Science.gov

Sample records for clathrate compound induced

  1. Clathrate compounds and method of manufacturing

    DOEpatents

    Nolas, George S.; Witanachchi, Sarath; Mukherjee, Pritish

    2009-05-19

    The present invention comprises new materials, material structures, and processes of fabrication of such that may be used in technologies involving the conversion of light to electricity and/or heat to electricity, and in optoelectronics technologies. The present invention provide for the fabrication of a clathrate compound comprising a type II clathrate lattice with atoms of silicon and germanium as a main framework forming lattice spacings within the framework, wherein the clathrate lattice follows the general formula Si.sub.136-yGe.sub.y, where y indicates the number of Ge atoms present in the main framework and 136-y indicates the number of Si atoms present in the main framework, and wherein y>0.

  2. Simulations of guest transport in clathrates of Dianin's compound and hydroquinone.

    PubMed

    Nemkevich, Alexandra; Spackman, Mark A; Corry, Ben

    2013-02-18

    Clathrates have been proposed for use in a variety of applications including gas storage, mixture separation and catalysis due to the potential for controlled guest diffusion through their porous lattices. Here molecular dynamics simulations are employed to study guest transport in clathrates of hydroquinone (HQ) and Dianin's compound (DC). Systems investigated were HQ with methanol and acetonitrile, and DC with methanol and ethanol. Simulations were set up with one guest in the pore, two guests in the pore and one vacancy in the pore and a filled pore, and free-energy barriers for movement between cavities of the pore were estimated for all cases. Comparison between these simulations indicates that guest transport most likely proceeds by molecules moving from full to empty cavities consecutively, one by one, rather than in a concerted manner. Thus, the presence of empty cavities is very important for guest transport, which becomes more energetically demanding in fully loaded systems. Flexibility of the host can assist guest transport. In the studied DC clathrates transport occurs via an intermediate conformation in which the hydroxyl group of the alcohol guest molecule participates in the hydrogen-bonded ring of the host. We also address the issue of the number of methanol guest molecules that DC accommodates, for which conflicting information exists. We found that this is likely to be temperature dependent and suggest that under some conditions the system is most likely non-stoichiometric.

  3. Molten gallium flux synthesis of known thermoelectric and novel magnetic inorganic clathrate compounds: Improving thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Bryan, John Daniel

    Molten gallium metal has been used as a solvent to grow large single crystals of known inorganic thermoelectric clathrates Sr8Ga 16Ge30, Ba8Ga16Ge30, and Ba8Ga16Si30. X-ray diffraction, thermal analysis, electron microprobe, Glow Discharge Mass Spectrometry, temperature dependent electrical conductivity and Seebeck coefficient measurements characterized the single crystals. The Thermoelectric performance was shown to be heavily dependent on the synthetic conditions including container choice, thermal history and impurity concentration. Inorganic Clathrates have attracted intense interest in last several years as potential new materials for thermoelectric devices. If a small to moderate increase in thermoelectric performance over the currently used materials is realized, substantial environmental and technological gains could be achieved. Since thermoelectric refrigeration modules require no moving parts or heat exchange gas (freon) they offer significant advantages over conventional refrigeration technology that tends to fail due to the finite lifetime of the pumping equipment. High temperature devices are also extremely useful for power generation in harsh unforgiving environments where excess heat is available. The thermoelectric performance, primarily at room temperature, of these compounds was found to be heavily dependent on the synthetic procedures used to obtain them. A flux growth procedure was developed to overcome the problems of the traditional melt-quench-anneal solid-state chemical approach. This procedure yielded large single crystals of the Sr8Ga16Ge 30, Ba8Ga16Ge30 and Ba8Ga 16Si30 compounds which ready facilitated their chemical and electronic study. Finally, an outlook on the application of these compounds as thermoelectric devices is given. Application of the flux method to other systems was also successful in the discovery of two new inorganic clathrate compounds: type IV Eu4Ga 8Ge16 and type V Yb8Ga16Ge14. The Eu4Ga8Ge16 compound was found to

  4. An attempt to prepare carbon clathrate compounds using high-pressure and high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shoji; Kubo, Akira; Kini, N. S.; Inumaru, Kei

    2006-08-01

    In an attempt to prepare a crystalline carbon compound having a three-dimensional (3D) network similar to silicon clathrate superconductors, fullerene C 60 molecules were three-dimensionally polymerized using high-pressure and high-temperature conditions. A single crystal of 3D polymer was obtained from a two-dimensional C 60 polymer with a body-centered orthorhombic symmetry. The X-ray structural analysis of the 3D polymer revealed that the spherical C 60 monomer molecules were substantially deformed to cuboidal shapes, each unit being bonded to eight neighboring units to form a body-centered orthorhombic lattice. The new 3D polymer was electrically conductive and showed high micro-Vickers hardness comparable to that of cubic BN.

  5. Liquidus projection of the Ag-Ba-Ge system and melting points of clathrate type-I compounds

    NASA Astrophysics Data System (ADS)

    Zeiringer, I.; Grytsiv, A.; Brož, P.; Rogl, P.

    2012-12-01

    The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.3 at% Ba, using electron micro probe analysis (EPMA), X-ray powder diffraction (XRD) and differential thermal analysis (DSC/DTA). Eight different primary crystallization regions were found: (Ge), Ba8AgxGe46-x-y□y (κI) (□ is a vacancy), Ba6AgxGe25-x (κIx), BaGe2, Ba(Ag1-xGex)2 (τ1), BaAg2-xGe2+x (τ2) BaAg5 and (Ag). The ternary invariant reactions have been determined for the region investigated and are the basis for a Schulz-Scheil diagram. The second part of this work provides a comprehensive compilation of melting points of ternary A8TxM46-x and quaternary (A=Sr, Ba, Eu; T=Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga; M=Si, Ge, Sn) clathrate type-I compounds and decomposition temperatures of inverse clathrate type-I Ge38{P,As,Sb}8{Cl,Br,I}8, Si46-xPxTey and tin based compounds.

  6. Transient oxygen clathrate-like hydrate and water networks induced by magnetic fields.

    PubMed

    Ozeki, Sumio; Otsuka, Ichiro

    2006-10-19

    Recently, careful experiments of oxygen-dissolved pure water treated by high magnetic fields showed indirectly the existence of magnetic field-affecting water (MFA water), which brought about a decrease in the contact angle of water on metals, an increase in the electrolytic potential of water, inhibition of metal corrosion, and changes in the crystal structure of calcium carbonate due to magnetic treatment. Here we report the infrared and Raman spectroscopic evidence indicating quasi-stable structures in the MFA water; oxygen clathrate-like hydrate and developed water networks, which were induced by magnetic interactions while a vacuum-distilled water, followed by oxygen exposure, crossed a steady magnetic field. The mechanism of MFA water formation and survival under thermal fluctuation is a challenging problem for the science community.

  7. Synthesis of polyphenylacetylene by radiation-induced polymerization in deoxycholic acid clathrate

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Strazzulla, Giovanni; Iglesias-Groth, Susana

    2009-04-01

    Phenylacetylene was polymerized as inclusion compound (clathrate) inside deoxycholic acid (DOCA) crystals. The polymerization was initiated by γ radiation and a total dose of 320 kGy was employed. The resulting polyphenylacetylene (PPA) was isolated by dissolution of deoxycholic acid in boiling ethanol. PPA high polymer was accompanied by a series of phenylacetylene oligomers, which were detected by liquid chromatographic analysis (HPLC). PPA was characterized by electronic absorption spectroscopy and by FT-IR spectroscopy in comparison to a reference PPA prepared by a stereospecific catalyst. The microstructure of PPA from inclusion polymerization was highly trans type, similar to that observed on PPA prepared by bulk radiolysis. No optical activity was detected by polarimetry on PPA prepared by inclusion polymerization. The host-guest complex PPA/DOCA was studied by differential thermal analysis (DTA) and by thermogravimetry (TGA). DTA provided evidences of the host-guest complex formation from the shift of the melting point of DOCA while the TGA confirmed the identity - in terms of thermal behaviour - of the PPA from inclusion polymerization with that from stereospecific polymerization.

  8. Liquidus projection of the Ag-Ba-Ge system and melting points of clathrate type-I compounds

    SciTech Connect

    Zeiringer, I.; Grytsiv, A.; Broz, P.

    2012-12-15

    The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.3 at% Ba, using electron micro probe analysis (EPMA), X-ray powder diffraction (XRD) and differential thermal analysis (DSC/DTA). Eight different primary crystallization regions were found: (Ge), Ba{sub 8}Ag{sub x}Ge{sub 46-x-y}{open_square}{sub y} ({kappa}{sub I}) ({open_square} is a vacancy), Ba{sub 6}Ag{sub x}Ge{sub 25-x} ({kappa}{sub Ix}), BaGe{sub 2}, Ba(Ag{sub 1-x}Ge{sub x}){sub 2} ({tau}{sub 1}), BaAg{sub 2-x}Ge{sub 2+x} ({tau}{sub 2}) BaAg{sub 5} and (Ag). The ternary invariant reactions have been determined for the region investigated and are the basis for a Schulz-Scheil diagram. The second part of this work provides a comprehensive compilation of melting points of ternary A{sub 8}T{sub x}M{sub 46-x} and quaternary (A=Sr, Ba, Eu; T=Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga; M=Si, Ge, Sn) clathrate type-I compounds and decomposition temperatures of inverse clathrate type-I Ge{sub 38}{l_brace}P,As,Sb{r_brace}{sub 8}{l_brace}Cl,Br,I{r_brace}{sub 8}, Si{sub 46-x}P{sub x}Te{sub y} and tin based compounds. - Graphical Abstract: Partial liquidus projection of the Ag-Ba-Ge system. Highlights: Black-Right-Pointing-Pointer The liquidus and solidus projection has been constructed for the Ag-Ba-Ge system up to 33.33 at% Ba. Black-Right-Pointing-Pointer Eight different primary crystallization fields have been found. Black-Right-Pointing-Pointer All the ternary compounds form congruently from the melt. Black-Right-Pointing-Pointer The ternary invariant reactions have been determined and are the basis for a Schulz-Scheil diagram.

