
1982-01-01
Shallow groundwater under the Merrill Field sanitary landfill at Anchorage is polluted by leachate. Wells, including three Municipal-supply wells, obtain water from two confined aquifers 100-300 feet beneath the landfill area. Aquifer-test data and information on subsurface geology, ground-water levels, and properties of materials were used to estimate vertical gradients and vertical permeabilities under the landfill. The authors ' best estimates ' of vertical permeabilities of two confining units are 1 x 10 super -2 foot per day and 2 x 10 super -4 foot per day. Theoretical travel-time calculations indicate that minor amounts of pollutants may reach the upper confined aquifer after many tens of years, but that water of the composition of the leachate probably would not reach the aquifer for more than three centuries. The range of error in the theoretical travel-time calculations is likely to be plus or minus a factor of two or three. (USGS)
Upheaval Dome, An Analogue Site for Gale Center
NASA Technical Reports Server (NTRS)
Conrad, P. G.; Eignebrode, J. L.
2011-01-01
We propose Upheaval Dome in southeastern Utah as an impact analogue site on Earth to Mars Science Laboratory candidate landing site Gale Crater. The genesis of Upheaval Dome was a mystery for some time--originally thought to be a salt dome. The 5 km crater was discovered to possess shocked quartz and other shock metamorphic features just a few years ago, compelling evidence that the crater was formed by impact, although the structural geology caused Shoemaker and Herkenhoff to speculate an impact origin some 25 years earlier. The lithology of the crater is sedimentary. The oldest rocks are exposed in the center of the dome, upper Permian sandstones, and progressively younger units are well exposed moving outward from the center. These are Triassic sandstones, siltstones and shales, which are intruded by clastic dikes. There are also other clay-rich strata down section, as is the case with Gale Crater. There is significant deformation in the center of the crater, with folding and steeply tilted beds, unlike the surrounding Canyonlands area, which is relatively undeformed. The rock units are well exposed at Upheaval Dome, and there are shatter cones, impactite fragments, shocked quartz grains and melt rocks present. The mineral shock features suggest that the grains were subjected to dynamic pressures> 10 GPa.
Ground vibration monitoring for construction blasting in urban areas
DOT National Transportation Integrated Search
2001-04-01
The primary objectives of this study were to determine a recommendation for the pre-blast area for surveys, and to obtain actual field vibrations from rock blasting operations, in populated regions within specific geologic units. The area confined wi...
Combined Utility/Transportation Tunnel Systems - Economic, Technical and Institutional Feasibility
DOT National Transportation Integrated Search
1976-07-01
Although utility tunnels are common in Europe and Asia, United States use is largely confined to institutions where all utilities are under single ownership. Cut-and-cover transportation projects appear to display nearly ideal conditions for the use ...
MICROBIAL SOURCE TRACKING GUIDE DOCUMENT
Approximately 13% of surface waters in the United States do not meet designated use criteria as determined by high densities of fecal indicator bacteria. Although some of the contamination is attributed to point sources such as confined animal feeding operation (CAFO) and wastew...
New geological data of New Siberian Archipelago
NASA Astrophysics Data System (ADS)
Sobolev, Nikolay; Petrov, Evgeniy
2014-05-01
The area of New Siberian Archipelago (NSA) encompasses different tectonic blocks is a clue for reconstruction of geological structure and geodynamic evolution of East Arctic. According to palaeomagnetic study two parts of the archipelago - Bennett and Anjou Islands formed a single continental block at least from the Early Palaeozoic. Isotope dating of De Long Islands igneous and sedimentary rocks suggests Neoproterozoic (Baikalian) age of its basement. The De Long platform sedimentary cover may be subdivided into two complexes: (1) intermediate of PZ-J variously deformed and metamorphosed rocks and (2) K-KZ of weakly lithified sediments. The former complex comprises the Cambrian riftogenic volcanic-clastic member which overlain by Cambrian-Ordovician turbiditic sequence, deposited on a continental margin. This Lower Palaeozoic complex is unconformably overlain by Early Cretaceous (K-Ar age of c.120 Ma) basalts with HALIP petrochemical affinities. In Anjou Islands the intermediate sedimentary complex encompasses the lower Ordovician -Lower Carboniferous sequence of shallow-marine limestone and subordinate dolomite, mudstone and sandstone that bear fossils characteristic of the Siberian biogeographic province. The upper Mid Carboniferous - Jurassic part is dominated by shallow-marine clastic sediments, mainly clays. The K-KZ complex rests upon the lower one with angular unconformity and consists mainly of coal-bearing clastic sediments with rhyolite lavas and tuffs in the bottom (117-110 Ma by K-Ar) while the complexe's upper part contains intraplate alkalic basalt and Neogene-Quaternary limburgite. The De-Long-Anjou block's features of geology and evolution resemble those of Wrangel Island located some 1000 km eastward. The Laptev Sea shelf outcrops in intrashelf rises (Belkovsky and Stolbovoy Islands) where its geology and structure may be observed directly. On Belkovsky Island non-dislocated Oligocene-Miocene sedimentary cover of littoral-marine coal-bearing unconformably overlies folded basement. The latter encompasses two sedimentary units: the Middle Devonian shallow-marine carbonate and Late-Devonian-Permian olistostrome - flysch deposited in transitional environment from carbonate platform to passive margin. Dating of detrital zircons suggests the Siberian Platform and Taimyr-Severnaya Zemlya areas as the most possible provenance. The magmatic activity on Belkovsky Island resulted in formation of Early Triassic gabbro-dolerite similar to the Siberian Platform traps. Proximity of Belkovsky Island to the north of Verkhoyansk foldbelt allows continuation of the latter into the Laptev Sea shelf. The geology of Bolshoy Lyakhovsky Island is discrepant from the rest of the NSA. In the south of Bolshoy Lyakhovsky Island the ophiolite crops complex out: it is composed of tectonic melange of serpentinized peridotite, bandedf gabbro, pillow-basalt, and pelagic sediments (black shales and cherts). All the rocks underwent epidot - amphibolite, glaucophane and greenschist facies metamorphism. The ophiolite is intruded by various in composition igneous massifs - from gabbro-diorite to leuco-granite, which occurred at 110-120 Ma. The Bolshoy Lyakhovsky Island structure is thought to be a westerly continuation of the South Anui suture of Chukchi.
NASA Astrophysics Data System (ADS)
Brookfield, Michael E.
2008-10-01
The late Permian to late Triassic sediments of the Solway Basin consist of an originally flat-lying, laterally persistent and consistent succession of mature, dominantly fine-grained red clastics laid down in part of a very large intracontinental basin. The complete absence of body or trace fossils or palaeosols indicates a very arid (hyperarid) depositional environment for most of the sediments. At the base of the succession, thin regolith breccias and sandstones rest unconformably on basement and early Permian rift clastics. Overlying gypsiferous red silty mudstones, very fine sandstones and thick gypsum were deposited in either a playa lake or in a hypersaline estuary, and their margins. These pass upwards into thick-bedded, multi-storied, fine- to very fine-grained red quartzo-felspathic and sublithic arenites in which even medium sand is rare despite channels with clay pebbles up to 30 cm in diameter. Above, thick trough cross-bedded and parallel laminated fine-grained aeolian sandstones (deposited in extensive barchanoid dune complexes) pass up into very thick, multicoloured mudstones, and gypsum deposited in marginal marine or lacustrine sabkha environments. The latter pass up into marine Lower Jurassic shales and limestones. Thirteen non-marine clastic lithofacies are arranged into five main lithofacies associations whose facies architecture is reconstructed where possible by analysis of large exposures. The five associations can be compared with the desert pavement, arid ephemeral stream, sabkha, saline lake and aeolian sand dune environments of the arid to hyperarid areas of existing intracontinental basins such as Lake Eyre and Lake Chad. The accommodation space in such basins is controlled by gradual tectonic subsidence moderated by large fluctuations in shallow lake extent (caused by climatic change and local variation) and this promotes a large-scale layer-cake stratigraphy as exemplified in the Solway basin. Here, the dominant fine-grained mature sandstones above the local basal reg breccias suggest water-reworking of wind-transported sediment, as in the northern part of the Lake Chad basin. Growth faulting occurs in places in the Solway basin, caused by underlying evaporite movement, but these faults did not significantly affect pre-late Triassic sedimentation and did not expose pre-Permian units above the basal breccias. There is no evidence of post-early Permian rifting anywhere during deposition of the late Permian to middle Triassic British succession although the succession is often interpreted with a rift-basin model. The arid to hyperarid palaeoclimate changed little during deposition of the Solway basin succession, in contrast to Lakes Eyre and Chad: and this is attributed to tectonic and palaeolatitude stability. Unlike the later Mesozoic- Cenozoic, only limited plate movements took place during the Triassic in western Europe, palaeolatitude changed little, and the Solway Basin remained in the northern latitudinal desert belt from early to mid-Triassic times. However, the influence of the early Triassic impoverished biota on environmental interpretations needs further study.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.
2002-01-01
eliminating sweatshops in the United States. However, we reported on the widespread existence of sweatshops within the United States in the 1980s and 1990s.6...Monte, California, and found sweatshop working conditions-workers were confined behind razor wire fences and forced to work 20 hours a day for 70 cents...association, the El Monte raid provoked a public outcry and galvanized the U.S. government’s efforts against sweatshops . Concern in the United States about
Dean, W.
2002-01-01
Most of the sediment components that have accumulated in Elk Lake, Clearwater County, northwestern Minnesota, over the past 1500 years are authigenic or biogenic (CaCO3, biogenic SiO2, organic matter, iron and manganese oxyhydroxides, and iron phosphate) and are delivered to the sediment-water interface on a seasonal schedule where they are preserved as distinct annual laminae (varves). The annual biogeochemical cycles of these components are causally linked through the 'carbon pump', and are recapitulated in longer-term cycles, most prominently with a periodicity of about 400 years. Organic carbon is fixed in the epilimnion by photosynthetic removal of CO2, which also increases the pH, triggering the precipitation of CaCO3. The respiration and degradation of fixed organic carbon in the hypolimnion consumes dissolved oxygen, produces CO2, and lowers the pH so that the hypolimnion becomes anoxic and undersaturated with respect to CaCO3 during the summer. Some of the CaCO3 produced in the epilimnion is dissolved in the anoxic, lower pH hypolimnion and sediments. The amount of CaCO3 that is ultimately incorporated into the sediments is a function of how much is produced in the epilimnion and how much is consumed in the hypolimnion and the sediments. Iron, manganese, and phosphate accumulate in the anoxic hypolimnion throughout the summer. Sediment-trap studies show that at fall overturn, when iron-, manganese-, and phosphate-rich bottom waters mix with carbonate- and oxygen-rich surface waters, precipitation of iron and manganese oxyhydroxides, iron phosphate, and manganese carbonate begins and continues into the winter months. Detrital clastic material in the sediments of Elk Lake deposited over the last 1500 years is a minor component (<10% by weight) that is mostly wind-borne (eolian). Detailed analyses of the last 1500 years of the Elk Lake sediment record show distinct cycles in eolian clastic variables (e.g. aluminum, sodium, potassium, titanium, and quartz), with a periodicity of about 400 years. The 400-yr cycle in eolian clastic material does not correspond to the 400-yr cycles in redox-sensitive authigenic components, suggesting that the clastic component is responding to external forcing (wind) whereas the authigenic components are responding to internal forcing (productivity), although both may ultimately be forced by climate change. Variations in the oxygen and carbon isotopic composition of CaCO3 are small but appear to reflect small variations in ground water influx that are also driven by external forcing.
NASA Astrophysics Data System (ADS)
Schweinsberg, A. D.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.; Tapia, P. M.
2012-12-01
Sediments contained in glacier-fed lakes and bogs provide continuous high-resolution records of glacial activity, and preserve multiproxy evidence of Holocene climate change. Tropical glacier fluctuations offer critical insight on regional paleoclimatic trends and controls, however, continuous sediment records of past tropical climates are limited. Recent cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba of southern Peru (13°20'S latitude) reveal a glacial culmination during the early Holocene and a less extensive glaciation coincident with the Little Ice Age of the Northern Hemisphere. Here we supplement the existing 10Be moraine chronology with the first continuous records of multiproxy climate data in this mountain range from sediment cores recovered from bogs in direct stratigraphic contact with 10Be-dated moraines. Radiocarbon-dated sedimentological changes in a 2-meter long bog core reveal that the Holocene is characterized by alternating inorganic and organic-rich laminae, suggesting high-frequency climatic variability. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Preliminary analyses of the bog core reveal approximately 70 diatom taxa that indicate both rheophilic and lentic environments. Initial results show a general decrease in magnetic susceptibility and clastic flux throughout the early to mid-Holocene, which suggests an interval of deglaciation. An episode of high clastic flux from 3.8 to 2.0 ka may reflect a late Holocene glacial readvance. Volcanic glass fragments and an anomalous peak in magnetic susceptibility may correspond to the historical 1600 AD eruption of Huaynaputina. Ten new bog and lake sediment cores were collected during the 2012 field expedition and analytical measurements are underway. Ongoing efforts are focused on analyzing diatom assemblage data, developing detailed records of biogenic silica, clastic sediment flux, and magnetic susceptibility, and augmenting the 10Be moraine chronology with precise limiting radiocarbon ages to provide a more comprehensive assessment of regional climate and environmental indicators. These new paleoclimatic records will fill a large geographic gap in available proxy data and contribute toward a more complete understanding of Holocene climate variability in southern Peru. In addition, the basal radiocarbon ages being developed from sediments in contact with 10Be-dated moraines will place limits on the cosmogenic 10Be production rate in the high Andes.
NASA Astrophysics Data System (ADS)
Andersen, T. B.