  9. Methane clathrates in the solar system.

    PubMed

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  10. Stability of clathrate hydrates in Martian crust

    NASA Astrophysics Data System (ADS)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique

    2014-05-01

    Clathrate hydrates are crystalline compounds constituted by cages formed by hydrogen-bonded water molecules inside of which guest gas molecules are trapped. These materials are typically stable at high pressure and low temperature and are present on Earth mainly in marine sediments and in permafrost. Moreover, clathrate hydrates are expected to exist on celestial bodies like the icy moons Titan, Europa or Enceladus. Current conditions in the Martian crust are favourable to the presence of clathrate hydrates. In this study, we focused on the stability of methane and carbon dioxide clathrates in the Martian crust. We coupled the stability conditions of clathrates with a 1D thermal model in order to obtain the variations of the clathrate stability zone in the crust of Mars with time and for different crust compositions. Indeed, the type of soil directly controls the geothermal conditions and therefore the depth of clathrates formation. Unconsolidated soil acts as a thermal insulator and prevents the clathrates formation in the crust except on a small part of a few tens of meters thick. In contrast, sandstone or ice-cemented soil allows the clathrates formation with a stability zone of several kilometers. This is explained by the fact that they evacuate heat more efficiently and thus maintain lower temperatures. We also studied the stability zone of clathrates formed from a mixture of methane and hydrogen sulphide as well as from a mixture of methane and nitrogen. Contrary to the addition of N2, the addition of H2S to CH4 clathrates extends the stability zone and thus brings it closer to the surface. Therefore, mixed clathrates CH4-H2S will be more easily destabilized by changes in surface temperature than CH4 clathrates.

  11. Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Chen, Qing-Yun; Zeng, Zhao-Yi; Cai, Ling-Cang

    2015-10-01

    We calculated the structural, elastic, and electronic properties of alkali metal Na atoms doped type-I silicon-clathrate compound (Na8Si46) under pressure using first-principles methods. The obtained dependencies of bond lengths and bond angles on pressure show heterogeneous behaviors which may bring out a structural transition. By using the elastic stability criteria from the calculated elastic constants, we confirm that the Na8Si46 is elastically unstable under high pressure. Some of the mechanical and thermal quantities include bulk modulus, shear modulus, Young’s modulus, Debye temperature, sound velocity, melting point, and hardness, which are also derived from the elastic constants. The calculated total and partial electron densities of states of Na8Si46 indicate a weak interaction between the encapsulated Na atoms and the silicon framework. Moreover, the effect of pressure on its electronic structure is also investigated, which suggests that pressure is not a good choice to enhance the thermoelectricity performance of Na8Si46. Project supported by National Natural Science Foundation of China (Grant Nos. 11347134 and 11304254) and the Doctor Foundation of Southwest University of Science and Technology, China (Grant No. 13zx7125).

  12. -Based Clathrate

    NASA Astrophysics Data System (ADS)

    Anno, Hiroaki; Shirataki, Ritsuko

    2014-06-01

    A polycrystalline silicon-based clathrate of nominal composition Ba8Al15Si31 was prepared by a combination of arc melting and spark plasma sintering. Its thermal stability in air and the effect on the surface of heat treatment in air, which are of practical importance for use of the material at elevated temperatures, were examined for different temperatures (873 K, 973 K, and 1073 K) and heating times (0-480 h). Thermogravimetry and differential thermal analysis in air in the range 300-1523 K indicated that Ba8Al15Si31 in the bulk form had relatively good thermal stability in air at high temperatures. X-ray diffraction measurements, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy revealed that a thin layer of oxide (probably a barium aluminate, BaAl2O4) was formed on the surface by heat treatment in air. The thickness of the oxide layer increased with increasing temperature and heating time. Growth of the oxide layer can be explained well in terms of a diffusion mechanism. The activation energy for oxidation was estimated to be approximately 201 kJ/mol, which is comparable with that for thermal oxidation of silicon. The chemical composition of the interior of the Ba8Al15Si31 was found to be stable to heat treatment in air.

  13. Evaluation of the possible presence of clathrate hydrates in Europa's icy shell or seafloor

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Kargel, Jeffrey S.; Fernández-Sampedro, Maite; Selsis, Franck; Martínez, Eduardo Sebastián; Hogenboom, David L.

    2005-10-01

    lower salinity would allow all these clathrates to sink, except that CH 4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.

  14. New silica clathrate minerals that are isostructural with natural gas hydrates.

    PubMed

    Momma, Koichi; Ikeda, Takuji; Nishikubo, Katsumi; Takahashi, Naoki; Honma, Chibune; Takada, Masayuki; Furukawa, Yoshihiro; Nagase, Toshiro; Kudoh, Yasuhiro

    2011-02-15

    Silica clathrate compounds (clathrasils) and clathrate hydrates are structurally analogous because both materials have framework structures with cage-like voids occupied by guest species. The following three structural types of clathrate hydrates are recognized in nature: cubic structure I (sI); cubic structure II (sII); and hexagonal structure H (sH). In contrast, only one naturally occurring silica clathrate mineral, melanophlogite (sI-type framework), has been found to date. Here, we report the discovery of two new silica clathrate minerals that are isostructural with sII and sH hydrates and contain hydrocarbon gases. Geological and mineralogical observations show that these silica clathrate minerals are traces of low-temperature hydrothermal systems at convergent plate margins, which are the sources of thermogenic natural gas hydrates. Given the widespread occurrence of submarine hydrocarbon seeps, silica clathrate minerals are likely to be found in a wide range of marine sediments.

  15. Clathrates (gas hydrates) in deep-sea as a next global hydrocarbon province

    SciTech Connect

    Lowrie, A.; Michael, M. )

    1991-03-01

    Preliminary reconnaissance of ocean basins indicates that more hydrocarbons may be located in clathrates (gas hydrates) and trapped gases than hitherto found on all continents, including coal. Clathrates are medium- to high-pressure stabilized, icelike compounds. Natural gas clathrates are stabilized by higher than sea level, ambient pressure, and are stable in the cold, deep-ocean environment. Location of clathrates on a regional scale would include using seismic reflection data. Bottom simulating reflections (BSR) are the most common indicators. The BSR reflections do indeed generally mimic the water bottom at a relatively uniform depth of some tenths of a second. Apparently, the strong acoustic impedance marking the lower clathrate/upper trapped gas reservoir contact creates the BSR. Sea floor bathymetry determines the configuration of the clathrate. Clathrate serves as a trapping mechanism; clathrate and methane gas accumulated beneath it, depending on geometry, are the reservoir; the entire sediment section is the source. Clathrates are commonly near or at the sea bottom, below 200-400 m water depth, under at least 20 to 50 atmospheres of pressure. Clathrates in the Arctic basin have been found to be up to 1700 m thick, and along continental shelves and slope of the Atlantic basin, up to 1100 m thick. Exploration may proceed either by drilling vertically into the clathrate or drilling laterally along the flanks of the clathrate. Drilling into the clathrate involves the problem of rupturing the 'seal' and permitting gas to escape. Indirect drilling under the flanks could permit 'draining' the accumulated gases and then removing the gas within the clathrate.

  16. Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound

    SciTech Connect

    Felker, Peter M.

    2014-11-14

    The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties. In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.

  17. Clathrate colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.

    2017-03-01

    DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.

  18. Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity.

    PubMed

    Yamanaka, Shoji

    2010-02-28

    Compounds with cage-like structures of elemental silicon and carbon are comparatively reviewed. Barium containing silicon clathrate compounds isomorphous with type I gas hydrates were prepared using high pressure and high temperature (HPHT) conditions, and found to become superconductors. The application of HPHT conditions to Zintl binary silicides have produced a number of silicon-rich cage-like structures including new clathrate structures; most of them are superconductors. Carbon analogs of silicon clathrates can be prepared by 3D polymerization of C(60) under HPHT conditions, which are new allotropes of carbon with expanded framework structures. The crystal chemistry and characteristic properties of some related compounds are also reviewed.

  19. Experimental study on the effect of ammonia on the phase behavior of tetrahydrofuran clathrates.

    PubMed

    Vu, Tuan Hoang; Gloesener, Elodie; Choukroun, Mathieu; Ibourichene, Anaïs; Hodyss, Robert

    2014-11-26

    Clathrate hydrates, ice-like crystalline compounds in which small guest molecules are enclosed inside cages formed by tetrahedrally hydrogen-bonded water molecules, are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. A prototypical example is Saturn's moon Titan, where dissociation of methane clathrates, a major crustal component, could contribute significantly to the replenishment of atmospheric methane. Ammonia is an important clathrate inhibiting agent that may be present (potentially at high concentrations) in Titan's interior. In this study, low-temperature Raman experiments are conducted to examine the dissociation point of tetrahydrofuran clathrates, an ambient-pressure analogue of methane clathrates, over a wide range of ammonia concentrations from 0 to 25 wt %. A phase diagram for the H2O-THF-NH3 system is generated, showing two main results: (i) ammonia lowers the dissociation point of clathrate hydrates to a similar extent compared to the melting of water ice and (ii) THF clathrate exhibits a "liquidus-like" behavior in the presence of ammonia, with a eutectic temperature of about 203.6 K. As temperatures higher than this estimated eutectic are anticipated within Titan's icy crust, these results imply that partial dissociation of clathrates can occur readily and may contribute to outgassing from the interior.

  20. First principles calculations of thermodynamical properties of cage-like silicon clathrate materials

    NASA Astrophysics Data System (ADS)

    Jack, Deslippe; Dong, Jianjun

    2003-03-01

    Si, Ge, and Sn based clathrate materials are potential high ZT thermoelectric materials due to their electron-crystal-phon-glass properties. Recently, the synthesis of guest-free type-II Si clathrate (Si136) was reported. The pristine (guest-free) Si and Ge clathrate can be viewed as "negative-pressure" phases, which might exist metastably at ambient conditions. In this talk, we will report our recent calculations of the thermodynamic properties of silicon type-I and -II Clathrate phases, as well as the ground state Si diamond phase. Statistical quasi-harmonic theory is used in conjunction with first-principles static bonding energy and dynamic phonon spectrum calculations to obtain free energies of the lattices. At zero temperature, the transition pressures of diamond-to-clathrate-I and diamond-to-clathrates-II transitions are predicted to be -46.9 kbar and -38.9 kbar respectively, while the Clapeyron slopes (dP/dT) of the two transitions at 300K are 8.64 bar/K and 7.38 bar/K respectively. Thermal properties of the Si materials, such as (linear) thermal expansion coefficients, Gruneisen parameters, heat capacities, and thermal bulk moduli etc. are also calculated. We find good agreement with experiment in the Si diamond phase. The results of the Si clathrates are discussed in comparison to those of the Si diamond, as well as available data of metal-encapsulated Si-based clathrate compounds (such as Na8Si46).

  1. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  2. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  3. Liquid clathrate formation in ionic liquid-aromatic mixtures.

    PubMed

    Holbrey, John D; Reichert, W Matthew; Nieuwenhuyzen, Mark; Sheppard, Oonagh; Hardacre, Christopher; Rogers, Robin D

    2003-02-21

    1-Alkyl-3-methylimidazolium containing ionic liquids with hexafluorophosphate, bis(trifyl)imide, tetrafluoroborate, and chloride anions form liquid clathrates when mixed with aromatic hydrocarbons; in the system 1,3-dimethylimidazolium hexafluorophosphate-benzene, the aromatic solute could be trapped in the solid state forming a crystalline 2:1 inclusion compound.

  4. Clathrate hydrates in nature.

    PubMed

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  5. Clathrate hydrates of oxidants in the ice shell of Europa.

    PubMed

    Hand, Kevin P; Chyba, Christopher F; Carlson, Robert W; Cooper, John F

    2006-06-01

    Europa's icy surface is radiolytically modified by high-energy electrons and ions, and photolytically modified by solar ultraviolet photons. Observations from the Galileo Near Infrared Mapping Spectrometer, ground-based telescopes, the International Ultraviolet Explorer, and the Hubble Space Telescope, along with laboratory experiment results, indicate that the production of oxidants, such as H2O2, O2, CO2, and SO2, is a consequence of the surface radiolytic chemistry. Once created, some of the products may be entrained deeper into the ice shell through impact gardening or other resurfacing processes. The temperature and pressure environments of regions within the europan hydrosphere are expected to permit the formation of mixed clathrate compounds. The formation of carbon dioxide and sulfur dioxide clathrates has been examined in some detail. Here we add to this analysis by considering oxidants produced radiolytically on the surface of Europa. Our results indicate that the bulk ice shell could have a approximately 1.7-7.6% by number contamination of oxidants resulting from radiolysis at the surface. Oxidant-hosting clathrates would consequently make up approximately 12-53% of the ice shell by number relative to ice, if oxidants were entrained throughout. We examine, in brief, the consequences of such contamination on bulk ice shell thickness and find that clathrate formation could lead to substantially thinner ice shells on Europa than otherwise expected. Finally, we propose that double occupancy of clathrate cages by O2 molecules could serve as an explanation for the observation of condensed-phase O2 on Europa. Clathrate-sealed, gas-filled bubbles in the near surface ice could also provide an effective trapping mechanism, though they cannot explain the 5771 A (O2)2 absorption.

  6. Thermodynamic stability of hydrogen clathrates

    PubMed Central

    Patchkovskii, Serguei; Tse, John S.

    2003-01-01

    The stability of the recently characterized type II hydrogen clathrate [Mao, W. L., Mao, H.-K., Goncharov, A. F., Struzhkin, V. V., Guo, Q., et al. (2002) Science 297, 2247–2249] with respect to hydrogen occupancy is examined with a statistical mechanical model in conjunction with first-principles quantum chemistry calculations. It is found that the stability of the clathrate is mainly caused by dispersive interactions between H2 molecules and the water forming the cage walls. Theoretical analysis shows that both individual hydrogen molecules and nH2 guest clusters undergo essentially free rotations inside the clathrate cages. Calculations at the experimental conditions – 2,000 bar (1 bar = 100 kPa) and 250 K confirm multiple occupancy of the clathrate cages with average occupations of 2.00 and 3.96 H2 molecules per D-512 (small) and H-51264 (large) cage, respectively. The H2–H2O interactions also are responsible for the experimentally observed softening of the H—H stretching modes. The clathrate is found to be thermodynamically stable at 25 bar and 150 K. PMID:14657391

  7. High-pressure synthesis and structural characterization of the type II clathrate compound Na(30.5)Si(136) encapsulating two sodium atoms in the same silicon polyhedral cages.

    PubMed

    Yamanaka, Shoji; Komatsu, Masaya; Tanaka, Masashi; Sawa, Hiroshi; Inumaru, Kei

    2014-05-28

    Single crystals of sodium containing silicon clathrate compounds Na8Si46 (type I) and NaxSi136 (type II) were prepared from the mixtures of NaSi and Si under high-pressure and high-temperature conditions of 5 GPa at 600-1000 °C. The type II crystals were obtained at relatively low-temperature conditions of 700-800 °C, which were found to have a Na excess composition Na30.5Si136 in comparison with the compounds NaxSi136 (x ≤ 24) obtained by a thermal decomposition of NaSi under vacuum. The single crystal study revealed that the Na excess type II compound crystallizes in space group Fd3̅m with a lattice parameter of a = 14.796(1) Å, slightly larger than that of the ambient phase (Na24Si136), and the large silicon hexakaidecahedral cages (@Si28) are occupied by two sodium atoms disordered in the two 32e sites around the center of the @Si28 cages. At temperatures <90 K, the crystal symmetry of the compound changes from the face-centered to the primitive cell with space group P213, and the Na atoms in the @Si28 cages are aligned as Na2 pairs. The temperature dependence of the magnetic susceptibility of Na30.5Si136 suggests that the two Na ions (2 Na(+)) in the cage are changed to a Na2 molecule. The Na atoms of Na30.5Si136 can be deintercalated from the cages topochemically by evacuation at elevated temperatures. The single crystal study of the deintercalated phases NaxSi136 (x = 25.5 and 5.5) revealed that only excess Na atoms have disordered arrangements.

  8. Structure of the Ice-Clathrate Interface

    NASA Astrophysics Data System (ADS)

    Nguyen, Andrew; Koc, Matthew; Shepherd, Tricia; Molinero, Valeria

    2015-03-01

    In the laboratory, clathrates are customarily synthesized from ice and gas guest. It is not clear how and whether ice assists in the nucleation of clathrate hydrates. The structure of the ice-clathrate interface can help assess the role of ice in clathrate nucleation. However, only few studies have addressed the structure of the ice-clathrate interface. Here, we use molecular dynamic simulations to study the structure of the ice-clathrate interface. There is no lattice matching between any plane of ice and clathrate hydrates, therefore an interfacial transition layer has to form to connect the two crystals. We investigate the structure of the ice-clathrate interface produced by alignment and equilibration of the crystals, competitive growth of the two crystals from a common solution, and nucleation of hydrate in the presence of a growing ice front. We find that the interfacial transition layer between ice and clathrate has a width of two to three water layers and it is disordered in all cases. Water in the interfacial transition layer has tetrahedral order lower than either ice or clathrate and higher than liquid water under the same thermodynamic conditions. The work is supported by NSF Grant Number CHE-1012651.

  9. Marine clathrate mining and sediment separation

    DOEpatents

    Borns, David J.; Hinkebein, Thomas E.; Lynch, Richard W.; Northrop, David A.

    2001-01-01

    A method and apparatus for mining of hydrocarbons from a hydrocarbon-containing clathrate such as is found on the ocean floor. The hydrocarbon containing clathrate is disaggregated from sediment by first disrupting clathrate-containing strata using continuous mining means such as a rotary tilling drum, a fluid injector, or a drill. The clathrate-rich portion of sediment thus disrupted from the sea floor strata are carried through the apparatus to regions of relative lower pressure and/or relative higher temperature where the clathrate further dissociates into component hydrocarbons and water. The hydrocarbon is recovered with the assistance of a gas that is injected and buoys the hydrocarbon containing clathrate helping it to rise to regions of lower pressure and temperature where hydrocarbon is released. The sediment separated from the hydrocarbon returns to the ocean floor.

  10. Synthesis and electrochemical characterization of Silicon clathrates as anode materials for Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Rahul

    Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown

  11. CO2 capture using semi-clathrates of quaternary ammonium salt: structure change induced by CO2 and N2 enclathration.

    PubMed

    Chazallon, Bertrand; Ziskind, Michael; Carpentier, Yvain; Focsa, Cristian

    2014-11-26

    Semi-clathrates of tetrabutylammonium bromide (TBAB) are investigated for their potential application in the CO2 capture context based on hydrate technology. The three-phase lines of semi-clathrates of CO2-TBAB-H2O and N2-TBAB-H2O are established simultaneously with their structure using in situ Raman scattering performed at high pressure. The preferred crystal phase obtained at ambient pressure from solutions of 5 and 40 wt % TBAB initial concentrations is shown to change upon enclathration of CO2 or N2, or by applying a higher pressure on the system. Deep in the stability field, metastable hydrate phases are occurring at the onset of the formation and correspond to the ones expected under ambient pressure conditions. Depending on the pressure, they progressively transformed into the most stable ones when approaching equilibrium and dissociation points. Besides, it is shown that a 5 wt % TBAB original solution forms preferentially a mixed structure of both type B and type A at low gas pressure with CO2 as the guest gas. A new structure is spectroscopically characterized at pressures higher than ∼2 MPa CO2. Type A is demonstrated to be stable at 5 wt % initial TBAB concentration with N2 as the guest molecule and pressure between 8 and 12 MPa. These structural data address new insights on the relationship between the hydrophilic-anion and hydrophobic-cation intercalation with a guest gas producing hydrophobic interaction in a distorted water lattice.