2013-12-01
The Scandinavian segment (~2000 km) of the Caledonian-Appalachian orogen formed by a head-on collision of Baltica and Laurentia. The collision followed rapid (>10 cm/yr) convergence, subduction and closure of the Iapetus Ocean in the Ordovician to the Middle Silurian. The collision culminated in a Himalayan type continental collision at 430 Ma, after which the continental subduction/convergence continued for 20 Myr. The terminal stage was characterized by syn- and post-orogenic extension and exhumation, which produced a template used in opening of the present-day Norwegian Sea. The Scandian collision produced a 'layer-cake' tectono-stratigraphy, but correlation of individual nappe units along strike is not trivial. The vestiges of the Iapetus can, however, be traced along the entire Scandinavian Peninsula and constitute the Iapetus suture. Rocks of assumed Laurentian origin structurally overlie the suture. The outboard units underwent several orogenic events that pre-date the Scandian collision and which took place outboard of Baltica. These will not be discussed further here. The Caledonian passive margin of Baltica was very wide, consisting of non-volcanic hyperextended segments as well as passive volcanic margin domains. Basement-cover pairs, in places with mafic dyke-swarms constitute most of these units. The Baltican and assumed Baltican units below the suture have evidence of diachronous and relatively locally developed pre-Scandian deformation and metamorphic events. In S. Norway large basement-cover units are separated by a melange with numerous solitary mantle peridotites and a number of detrital serpentinites. The melange can be traced along strike across S. Norway. Locally, an island-type ';Celtic' fauna is preserved in detrital serpentinite. Some mantle rocks were structurally emplaced, exhumed, eroded and juxtaposed with continental clastics and crust before the Early Ordovician. The melange was recently interpreted to represent an oceanic to transitional crust basin with mantle exhumed by hyperextension during the Caledonian Wilson cycle ';kick-off'. Islands formed by serpentinite and clastic serpentinites suggest that hydrated mantle diapirs rose above sea level in the Early Ordovician. A number of solitary peridotites and detrital serpentinites are also typical elements in Seve nappe complex in north-central Sweden and Norway. The Pre-Scandian events affecting the passive Baltican margin show a range of ages and characteristics, but most important are the eclogites of Ordovician age. The oldest (~482 Ma) occur in the northern part of the Seve (Nordbotn). UHP eclogites in Jämtland formed at 446 Ma, and both these occurrences in the Seve are associated with mantle peridotites. In SW Norway, 470-460 Ma eclogites are preserved in continental nappes immediately below the suture near Stavanger. Finally, a lower grade HP-LT Ordovician event (~450 Ma) also dated by unconformable Middle Silurian (Wenlock) sediments has been identified. These pre-Scandian events demonstrate that the margin of Baltica underwent a sequence of geographic and time-separated events in the Ordovician before the Iapetus closed in the Middle Silurian. In this presentation it is suggested that the extension and hyperextension geometry inherited from the Caledonian Wilson-cycle ';kick-off' controlled the sequence of short-lived and local HP-LT events in the Scandinavian Caledonides.
Reynolds, Richard J.
2002-01-01
The hydrogeology of a 135-square-mile area centered at Waverly, N.Y. and Sayre, Pa. is summarized in a set of five maps and a sheet of geologic sections, all at 1:24,000 scale, that depict locations of wells and test holes (sheet 1), surficial geology (sheet 2), altitude of the water table (sheet 3), saturated thickness of the surficial aquifer (sheet 4), thickness of the lacustrine confining unit (sheet 5), and geologic sections (sheet 6). The valley-fill deposits that form the aquifer system in the Waverly-Sayre area occupy an area of approximately 30 square miles, within the valleys of the Susquehanna River, Chemung River, and Cayuta Creek.The saturated thickness of the surficial aquifer, which consists of alluvium, valley-train outwash, and underlying ice-contact deposits, ranges from zero to 90 feet and is greatest in areas where (1) the outwash is underlain by ice-contact sand and gravel or (2) the outwash is overlain by alluvium and alluvial fans. Estimated transmissivity of the surficial aquifer ranges from 5,600 to 100,270 feet squared per day, and estimated hydraulic conductivity ranges from 50 feet per day for ice-contact deposits to 1,300 feet per day for well-sorted, valley-train outwash.The surficial aquifer is underlain by deposits of lacustrine sand, silt, and clay in the main valleys; these deposits reach thicknesses of as much as 150 ft and form a thick confining unit. Beneath the lacustrine silt and clay confining unit is a thin, discontinuous sand and gravel aquifer whose thickness averages 5 feet but may be as much as 30 feet locally. This confined aquifer supplies many domestic well in the area; yields average about 22 gallons per minute for 6-inch-diameter, open-ended wells. Average annual recharge to the aquifer system is estimated to be approximately 52.5 Mgal/d (million gallons per day), of which 29.7 Mgal/d is from direct precipitation, 7.6 Mgal/d is from unchanneled upland runoff that infiltrates the stratified drift along the valley wall, and 15.2 Mgal/d is from infiltration from tributary streams on the valley floor.
NASA Astrophysics Data System (ADS)
Robertson, Alastair H. F.; Collins, Alan S.
2002-02-01
The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan-Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone. The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic-andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (<300 m thick) includes serpentinised ultramafic rocks, near mid-ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma-Harel Group (structurally highest) is a thick succession (several km) of Ordovician and Carboniferous to Permian-Triassic, low-grade, mixed carbonate/siliciclastic sedimentary rocks that accumulated on the south-Asian continental margin. A structurally associated turbiditic slope/basinal succession records rifting of the Karakoram continent (part of Mega-Lhasa) from Gondwana. Red clastics of inferred fluvial origin ('molasse') unconformably overlie the Late Palaeozoic-Triassic succession and are also intersliced with other units in the suture zone. Reconnaissance further east (north of the Shyok River) indicates the presence of redeposited volcaniclastic sediments and thick acid tuffs, derived from nearby volcanic centres, presumed to lie within the Ladakh Arc. In addition, comparison with Lower Cretaceous clastic sediments (Maium Unit) within the Northern Suture Zone, west of the Nanga Parbat syntaxis (Hunza River) reveals notable differences, including the presence of terrigenous quartz-rich conglomerates, serpentinite debris-flow deposits and a contrasting structural history. The Shyok Suture Zone in the Skardu area is interpreted to preserve the remnants of a rifted oceanic back-arc basin and components of the Asian continental margin. In the west (Hunza River), a mixed volcanogenic and terrigenous succession (Maium Unit) is interpreted to record syn-deformational infilling of a remnant back-arc basin/foreland basin prior to suturing of the Kohistan Arc with Asia (75-90 Ma).
NASA Astrophysics Data System (ADS)
Redaelli, Marco; Perulero Serrano, Raul
2017-04-01
It has been shown that Barometric Response Functions (BRFs) can provide a useful tool for detecting the occurrence of highly conducive bodies which span across aquifer confining layers and can potentially give rise to pathways for pollutant migration (Hussein et al 2013, Odling et al 2015). Analytical models employed to estimate BRFs from geological system properties assume homogeneity within the aquifer and its confining layer. These assumptions are rarely satisfied in practice. Our study focusses on the impact on predicted BRFs of heterogeneous distribution of high conductivity geomaterials within the confining layer. The work is grounded on a suite of three-dimensional, transient numerical computations of groundwater flow in a confining layer-aquifer system for i) a perfectly homogeneous two-layer setting where a single highly conducive block is fully penetrating the confining layer and ii) a heterogeneous two-layer system where hydraulic conductivity in the confining layer is modelled as a stochastic process. Our numerical results are interpreted through a comparison against those associated with an analytical model which assumes system homogeneity. Monitoring points located in the middle of the modelled aquifer domain, mimicking screened boreholes in field conditions, are used to extract water level records. The output is used to obtain the corresponding BRFs (in terms of gain and phase components) and compared vis-a-vis the selected analytical solution. The results show a wide variety of BRF responses, especially in the gain component, which vary from almost confined to unconfined scenarios. Our simulations show that the BRFs are a viable tool to improve understanding of the degree of spatial continuity within low permeability heterogeneous geological materials such as glacial till which is frequently found overlying water bearing units across the UK and other localities worldwide. As such, it has the potential to improve groundwater vulnerability assessment protocols. The results are promising and support the merit of additional developments through, e.g., numerical Monte Carlo simulations which can be performed to extract meaningful statistical information on the nature of BRFs as a function of randomly heterogeneous confining layers. Keywords: groundwater vulnerability, numerical modeling, barometric response functions, semi-confined aquifers References Hussein M.E.A., Odling N.E. & Clark R.A. (2013). Borehole water level response to barometric pressure as an indicator of aquifer vulnerability, Water Resources Research, 49: 7102-7119. Odling N.E, Perulero Serrano R., Hussein M.E.A, Riva M. & Guadagnini A. (2015). Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions, Journal of Hydrology, 520: 143-156.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, B.C.; Galloway, W.E.
1988-01-01
The Planulina zone is a wedge of clastic sediment positioned between the Anahuac shale below and the Oakville sandstone interval above. Planulna sediments were deposited on an erosional surface, during a general rise in the sea level, and formed a retrogradational wedge. Within the study area, the Planulina zone consists of two large depositional complexes: the Mud Lake complex in west Cameron Parish, Louisiana, and the East Cameron complex in east Cameron Parish. The lowermost depositional sequence in the East Cameron complex is preserved in a network of submarine canyons that were eroded into the upper slope. Framework sands weremore » deposited in channel systems confined to the axis of the canyons, and the sands are encased in marine shale containing benthonic foraminifera indicative of an upper to middle slope paleoenvironment. Two younger depositional sequences overlie the submarine canyon facies and were deposited by deltaic systems that prograded basinward. A zone of expansion extends east to west through the Planulina interval and is named the ''Planulina flexure.'' The flexure is a large fault located at the relict shelf edge and soles out downdip inn the Anahuac shale. Several thousand feet of sediment downthrown on the flexure is equivalent to several hundred feet upthrown, and the flexure represented the boundary dividing updip deltaic processes from downdip slope processes during the beginning of Planulina deposition. The Planulina depositional history and stratigraphic architecture are directly related to the displacement along the flexure and the structural deformation of the underlying Anahuac shale.« less
Jones, Joseph L.; Johnson, Kenneth H.
2013-01-01
A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic feet per second for flows. Although the expected seasonal trends were observed in model results, the typical observed annual variation of groundwater levels of about 2 feet was not. Streamflow at the most downstream observation point was about three times larger than simulated streamflow. Because the transient version of the model proved inherently unstable, it was not used to simulate forecast conditions for alternate hydrologic or anthropogenic changes. Adaptation of alternate stream simulation packages, such as RIV, or newer versions of MODFLOW, such as MODFLOW-NWT, could possibly assist with achieving calibration to transient conditions.
Time Series Analysis of Subsidence and Water-Level Data for Aquifer System Characterization
NASA Astrophysics Data System (ADS)
Burbey, T. J.
2012-12-01
The accessibility of high resolution surface displacement data in the form of InSAR, PS-InSAR, GPS, and extensometer data in heavily pumped basins provides diagnostic information that can be used in powerful ways to characterize the hydraulic properties of both confining units and aquifers that water-level data alone cannot accomplish. Land surface deformation signals reflect the elastic and inelastic properties of the heterogeneous aquifer system. These deformation signals can be quite complex and coupled with water level data often exhibit temporal signals at daily, seasonal, and decadal scales resulting from accompanying cyclical pumping patterns. In Las Vegas Valley, for example, cyclical seasonal and daily water-level fluctuations are superimposed on long-term water-level declines. The resulting changes in effective stress have resulted in decades of inelastic land surface lowering with superimposed seasonal elastic deformation signals. In this investigation signal processing of both water level and deformation data was done to filter separate signals at daily, seasonal, and decadal time scales that can be individually evaluated to more accurately estimate the hydraulic properties of the principle aquifer system in the valley that consists of multiple aquifers and confining units. Both elastic and inelastic skeletal specific storage, the horizontal hydraulic conductivity of the aquifers, and the vertical hydraulic conductivity of the confining units can be readily evaluated in this manner. The results compare favorably with the parameters calculated from a complex one-dimensional numerical compaction model. The advantage of the time series approach is that a more thorough description of the system can be made and the analytical approach is far simpler than constructing and calibrating a numerical model.
Shah, Sachin D.; Stanton, Gregory P.
2006-01-01
Naval Air Station-Joint Reserve Base Carswell Field (NAS-JRB) at Fort Worth, Tex., constitutes a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and manufacturing processes. Ground water flows from west to east toward the West Fork Trinity River. During October 2004, the U.S. Geological Survey conducted a two-dimensional (2D) resistivity investigation at a site along the West Fork Trinity River at the eastern boundary of NAS-JRB to characterize the distribution of subsurface resistivity. Five 2D resistivity profiles were collected, which ranged from 500 to 750 feet long and extended to a depth of 25 feet. The Goodland Limestone and the underlying Walnut Formation form a confining unit that underlies the alluvial aquifer. The top of this confining unit is the top of bedrock at NAS-JRB. The bedrock confining unit is the zone of interest because of the potential for contaminated ground water to enter the West Fork Trinity River through saturated bedrock. The study involved a capacitively-coupled resistivity survey and inverse modeling to obtain true or actual resistivity from apparent resistivity. The apparent resistivity was processed using an inverse modeling software program. The results of this program were used to generate distributions (images) of actual resistivity referred to as inverted sections or profiles. The images along the five profiles show a wide range of resistivity values. The two profiles nearest the West Fork Trinity River generally showed less resistivity than the three other profiles.
Hopkins, Candice B.; McIntosh, Jennifer C.; Eastoe, Chris; Dickinson, Jesse; Meixner, Thomas
2014-01-01
As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (<60 years) has occurred within mountain systems along the basin margins and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwater in the lower basin fill aquifer (semi confined) was recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.
Detection of Animal Viruses in Coastal Seawater and Sediments
De Flora, Silvio; De Renzi, Giuseppe P.; Badolati, Giuseppe
1975-01-01
Animal viruses, predominantly enteroviruses, were detected in shallow waters at bottom depths and in clastic marine sediments. Viruses accumulated in sandy and slimy deposits of the sea bottom near the shore and could be easily released into water by means of simple mechanical shaking. Images PMID:170859
Presented here is a practical guide on the application of the geologic principles of sequence stratigraphy and facies models to the characterization of stratigraphic heterogeneity at hazardous waste sites. This technology is applicable to sites underlain by clastic aquifers (int...
Estimating Aquifer Properties Using Sinusoidal Pumping Tests
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Haborak, K. G.; Young, M. H.
2001-12-01
We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.
Gillies, Daniel C.; Lapham, Wayne W.
1980-01-01
A revised dewatering plan for the construction of a nuclear power plant at the Northern Indiana Public Service Company 's (NIPSCO) Bailly Generating Station and evidence that suggests that a change in the characteristics of the confining unit 2 in and near Cowles Bog National Landmark may exist have resulted in a reassessment of the effects of construction dewatering on ground-water levels in the Indiana Dunes National Lakeshore. Model results indicate that the revision in the dewatering plan produces water-level declines that do not differ significantly from those described previously. However, when the change in the confining unit beneath Cowles Bog is considered, simulations of the simultaneous decline of a seepage mound after sealing of the fly-ash-ponds and the second phase of construction dewatering indicate that the simulated water-level declines in the aquifer unit 1 at Cowles Bog may be below the water levels tolerated by the National Park Service after 18 months. The water levels may even decline below the tolerable levels in spite of NIPSCO 's proposed plan of artificially recharging the aquifer unit 1 near the excavation site at 400 gal/min. The magnitude of the simulated water-level declines in unit 1 within the Lakeshore, caused by pumping from the excavation, depends on the relation in time between the second phase of dewatering and the decline of the seepage mound after sealing of the fly-ash-ponds, but not on the duration of dewatering beyond 18 months. (USGS)
Shah, Sachin D.
2004-01-01
Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS–JRB) at Fort Worth, Tex., constitute a contractor-owned, government-operated facility that has been in operation since 1942. Contaminants from the 3,600-acre facility, primarily volatile organic compounds (VOCs) and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. Environmental data collected at AFP4 and NAS–JRB during 1993–2002 created the need for consolidation of the data into a comprehensive temporal and spatial geodatabase. The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force Aeronautical Systems Center Environmental Management Directorate, developed a comprehensive geodatabase of temporal and spatial environmental data associated with the hydrogeologic units beneath the facility. A three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase was designed concurrently. Three hydrogeologic units—from land surface downward, the alluvial aquifer, the GoodlandWalnut confining unit, and the Paluxy aquifer—compose the subsurface of interest at AFP4 and NAS–JRB. The alluvial aquifer consists primarily of clay and silt with sand and gravel channel deposits that might be interconnected or interfingered. The Goodland-Walnut confining unit directly underlies the alluvial aquifer and consists of limestone, marl, shale, and clay. The Paluxy aquifer is composed of dense mudstone and fine- to coarse-grained sandstone
9 CFR 93.501 - General prohibitions; exceptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... are maintained under continuous confinement in transit through the United States aboard an aircraft... advance by the Administrator in accordance with paragraph (d)(3) of this section as adequate to prevent... must provide for disposal of swine carcasses, manure, bedding, waste and any related shipping materials...
9 CFR 93.501 - General prohibitions; exceptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... are maintained under continuous confinement in transit through the United States aboard an aircraft... advance by the Administrator in accordance with paragraph (d)(3) of this section as adequate to prevent... must provide for disposal of swine carcasses, manure, bedding, waste and any related shipping materials...
9 CFR 93.501 - General prohibitions; exceptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... are maintained under continuous confinement in transit through the United States aboard an aircraft... advance by the Administrator in accordance with paragraph (d)(3) of this section as adequate to prevent... must provide for disposal of swine carcasses, manure, bedding, waste and any related shipping materials...
9 CFR 93.501 - General prohibitions; exceptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... are maintained under continuous confinement in transit through the United States aboard an aircraft... advance by the Administrator in accordance with paragraph (d)(3) of this section as adequate to prevent... must provide for disposal of swine carcasses, manure, bedding, waste and any related shipping materials...
9 CFR 93.501 - General prohibitions; exceptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... are maintained under continuous confinement in transit through the United States aboard an aircraft... advance by the Administrator in accordance with paragraph (d)(3) of this section as adequate to prevent... must provide for disposal of swine carcasses, manure, bedding, waste and any related shipping materials...
Shipboard Experiences Unite Scientists with Educators and Decision-Makers for Lasting Impacts
The confined, immersive, and hands-on environment aboard a ship is an excellent venue for building a community of practice related to researching, teaching about, and managing aquatic resources and surrounding lands. Communities of practice bring people together around collective...
Juvenile Confinement in Context
ERIC Educational Resources Information Center
Mendel, Richard A.
2012-01-01
For more than a century, the predominant strategy for the treatment and punishment of serious and sometimes not-so-serious juvenile offenders in the United States has been placement into large juvenile corrections institutions, alternatively known as training schools, reformatories, or youth corrections centers. America's heavy reliance on…
ERIC Educational Resources Information Center
Glasstone, Samuel
This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…
Engineering of frustration in colloidal artificial ice (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ortiz-Ambriz, Antonio; Tierno, Pietro
2016-09-01
Artificial spin-ice systems have been used to date as microscopic models of frustration induced by lattice topology, as they allow for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Recently, an analogue system has been proposed theoretically, where an optical landscape confined colloidal particles that interacted electrostatically. Here we realize experimentally another version of a colloidal artificial ice system using interacting magnetically polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. By using optical tweezers, we can control particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.
Generalized thickness and configuration of the top of the intermediate aquifer, west-central Florida
Corral, Miguel A.; Wolansky, Richard M.
1984-01-01
Generalized map show the thickness and top of the intermediate aquifer in west-central Florida within the boundaries of the Southwest Florida Water Management District. The intermediate aquifer consists of a series of water-bearing units and confining beds between the surficial aquifer (water table) and the Floridan aquifer. This aquifer contains from one to several water-bearing units in west-central Florida. The aquifer and confining beds consist of the Tamiami and Hawthorn Formations of late and middle Miocene age and parts of the Tampa Limestone of early Miocene age. The top of the intermediate aquifer is about 100 feet above sea level in the north and slopes to about 100 feet below sea level in the south. The thickness ranges from zero in the north to more than 600 feet in the south. Despite the high mineral content of the water in some areas, the intermediate aquifer offers the best source of ground water to the coastal and southern areas of west-central Florida. (USGS)
Pollastro, R.M.
1999-01-01
Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/`Q'? Haushi(!) Total Petroleum System (201401) and Ghaba-Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: 1) the North Oman Huqf ? Shu'aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and 2) the Middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply-buried source rocks within the Infracambrian Huqf Supergroup. One general `North Oman Huqf' type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant `questionable unidentified-source' or `Q'-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout north-central Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (M. Carboniferous to L. Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/`Q' ? Haushi(!) TPS. In contrast, the Lower Cretaceous Shu'aiba and Middle Cretaceous Natih limestones account for most of the production in the Fahud Salt Basin with about 50 percent of the basin's production from porous, fractured Shu'aiba limestones in Yibal field, thus the name North Oman Huqf ? Shu'aiba(!) TPS. Deep gas is produced mainly from Middle Cambrian to Lower Ordovician clastic reservoirs of the Haima Supergroup. Traps in nearly all hydrocarbon accumulations of these petroleum systems are mainly structural and were formed by one or more mechanisms. These trap-forming mechanisms were mainly periodic halokinesis of the thick Cambrian Ara Salt and consequent folding and faulting from basin loading, rifting, or other major tectonic events, particularly those events forming the Oman Mountains and associated foreland-basin system during the Late Cretaceous and Late Tertiary. Many of the future new-field targets will likely be low-relief, subtle structures, as many of the large structures have been drilled. Oman's recent interest and commitments to liquid natural gas export make deep gas a primary objective in the two North Oman Huqf petroleum systems. New-field exploration of deep gas and exploring deeper targets for gas in existing fields will likely identify a significant gas resource in the next thirty years. Moreover, salt-diapir flank traps in these two North Oman Huqf petroleum systems and salt basin provinces have gone essentially untested and will likely be targeted in the near-future. The Middle Cretaceous Natih(!) TPS is a small efficient system of the Fahud Salt Basin. Natih source rocks are only mature in the Late Cretaceous/Tertiary foredeep and production is primarily from Natih reservoirs; minor production from the Shu'aiba limestone is documented along fault-dip structures. Most traps are structural and are related to development of the foreland basin and formation of the Oman Mountains. Future targets of the Natih TPS will be less obvious than those of Fahud and Natih fields and likely includ
Pollastro, Richard M.
1999-01-01
Three Total Petroleum Systems each consisting of one assessment unit have been identified in the Ghaba and Fahud Salt Basin Provinces of north-central Oman. One Total Petroleum System and corresponding assessment unit, the North Oman Huqf/?Q??Haushi(!) Total Petroleum System (201401) and Ghaba- Makarem Combined Structural Assessment Unit (20140101), were identified for the Ghaba Salt Basin Province (2014). In the Fahud Salt Basin Province, however, two overlapping Total Petroleum Systems (TPS) were recognized: (1) the North Oman Huqf?Shu?aiba(!) TPS (201601); Fahud-Huqf Combined Structural Assessment Unit (20160101), and (2) the middle Cretaceous Natih(!) TPS (201602); Natih-Fiqa Structural/Stratigraphic Assessment Unit (20160201). The boundary for each Total Petroleum System also defines the boundary of the corresponding assessment unit and includes all trap styles and hydrocarbon-producing reservoirs within the petroleum system. In both the Ghaba and Fahud Salt Basin Provinces, hydrocarbons were generated from several deeply buried source rocks within the Infracambrian Huqf Supergroup. One general ?North Oman Huqf? type oil is dominant in the Fahud Salt Basin. Oils in the Ghaba Salt Basin are linked to at least two distinct Huqf source-rock units based on oil geochemistry: a general North Oman Huqf-type oil source and a more dominant ?questionable unidentified source? or ?Q?-type Huqf oil source. These two Huqf-sourced oils are commonly found as admixtures in reservoirs throughout northcentral Oman. Hydrocarbons generated from Huqf sources are produced from a variety of reservoir types and ages ranging from Precambrian to Cretaceous in both the Ghaba and Fahud Salt Basin Provinces. Clastic reservoirs of the Gharif and Al Khlata Formations, Haushi Group (middle Carboniferous to Lower Permian), dominate oil production in the Ghaba Salt Basin Province and form the basis for the Huqf/?Q??Haushi(!) TPS. In contrast, the Lower Cretaceous Shu?aiba and middle Cretaceous Natih limestones account for most of the production in the Fahud Salt Basin with about 50 percent of the basin?s production from porous, fractured Shu?aiba limestones in Yibal field, thus the name North Oman Huqf? Shu?aiba(!) TPS. Deep gas is produced mainly from Middle Cambrian to Lower Ordovician clastic reservoirs of the Haima Supergroup. Traps in nearly all hydrocarbon accumulations of these petroleum systems are mainly structural and were formed by one or more 3 mechanisms. These trap-forming mechanisms were mainly periodic halokinesis of the thick Cambrian Ara Salt and consequent folding and faulting from basin loading, rifting, or other major tectonic events, particularly those events forming the Oman Mountains and associated foreland-basin system during the Late Cretaceous and late Tertiary. Many of the future new-field targets will likely be low-relief, subtle structures, as many of the large structures have been drilled. Oman?s recent interest and commitments to liquid natural gas export make deep gas a primary objective in the two North Oman Huqf petroleum systems. New-field exploration of deep gas and exploring deeper targets for gas in existing fields will likely identify a significant gas resource in the next 30 years. Moreover, salt-diapir flank traps in these two North Oman Huqf petroleum systems and salt basin provinces have gone essentially untested and will likely be targeted in the near future. The middle Cretaceous Natih(!) TPS is a small efficient system of the Fahud Salt Basin. Natih source rocks are only mature in the Late Cretaceous/Tertiary foredeep and production is primarily from Natih reservoirs; minor production from the Shu?aiba limestone is documented along fault-dip structures. Most traps are structural and are related to development of the foreland basin and formation of the Oman Mountains. Future targets of the Natih TPS will be less obvious
Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.
2009-01-01
With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water transmission. Seven sites with differing geologic contexts were selected following review of the capacitively coupled resistivity data collected in 2004. A reevaluation of these sites using the mean, minimum-unadjusted, and minimum-adjusted methods was performed to compare the different approaches for estimating leakage potential. Five of the seven sites contained underlying confining units, for which the minimum-unadjusted and minimum-adjusted methods accounted for the confining-unit effect. Estimates of overall leakage potential were lower for the minimum-unadjusted and minimum-adjusted methods than those estimated by the mean method. For most sites, the local heterogeneity adjustment procedure of the minimum-adjusted method resulted in slightly larger overall leakage-potential estimates. In contrast to the mean method, the two minimum-based methods allowed the least permeable areas to control the overall vertical permeability of the subsurface. The minimum-adjusted method refined leakage-potential estimation by additionally including local lithologic heterogeneity effects.
Torak, Lynn J.; Painter, Jaime A.
2006-01-01
The lower Apalachicola-Chattahoochee-Flint (ACF) River Basin contains about 4,600 square miles of karstic and fluvial plains and nearly 100,000 cubic miles of predominantly karst limestone connected hydraulically to the principal rivers and lakes in the Coastal Plain of southwestern Georgia, northwestern Florida, and southwestern Alabama. Sediments of late-middle Eocene to Holocene in hydraulic connection with lakes, streams, and land surface comprise the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower semiconfining unit and contribute to the exchange of ground water and surface water in the stream-lake-aquifer flow system. Karst processes, hydraulic properties, and stratigraphic relations limit ground-water and surface-water interaction to the following hydrologic units of the stream-lake-aquifer flow system: the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Geologic units corresponding to these hydrologic units are, in ascending order: Lisbon Formation; Clinchfield Sand; Ocala, Marianna, Suwannee, and Tampa Limestones; Hawthorn Group; undifferentiated overburden (residuum); and terrace and undifferentiated (surficial) deposits. Similarities in hydraulic properties and direct or indirect interaction with surface water allow grouping sediments within these geologic units into the aforementioned hydrologic units, which transcend time-stratigraphic classifications and define the geohydrologic framework for the lower ACF River Basin. The low water-transmitting properties of the lower confining unit, principally the Lisbon Formation, allow it to act as a nearly impermeable base to the stream-lake-aquifer flow system. Hydraulic connection of the surficial aquifer system with surface water and the Upper Floridan aquifer is direct where sandy deposits overlie the limestone, or indirect where fluvial deposits overlie clayey limestone residuum. The water level in perched zones within the surficial aquifer system fluctuates independently of water-level changes in the underlying aquifer, adjacent streams, or lakes. Where the surficial aquifer system is connected with surface water and the Upper Floridan aquifer, water-table fluctuations parallel those in adjacent streams or the underlying aquifer. More...
Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.
Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L
2017-12-06
We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations assumed by BPs in thin films reflect a complex interplay of surface interactions and elastic energies associated with strain of the BP lattice. The results also provide new principles and methods to control the structure and properties of BP thin films, which may find use in BP-templated material synthesis, and BP-based optical and electronic devices.
Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.