  12. The Antimony-Based Type I Clathrate compounds Cs8Cd18Sb28 and Cs8Zn18Sb28**

    SciTech Connect

    Liu, Yi; Wu, Li-Ming; Li, Long-Hua; Du, Shao-Wu; Corbett, John D.; Chen, Ling

    2009-06-17

    The title compounds lie in a new region of phase space for such a structure, and have stoichiometries in accord with a classical Zintl phase formulation. The small semiconductor gaps indicated by DFT calculations are also supported by their diamagnetic susceptibilities.

  13. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  14. Silicon clathrates for lithium ion batteries: A perspective

    NASA Astrophysics Data System (ADS)

    Warrier, Pramod; Koh, Carolyn A.

    2016-12-01

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15-20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  15. Linking microscopic guest properties to macroscopic observables in clathrate hydrates: Guest-host hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Susilo, Robin; Ripmeester, John A.

    2009-05-01

    Molecular dynamics simulations are used to compare microscopic structures and guest dynamics to macroscopic properties in structure II clathrate hydrates with cyclopentane, tetrahydrofuran (THF), 1,3-dioxolane, tetrahydropyran (THP), and p-dioxane as guests. Significant differences are observed between structural parameters and rotational dynamics for the different guests. The simulations show the formation of guest-host hydrogen bonds between the ether oxygen atoms of THF and THP and the cage water hydrogen atoms of the clathrate but the absence of similar hydrogen bonds in the clathrate hydrates of the other guests on the time scale of the calculations. This guest-host hydrogen bonding leads to the formation of Bjerrum L-defects in the clathrate water lattice where two adjacent water molecules have no covalently bonded hydrogen atom between them. Unlike Bjerrum defects of ice lattices, these guest-induced L-defects are not accompanied by the formation of a D-defect at an adjacent site in the water lattice. At the simulation temperature of 200 K, the guest-water hydrogen bonds in the THF clathrate are short lived (lifetime less than 1 ps) but in the THP they are longer lived (a minimum of 100 ps). A van't Hoff plot for the probability of defect formation in THF as a function of temperature gives an activation barrier of ˜8.3 kJ/mol for guest-host defect formation in the THF clathrate. The consequences of the defect formation on the thermal expansivity, isothermal compressibility, dipole-dipole correlation function, and mechanical stability of the clathrate are discussed.

  16. Laboratory study of CH4-N2 clathrate hydrates applied to Titan's surface conditions

    NASA Astrophysics Data System (ADS)

    Nna Mvondo, D.; Tobie, G.; Le Menn, E.; Bollengier, O.; Grasset, O.

    2013-12-01

    It is proposed that clathrate hydrates may be present at the surface of Titan (Choukroun et al., 2013, 2010). At Titan's surface pressure, pure methane and ethane hydrate (as well as other guests) could exist in the sI structure and nitrogen hydrate as sII structure. The large reservoir of several guest compounds in Titan's atmosphere is expected to result in the formation of multicomponent (compound) clathrate hydrates, as sII or sH structures, stable relative to water ice on the surface of Titan, and with faster expected growth kinetics relative to pure hydrate (Osegovic et al., 2005). Compound hydrate could be a likely sink for many chemicals occurring on Titan's surface. We note that experimental studies on the formation and thermodynamics of the methane-water system, at low and high pressures applied to Titan have been carried out (Lunine and Stevenson; 1985; Choukroun et al., 2013, 2010 and references therein). However, laboratory work on mixing of methane with other compounds in the clathrate phase (ethane, N2, CO2, etc...) applied to Titan conditions (and other icy moons) has still to be addressed. In this context, we have studied the formation and spectral signatures of CH4-N2 clathrate hydrates at temperature and pressure conditions relevant for Titan's surface. Clathrate hydrates samples have been synthesized in an autoclave combined with a cooling system and a multi-gas mixer. Few ml of deionized water was introduced in the autoclave and pressurized with the N2 and CH4 gaseous species for a couple of days, at controlled low temperature and low pressure of the formation and stability of clathrate hydrates. Their formation has been monitored by gas chromatography. Their spectral characterization at low temperature was performed by infrared (FTIR) reflectance spectroscopy. Raman spectroscopy was also used to give constraints on the composition, structure and cage occupancy of the formed clathrates. Here we present the results obtained for different mixing

  17. Carbon dioxide-water clathrate as a reservoir of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A.; Ingersell, A. P.

    1975-01-01

    It has been suggested that the residual polar caps of Mars contain a resorvoir of permanently frozen carbon dioxide which is controlling the atmospheric pressure. However, observational data and models of the polar heat balance suggest that the temperatures of the Martian poles are too high for solid CO2 to survive permanently. On the other hand, the icelike compound carbon dioxide-water clathrate could function as a CO2 reservoir instead of solid CO2, because it is stable at higher temperatures. This paper shows that the permanent polar caps may contain several millibars of CO2 in the form of clathrate, and discusses the implications of this permanent clathrate reservoir for the present and past atmospheric pressure on Mars.

  18. Iodine-starch clathrate complexes in low-field acoustic fields

    NASA Astrophysics Data System (ADS)

    Fadeev, G. N.; Boldyrev, V. S.; Ermolaeva, V. I.; Eliseeva, N. M.

    2013-01-01

    Experimental data on the kinetics of formation and decomposition of iodine-starch clathrate complexes (amyloiodine and amylopectoiodine) in low-frequency (5-45 Hz) acoustic fields are reported. The biological activity of these compounds suggests their use as a model of biocatalysts, in which iodine represents the coenzyme active group and starch homopolysaccharides (amylopectin and amylose) represents the apoenzyme.

  19. Inorganic Clathrates: A Polyhedron with 22 Vertices and up to Ninefold Coordinated Phosphorus Atoms.

    PubMed

    Baumer, Franziska; Nilges, Tom

    2017-02-09

    Attractive phosphorus: Phosphorus atoms coordinated to up to nine neighbors can be found in the host structure of the clathrate Ba8 M24 P28+δ , which results in a new 22-vertex polyhedron (yellow). The physical properties can be tuned by adjusting the amount of phosphorus incorporated in the host framework of this new cage compound.

  20. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo

    NASA Technical Reports Server (NTRS)

    Blake, David; Allamandola, Louis; Sandford, Scott; Hudgins, Doug; Freund, Friedemann

    1991-01-01

    Experiments conducted in clathrate hydrates with a modified electron microscope have demonstrated the possibility of such compounds' formation during the warming of vapor-deposited amorphous ices in vacuo, through rearrangements in the solid state. Subsolidus crystallization of compositionally complex amorphous ices may therefore be a general and ubiquitous process. Phase separations and microporous textures thus formed may be able to account for such anomalous cometary phenomena as the release of gas at large radial distances from the sun and the retention of volatiles to elevated temperatures.

  1. Method of forming clathrate ice

    DOEpatents

    Hino, Toshiyuki; Gorski, Anthony J.

    1987-01-01

    A method of forming clathrate ice in a supercooled water-based liquid contained in a vessel is disclosed. Initially, an oscillator device is located in the liquid in the vessel. The oscillator device is then oscillated ultrasonically so that small crystals are formed in the liquid. These small crystals serve as seed crystals for ice formation in the liquid and thereby prevent supercooling of the liquid. Preferably, the oscillating device is controlled by a thermostat which initiates operation of the oscillator device when the temperature of the liquid is lowered to the freezing point. Thereafter, the operation of the oscillator device is terminated when ice is sensed in the liquid by an ice sensor.

  2. Clathrate hydrates in the solar system

    NASA Technical Reports Server (NTRS)

    Miller, S. L.

    1985-01-01

    Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal hydrate structures. Structure I, with a 12 A cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4.5.75H2O. The actual formula contains somewhat more water as the cages are not completely filled. Other examples that form Structure I hydrates are C2H6, C2H4, C2H2, CO2, SO2, OCS, Xe, H2S. Structure II, with a 17 A cubic unit cell, contains 136 water molecules, and 8 large and 16 small cages. The ideal formula for CHCl3 is CHCL3.17H2O. Other examples of Structure II hydrates include C3H8, C2H5Cl, acetone, and tetrahydrofuran. Small molecules such as Ar, Kr and probably N2 and O2 also form a Structure II hydrate. The small molecules occupy both the large and small cages, giving an ideal formula of Ar.5.67H2O. The conditions of pressure and temperature for hydrate formation are discussed.

  3. Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form.

    PubMed

    Takeya, Satoshi; Fujihisa, Hiroshi; Yamawaki, Hiroshi; Gotoh, Yoshito; Ohmura, Ryo; Alavi, Saman; Ripmeester, John A

    2016-08-01

    The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.

  4. Superconductivity in Al-substituted Ba8Si46 clathrates

    NASA Astrophysics Data System (ADS)

    Li, Yang; Garcia, Jose; Chen, Ning; Liu, Lihua; Li, Feng; Wei, Yuping; Bi, Shanli; Cao, Guohui; Feng, Z. S.

    2013-05-01

    There is a great deal of interest vested in the superconductivity of Si clathrate compounds with sp3 network, in which the structure is dominated by strong covalent bonds among silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. A joint experimental and theoretical investigation of superconductivity in Al-substituted type-I silicon clathrates is reported. Samples of the general formula Ba8Si46-xAlx, with different values of x were prepared. With an increase in the Al composition, the superconducting transition temperature TC was observed to decrease systematically. The resistivity measurement revealed that Ba8Si42Al4 is superconductive with transition temperature at TC = 5.5 K. The magnetic measurements showed that the bulk superconducting Ba8Si42Al4 is a type II superconductor. For x = 6 sample Ba8Si40Al6, the superconducting transition was observed down to TC = 4.7 K which pointed to a strong suppression of superconductivity with increasing Al content as compared with TC = 8 K for Ba8Si46. Suppression of superconductivity can be attributed primarily to a decrease in the density of states at the Fermi level, caused by reduced integrity of the sp3 hybridized networks as well as the lowering of carrier concentration. These results corroborated by first-principles calculations showed that Al substitution results in a large decrease of the electronic density of states at the Fermi level, which also explains the decreased superconducting critical temperature within the BCS framework. The work provided a comprehensive understanding of the doping effect on superconductivity of clathrates.

  5. Overview: Nucleation of clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  6. Clathrate type 2 hydrate formation in vacuo under astrophysical conditions

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S. A.; Freund, F.

    1991-01-01

    The properties of clathrate hydrates were used to explain the complex and poorly understood physical processes taking place within cometary nuclei and other icy solar system bodies. Most of all the experiments previously conducted used starting compositions which would yield clathrate types I hydrates. The main criterion for type I vs. type II clathrate hydrate formation is the size of the guest molecule. The stoichiometry of the two structure types is also quite different. In addition, the larger molecules which would form type II clathrate hydrates typically have lower vapor pressures. The result of these considerations is that at temperatures where we identified clathrate formation (120-130 K), it is more likely that type II clathrate hydrates will form. We also formed clathrate II hydrates of methanol by direct vapor deposition in the temperature range 125-135 K.

  7. In situ synthesis studies of silicon clathrates

    NASA Astrophysics Data System (ADS)

    Hutchins, Peter Thomas

    Solid state clathrates have shown considerable potential as a new class of materials over the past 30 years. Experimental and theoretical studies have shown that precise tuning and synthetic control of these materials, may lead to desirable properties. Very little is known about the mechanism of formation of the clathrates and so the desire to have accurate synthetic control was, until now, unrealistic. This thesis address the problem using in situ synchrotron x-ray techniques. In this study, experiments were designed to utilise time-resolved in situ diffraction techniques and high temperature 23Na NMR, in efforts to understand the mechanism of formation for this class of expanded framework materials. A complex high vacuum capillary synthesis cell was designed for loading under inert conditions and operation under high vacuum at station 6.2 of the SRS Daresbury. The cell was designed to operate in conjunction with a custom made furnace capable of temperatures in excess of 1000 C, as well as a vacuum system capable of 10"5 bar. The clathrate system was studied in situ, using rapid data collection to elucidate the mechanism of formation. The data were analysed using Rietveld methods and showed a structural link between the monoclinic, C2/c, Zintl precursors and the cubic, Pm3n, clathrate I phase. The phases were found to be linked by relation of the sodium planes in the silicide and the sodium atoms resident at cages centres in the clathrate system. This evidence suggests the guest species is instrumental in formation of the clathrate structure by templating the formation of the cages in the structure. Solid state 23Na NMR was utilised to complete specially design experiments, similar to those complete in situ using synchrotron x-ray techniques. The experiments showed increased spherical symmetry of the alkali metal sites and suggested increased mobility of the guest atoms during heating. In addition, cyclic heating experiments using in situ diffraction showed

  8. Stability of clathrate hydrates and gas transport in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique

    2015-04-01

    Current conditions in the Martian crust are favourable to the presence of clathrate hydrates, crystalline compounds constituted by cages formed by hydrogen-bonded water molecules inside of which guest gas molecules are trapped. In this study, we focused on the stability of methane and carbon dioxide clathrates in the Martian subsurface. We coupled the stability conditions of clathrates with a 1D thermal model in order to obtain the variations of the hydrate stability zone within the Martian crust as a function of time. Our 1D thermal model includes the diffusion of water vapor through porous regolith. The mass conservation equation takes into account the different phases of water: vapor, ice or adsorbed H2O. The flow is calculated by combining the advective flow, due to pressure gradients and given by Darcy's law, and the Fickian diffusion due to density gradients of water vapor. Finally, we considered the diffusion of methane through the crust from the place where clathrates are dissociated into the atmosphere.

  9. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate

    NASA Astrophysics Data System (ADS)

    Falenty, Andrzej; Hansen, Thomas C.; Kuhs, Werner F.

    2014-12-01

    Gas hydrates are ice-like solids, in which guest molecules or atoms are trapped inside cages formed within a crystalline host framework (clathrate) of hydrogen-bonded water molecules. They are naturally present in large quantities on the deep ocean floor and as permafrost, can form in and block gas pipelines, and are thought to occur widely on Earth and beyond. A natural point of reference for this large and ubiquitous family of inclusion compounds is the empty hydrate lattice, which is usually regarded as experimentally inaccessible because the guest species stabilize the host framework. However, it has been suggested that sufficiently small guests may be removed to leave behind metastable empty clathrates, and guest-free Si- and Ge-clathrates have indeed been obtained. Here we show that this strategy can also be applied to water-based clathrates: five days of continuous vacuum pumping on small particles of neon hydrate (of structure sII) removes all guests, allowing us to determine the crystal structure, thermal expansivity and limit of metastability of the empty hydrate. It is the seventeenth experimentally established crystalline ice phase, ice XVI according to the current ice nomenclature, has a density of 0.81 grams per cubic centimetre (making it the least dense of all known crystalline water phases) and is expected to be the stable low-temperature phase of water at negative pressures (that is, under tension). We find that the empty hydrate structure exhibits negative thermal expansion below about 55 kelvin, and that it is mechanically more stable and has at low temperatures larger lattice constants than the filled hydrate. These observations attest to the importance of kinetic effects and host-guest interactions in clathrate hydrates, with further characterization of the empty hydrate expected to improve our understanding of the structure, properties and behaviour of these unique materials.

  10. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate.

    PubMed

    Falenty, Andrzej; Hansen, Thomas C; Kuhs, Werner F

    2014-12-11

    Gas hydrates are ice-like solids, in which guest molecules or atoms are trapped inside cages formed within a crystalline host framework (clathrate) of hydrogen-bonded water molecules. They are naturally present in large quantities on the deep ocean floor and as permafrost, can form in and block gas pipelines, and are thought to occur widely on Earth and beyond. A natural point of reference for this large and ubiquitous family of inclusion compounds is the empty hydrate lattice, which is usually regarded as experimentally inaccessible because the guest species stabilize the host framework. However, it has been suggested that sufficiently small guests may be removed to leave behind metastable empty clathrates, and guest-free Si- and Ge-clathrates have indeed been obtained. Here we show that this strategy can also be applied to water-based clathrates: five days of continuous vacuum pumping on small particles of neon hydrate (of structure sII) removes all guests, allowing us to determine the crystal structure, thermal expansivity and limit of metastability of the empty hydrate. It is the seventeenth experimentally established crystalline ice phase, ice XVI according to the current ice nomenclature, has a density of 0.81 grams per cubic centimetre (making it the least dense of all known crystalline water phases) and is expected to be the stable low-temperature phase of water at negative pressures (that is, under tension). We find that the empty hydrate structure exhibits negative thermal expansion below about 55 kelvin, and that it is mechanically more stable and has at low temperatures larger lattice constants than the filled hydrate. These observations attest to the importance of kinetic effects and host-guest interactions in clathrate hydrates, with further characterization of the empty hydrate expected to improve our understanding of the structure, properties and behaviour of these unique materials.

  11. Roles of Clathrate Hydrates in Crustal Heating and Volatile Storage/Release on Earth, Mars, and Beyond

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Beget, J.; Furfaro, R.; Prieto-Ballesteros, O.; Palmero-Rodriguez, J. A.

    2007-12-01

    Clathrate hydrates are stable through much of the Solar System. These materials and hydrate-like amorphous associations of water with N2, CO, CH4, CO2, O2 and other molecules could, in fact, constitute the bulk of the non-rock components of some icy satellites, comets, and Kuiper Belt Objects. CO2 clathrate is thermodynamically stable at the Martian South Pole surface and could form a significant fraction of both Martian polar caps and icy permafrost distributed across one-third of the Martian surface. CH4 clathrate is the largest clathrate material in Earth's permafrost and cold seafloor regions, and it may be a major volatile reservoir on Mars, too. CO2 clathrate is less abundant on Earth but it might store most of Mars' CO2 inventory and thus may be one of the critical components in the climate system of that planet, just as CH4 clathrate is for Earth. These ice-like phases not only store biologically, geologically, and climatologically important gases, but they also are natural thermal insulators. Thus, they retard the conductive flow of geothermal heat, and thick accumulations of them can modify geotherms, cause brines to exist where otherwise they would not, and induce low-grade metamorphism of upper crustal rocks underlying the insulating bodies. This mechanism of crustal heating may be especially important in assisting hydrogeologic activity on Mars, gas-rich carbonaceous asteroids, icy satellites, and Kuiper Belt Objects. These worlds, compared to Earth, are comparatively energy starved and frozen but may partly make up for their deficit of joules by having large accumulations of joule-conserving hydrates. Thick, continuous layers of clathrate may seal in gases and produce high gas fugacities in aquifers underlying the clathrates, thus producing gas-rich reservoirs capable of erupting violently. This may have happened repeatedly in Earth history, with global climatic consequences for abrupt climate change. We have hypothesized that such eruptions may have

  12. Dynamics of Kr in dense clathrate hydrates.

    SciTech Connect

    Klug, D. D.; Tse, J. S.; Zhao, J. Y.; Sturhahn, W.; Alp, E. E.; Tulk, C. A.

    2011-01-01

    The dynamics of Kr atoms as guests in dense clathrate hydrate structures are investigated using site specific {sup 83}Kr nuclear resonant inelastic x-ray scattering (NRIXS) spectroscopy in combination with molecular dynamics simulations. The dense structure H hydrate and filled-ice structures are studied at high pressures in a diamond anvil high-pressure cell. The dynamics of Kr in the structure H clathrate hydrate quench recovered at 77 K is also investigated. The Kr phonon density of states obtained from the experimental NRIXS data are compared with molecular dynamics simulations. The temperature and pressure dependence of the phonon spectra provide details of the Kr dynamics in the clathrate hydrate cages. Comparison with the dynamics of Kr atoms in the low-pressure structure II obtained previously was made. The Lamb-Mossbauer factor obtained from NRIXS experiments and molecular dynamics calculations are in excellent agreement and are shown to yield unique information on the strength and temperature dependence of guest-host interactions.