2014-01-01
This report presents information used to characterize the groundwater-flow system on the Kitsap Peninsula, and includes descriptions of the geology and hydrogeologic framework, groundwater recharge and discharge, groundwater levels and flow directions, seasonal groundwater-level fluctuations, interactions between aquifers and the surface‑water system, and a water budget. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, the part of Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Geologic units were grouped into 12 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 2,116 drillers’ logs to construct 6 hydrogeologic sections and unit extent and thickness maps. Unconsolidated aquifers typically consist of moderately to well-sorted alluvial and glacial outwash deposits of sand, gravel, and cobbles, with minor lenses of silt and clay. These units often are discontinuous or isolated bodies and are of highly variable thickness. Unconfined conditions occur in areas where aquifer units are at land surface; however, much of the study area is mantled by glacial till, and confined aquifer conditions are common. Groundwater in the unconsolidated aquifers generally flows radially off the peninsula in the direction of Puget Sound and Hood Canal. These generalized flow patterns likely are complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Groundwater-level fluctuations observed during the monitoring period (2011–12) in wells completed in unconsolidated hydrogeologic units indicated seasonal variations ranging from 1 to about 20 feet. The largest fluctuation of 33 feet occurred in a well that was completed in the bedrock unit. Streamgage discharge measurements made during 2012 indicate that groundwater discharge to creeks in the area ranged from about 0.41 to 33.3 cubic feet per second. During 2012, which was an above-average year of precipitation, the groundwater system received an average of about 664,610 acre-feet of recharge from precipitation and 22,122 acre-feet of recharge from return flows. Most of this annual recharge (66 percent) discharged to streams, and only about 4 percent was withdrawn from wells. The remaining groundwater recharge (30 percent) left the groundwater system as discharge to Hood Canal and Puget Sound.
Louisiana continental slope: geologic and seismic stratigraphic framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, P.K.; Cooke, D.W.
1987-05-01
The continental slope of Louisiana from Green Canyon to Mississippi Canyon was studied by interpreting seismic CDP data and wells in the area. The slope is characterized by blocked canyon intraslope basins of various dimensions with maximum thickness of sediments in excess of 21,000 ft, rotational slump blocks and large-scale submarine slides. In the subsurface, the outer shelf and upper slope show contrasting character with that of the lower slope, especially below the Sigsbee Scarp. The seismic stratigraphic units established for the deep sea area can be recognized in their entirety up to a water depth of 6000 to 5500more » ft. In shallower water salt tectonics obliterates the sequence. Fragmental records of the sequence, especially the top of Challenger boundary, have been recognized in as shallow as 2000 to 3000 ft of water. The Tertiary units often downlap and onlap directly on the Challenger unit, indicating the progradational nature of the clastic slope. The Sigsbee unit has been traced through the entire slope area and can be divided into five subunits of unique acoustical characteristics. The slope constantly regrades in response to Neogene sea level fluctuations. Loading of the shelf by deltaic deposition contributes to salt sill formation and flowage of salt over deep-water sediments on the slope during high sea level. Regressive sea is represented by slope failure, formation of large-scale submarine slides, filling of blocked canyon intraslope basins which show similar seismic facies to that of Orca and Pigmy basins as reported from DSDP studies, and sporadic uplifting of salt diapirs and massifs and the formation of linear transverse salt ridges.« less
Facies remolding in allochthonous chalk packages, Ekofisk and Albuskjell fields, North Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, S.J.; Ekdale, A.A.
1990-05-01
The Ekofish and Albuskjell fields in the Central Graben of the North Sea produce hydrocarbons from resedimented chalk reservoirs. Although the allochthonous nature of chalk in these fields has been recognized, the correlations of, and association between, allochthonous units has not been described. Core analysis of the Tor Formation (Maastrichtian) and the Ekofish Formation (Danian) reveals that slump deposits have been remolded into debris flows, ooze flows, and turbidites. Packages of allochthonous sediment were deposited in slope and base-of-slope environments. Two kinds of allochthonous packages occur. One package, 1-3-m thick, consists of a basal debris flow overlain by an oozemore » flow. The other package, 10-20-m thick, contains three units: a basal debris flow, an intermediate slump, and an overlying turbidite. Deposition of each type of package probably resulted from a single triggering event. Lateral changes in facies (increased convolution and decreased clastic content) and in type of deposit (slump or debris flow to ooze flow) within the packages resulted from differing degrees of deformation as the packages moved downslope. An increase in occurrence and angularity of chalk intraclasts, and in thickness of slump units from the Albuskjell field eastward to the Ekofisk field, suggest that the graben-bounding Hidra fault zone (about 30 km away) is the source of the allochthonous deposits. Vertical changes in the type of allochthonous package (from debris and ooze flows upward to slumps and turbidites) reflect decreasing topographic relief along the fault escarpment as the graben filled. This model of vertical (basin shallowing) and lateral (downslope) facies changes allows correlation of allochthonous chalk units, which are excellent hydrocarbon reservoirs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monson, L.M.
1988-07-01
As one of the progradational sequences in the Late Cretaceous, the Claggett-Judith River cycle created potential reservoirs for shallow biogenic gas. From west to east across the Fort Peck Reservation in northeastern Montana, in a distance of 75 mi (121 km), the Judith River Formation changes from a 350-ft (107-m) accumulation of fine-grained nonmarine clastics, to a 130-ft (39-m) deposit of fine-grained sandstone. Three units are present in the subsurface of the central part of the reservation. A continuous basal sandstone, 30-130 ft (9-39 m) thick, formed in a coastal environment. This unit thickens in the direction of progradation, whichmore » may indicate the addition of sand bodies in a shelf environment. The middle unit is a 20 to 50-ft (6 to 15-m) sequence of shale and siltstone. Capping the Judith River is a sandstone 20-50 ft (6-15 m) thick, which formed either as a shore facies in the regressive cycle or as a shelf sandstone prior to the final Cretaceous transgression that deposited the overlying Bearpaw Shale. Stratigraphic traps exist in the upper and lower sandstone units due to variation in grain size and clay content associated with the progradational facies changes. In addition, Laramide structures associated with the Poplar dome and Wolf Creek nose have created local trapping mechanisms. Judith River gas has been produced for operational use since 1952 in the East Poplar field. Shows have been reported in central reservation wells, although high mud weights and deeper exploration targets have prevented adequate evaluation of the Judith River gas frontier.« less
Preface to special topic: High-energy density laboratory astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenzer, Siegfried H
Here, in the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems.
A wind tunnel study of air flow near model swine confinement buildings
USDA-ARS?s Scientific Manuscript database
One of the most significant and persistent environmental concerns regarding swine production is the transport of odor constituents, trace gases, and particulates from animal production and manure storage facilities. The objectives of this study were to determine how swine housing unit orientation af...
This report presents a review of literature regarding the potential impact of fecal pathogens originating from animal agriculture in the United States. Livestock production and dairy operations continue their trend toward larger and more concentrated facilities. These operations ...
Preface to special topic: High-energy density laboratory astrophysics
Glenzer, Siegfried H
2017-04-11
Here, in the 1990s, when the large inertial confinement fusion facilities in the United States became accessible for discovery-class research, physicists soon realized that the combination of these energetic drivers with precision plasmas diagnostics would allow the unprecedented experimental study of astrophysical problems.
Numerical Modeling of Wave Overtopping of Buffalo Harbor Confined Disposal Facility (CDF4)
2017-10-01
for U.S. Army Corps of Engineers, Buffalo District 1776 Niagara Street, Buffalo, NY 14207 Under Wave Structures Work Unit 280H46 ERDC/CHL TR-17-18...11 2.2 Structure data...33 3.2 Type and condition of structures
NASA Astrophysics Data System (ADS)
Grün, Rainer; Eggins, Stephen; Aubert, Maxime; Spooner, Nigel; Pike, Alistair W. G.; Müller, Wolfgang
2010-03-01
The timing and cause of late Pleistocene faunal extinctions in Australia are subjects of a debate that has become polarised by two vigorously defended views. One contends that the late Pleistocene extinction was a short event caused by humans colonising the Australian continent, whereas the other promotes a gradual demise of the fauna, over a period of at least 10-20 ka, due to a combination of climatic changes and ecological pressures by humans. Cuddie Springs is central to this debate as it is the only site known in continental Australia where archaeological and megafauna remains co-occur. We have analysed more than 60 bones and teeth from the site by laser ablation ICP-MS to determine U, and Th concentrations and distributions, and those with sufficiently high U concentrations were analysed for U-series isotopes. Twenty-nine teeth were analysed by ESR. These new results, as well as previously published geochronological data, contradict the hypothesis that the clastic sediments of Stratigraphic Unit 6 (SU6) are in primary context with the faunal, archaeological and other materials found in SU6, and that all have ages consistent with the optically stimulated luminescence (OSL) estimates of 30-36 ka. These young OSL results were used to argue for a relatively recent age of the extinct fauna. Our results imply that SU6 is either significantly older than the OSL results, or that a large fraction of the faunal material and the charcoal found in SU6 was derived from older, lateral deposits. Our U and Th laser ablation ICPMS results as well as the REE profiles reported by Trueman et al. [2008. Comparing rates of recystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. C.R. Palevol. General Paleontology (Taphonomy and Fossilization) 7, 145-158] contradict the interpretation of previously reported rare earth element compositions of bones, and the argument based thereon for the primary context of faunal material and clastic sediments in SU6 layers.
NASA Astrophysics Data System (ADS)
Gutierrez, E. G.; Horton, B. K.; Vallejo, C.
2017-12-01
The tectonic history of the Oriente foreland basin and adjacent Subandean Zone of Ecuador during contractional mountain building in the northern Andes can be revealed through integrated stratigraphic, geochronological, structural, and provenance analyses of clastic sediments deposited during orogenesis. We present new maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units deposited in the western (proximal) Oriente Basin. Detrital zircon U-Pb ages were obtained from Upper Cretaceous and Cenozoic clastic formations from exposures in the Subandean Zone. The sampled stratigraphic intervals span critical timeframes during orogenesis in the Ecuadorian Andes. Cenozoic formations have poorly defined chronostratigraphic relationships and are therefore a primary target of this study. In addition, the newly acquired U-Pb age spectra allow clear identification of the various sediment source regions that fed the system during distinct depositional phases. Maximum depositional ages (MDA) were obtained for five samples from three formations: the Tena (MDA=69.6 Ma), Chalcana (MDA=29.3 Ma), and Arajuno (MDA= 17.1, 14.2, 12.8 Ma) Formations, placing them in the Maastrichtian, early Oligocene, and early-middle Miocene, respectively. Detrital zircon U-Pb ages identify clear signatures of at least four different sources: craton (1600-1300 Ma, 1250-900 Ma), Eastern Cordillera fold-thrust belt (600-450 Ma, 250-145 Ma), Western Cordillera magmatic arc (<88 Ma), and recycling of cratonic material from the Eastern Cordillera. The U-Pb age spectra of the Upper Cretaceous-Paleogene type sections allow us to recognize variations in the contribution of each recognized source over time. We identify recycled material with two dominant peak ages (1250-900 Ma and 600-450 Ma), material derived from the adjacent uplifted orogen or recycled from foredeep sediments incorporated into the deforming wedge. Finally, an apparent unroofing event is inferred from a 250-145 Ma age peak in the Plio-Pleistocene Mesa-Mera Formation revealing the persistent shortening deformation influencing the structural configuration and sediment dispersal patterns of the Oriente Basin and Subandean Zone.
NASA Astrophysics Data System (ADS)
Bradley, K. E.; Qin, Y.; Villanueva-Robles, F.; Hananto, N.; Leclerc, F.; Singh, S. C.; Tapponnier, P.; Sieh, K.; Wei, S.; Carton, H. D.; Permana, H.; Avianto, P.; Nugroho, A. B.
2017-12-01
The joint EOS/IPG/LIPI 2015 MegaTera expedition collected high-resolution seismic reflection profiles and bathymetric data across the Sunda trench, updip of the Mw7.7, 2010 Mentawai tsunami-earthquake rupture patch. These data reveal rapid lateral variations in both the stratigraphic level of the frontal Sunda megathrust and the vergence of frontal ramp faults. The stratigraphic depth of the megathrust at the deformation front correlates with ramp-thrust vergence and with changes in the basal friction angle inferred by critical-taper wedge theory. Where ramp thrusts verge uniformly seaward and have an average dip of 30°, the megathrust decollement resides atop a high-amplitude reflector that marks the inferred top of pelagic sediments. Where ramp thrusts are bi-vergent (similar throw on both landward- and seaward-vergent faults) and have an average dip of 42°, the decollement is higher, within the incoming clastic sequence, above a seismically transparent unit inferred to represent distal fan muds. Where ramp thrusts are uniformly landward vergent, the decollement sits directly on top of the oceanic crust that forms the bathymetrically prominent, subducting Investigator Ridge. The two, separate regions of large tsunamigenic ground-surface uplift during the 2010 tsunami earthquake that have been inferred from joint inversions of seismic, GPS, and tsunami data (e.g. Yue et al., 2014; Satake et al., 2013) correspond to the areas of frontal bi-vergence in the MegaTera data. We propose that enhanced surface uplift and tsunamigenesis during this event occurred when rupture propagated onto areas where the decollement sits directly above the basal muds of the incoming clastic sequence. Thus we hypothesize that frontal bi-vergence may mark areas of enhanced tsunami hazard posed by small magnitude, shallow megathrust ruptures that propagate to the trench. [Yue, H. et al., 2014, Rupture process of the…, JGR 119 doi:10.1002/2014JB011082; Satake, K. et al., 2013, Tsunami Source of the…, P&AG 170, 9-10
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.
2012-01-01
The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic sediments derived from an extensive region of Mars can provide important, detailed understanding of early martian geological and climatological history. Interrogating clastic "sediments" from the Earth, Moon and asteroids has allowed discovery of new crustal units, identification of now-vanished crust, and determination of the geological history of extensive, remote regions. Returned sample of martian fluvial and/or aeolian sediments, for example from Gale crater, could be "read like a book" in terrestrial laboratories to provide truly revolutionary new insights into early martian geological and climatological evolution.
Cunningham, Kevin J.; Locker, Stanley D.; Hine, Albert C.; Bukry, David; Barron, John A.; Guertin, Laura A.