  13. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III.

    PubMed

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; Zeng, Xiao Cheng

    2016-02-01

    Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8(6)6(8)4(12)) and six small decahedral cavities (8(2)4(8)) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below -5834 bar at 0 K and below -3411 bar at 300 K.

  14. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III

    PubMed Central

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; Zeng, Xiao Cheng

    2016-01-01

    Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8668412) and six small decahedral cavities (8248) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below −5834 bar at 0 K and below −3411 bar at 300 K. PMID:26933681

  15. Ice method for production of hydrogen clathrate hydrates

    DOEpatents

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  16. First-principles calculations of carbon clathrates: Comparison to silicon and germanium clathrates

    NASA Astrophysics Data System (ADS)

    Connétable, Damien

    2010-08-01

    We employ state-of-the-art first-principles calculations based on density-functional theory and density-functional perturbation theory to investigate relevant physical properties and phase diagram of the free guest type-I (X-46) and type-II (X-34) carbon clathrates. Their properties and those of silicon and germanium diamonds, and clathrates have been computed and compared within the same approach. We briefly present and discuss their structural, cohesive, and electronic properties. In particular, we present different results about electronic properties of carbon clathrates. From the symmetry analysis of electronic states around the band gap, we deduce their optical properties, and we forecast the effects of hypothetical-doped elements on their electronic band gap. We then report first-principles calculations of vibrational, thermodynamical, and elastic properties. Whereas vibrational properties of Si and Ge systems can be linked through their atomic weight ratio, we show that the vibrational properties of carbon structures differ strongly. Raman and infrared spectra of all clathrates are also calculated and compared. The effects of pressure and temperature on thermodynamical properties (heat capacity, entropy, thermal expansion, etc.) within static and quasiharmonic approximations are investigated. It is shown that thermodynamical properties of carbon clathrates and diamond present a similar evolution up to high pressures (100 GPa) and over a large range of temperatures ([0, 1500] K). Then we deduce the equilibrium phase diagram (P,T) of C-2/C-34/C-46. We conclude the paper with a presentation of elastic properties computed from acoustic slopes.

  17. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    SciTech Connect

    Koh, Carolyn Ann

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  18. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo

    2016-10-01

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  19. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  20. The Impact of Methane Clathrate Emissions on the Earth System

    NASA Astrophysics Data System (ADS)

    Cameron-Smith, P. J.; Bhattacharyya, S.; Bergmann, D. J.; Reagan, M. T.; Elliott, S.; Moridis, G. J.

    2013-12-01

    Methane is locked in ice-like deposits called clathrates in ocean sediments and underneath permafrost regions. Clathrates are stable under high pressures and low temperatures, so in a warming climate, increases in ocean temperatures could lead to dissociation of the clathrates and release methane into the ocean and subsequently the atmosphere, where methane is both an important greenhouse gas and a key species in atmospheric chemistry. Clathrates in the shallower parts of the Arctic Ocean (around 300m depth) are predicted to be particularly important since clathrates at that depth are expected to start outgassing abruptly in the next few decades. We will present the atmospheric impact of such methane emissions using multi-century steady-state simulations with a version of the Community Earth System Model (CESM) that includes atmospheric chemistry. Our simulations include a plausible release from clathrates in the Arctic that increases global methane emissions above present-day conditions by 22%, as well as a scenario with 10 times those clathrate emissions. The CESM model includes a fully interactive physical ocean, to which we added a fast atmospheric chemistry mechanism that represents methane as a fully interactive tracer (with emissions rather than concentration boundary conditions). The results indicate that such Arctic clathrate emissions (1) increase global methane concentrations by an average of 38%, non-uniformly; (2) increase surface ozone concentrations by around 10% globally, and even more in polluted regions; (3) increase methane lifetime by 13%; (4) increase the interannual variability in surface methane, surface ozone, and methane lifetime, and (5) show modest differences in surface temperature and methane lifetime compared to simulations in which the clathrate emissions are distributed uniformly. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Far-infrared spectra of CO2 clathrate hydrate frosts

    NASA Technical Reports Server (NTRS)

    Landry, J. C.; England, A. W.

    1993-01-01

    As a product of our interest in remote sensing of planetary ices, frost samples of CO2 clathrate hydrate were grown by depositing water vapor on a cooled surface and pressurizing the resulting water frost with CO2 gas. At pressures above the dissociation pressure of the clathrate, the samples exhibit an absorption peak at 75 cm (sup -1). At pressures below the dissociation pressure, the peak disappears. Since the free CO2 molecule does not have rotational or vibrational absorption in this region, the absorption is attributed to a CO2 rattling mode within a clathrate cage.

  2. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  3. Practical reactor production of 41Ar from argon clathrate.

    PubMed

    Mercer, J R; Duke, M J; McQuarrie, S A

    2000-06-01

    The radionuclide 41Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of 40Ar for thermal neutron activation makes preparation of suitable activities of 41Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of 41Ar even with low power reactors.

  4. Pressure-amorphized cubic structure II clathrate hydrate: crystallization in slow motion.

    PubMed

    Bauer, Marion; Többens, Daniel M; Mayer, Erwin; Loerting, Thomas

    2011-02-14

    A range of techniques has so far been employed for producing amorphous aqueous solutions. In case of aqueous tetrahydrofuran (THF) this comprises hyperquenching of liquid droplets, vapour co-deposition and pressure-induced amorphization of the crystalline cubic structure II clathrate. All of these samples are thermally labile and crystallize at temperatures above 110 K. We here outline a variant of the pressure-amorphization protocol developed by Suzuki [Phys. Rev. B, 2004, 70, 172108], which results in a highly crystallization resistant amorphous THF hydrate. The hydrate produced according to our protocol (annealing to 180 K at 1.8 GPa rather than to 150 K at 1.5 GPa) does not transform to the cubic structure II THF clathrate even at 150 K. We track the reason for this higher stability to the presence of crystalline remnants when following the Suzuki protocol, which are removed when using our protocol involving higher pressures and an annealing step. These crystalline remnants later serve as crystallization seeds lowering the thermal stability of the amorphous sample. Our protocol thus makes a purely amorphous THF hydrate available to the research community. We use powder X-ray diffraction to study the process of nucleation and slow crystal growth in the temperature range 160-200 K and find that the local cage structure and periodicity of the fully crystalline hydrate develops even at the earliest stages of crystallization, when the "clathrate crystal" has a size of about two unit cells.

  5. Anharmonic motions of Kr in the clathrate hydrate.

    PubMed

    Tse, J S; Klug, D D; Zhao, J Y; Sturhahn, W; Alp, E E; Baumert, J; Gutt, C; Johnson, M R; Press, W

    2005-12-01

    The anomalous glass-like thermal conductivity of crystalline clathrates has been suggested to be the result of the scattering of thermal phonons of the framework by 'rattling' motions of the guests in the clathrate cages. Using the site-specific (83)Kr nuclear resonant inelastic scattering spectroscopy in combination with conventional incoherent inelastic neutron scattering and molecular-dynamics simulations, we provide unambiguous evidence and characterization of the effects on these guest-host interactions in a structure-II Kr clathrate hydrate. The resonant scattering of phonons led to unprecedented large anharmonic motions of the guest atoms. The anharmonic interaction underlies the anomalous thermal transport in this system. Clathrates are prototypical models for a class of crystalline framework materials with glass-like thermal conductivity. The explanation of the unusual molecular dynamics has a wide implication for the understanding of the thermal properties of disordered solids and structural glasses.

  6. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    PubMed

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  7. Density driven structural transformations in amorphous semiconductor clathrates

    SciTech Connect

    Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; Molaison, Jamie J.; Sales, Brian C.; Honkimaeki, Veijo

    2015-01-16

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with the consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.

  8. Density driven structural transformations in amorphous semiconductor clathrates

    DOE PAGES

    Tulk, Christopher A.; dos Santos, Antonio M.; Neuefeind, Joerg C.; ...

    2015-01-16

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less

  9. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  10. Open-framework clathrates of group IV elements: Synthesis, structure, and characterization

    NASA Astrophysics Data System (ADS)

    Ramachandran, Ganesh K.

    This study addresses the synthesis, the characterization by x-ray diffraction and nuclear magnetic resonance (NMR) spectroscopy, and the measurement of the electrical properties of members of a class of compounds known as silicon and germanium clathrates. A quantitative 29Si NMR study of Na8Si 46 along with Rietveld refinement of site occupancies demonstrates that the compound is the stoichiometric clathrate Na8Si46, rather than an intermetallic Zintl compound containing silicon vacancies. In line with the observations on Na8Si46, the homologous K8Si46 and Rb6Si46 alkali-silicon clathrates are also observed to be fully stoichiometric at the framework sites, i.e., devoid of framework vacancies. In contrast two vacancies are formed predominantly at one-third of the crystallographic 6c tetrahedral sites in the homologous alkali-germanium and alkali-tin systems. This result is understood generally in terms of weaker Tt-Tt (Tt = Si, Ge, Sn) bonding as one descends the periodic table. The synthesis and characterization of the Structure II silicon clathrate NaxSi136 (x = 4--23) by powder x-ray diffraction combined with Rietveld profile analysis is also reported. In NaxSi 136, systematic changes in x-ray diffraction intensities enable the Na content and site occupancy to be characterized. In the same structure, we observe a 0.5% increase in the unit cell edge upon progressing from Na 4Si136 to Na23Si136. A statistical mechanical model combined with experimental data for this phase reveals a preference for the removal of sodium from the smaller of the two available cages by 0.190 +/- 0.050 eV. The Structure II clathrate Na16Cs8Si136 was synthesized employing the silicides of sodium and cesium as intermediates. In the same compound, large 23Na and 29Si Knight shifts are observed in 29Si magic angle spinning (MAS) NMR experiments. Electrical conductivity measurements on cold pressed samples of the material also indicate metallic behavior, with a room temperature value of rho

  11. Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt.