2001-01-01
The Caloosahatchee River Basin, located in southwestern Florida, includes about 1,200 square miles of land. The Caloosahatchee River receives water from Lake Okeechobee, runoff from the watershed, and seepage from the underlying ground-water systems; the river loses water through drainage to the Gulf of Mexico and withdrawals for public-water supply and agricultural and natural needs. Water-use demands in the Caloosahatchee River Basin have increased dramatically, and the Caloosahatchee could be further stressed if river water is used to accommodate restoration of the Everglades. Water managers and planners need to know how much water will be used within the river basin and how much water is contributed by Lake Okeechobee, runoff, and ground water. In this study, marine seismic-reflection and ground-penetrating radar techniques were used as a means to evaluate the potential for flow between the river and ground-water systems. Seven test coreholes were drilled to calibrate lithostratigraphic units, their stratal geometries, and estimated hydraulic conductivities to surface-geophysical profiles. A continuous marine seismic-reflection survey was conducted over the entire length of the Caloosahatchee River and extending into San Carlos Bay. Lithostratigraphic units that intersect the river bottom and their characteristic stratal geometries were identified. Results show that subhorizontal reflections assigned to the Tamiami Formation intersect the river bottom between Moore Haven and about 9 miles westward. Oblique and sigmoidal progradational reflections assigned to the upper Peace River Formation probably crop out at the floor of the river in the Ortona area between the western side of Lake Hicpochee and La Belle. These reflections image a regional-scale progradational deltaic depositional system containing quartz sands with low to moderate estimated hydraulic conductivities. In an approximate 6-mile length of the river between La Belle and Franklin Lock, deeper karstic collapse structures are postulated. These structures influence the geometries of parallel reflections that intersect the river channel. Here, reflections assigned to the Buckingham Limestone Member of the Tamiami Formation (a confining unit) and reflections assigned to the clastic zone of the sandstone aquifer likely crop out at the river bottom. Beneath these shallow reflections, relatively higher amplitude parallel reflections of the carbonate zone of the sandstone aquifer are well displayed in the seismic-reflection profiles. In San Carlos Bay, oblique progradational reflections assigned to the upper Peace River Formation are shown beneath the bay. Almost everywhere beneath the river, a diffuse ground-water flow system is in contact with the channel bottom. Ground-penetrating radar profiles of an area about 2 miles north of the depositional axis of the deltaic depositional system in the Ortona area show that progradational clinoforms imaged on seismic reflection profiles in the Caloosahatchee River are present within about 17 feet of the ground surface. Ground-penetrating radar profiles show southward dipping, oblique progradational reflections assigned to the upper Peace River Formation that are terminated at their tops by a toplapping or erosional discontinuity. These clinoformal reflections image clean quartz sand that is probably characterized by moderate hydraulic conductivity. This sand could be mapped using ground-penetrating radar methods.
Maier, K.L.; Crundwell, Martin P.; Coble, Matthew A.; Kingsley-Smith, Peter R.; Graham, Stephan A.
2016-01-01
This study presents new radiometric ages from volcanic ash beds within a c. 1900 m thick, progradational, deep-water clastic slope succession of late Miocene age exposed along the north Taranaki coast of the North Island, New Zealand. The ash beds yield U–Pb zircon ages ranging from 10.63 ± 0.65 Ma to 8.97 ± 0.22 Ma. The new ages are compatible with and provide corroboration of New Zealand Tongaporutuan Stage planktic foraminiferal and bolboformid biostratigraphic events identified in the same section. The close accord between these two age datasets provides a stratigraphically consistent and coherent basis for examining margin evolution. The arrival of a prograding clastic wedge and ensuing upward shoaling is recorded by sedimentation rates c. 2000 m/Ma–1 that are an order of magnitude higher than sedimentation rates on the precursor deep basin floor. This outcrop study provides new constraints for interpreting analogous subsurface deposits in Taranaki Basin and complements the regional late Miocene biostratigraphic dating framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimichele, W.A.; McBrinn, G.E.; Phillips, T.L.
1991-08-01
The Secor Coal of Oklahoma (Boggy Formation, lower Desmoinesian/Westphalian D equivalent) is one of the few coals discovered, to date, in which Anabathra pulcherrima (=Paralycopodites brevifolius) was a dominant element. Anabathra and Lepidophloios define the major assemblages in the coal, which also contains elements of medullosan pteridosperms and Cardiocarpus spinatus producing cordaites. The Lepidophloios to Medullosa gradient is not obscured by the numerous Anabathra-dominated zones, and a disturbance element is suggested in association with Anabathra abundance. Comparison of the coal-ball flora with a clastic-compression flora from the roof of the coal reveals widely divergent patterns of dominance and diversity. Themore » compression flora is strongly dominated by medullosan pteridosperms with subdominant marattialean tree ferns. As in most instances, the compression flora from the immediate roof of the coal is not an accurate representation of the peat-forming vegetation, at either the level of species composition or the relative abundance of major groups of plants. The swamp and surrounding clastic deltaic environments were edaphically distinct and supported separate floras between which there was limited species exchange.« less
A large submarine sand-rubble flow on kilauea volcano, hawaii
Fornari, D.J.; Moore, J.G.; Calk, L.
1979-01-01
Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km3. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago. ?? 1979.
Characterizating Multi-layered Coastal Aquifer using Pneumatic Slug Tests
NASA Astrophysics Data System (ADS)
Malama, B.; Abere, M.; Mikenna, M.
2016-12-01
Results of pneumatic slug tests conducted in a monitoring wells of a shallow aquifer on the California Central Coast are presented. The aquifer is in the Los Osos groundwater basin on the California Central Coast, a semi-closed near-triangular groundwater basin bounded to the north and south by impermeable igneousbed rock and to the west by the Pacific Ocean. The groundwater basin is a multi-layered system comprising a perched, near-surface semi-confined, and a deep confined aquifer. The unincorporated community of Los Osos is wholly dependent on the groundwater basin that is threatened with seawater intrusion and nitratecontamination. The slug tests reported here were performed in the perched and semi-confined aquifers as part of a seawater intrusion characterization study. The semi-confined and confined aquifers show evidence of seawater intrusion with upconing in some deep aquifer municipal wells. The upconing has beeninterpreted by previous studies as evidence of preferential flow through a high permeability channel. The objective of the work was to test this hypothesis by mapping the horizontal and vertical spatial variability of hydraulic parameters across the basin and establish the extent of the high permeability unit.Here only preliminary results of slug tests conducted across the basin for vertically averaged hydraulic parameters are reported. The results provide an indication of the horizontal variability of hydraulic parameters. An additional study will be performed to characterize the vertical variability to investigate the probableexistsence of a high permeability channel.
Correlation of regional geohydrologic units to geological formations in southern Missouri
Smith, Brenda J.; Imes, Jeffrey L.
1991-01-01
As part of the U.S Geological Survey's Regional Aquifer-System Analysis Program, geologic formations in southern Missouri (index map) were grouped into eight regional geohydrologic units on the basis of relative rock permeability and well yields (imes and Emmett, in press). Geohydrologic unit boundaries do not necessarily coincide with geologic unit boundaries or geologic time lines, but are determined by regional hydrologic properties, which may vary from one area to another. The geologic formaitons were grouped into the geohydrologic units to determine the hydrologic characteristics of regional aquifer systems and associated regional confining units in parts of Arkansas, Kansas,Missouri, and Oklahoma. This report presents a correlation of the regional geohydrologic units to corresponding geologic formations in southern Missouri. Included in the report is a brief geologic history of southern Missouri.
Odijk excluded volume interactions during the unfolding of DNA confined in a nanochannel.
Reifenberger, Jeffrey G; Cao, Han; Dorfman, Kevin D
2018-02-13
We report experimental data on the unfolding of human and E. coli genomic DNA molecules shortly after injection into a 45 nm nanochannel. The unfolding dynamics are deterministic, consistent with previous experiments and modeling in larger channels, and do not depend on the biological origin of the DNA. The measured entropic unfolding force per friction per unit contour length agrees with that predicted by combining the Odijk excluded volume with numerical calculations of the Kirkwood diffusivity of confined DNA. The time scale emerging from our analysis has implications for genome mapping in nanochannels, especially as the technology moves towards longer DNA, by setting a lower bound for the delay time before making a measurement.
Earth resources mission performance studies. Volume 1: Requirements definition
NASA Technical Reports Server (NTRS)
1974-01-01
The need for a realistic set of earth resources collection requirements to test and maximize the data gathering capabilities of the EOS remote sensor systems is considered. The collection requirements will be derived from established user requirements. In order to confine and bound the requirements study, some baseline assumptions were established. These are: (1) image acquisition is confined to the contiguous United States, (2) the fundamental data users are select participating federal agencies, (3) the acquired data will be applied to generating information necessary or in support of existing federal agency charters, and (4) the most pressing or desired federal agency earth resources data requirements have been defined, suggested, or implied in current available literature.
USDA-ARS?s Scientific Manuscript database
The United States hosts the world’s largest grain fed beef production. Commercial beef production in the US consists of three tiers that include: cow-calf enterprises, cattle backgrounding/stockering, and feedlot finishing. Beef cattle backgrounding/stockering represents an intermediate between the ...
Building Alliances: Defending Immigrant Rights in Rural Oregon
ERIC Educational Resources Information Center
Stephen, Lynn
2008-01-01
Political participation in the rural United States has often been narrowly defined within the confines of electoral politics. Increasingly, participants in rural US social movements have highlighted the shortcomings of democracy defined purely in terms of electoral politics in favour of a more participatory model of politics that focuses on the…
Teaching Argumentative Writing through Film.
ERIC Educational Resources Information Center
Fluitt-Dupuy, Jan
2001-01-01
Discusses how watching and discussing feature films and writing reviews of these films in the English-as-a-Second/Foreign-Language classroom can be instrumental in teaching the principles of good argumentative writing within the confines of the simple movie review. Six steps for teaching a film review unit are provided. (Author/VWL)
36 CFR 9.45 - Handling of wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste and contaminating substances must be kept in the smallest practicable area, must be confined so as... be stored and disposed of or removed from the area as quickly as practicable in such a manner as to...), facilities, cultural resources, wildlife, and vegetation of or visitors of the unit. ...
9 CFR 93.401 - General prohibitions; exceptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... maintained under continuous confinement in transit through the United States aboard an aircraft, ocean vessel... ruminant holding facility which is provided by the carrier or its agent and has been approved 5 in advance... provide for disposal of ruminant carcasses, manure, bedding, waste and any related shipping materials in a...
9 CFR 93.401 - General prohibitions; exceptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... maintained under continuous confinement in transit through the United States aboard an aircraft, ocean vessel... ruminant holding facility which is provided by the carrier or its agent and has been approved 5 in advance... provide for disposal of ruminant carcasses, manure, bedding, waste and any related shipping materials in a...
9 CFR 93.401 - General prohibitions; exceptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... maintained under continuous confinement in transit through the United States aboard an aircraft, ocean vessel... ruminant holding facility which is provided by the carrier or its agent and has been approved 5 in advance... provide for disposal of ruminant carcasses, manure, bedding, waste and any related shipping materials in a...
9 CFR 93.401 - General prohibitions; exceptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maintained under continuous confinement in transit through the United States aboard an aircraft, ocean vessel... ruminant holding facility which is provided by the carrier or its agent and has been approved 5 in advance... provide for disposal of ruminant carcasses, manure, bedding, waste and any related shipping materials in a...
9 CFR 93.401 - General prohibitions; exceptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... maintained under continuous confinement in transit through the United States aboard an aircraft, ocean vessel... ruminant holding facility which is provided by the carrier or its agent and has been approved 5 in advance... provide for disposal of ruminant carcasses, manure, bedding, waste and any related shipping materials in a...
UK Higher Education Institutions and the Third Stream Agenda
ERIC Educational Resources Information Center
Clough, Stephen; Bagley, Carl A.
2012-01-01
This article focuses upon the adoption and implementation of United Kingdom government support for third stream business-facing activities in UK higher education institutions (HEIs). The article, concerned with income generation and the creation and application of knowledge beyond the confines of the academy, draws on policy literature and…
Beyond Textbook Civics/Simulating Media Campaigns
ERIC Educational Resources Information Center
Stoddard, Jeremy; Rayner, Mason
2017-01-01
Civics education shouldn't be confined to dusty textbooks, as evidenced by this assortment of projects. In one unit, elementary students play out the presidential election--from campaigning to inauguration day--using the Storypath approach. In another project, 5th graders explore the controversy about Confederate monuments by studying a local…
Beyond Textbook Civics/A Presidential Election Storypath
ERIC Educational Resources Information Center
McGuire, Margit E.; Nicholson, Karen; Rand, Allan
2017-01-01
Civics education shouldn't be confined to dusty textbooks, as evidenced by this assortment of projects. In one unit, elementary students play out the presidential election--from campaigning to inauguration day--using the Storypath approach. In another project, 5th graders explore the controversy about Confederate monuments by studying a local…
Beyond Textbook Civics/Teaching the Confederate Monument Controversy
ERIC Educational Resources Information Center
Allen, Stephanie Teachout
2017-01-01
Civics education shouldn't be confined to dusty textbooks, as evidenced by this assortment of projects. In one unit, elementary students play out the presidential election--from campaigning to inauguration day--using the Storypath approach. In another project, 5th graders explore the controversy about Confederate monuments by studying a local…
43 CFR 11.71 - Quantification phase-service reduction quantification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... identified geohydrological units, which are aquifers or confining layers, within the assessment area. (2)(i... determined by determining: (1) The surface area of soil with reduced ability to sustain the growth of vegetation from the baseline level; (2) The surface area or volume of soil with reduced suitability as...
43 CFR 11.71 - Quantification phase-service reduction quantification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... identified geohydrological units, which are aquifers or confining layers, within the assessment area. (2)(i... determined by determining: (1) The surface area of soil with reduced ability to sustain the growth of vegetation from the baseline level; (2) The surface area or volume of soil with reduced suitability as...
43 CFR 11.71 - Quantification phase-service reduction quantification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... identified geohydrological units, which are aquifers or confining layers, within the assessment area. (2)(i... determined by determining: (1) The surface area of soil with reduced ability to sustain the growth of vegetation from the baseline level; (2) The surface area or volume of soil with reduced suitability as...
NASA Astrophysics Data System (ADS)
Maas, Roland; McCulloch, Malcolm T.