    PubMed

    Tombari, E; Presto, S; Salvetti, G; Johari, G P

    2006-04-21

    We report a thermodynamic study of the formation of tetrahydrofuran clathrate hydrate by explosive crystallization of water-deficient, near stoichiometric, and water-rich solutions, as well as of the heat capacity, C(p), of (i) supercooled tetrahydrofuran-H2O solutions and of the clathrate hydrate, (ii) tetrathydrofuran (THF) liquid, and (iii) supercooled water and the ice formed on its explosive crystallization. In explosive freezing of supercooled solutions at a temperature below 257 K, THF clathrate hydrate formed first. The nucleation temperature depends on the cooling rate, and excess water freezes on further cooling. The clathrate hydrate melts reversibly at 277 K and C(p) increases by 770 J/mol K on melting. The enthalpy of melting is 99.5 kJ/mol and entropy is 358 J/mol K. Molar C(p) of the empty host lattice is less than that of the ice, which is inconsistent with the known lower phonon frequency of H2O in the clathrate lattice. Analysis shows that C(p) of THF and ice are not additive in the clathrate. C(p) of the supercooled THF-H2O solutions is the same as that of water at 247 K, but less at lower temperatures and more at higher temperatures. The difference tends to become constant at 283 K. The results are discussed in terms of the hydrogen-bonding changes between THF and H2O.

  12. Regimes of Decomposition of Clathrate in Natural Strata Purged by Methane

    NASA Astrophysics Data System (ADS)

    Khasanov, M.; Shagapov, V.

    2016-06-01

    The process of decomposition of a methane clathrate in a finite-length stratum initially saturated with methane clathrate and methane, which is purged by warm methane, is studied. The influence of the initial parameters of the stratum and purging conditions on the evolution of methane clathrate temperature and saturation is examined. The existence of solutions is demonstrated, which predict methane clathrate decomposition both on the frontal surface and in the volume zone.

  13. Kinetics of Methane Clathrate Formation in the Presolar Nebula

    NASA Astrophysics Data System (ADS)

    Vu, Tuan; Choukroun, Mathieu

    2016-10-01

    Clathrate hydrates are a distinct form of water ice wherein the crystal lattice of the host water molecules forms symmetric, polyhedral cages that trap volatile guest species under appropriate pressures and temperatures. These materials are an abundant source of hydrocarbons on Earth, and have been expected to be present on a number of icy celestial bodies, including Mars, Europa, Titan, and Enceladus. Clathrates are also thought to be one of the most likely traps for volatiles during the condensation of the protostellar nebulae. Prior to the Voyager mission, the prevailing expectation was that the elemental composition of the giant planets would reflect the composition of the solar nebula and therefore be similar to solar abundances. However, spacecraft observations by Voyager, Galileo, and Cassini-Huygens, as well as ground-based observations, have revealed unexpected elemental enrichment, relative to solar abundances, of C, N, S, As, P, and noble gases in the giant planets and in comets. One of the contending explanations is the retention of these volatiles as clathrate hydrates, which may have enabled their capture early in the history of the Solar System.While the formation and stability of clathrates have been addressed theoretically and, to some extent, experimentally at relatively high pressures (10-7-10-3 bar), there is a scarcity of experimental undertaking on the kinetics of clathrate formation and their stability at the low pressures relevant to the early outer solar nebula (~10-11 bar). This study seeks to elucidate the clathrate formation kinetics under nebula-relevant conditions via a series of optical Raman experiments on ice/gas mixtures over a range of pressures and temperatures. Our work on the methane gas/ice system shows that clathrate formation occurs on a rather fast timescale (typically within minutes at 223-253 K and 30-50 bar CH4). In addition, the rate of enclathration increases with pressures and temperatures, and the activation energy

  14. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  15. Far-infrared investigations of a methanol clathrate hydrate - Implications for astronomical observations

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Moore, Marla H.

    1993-01-01

    Observations of nonterrestrial clathrate hydrates are still lacking despite the fact that clathrates first were suggested to exist in cometary and interstellar ices over 40 years ago. Spectroscopy, the most direct method of astronomical detection, has been hampered by the similarity of clathrate hydrate spectra to those of unenclathrated guest molecules and solid H2O. We have prepared a methanol (CH3OH) clathrate hydrate, using a recently published procedure, and have investigated its far-infrared spectrum. The spectrum is quite different from that of either unenclathrated CH3OH or solid H2O and so should be of value in astronomical searches for this clathrate.

  16. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  17. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  18. Cardiac mitochondrial membrane stability after deep hypothermia using a xenon clathrate cryostasis protocol - an electron microscopy study.

    PubMed

    Sheleg, Sergey; Hixon, Hugh; Cohen, Bruce; Lowry, David; Nedzved, Mikhail

    2008-01-01

    We investigated a new cryopreservation method using xenon, a clathrate-forming gas, under medium pressure (100psi). The objective of the study was to determine whether this cryostasis protocol could protect cardiac mitochondria at cryogenic temperatures (below 100 degrees Celsius).We analyzed transmission electron microscopy images to obtain information about changes in mitochondrial morphology induced by cryopreservation of the hearts. Our data showed absence of mitochondrial swelling, rupture of inner and outer membranes, and leakage of mitochondrial matrix into the cytoplasm after applying this cryostasis protocol. The electron microscopy results provided the first evidence that a cryostasis protocol using xenon as a clathrate-forming gas under pressure may have protective effects on intracellular membranes. This cryostasis technology may find applications in developing new approaches for long-term cryopreservation protocols.

  19. Analysis of Subsurface Clathrates in the Upper Crust of Titan

    NASA Technical Reports Server (NTRS)

    Elliott, John

    2011-01-01

    Titan has an atmosphere rich in methane, which should have long since been depleted unless a mechanism exists for storing this molecule below the surface. One hypothesis is that methane could be stored in the form of a clathrate hydrate, which is a structure with an ice lattice forming molecular cages in which gases are trapped. It is stable at low temperatures and over a wide range of pressures, suggesting that a clathrate hydrate may have stored methane on Titan from the beginning of its history.

  20. A clathrate reservoir hypothesis for Enceladus' south polar plume.

    PubMed

    Kieffer, Susan W; Lu, Xinli; Bethke, Craig M; Spencer, John R; Marshak, Stephen; Navrotsky, Alexandra

    2006-12-15

    We hypothesize that active tectonic processes in the south polar terrain of Enceladus, the 500-kilometer-diameter moon of Saturn, are creating fractures that cause degassing of a clathrate reservoir to produce the plume documented by the instruments on the Cassini spacecraft. Advection of gas and ice transports energy, supplied at depth as latent heat of clathrate decomposition, to shallower levels, where it reappears as latent heat of condensation of ice. The plume itself, which has a discharge rate comparable to Old Faithful Geyser in Yellowstone National Park, probably represents small leaks from this massive advective system.

  1. The effect of Al-substitution on superconducting type-I clathrate Ba8Si46

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Bi, Shanli; Chen, Ning; Li, Feng; Liu, Yang; Cao, Guohui; Li, Yang

    2014-11-01

    A series of samples with the chemical formula Ba8Si46-xAlx (x = 2, 3, 5, 6, 7 and 8) were prepared by arc melting, ball milling and washing with diluted HCl. The lattice parameter of Ba8Si46-xAlx increases linearly with the increase of nominal Al content x. The composition analysis by energy-dispersive X-ray spectroscopy (EDS) shown that the actual Al contents in clathrates are lager than the nominal compositions because the dilute Al-contained impurity phases were washed out. The experimental results show that the minimum incorporation of Al into clathrate structure is expected to be about 3 at ambient pressure, which is in agreement with a first-principle simulation. The Al substitution for Si results in the decrease of superconducting transition temperature TC, which can be explained on the BCS theoretical frame. The electron density of state at Fermi level N(EF) decreases with the increment of x except for an abnormal increase for the sample x = 6. Such sample has a higher spatial symmetry of the structure in which all the six Si atoms at 6c sites were substituted by Al atoms. Its higher N(EF) causes to a higher TC. In addition, we calculated the phonon-dispersion relations and vibrational density of states for Al-doped silicon clathrates. The high frequency acoustic branch has a red shift from 430 cm-1 to 420 cm-1 with the doping of Al. The decreased frequency of bond-stretching vibration modes is another reason for the suppression of TC induced by Al substitution.

  2. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    PubMed

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  3. Clathrate formation in the systems Sr–Cu–Ge and (Ba,Sr)–Cu–Ge

    SciTech Connect

    Zeiringer, I.; Moser, R.; Kneidinger, F.; Podloucky, R.; Royanian, E.; Grytsiv, A.; Bauer, E.; Giester, G.; Falmbigl, M.; Rogl, P.