1991-07-01
Clastic metasedimentary rocks of mid-Archean age from the Mt. Narryer and Jack Hills metasedimentary belts have REE patterns resembling those of mid- to late-Archean pelitic-quartzitic cratonic sequences elsewhere, and post-Archean continental rocks in general. Detrital zircons in the metasediments range in age from ca. 3000 to 3700 Ma. This indicates a provenance from mature cratonic sources controlled by K-rich granitic rocks. Additional minor sediment sources were identified as older, mainly chemical sedimentary sequences, ultramafic rocks, and felsic rocks characterized by low HREE contents, perhaps of tonalitic affinity. The association of the near-shore/fluviatile clastic association studied here with extensive turbiditic and chemical sedimentary sequences indicates these sources formed part of a (rifted ?) cratonic margin ca. 3 Ga ago. Differences between sedimentary REE patterns and those in the surrounding 3.73-3.0 Ga orthogneiss terrain, and between detrital zircon ages and the age distribution in the gneisses, suggest that the present association of the metasedimentary belts with the orthogneiss terrain is of tectonic origin. The occurrence of detrital zircons with U-Pb ages > 4 Ga in certain quartzites and conglomerates of the Jack Hills and Mt. Narryer metasedimentary sequences indicates a further, most likely granitic, source. ɛNd( TDep) values in Jack Hills metasediments vary widely (+5 to -12) but have a smaller range in the Mt. Narryer belt (-5 to -9). The lowest ɛNd values of both sequences are interpreted to reflect the presence of detritus derived from 4.1-4.2 Ga old LREE-enriched continental crust in proportions considerably larger (≥ 10%) than estimated previously from the abundance of pre-4 Ga detrital zircons (≈3%). This would imply the former existence of significant volumes of pre-4 Ga continental crust in the provenance of the Mt. Narryer and Jack Hills metasediments.
Geology and hydrocarbon potential of the Oued Mya basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benamrane, O.; Messaoudi, M.; Messelles, H.
1993-09-01
The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rockmore » in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.« less
Geology and hydrocarbon potential of the Oued Mya Basin, Algeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benamrane, O.; Messaoudi, M.; Messelles, H.
1992-01-01
The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less
Dean, W.; Pride, C.; Thunell, R.
2004-01-01
Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10-20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin??os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4-8 and 8-16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.
NASA Astrophysics Data System (ADS)
Lunina, Oksana
2016-04-01
The forms and location patterns of soil liquefaction induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in 1950 through 2014 have been investigated, using field methods and a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. Statistical analysis of the data has revealed regional relationships between the magnitude (Ms) of an earthquake and the maximum distance of its environmental effect to the epicenter and to the causative fault (Lunina et al., 2014). Estimated limit distances to the fault for the Ms = 8.1 largest event are 130 km that is 3.5 times as short as those to the epicenter, which is 450 km. Along with this the wider of the fault the less liquefaction cases happen. 93% of them are within 40 km from the causative fault. Analysis of liquefaction locations relative to nearest faults in southern East Siberia shows the distances to be within 8 km but 69% of all cases are within 1 km. As a result, predictive models have been created for locations of seismic liquefaction, assuming a fault pattern for some parts of the Baikal rift zone. Base on our field and world data, equations have been suggested to relate the maximum sizes of liquefaction-induced clastic dikes (maximum width, visible maximum height and intensity index of clastic dikes) with Ms and local shaking intensity corresponding to the MSK-64 macroseismic intensity scale (Lunina and Gladkov, 2015). The obtained results make basis for modeling the distribution of the geohazard for the purposes of prediction and for estimating the earthquake parameters from liquefaction-induced clastic dikes. The author would like to express their gratitude to the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences for providing laboratory to carry out this research and Russian Scientific Foundation for their financial support (Grant 14-17-00007).
NASA Astrophysics Data System (ADS)
Meyer, Inka; Eloy, Jonas; Verschuren, Dirk; De Batist, Marc
2016-04-01
The clastic mineral fraction of lacustrine sediments has been proven to provide valuable information about sedimentation dynamics within a lake, and it can be used to define distinct terrestrial source areas and transport mechanisms from source to sink. Down-core variation in the properties of the clastic mineral fraction yields indications for changes in terrestrial sediment sources over time. However, in order to use terrestrial proxies in palaeo-environmental reconstruction, we have to understand and quantify the modern conditions of sediment provenance and deposition at the study site. In this study we present data on grain-size distribution, mineralogy and particle shape of the clastic mineral component of lacustrine sediments from Lake Challa, a small freshwater lake of volcanic origin, located on the eastern slope of Mt. Kilimanjaro. Situated close to the equator, it contains a uniquely long and continuous sediment sequence allowing the study of inter-hemispheric climate dynamics. The finely laminated profundal sediments of Lake Challa are characterized by a fine-grained texture and are mainly composed of organic matter, biogenic silica and authigenic carbonate, with a relatively minor component of detrital mineral that can either originate from erosion of the steep volcanic crater walls or was mobilized by wind from unvegetated areas of the surrounding scrub savannah landscape. In order to distinguish between these two sources of terrestrial sediment input (i.e., local run-off versus distant aeolian) into Lake Challa, and to map out differences in sediment properties, samples were investigated from profundal surface sediments and short cores, as well as on-shore soils from several locations around the lake and from beyond the crater catchment. Variation in grain-size distribution and mineralogy can be linked to distinct terrestrial sources, whereas the shape of single particles gives additional information about transport dynamics. In future, the results from this study will be applied to the down-core record of Lake Challa to reconstruct climate-driven changes in terrigenous sediment input over time.
NASA Astrophysics Data System (ADS)
Alpar, Bedri; Unlu, Selma; Altinok, Yildiz; Ongen, Sinan
2014-05-01
For assessing anthropogenic pollution, magnetic susceptibility profiles and accompanying data were measured along three short cores recovered at the southern part of an urban lagoon; Kucukcekmece, Istanbul, Turkey. This marine inlet, connected to the Sea of Marmara by a very narrow channel, was used as a drinking water reservoir 40-50 years ago before it was contaminated by municipal, agricultural and industrial activities, mainly carried by three streams feeding the lagoon. The magnetic signals decrease gradually from the lake bottom towards the core base showing some characteristic anomalies. These signatures were tested as an environmental magnetic parameter against the lithological diversity (silici-clastic, total organic matter and carbonate), metal enrichments with larger variations (Pb, Mn, Zn, Ni, Co, Cr, U and Al) and probable hydrocarbon contamination. Mineral assemblage was determined by a computer driven X-ray diffractometer. The heavy metal concentrations and total petroleum hydrocarbons (TPH) were measured by ICP-MS and UVF spectrometry, respectively. Magnetic susceptibility shows slightly higher values in interlayers containing higher silici-clastic material and organic content which may suggest first-order changes in the relative supplies of terrigenous and biogenic materials. On the basis of cluster analyses, enhanced magnetic signals could be correlated with the elevated concentrations of Co, Zn, U, Pb and TPH along the cores. The Pb concentrations at the upper parts of the cores were higher than the "Severe Effect Level" and could pose a potential risk for living organisms. Greater amounts of organic carbon tend to accumulate in muddy sediments. In fact, there are a few studies reporting some relationship between enhanced magnetic signals and organic contamination mainly due to petroleum aromatic hydrocarbons. In conclusion, the magnetic susceptibility changes in sedimentary depositional environments could be used as a rapid and cost-effective tool in identification of silici-clastic content, enrichment of some metals (iron cycling and bacterial activity) and increased TPH concentrations in hydrocarbon contaminated sediments along the cores.
Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado
Shawe, Daniel R.; Simmons, George C.; Archbold, Norbert L.
1968-01-01
The Slick Rock district covers about 570 square miles in western San Miguel and Dolores Counties, in southwestern Colorado. It is at the south edge of the salt-anticline region of southwestern Colorado and southeastern Utah and of the Uravan mineral belt.Deposition of Paleozoic sedimentary rocks in the district and vicinity was principally controlled by development of the Paradox Basin, and of Mesozoic rocks by development of a depositional basin farther west. The Paleozoic rocks generally are thickest at the northeast side of the Paradox Basin in a northwest- trending trough which seems to be a wide graben in Precambrian igneous and metamorphic basement rocks; Mesozoic rocks generally thicken westward and southwestward from the district.Sedimentary rocks rest on a Precambrian basement consisting of a variety of rocks, including granite and amphibolite. The surface of the Precambrian rocks is irregular and generally more than 2,000 feet below sea level and 7,000-11,000 feet below the ground surface. In the northern part of the district the Precambrian surface plunges abruptly northeastward into the trough occupying the northeast side of the Paradox Basin, and in the southern part it sags in a narrow northeasterly oriented trough. Deepening of both troughs, or crustal deformation in their vicinity, influenced sedimentation during much of late Paleozoic and Mesozoic time.The maximum total thickness of sedimentary rocks underlying the district is 13,000 feet, and prior to extensive erosion in the late Tertiary and the Quaternary it may have been as much as about 18,000 feet. The lower 5,000 feet or more of the sequence of sedimentary rocks consists of arenaceous strata of early Paleozoic age overlain by dominantly marine carbonate rocks and evaporite beds interbedded with lesser amounts of clastic sediments of late Paleozoic age. Overlying these rocks is about 4,500 feet of terrestrial clastic sediments, dominantly sandstone with lesser amounts of shale, mudstone, siltstone, and conglomerate, of late Paleozoic and Mesozoic age. Above these rocks is as much as 2,300 feet of marine shale of late Mesozoic age. Perhaps about 5,000 feet of clastic sedimentary rocks, dominantly sandstone and in part shale, of late Mesozoic and early Cenozoic age, overlay the older rocks of the district prior to late Cenozoic erosion...Outside the Slick Rock district the Mancos Shale is overlain by dominantly terrestrial sandstone, mudstone, and coaly beds of the Mesaverde Group of Late Cretaceous age, and younger units such as the Wasatch and Green River Formations of Tertiary age, which once may have extended across the district. These units, totaling possibly 5,000 feet in thickness, were removed by erosion following middle Tertiary uplift of the Colorado Plateau.Igneous rocks of Tertiary age crop out in only one small area in the district, but they are intruded extensively in the Mancos Shale east of the district, and, as shown by deep oil test wells, appear to be intruded widely in the Paradox Member of the Hermosa Formation in the southern part of the district and southeast of the district. Andesite porphyry occurs in a dike on Glade Mountain, microgranogabbro and microgranodiorite occur in thin sills east of the district, and rocks of similar composition form thick sills in the subsurface. All are similar chemically to igneous rocks in the San Juan Mountains southeast of the district and probably were the result of a specific igneous episode. They were intruded most likely during the Miocene.Surficial deposits of Quaternary age include glacial till, terrace gravels, alluvial fans, landslide debris, loess, other soil, alluvium, colluvium, and talus. On Glade Mountain, glacial till of probable early Pleistocene age merges westward with terrace gravels that are correlative with terrace gravels which lie on an old weathered surface of Mancos Shale farther west on the rim of the Dolores River Canyon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dembicki, E.A.; Machel, H.G.
1996-05-01
The Upper Devonian Grosmont Formation in northeastern Alberta, Canada, is a shallow-marine carbonate platform complex that was subaerially exposed for hundreds of millions of years between the Mississippian(?) and Cretaceous. During this lengthy exposure period, an extensive karst system developed that is characterized by an irregular erosional surface, meter-size (several feet) dissolution cavities, collapse breccias, sinkholes, paleosols, and fractures. The karsted Grosmont Formation, which contains giant reserves of bitumen, sub-crops beneath Cretaceous clastic sediments of the giant Athabasca tar sands deposit. The paleokarst in the Grosmont Formation can be recognized on wireline logs in relatively nonargillaceous carbonate intervals (<30 APImore » units on the gamma-ray log) as excursions of the caliper log, off-scale neutron-density porosity readings, and severe cycle skipping of the acoustic log. The paleokarst is more prevalent in the upper units of the Grosmont Formation, and the effects of karstification decrease toward stratigraphically older and deeper units. The paleokarst usually occurs within 35 m (115 ft) of the erosional surface. The reservoir properties of the Grosmont Formation (e.g., thickness, porosity, permeability, and seal effectiveness) are significantly influenced by karstification. Depending upon the location, karstification has either benefited or degraded the reservoir characteristics. Benefits include porosity values greater than 40% (up to 100% in caverns) and permeability values of 30,000 md in severely fractured intervals. Detrimental reservoir characteristics include erosion, porosity and permeability reduction, and seal ineffectiveness.« less
NASA Astrophysics Data System (ADS)
del Papa, Cecilia E.; Petrinovic, Ivan A.
2017-01-01
The Conglomerado Los Patos is a coarse-grained clastic unit that crops out irregularly in the San Antonio de los Cobres Valley in the Puna, Northwestern Argentina. It covers different units of the Cretaceous-Paleogene Salta Group by means of an angular unconformity and, in turn, is overlaid in angular unconformity by the Viscachayoc Ignimbrite (13 ± 0.3 Ma) or by late Miocene tuffs. Three lithofacies have been identified in the Corte Blanco locality; 1) Bouldery matrix-supported conglomerate (Gmm); 2) Clast-supported conglomerate (Gch) and 3) Imbricated clast-supported conglomerate (Gci). The stratigraphic pattern displays a general fining upward trend. The sedimentary facies association suggests gravitational flow processes and sedimentation in alluvial fan settings, from proximal to medial fan positions, together with a slope decrease upsection. Provenance studies reveal sediments sourced from Precambrian to Ordovician units located to the southwest, except for volcanic clasts in the Gmm facies that shows U/Pb age of 14.5 ± 0.5 Ma. This new age represents the maximum depositional age for the Conglomerado Los Patos, and it documents that deposition took place simultaneously during a period of increased tectonic and volcanic activity in the area. The structural analysis of the San Antonio de los Cobres Valley and the available thermochronological ages, indicate active N-S main thrusts and NW-SE transpressive and locally normal faults during the middle Miocene. In this context, we interpret the Conglomerado Los Patos to represent sedimentation in a small, extensional and short-lived basin associated with the compressional Andean setting.
NASA Astrophysics Data System (ADS)
Duraiswami, Raymond A.; Inamdar, Mustaqueem M.; Shaikh, Tahira N.
2013-08-01
The physical volcanology and morphometric analyses of pillowed lava flows from the Chitradurga basin of Chitradurga Greenstone Belt, South India have been undertaken. In the Chitradurga hills individual pillowed flows alternate with massive submarine sheet flows. The pillows from such flows are separated by chert and occur as spheroidal, elongated or reniform units that are devoid of vesicles, vesicle bands or pipe vesicles. The Mardihalli flow is exposed as a small elongated mound in the basin and consists of a massive core that is draped by pillows along the flow crest and flanks. The pillows from Mardihalli occur as spheroidal to elongate units with smooth, spalled or wrinkled surfaces with vesicular interiors. Repeated budding of larger pillows have produced a series of interconnected pillow units indicating fluid lava that was emplaced on steeply dipping flanks. Based on the morphological features the pillowed flows from the Chitradurga basin were emplaced at low effusion rates (≤ 5 m3/s). Pillows in these flows formed from low viscosity lavas that underwent negligible to moderate inflation due to rapid chilling. Sporadic occurrences of pillow breccias, hyaloclastite and chert breccias in the pillowed flow fields indicate disruption of pillows due to lava surges and slumping. It is envisaged that the Chitradurga basin witnessed distinct episodes of submarine tholeiite eruptions that produced pillowed lavas that variably interacted with sea water to produce geochemistries. The field and stratigraphic relationships of the volcanics and associated clastic sediments suggest that the pillow lavas were emplaced in a shallow marine marginal inter/back arc basin.
Petroleum geology of Amu-Dar'ya province of Soviet Central Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke J.W.
1986-05-01
The Amu-Dar'ya oil and gas province extends over an area of 360,000 km/sup 2/ in central and eastern Turkmenia and western Uzbekistan in southern Soviet Central Asia. The province coincides with the eastern half of the Turan platform. A Mesozoic-Cenozoic sedimentary cover, 2-7 km thick, rests on a folded paleozoic basement. An Upper Jurassic salt unit divides the sedimentary section into subsalt and suprasalt parts. The structure of the sedimentary cover developed by vertical movements during the Mesozoic and Cenozoic, most of it during the late Tertiary in response to Alpine tectonism. Consequently, much of the trap formation and fillingmore » is late in geologic time and is apparently in progress at present. The province is gas prone; only in the Bukhara area on the east is there significant oil. Five plays are recognized. The Lower to Middle Jurassic play consists of alternating clays, sandstone, and siltstone. Thickness is 100-400 m. The Upper Jurassic play consists of Callovian-Oxfordian carbonate deposits, which are up to 500 m thick. The seal is Kimmeridgian-Tithonian salt. The carbonate deposits of this play are commonly a reef facies. The Lower Cretaceous play consists largely of alternating sandstone, clays, and siltstones. The seal is a clay unit of late Aptian and Albian age, which also separates this play from the overlying Albian-Cenomanian play. The Albian-Cenomanian play has sandstone and siltstone reservoirs, and the seal is a Turonian clay unit. The Paleogene play is prospective in the northeast part of the study area in the so-called Bukhara clastic beds.« less
The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam Onboard Curiosity
Le Deit, Laetitia; Mangold, Nicolas; Forni, Olivier; Cousin, Agnes; Lasue, Jeremie; Schröder, Susanne; Wiens, Roger C.; Sumner, Dawn Y.; Fabre, Cecile; Stack, Katherine M.; Anderson, Ryan; Blaney, Diana L.; Clegg, Samuel M.; Dromart, Gilles; Fisk, Martin; Gasnault, Olivier; Grotzinger, John P.; Gupta, Sanjeev; Lanza, Nina; Le Mouélic, Stephane; Maurice, Sylvestre; McLennan, Scott M.; Meslin, Pierre-Yves; Nachon, Marion; Newsom, Horton E.; Payre, Valerie; Rapin, William; Rice, Melissa; Sautter, Violaine; Treiman, Alan H.
2016-01-01
The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater.
Foley, N.K.; Barton, P.B.; Bethke, P.M.; Doe, B.R.
1988-01-01
Recent work allows us to extend the results of Doe et al. and to consider alternative processes to explain the widespread homogeneity and radiogenic nature of the ore lead: 1) David Matty (pers. commun., 1986) has shown that some minor volcanic units in the area have unusually radiogneic lead values; magmas comparable in composition to the units are a possible, though improbable, source of the ore lead. 2) The uniformity of the isotopic values of galenas may have resulted from homogenization during an extensive potassium-metasomatic event that predated the ores; this possibility is being tested in an on-going study of feldspars from metasomatized and unmetasomatized rocks. 3) Recent regional studies suggest the possibility of a prevolcanic, NNW-trending graben system filled by clastic sediments derived from the Precambrian basement, a process that would have an homogenizing effect on the lead isotopes. This interpretation implies importation, deep within the Creede hydrologic system, of fluids from remote sources. These alternatives show that the Pbisotope systematics may have a profound impact on the interpretation of the Creede hydrothermal system, and that further study is warranted.
NASA Astrophysics Data System (ADS)
Ellero, Alessandro; Ottria, Giuseppe; Sayit, Kaan; Catanzariti, Rita; Frassi, Chiara; Cemal Göncüoǧlu, M.; Marroni, Michele; Pandolfi, Luca
2016-04-01
In the Central Pontides (Northern Turkey), south of Tosya, a tectonic unit consisting of not-metamorphic volcanic rocks and overlying sedimentary succession is exposed inside a fault-bounded elongated block. It is restrained within a wide shear zone, where the Intra-Pontide suture zone, the Sakarya terrane and the Izmir-Ankara-Erzincan suture zone are juxtaposed as result of strike-slip activity of the North Anatolian shear zone. The volcanic rocks are mainly basalts and basaltic andesites (with their pyroclastic equivalents) associated with a volcaniclastic formation made up of breccias and sandstones that are stratigraphically overlain by a Marly-calcareous turbidite formation. The calcareous nannofossil biostratigraphy points to a late Santonian-middle Campanian age (CC17-CC21 Zones) for the sedimentary succession. The geochemistry of the volcanic rocks reveals an active continental margin setting as evidenced by the enrichment in Th and LREE over HFSE, and the Nb-enriched nature of these lavas relative to N-MORB. As highlighted by the performed arenite petrography, the occurrence of continent-derived clastics in the sedimentary succession supports the hypothesis of a continental arc-derived volcanic succession. Alternative geodynamic reconstructions are proposed, where this tectonic unit could represent a slice derived from the northern continental margin of the Intra- Pontide or Izmir-Ankara-Erzincan oceanic basins.
Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2014-01-01
This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.
NASA Astrophysics Data System (ADS)
Casas, Josep M.; Brendan Murphy, J.
2018-06-01
We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.
Black shale - Its deposition and diagenesis.
Tourtelot, H.A.
1979-01-01
Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.Black shales have formed throughout the Earth's history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.
NASA Astrophysics Data System (ADS)
Ciccioli, Patricia L.; Marenssi, Sergio A.; Amidon, William H.; Limarino, Carlos O.; Kylander-Clark, Andrew
2018-07-01
A 2400 m-thick sedimentary column belonging to the Toro Negro Formation was recorded along the Quebrada del Yeso, Sierra de Los Colorados (Vinchina Basin), La Rioja province, NW Argentina. The Vinchina basin is a good example of a closed basin surrounded by the Precordillera fold and thrust belt to the west and basement-cored blocks to the north, south (Western Sierras Pampeanas) and east (Sierra de Famatina). Seven facies associations (FA) are described and interpreted to represent fluvial, lacustrine and alluvial environments developed in the southern part of the Vinchina basin from the Late Miocene until the earliest Pleistocene. The depositional evolution of the formation was divided in four phases. Phase I (∼7-6.6 Ma) represents sedimentation in medial (FA I) to distal (FA II) parts of a southward directed distributive fluvial system with a retrogradational pattern. During phase II (6.6-6.1Ma), the distributive fluvial system was replaced by a mixed clastic-evaporitic shallow lake (FA III) in a high aggradational basin. In phase III (∼6.1-5 Ma) the eastward progradation of a fluvial system (FA IV) was recorded as a distal clastic wedge. Finally, phase IV (∼5-2.4Ma) records two depositional cycles of proximal clastic wedge progradation of fluvial-dominated piedmonts (FAV, FAVII) from the southwest (Sierra de Umango) and/or the west (Precordillera) with an intervening playa lake (FA VI). Two new U-Pb ages obtained from zircons in volcanic ash layers confirm the Late Miocene age of the lower member of the Toro Negro Formation and permit a tight correlation with the central part of the basin (Quebrada de La Troya section). The sedimentation rate calculated for the dated lacustrine-fluvial interval is higher than the corresponding one in La Troya area suggesting a higher subsidence in the southern part of the basin. During the Late Miocene (∼7-6.6Ma) the ephemeral drainage was controlled by an arid to semiarid climate and initially dissipated mostly internally as terminal fan/distributive fluvial systems descending from the north. A thick lacustrine interval developed in the southern part of the basin between ∼6.6 and 6.1 Ma during a period of high subsidence and closed drainage. Besides, this interval coincides with increased aridity recorded in other basins in the Northwest of Argentina. By ∼6.1 Ma the area started to receive the first coarse-grained sediments heralding the progradation of a clastic wedge from the southwest-west (Sierra de Umango and Precordillera) which fully developed during the rest of the Pliocene to the earliest Pleistocene (∼5-2.4 Ma). The 6.1-2.4 Ma interval records ameliorating climate conditions.
This EnviroAtlas dataset contains data on the mean livestock manure application to cultivated crop and hay/pasture lands by 12-digit Hydrologic Unit (HUC) in 2006. Livestock manure inputs to cultivated crop and hay/pasture lands were estimated using county-level estimates of recoverable animal manure from confined feeding operations compiled for 2007. Recoverable manure is defined as manure that is collected, stored, and available for land application from confined feeding operations. County-scale data on livestock populations -- needed to calculate manure inputs -- were only available for the year 2007 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We acquired county-level data describing total farm-level inputs (kg N/yr) of recoverable manure to individual counties in 2007 from the International Plant Nutrition Institute (IPNI) Nutrient Geographic Information System (NuGIS; http://www.ipni.net/nugis). These data were converted to per area rates (kg N/ha/yr) of manure N inputs by dividing the total N input by the land area (ha) of combined cultivated crop and hay/pasture (agricultural) lands within a county as determined from county-level summarization of the 2006 NLCD. We distributed county-specific, per area N inputs rates to cultivated crop and hay/pasture lands (30 x 30 m pixels) within the corresponding county. Manure data described here represent an average input to a typical agricultural land type within a county, i.e., the
Geohydrology and simulated ground-water flow in northwestern Elkhart County, Indiana
Arihood, L.D.; Cohen, D.A.
1998-01-01
In 1994, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and the City of Elkhart, developed a ground-water model of the Elkhart, Indiana, area to determine the avail-ability and source of water at potential new well fields. The modeled area covered 190 square miles of northwestern Elkhart County and a small part of southern Michigan. Three Superfund sites and several other sites in this area are undergoing environmental cleanup. The model would be used to guide the location of well fields so that Superfund sites and environmental cleanup areas would not be within recharge areas for the well fields. The City of Elkhart obtains its water supply from two aquifers separated by a generally continuous confining unit. The upper aquifer is composed primarily of sand and gravel of glacial origin. Thickness of the upper aquifer ranges from 0 to 116 feet and averages 47 feet. The lower aquifer is composed of sand and gravel with interbedded lenses of silt and clay. Thickness of the lower aquifer ranges from 1 to 335 feet and averages 35 feet. The intervening confining unit is composed of silt and clay with interbedded sand and gravel; the confining unit ranges from 0 to 177 feet, with an average thickness of 27 feet. Flow through the aquifers is generally horizontal vertically downward from the upper aquifer, through the confining unit, and into the lower aquifer, except where flow is vertically upward at the St. Joseph River and other large streams. The hydraulic characteristics of the aquifers and confining unit were estimated by analyzing aquifer-test data from well drillers? logs and by calibration of the model. The horizontal hydraulic conductivity of the upper aquifer is 170 feet per day within about 1 mile of the St. Joseph and Elkhart Rivers and 370 feet per day at distances greater than about 1 mile. The horizontal hydraulic conductivity of the lower aquifer is 370 feet per day throughout the modeled area, with the exception of an area near the center of the modeled area where the horizontal hydraulic conductivity is 170 feet per day. Transmissivity of the lower aquifer increases generally from southwest to northeast; transmissivity values range from near 0 where the lower aquifer is absent to 57,000 square feet per day and average about 8,100 square feet per day. The vertical hydraulic conductivity of the confining unit is 0.07 feet per day; the vertical conductivity of the streambeds commonly is 1.0 foot per day and ranges from 0.05 foot per day to 50 feet per day. The areal recharge rate to the outwash deposits was determined by a base-flow separation technique to be 16 inches per year, and the areal recharge rate to the till was assumed to be 4 inches per year. A two-layer digital model was used to simulate flow in the ground-water system. The model was calibrated on the basis of historical water-use data, water-level records, and gain/loss data for streams during May and June 1979. The model was recalibrated with water-use data and water-level records from 1988. For 1979 data, 49 percent of the inflow to the model area is from precipitation and 46 percent is ground-water inflow across the model boundaries. Most of the ground-water inflow across the model boundary is from the north and east, which corresponds to high values of transmissivity?as high as 57,000 feet squared per day?in the model layers in the northern and eastern areas. Eighty-two percent of the ground-water discharge is to the streams; 5 percent of the ground-water discharge is to wells. Source areas and flow paths to the City of Elkhart public well fields are affected by the location of streams and the geology in the area. Flow to the North Well Field originates north-west of the well field, forms relatively straight flow paths, and moves southeast toward the well field and the St. Joseph River. Flow to the South Well Field begins mostly in the out-wash along Yellow Creek south of the well field, moves northward, and t
Epstein, J.B.
1986-01-01
The rocks in the area, which range from Middle Ordovician to Late Devonian in age, are more than 7620 m thick. This diversified group of sedimentary rocks was deposited in many different environments, ranging from deep sea, through neritic and tidal, to alluvial. In general, the Middle Ordovician through Lower Devonian strata are a sedimentary cycle related to the waxing and waning of Taconic tectonism. The sequence began with a greywacke-argillite suite (Martinsburg Formation) representing synorogenic basin deepening. This was followed by basin filling and progradation of a sandstone-shale clastic wedge (Shawangunk Formation and Bloomsburg Red Beds) derived from the erosion of the mountains that were uplifted during the Taconic orogeny. The sequence ended with deposition of many thin units of carbonate, sandstone, and shale on a shelf marginal to a land area of low relief. Another tectonic-sedimentary cycle, related to the Acadian orogeny, began with deposition of Middle Devonian rocks. Deep-water shales (Marcellus Shale) preceded shoaling (Mahantango Formation) and turbidite sedimentation (Trimmers Rock Formation) followed by another molasse (Catskill Formation). -from Author
Brown, Adrian; Walter, Malcolm; Cudahy, Thomas
2004-01-01
Rover missions to the rocky bodies of the Solar System and especially to Mars require lightweight, portable instruments that use minimal power, require no sample preparation, and provide suitably diagnostic mineralogical information to an Earth-based exploration team. Short-wave infrared (SWIR) spectroscopic instruments such as the Portable Infrared Mineral Analyser (PIMA, Integrated Spectronics Pty Ltd., Baulkham Hills, NSW, Australia) fulfill all these requirements. We describe an investigation of a possible Mars analogue site using a PIMA instrument. A survey was carried out on the Strelley Pool Chert, an outcrop of stromatolitic, silicified Archean carbonate and clastic succession in the Pilbara Craton, interpreted as being modified by hydrothermal processes. The results of this study demonstrate the capability of SWIR techniques to add significantly to the geological interpretation of such hydrothermally altered outcrops. Minerals identified include dolomite, white micas such as illite-muscovite, and chlorite. In addition, the detection of pyrophyllite in a bleached and altered unit directly beneath the succession suggests acidic, sulfur-rich hydrothermal activity may have interacted with the silicified sediments of the Strelley Pool Chert.
NASA Astrophysics Data System (ADS)
1984-12-01
Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.
South Sumatra Basin Province, Indonesia; the Lahat/Talang Akar-Cenozoic total petroleum system
Bishop, Michele G.
2000-01-01
Oil and gas are produced from the onshore South Sumatra Basin Province. The province consists of Tertiary half-graben basins infilled with carbonate and clastic sedimentary rocks unconformably overlying pre-Tertiary metamorphic and igneous rocks. Eocene through lower Oligocene lacustrine shales and Oligocene through lower Miocene lacustrine and deltaic coaly shales are the mature source rocks. Reserves of 4.3 billion barrels of oil equivalent have been discovered in reservoirs that range from pre-Tertiary basement through upper Miocene sandstones and carbonates deposited as synrift strata and as marine shoreline, deltaic-fluvial, and deep-water strata. Carbonate and sandstone reservoirs produce oil and gas primarily from anticlinal traps of Plio-Pleistocene age. Stratigraphic trapping and faulting are important locally. Production is compartmentalized due to numerous intraformational seals. The regional marine shale seal, deposited by a maximum sea level highstand in early middle Miocene time, was faulted during post-depositional folding allowing migration of hydrocarbons to reservoirs above the seal. The province contains the Lahat/Talang Akar-Cenozoic total petroleum system with one assessment unit, South Sumatra.
Kahle, Sue C.; Taylor, William A.; Lin, Sonja; Sumioka, Steven S.; Olsen, Theresa D.
2010-01-01
A study of the water resources of the unconsolidated groundwater system of the Chamokane Creek basin was conducted to determine the hydrogeologic framework, interactions of shallow and deep parts of the groundwater system with each other and the surface-water system, changes in land use and land cover, and water-use estimates. Chamokane Creek basin is a 179 mi2 area that borders and partially overlaps the Spokane Indian Reservation in southern Stevens County in northeastern Washington State. Aquifers within the Chamokane Creek basin are part of a sequence of glaciofluvial and glaciolacustrine sediment that may reach total thicknesses of about 600 ft. In 1979, most of the water rights in the Chamokane Creek basin were adjudicated by the United States District Court requiring regulation in favor of the Spokane Tribe of Indians' senior water right. The Spokane Tribe, the State of Washington, and the United States are concerned about the effects of additional groundwater development within the basin on Chamokane Creek. Information provided by this study will be used to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources within the basin. The hydrogeologic framework consists of six hydrogeologic units: The Upper outwash aquifer, the Landslide Unit, the Valley Confining Unit, the Lower Aquifer, the Basalt Unit, and the Bedrock Unit. The Upper outwash aquifer occurs along the valley floors of the study area and consists of sand, gravel, cobbles, boulders, with minor silt and (or) clay interbeds in places. The Lower aquifer is a confined aquifer consisting of sand and gravel that occurs at depth below the Valley confining unit. Median horizontal hydraulic conductivity values for the Upper outwash aquifer, Valley confining unit, Lower aquifer, and Basalt unit were estimated to be 540, 10, 19, and 3.7 ft/d, respectively. Many low-flow stream discharge measurements at sites on Chamokane Creek and its tributaries were at or near zero flow. The most notable exception is where Chamokane Creek is supported by discharge of large springs from the Upper outwash aquifer in the southern part of the basin. Most high-flow measurements indicated gains in streamflow (groundwater discharging to the stream). Large streamflow losses, however, were recorded near the north end of Walkers Prairie where streamflow directly recharges the Upper outwash aquifer. The similarity in seasonal water-level fluctuations in the Upper outwash aquifer and the Lower aquifer indicate that these systems may be fairly well connected. Land use and land cover change analysis indicates that Chamokane Creek basin has been dominated by forests with some pasture and agricultural lands with sparse residential development from the 1980s to present. Loss in forest cover represents the largest change in land cover in the basin between 1987 and 2009. This appears to be mostly due to forestry activities, especially in the northern part of the basin. Since 1987, more than 18,000 acres of evergreen forest have been logged and are at various stages of regrowth. Estimated average annual total groundwater pumpage in the basin increased from 224 million gallons per year (Mgal/yr) in 1980 to 1,330 Mgal/yr in 2007. The largest withdrawals during 2007 were to supply two fish hatcheries, with a combined total annual pumpage of about 1,150 Mgal. Annual groundwater pumpage values from 1980 through 2007 for the study area ranged from 21.1 to 28.9 Mgal/yr for domestic wells and 0.38 to 23.7 Mgal/yr for public supply. An approximate water budget for a typical year in the Chamokane Creek basin indicates that 19.6 in. of precipitation are balanced by 4.7 in. of streamflow discharge from the basin, and 14.9 in. of evapotranspiration.
Tectonic signatures on active margins
NASA Astrophysics Data System (ADS)
Hogarth, Leah Jolynn
High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the transgressive surface. Reflectors within the laminated upper unit exhibit divergence towards the Eel River Syncline, which suggests that deposition in the syncline is syntectonic. The transgressive surface is offset across the Eureka Anticline indicating deformation has occurred since ˜10 ka. The relief observed along the transgressive surface is consistent with deformation rates measured onshore.
Oki, Delwyn S.; Meyer, William
2001-01-01
Comparisons were made between model-calculated water levels from a one-dimensional analytical model referred to as RAM (Robust Analytical Model) and those from numerical ground-water flow models using a sharp-interface model code. RAM incorporates the horizontal-flow assumption and the Ghyben-Herzberg relation to represent flow in a one-dimensional unconfined aquifer that contains a body of freshwater floating on denser saltwater. RAM does not account for the presence of a low-permeability coastal confining unit (caprock), which impedes the discharge of fresh ground water from the aquifer to the ocean, nor for the spatial distribution of ground-water withdrawals from wells, which is significant because water-level declines are greatest in the vicinity of withdrawal wells. Numerical ground-water flow models can readily account for discharge through a coastal confining unit and for the spatial distribution of ground-water withdrawals from wells. For a given aquifer hydraulic-conductivity value, recharge rate, and withdrawal rate, model-calculated steady-state water-level declines from RAM can be significantly less than those from numerical ground-water flow models. The differences between model-calculated water-level declines from RAM and those from numerical models are partly dependent on the hydraulic properties of the aquifer system and the spatial distribution of ground-water withdrawals from wells. RAM invariably predicts the greatest water-level declines at the inland extent of the aquifer where the freshwater body is thickest and the potential for saltwater intrusion is lowest. For cases in which a low-permeability confining unit overlies the aquifer near the coast, however, water-level declines calculated from numerical models may exceed those from RAM even at the inland extent of the aquifer. Since 1990, RAM has been used by the State of Hawaii Commission on Water Resource Management for establishing sustainable-yield values for the State?s aquifers. Data from the Iao aquifer, which lies on the northeastern flank of the West Maui Volcano and which is confined near the coast by caprock, are now available to evaluate the predictive capability of RAM for this system. In 1995 and 1996, withdrawal from the Iao aquifer reached the 20 million gallon per day sustainable-yield value derived using RAM. However, even before 1996, water levels in the aquifer had declined significantly below those predicted by RAM, and continued to decline in 1997. To halt the decline of water levels and to preclude the intrusion of salt-water into the four major well fields in the aquifer, it was necessary to reduce withdrawal from the aquifer system below the sustainable-yield value derived using RAM. In the Iao aquifer, the decline of measured water levels below those predicted by RAM is consistent with the results of the numerical model analysis. Relative to model-calculated water-level declines from numerical ground-water flow models, (1) RAM underestimates water-level declines in areas where a low-permeability confining unit exists, and (2) RAM underestimates water-level declines in the vicinity of withdrawal wells.
NASA Astrophysics Data System (ADS)
Wu, S.; McKay, M.; Evans, K. R.
2017-12-01
Understanding the architecture of mountain belts is limited because studies are typically confined to surficial exposures with lesser amounts of subsurface data and active margins are prone to successive tectonism that obscures the rock record. In west-central Missouri, two Paleozoic meteorite impacts are exposed that contain a range of outcrop-scale structures. While the strain rate in a meteorite impact is an order of magnitude greater than that in orogeny-scale structures, the morphology and spatial relationships in these impact structures may provide insight into larger tectonic features. The entire crater could not be compared to an orogenic event because the amount of strain diffuses as distance increases from the impactor during an impacting event. The center of an impact crater could not be compared to an orogenic event because it has become too deformed. However, the crater rim and the immediate surrounding area could be used as a comparison because it has undergone the right amount of deformation to have recognizable structures. High-detail mapping and structural analyses of road cut exposures near Decaturville, MO reveals thrust fault sequences contain 1-2 m thick mixed carbonate and clastic sheets that include rollover anticlines, structural orphans, and lateral ramp features. Thrust faults dip away from the impact structure and represent gravitational collapse of the central uplift seconds after collision. Thrust sheet thickness, thrust fault spacing, ramp/flat morphology, and shortening of within these structures will be presented and assessed as an analogue for map-scale features in the Southern Appalachian fold and thrust belt. Because temperature controls rock mechanic properties, a thermal model based on thermochronology and thermobarometry for the section will also be presented and discussed in the context of orogenic thermomechanics.
Computation of porosity redistribution resulting from thermal convection in slanted porous layers
NASA Astrophysics Data System (ADS)
Gouze, Phillippe; Coudrain-Ribstein, Anne; Bernard, Dominique
1994-01-01
Unlike fluid displacement due to regional hydraulic head, thermoconvetive motions are generally slow. The thermal impacts of such movements are very weak, whereas their chemical impacts may be significant because of their cumulated effects over geologic time. For nonhorizontal thick sedimentary reservoirs, the fluid velocity due to thermal convection can be accurately approximated by an explicit function of the dip of the reservior, the permeability and the difference in thermal conductivity between the aquifer and the confining beds. The latter parameter controls the rotation direction of the flow and, for clastic reservoirs bounded by impervious clayey media, fluid moves up the slope along the caprock layer. As the fluid velocity is small, the major rock-forming minerals control the fluid composition by thermodynamic equilibrium. Thus, whereas the volume of redistributed mineral depends on the volume of water circulated, the localization of porosity enhancement is strongly controlled by the reservoir mineralogy. With realistic values of permeability and layer thickness, several per cent of secondary porosity per million years can be created or lost at shallow depth (less than 2 km), depending on the chlorinity, the set of representative minerals and the temperature. In sandstone resevoirs and high-chlorinity calcarenite resoervoirs, the porosity decreases under the caprock where hydrocarbons can accumulate. In chlorinity calcarenite resevoirs, the porosity decreases under the caprock where hydrocarbons can accumulate. In chloride-depleted carbonate aquifers, the simulataneous control by carbonates, silica and aluminosilicates can produce a decrease of porosity above the bedrock and an enhancement of porosity under the caprock. However, computations show that the quality of the upper part of the reservoir is mainly reduced by the precipitation of silica and clays.
Kasmarek, Mark C.; Robinson, James L.
2004-01-01
As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues.From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions.The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile. Lateral no-flow boundaries were located on the basis of outcrop extent (northwestern), major streams (southwestern, northeastern), and downdip limit of freshwater (southeastern). The MODFLOW general-head boundary package was used to simulate recharge and discharge in the outcrops of the hydrogeologic units. Simulation of land-surface subsidence (actually, compaction of clays) and release of water from storage in the clays of the Chicot and Evangeline aquifers was accomplished using the Interbed-Storage Package designed for use with the MODFLOW model. The model was calibrated by trial-anderror adjustment of selected model input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) reasonably reproduced field measured (or estimated) aquifer responses.Model calibration comprised four elements: The first was qualitative comparison of simulated and measured heads in the aquifers for 1977 and 2000; and quantitative comparison by computation and areal distribution of the root-mean-square error between simulated and measured heads. The second calibration element was comparison of simulated and measured hydrographs from wells in the aquifers in a number of counties throughout the modeled area. The third calibration element was comparison of simulated water-budget componentsprimarily recharge and dischargeto estimates of physically reasonable ranges of actual water-budget components. The fourth calibration element was comparison of simulated land-surface subsidence from predevelopment to 2000 to measured land surface subsidence from 1906 through 1995.
CONCENTRATED ANIMAL FEEDING OPERATIONS AS A SOURCE OF EDCS AND THEIR MANAGEMENT
In the United States, there is an estimated 376,000 animal feed operations, generating approximately 128 billion pounds of waste each year. A facility is an animal feed operation (AFO) if animals are stabled/confined, or fed/maintained, for 45 days or more within any 12-month per...
Researching the Role of Digital Technology in Widening Participation.
ERIC Educational Resources Information Center
Gorard, Stephen; Selwyn, Neil
The use of information and communications technology (ICT) to facilitate easy access to lifelong learning for all is one of the central tenets of the United Kingdom (UK) government's drive to establish a more inclusive learning society. Advocates have highlighted the need to free learning from the traditional confines of educational institutions…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... Compatibility Group S indicates that hazardous effects from accidental functioning are limited to the extent the... package is capable of containing any hazardous effects in the event of an accidental functioning of its... demonstrate that any hazardous effects are confined within a package. In the ANPRM, we invited commenters to...