    2014-09-15

    In the ternary system Sr–Cu–Ge, a novel clathrate type-I phase was detected, Sr{sub 8}Cu{sub x}Ge{sub 46−x} (5.2≤x<5.4), which exists close to the Zintl limit in a small temperature interval. Sr{sub 8}Cu{sub 5.3}Ge{sub 40.7} decomposes eutectoidally on cooling at 730±3 °C into (Ge), SrGe{sub 2} and τ{sub 1}-SrCu{sub 2−x}Ge{sub 2+x}. Phase equilibria at 700 °C have been established for the Ge rich part and are characterized by the appearance of only one ternary compound, τ{sub 1}-SrCu{sub 2−x}Ge{sub 2+x}, which crystallizes with the ThCr{sub 2}Si{sub 2} structure type and forms a homogeneity range up to x=0.4 (a=0.42850(4), c=1.0370(1) nm). Additionally, the extent of the clathrate type-I solid solution Ba{sub 8−y}Sr{sub y}Cu{sub x}Ge{sub 46−x} (0≤y≤∼5.6; 5.2≤x≤5.4, from as cast alloys) has been studied at various temperatures. The clathrate type-I crystal structure (space group Pm3{sup ¯}n) has been proven by X-ray single crystal diffraction on two single crystals with the composition (from refinement): Sr{sub 8}Cu{sub 5.36}Ge{sub 40.64} (a=1.06368(2) nm at 300 K) and Ba{sub 4.86}Sr{sub 3.14}Cu{sub 5.36}Ge{sub 40.64} (a=1.06748(2) nm at 300 K) measured at 300, 200 and 100 K. From the temperature dependence of the lattice parameters and the atomic displacement parameters, thermal expansion coefficients, Debye- and Einstein-temperatures and the speed of sound have been determined. From heat capacity measurements of Sr{sub 8}Cu{sub 5.3}Ge{sub 40.7} at low temperatures the Sommerfeld coefficient (γ=24 mJ/mol K{sup 2}) and the Debye temperature (Θ{sub D}{sup LT}=273 K) have been extracted. From a detailed analysis of these data at higher temperatures, Einstein branches of the phonon dispersion relation have been derived and compared to those obtained from the atomic displacement parameters. Electrical resistivity measurements of Sr{sub 8}Cu{sub 5.3}Ge{sub 40.7} reveal a rather metallic behavior in the low temperature range (<300 K

  4. Impact of the Condensed-Phase Environment on the Translation-Rotation Eigenstates and Spectra of a Hydrogen Molecule in Clathrate Hydrates.

    PubMed

    Powers, Anna; Marsalek, Ondrej; Xu, Minzhong; Ulivi, Lorenzo; Colognesi, Daniele; Tuckerman, Mark E; Bačić, Zlatko

    2016-01-21

    We systematically investigate the manifestations of the condensed-phase environment of the structure II clathrate hydrate in the translation-rotation (TR) dynamics and the inelastic neutron scattering (INS) spectra of an H2 molecule confined in the small dodecahedral cage of the hydrate. The aim is to elucidate the extent to which these properties are affected by the clathrate water molecules beyond the confining cage and the proton disorder of the water framework. For this purpose, quantum calculations of the TR eigenstates and INS spectra are performed for H2 inside spherical clathrate domains of gradually increasing radius and the number of water molecules ranging from 20 for the isolated small cage to more than 1800. For each domain size, several hundred distinct hydrogen-bonding topologies are constructed in order to simulate the effects of the proton disorder. Our study reveals that the clathrate-induced splittings of the j = 1 rotational level and the translational fundamental of the guest H2 are influenced by the condensed-phase environment to a dramatically different degree, the former very strongly and the latter only weakly.

  5. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  6. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  7. Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46

    PubMed Central

    Norouzzadeh, Payam; Myles, Charles W.; Vashaee, Daryoosh

    2014-01-01

    Clathrate materials have been the subject of intense interest and research for thermoelectric application. Nevertheless, from the very large number of conceivable clathrate structures, only a small fraction of them have been examined. Since the thermal conductivity of clathrates is inherently small due to their large unit cell size and open-framework structure, the current research on clathrates is focused on finding the ones with large thermoelectric power factor. Here we predict an extraordinarily large power factor for type-VIII clathrate Si46. We show the existence of a large density of closely packed elongated ellipsoidal carrier pockets near the band edges of this so far hypothetical material structure, which is higher than that of the best thermoelectric materials known today. The high crystallographic symmetry near the energy band edges for Si46-VIII clathrates is responsible for the formation of such a large number of carrier pockets. PMID:25391971

  8. Clathrate Ba8Au16P30: the "gold standard" for lattice thermal conductivity.

    PubMed

    Fulmer, James; Lebedev, Oleg I; Roddatis, Vladimir V; Kaseman, Derrick C; Sen, Sabyasachi; Dolyniuk, Juli-Anna; Lee, Kathleen; Olenev, Andrei V; Kovnir, Kirill

    2013-08-21

    A novel clathrate phase, Ba8Au16P30, was synthesized from its elements. High-resolution powder X-ray diffraction and transmission electron microscopy were used to establish the crystal structure of the new compound. Ba8Au16P30 crystallizes in an orthorhombic superstructure of clathrate-I featuring a complete separation of gold and phosphorus atoms over different crystallographic positions, similar to the Cu-containing analogue, Ba8Cu16P30. Barium cations are trapped inside the large polyhedral cages of the gold-phosphorus tetrahedral framework. X-ray diffraction indicated that one out of 15 crystallographically independent phosphorus atoms appears to be three-coordinate. Probing the local structure and chemical bonding of phosphorus atoms with (31)P solid-state NMR spectroscopy confirmed the three-coordinate nature of one of the phosphorus atomic positions. High-resolution high-angle annular dark-field scanning transmission electron microscopy indicated that the clathrate Ba8Au16P30 is well-ordered on the atomic scale, although numerous twinning and intergrowth defects as well as antiphase boundaries were detected. The presence of such defects results in the pseudo-body-centered-cubic diffraction patterns observed in single-crystal X-ray diffraction experiments. NMR and resistivity characterization of Ba8Au16P30 indicated paramagnetic metallic properties with a room-temperature resistivity of 1.7 mΩ cm. Ba8Au16P30 exhibits a low total thermal conductivity (0.62 W m(-1) K(-1)) and an unprecedentedly low lattice thermal conductivity (0.18 W m(-1) K(-1)) at room temperature. The values of the thermal conductivity for Ba8Au16P30 are significantly lower than the typical values reported for solid crystalline compounds. We attribute such low thermal conductivity values to the presence of a large number of heavy atoms (Au) in the framework and the formation of multiple twinning interfaces and antiphase defects, which are effective scatterers of heat-carrying phonons.

  9. Semiconductiong Properties of Clathrates Ba8@Ge43: ab initio Study

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Tsumuraya, Kazuo; Takenaka, Hiroyuki; Suzuki, Akihiko; Tanigaki, Katsumi

    2003-03-01

    The Si-clathrates have been usually synthesized when alkaline or alkaline-earth atoms are coexisted with the host Si atoms, which is also the case for the Ge-clathrates. The I-encapsulating Si-clathrates have been also synthesized recently. In the case of the hydrate clathrates, the formation has been controlled by both the sizes of the endohedral molecules and the hydrophobic interactions of the molecules in the water.[1] We study the mechanism of the clathrate formation through the binding nature of the Si-X and Ge-X dimers, where X is selected elements in the periodic table. We calculate the charge transfers (population analysis), the binding energies, and the bonding distances using the ab-initio molecular dynamics method with planewaves and pseudo-potentials. We discuss the mechanism of the formation of the Si-clathrates comparing with that of the hydrate clathrates and evaluate the stability of clathrates predicted by the present study. [1]E.Dendy Sloan,Jr, Clathrate Hydrates of Natural Gasses, Marcel Dekker, 1998.

  10. Formation and spectra of clathrate hydrates of methanol and methanol-ether mixtures

    NASA Astrophysics Data System (ADS)

    Williams, Kenneth Dixon; Devlin, J. Paul

    1997-10-01

    Infrared spectra of mixed clathrate hydrates, with either ethylene oxide (EO) or tetrahydrofuran (THF) and methanol molecules as the guest species, have been obtained from thin films prepared by vapor deposition of D 2O mixtures in the 115-130 K range. Although methanol acts as a suppressant to the direct vapor deposition of a type I clathrate with EO, nearly complete conversion of 115 K amorphous codeposits, to the crystalline mixed clathrate, occurs upon warming near 150 K. By contrast, the type II clathrate of THF shows an increased crystalline quality when methanol is included in the vapor deposits of the mixed clathrate hydrate at 130 K. The observation of the OD stretch-mode band of weakly bonded CD 3OD near 2575 cm -1 is part of the evidence that the methanol molecules are encaged. However, as shown theoretically by Tanaka, the clathrate hydrates of methanol, even when mixed with an ether help gas, are not stable structures but form at low temperatures because of kinetic factors, only to decompose in the 140-160 K range. Attempts to prepare a simple type I or type II clathrate hydrate of methanol have produced mixed results. Limited amounts of clathrate hydrate form during deposition but annealing does not result in complete conversion to crystalline clathrates, particularly for host : guest ratios of 17 : 1.

  11. Potential infrared relaxation channels calculated for CO2 clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Lakhlifi, Azzedine; Dahoo, Pierre Richard; Chassefière, Eric

    2017-01-01

    The infrared bar-spectrum of a single carbon dioxide molecule encapsulated in nano-cage clathrate hydrate is determined using the LD (Lakhlifi-Dahoo) extended site inclusion model successfully applied to analyze the spectra of CO2 isotopologues isolated in rare gas matrices. Trapping is energetically more favorable in clathrate structure of type sI than sII. CO2 exhibits hindered orientational motions (librational motions) around its equilibrium configurations in the small and large nano-cages. The orientation transitions are weak, and the spectra are purely vibrational. In the static field inside the cage, the doubly degenerate bending mode ν2 is blue shifted and split. From the scheme of the calculated energy levels for the different degrees of freedom, which is comparable to that of CO2 in rare gas matrices, it is conjectured that infrared excited CO2 will rather relax radiatively. Non-radiative channels can be analyzed by binary collision model.

  12. Gas storage in "dry water" and "dry gel" clathrates.

    PubMed

    Carter, Benjamin O; Wang, Weixing; Adams, Dave J; Cooper, Andrew I

    2010-03-02

    "Dry water" (DW) is a free-flowing powder prepared by mixing water, hydrophobic silica particles, and air at high speeds. We demonstrated recently that DW can be used to dramatically enhance methane uptake rates in methane gas hydrate (MGH). Here, we expand on our initial work, demonstrating that DW can be used to increase the kinetics of formation of gas clathrates for gases other than methane, such as CO(2) and Kr. We also show that the stability of the system toward coalescence can be increased via the inclusion of a gelling agent to form a "dry gel", thus dramatically improving the recyclability of the material. For example, the addition of gellan gum allows effective reuse over at least eight clathration cycles without the need for reblending. DW and its "dry gel" modification may represent a potential platform for recyclable gas storage or gas separation on a practicable time scale in a static, unmixed system.

  13. Ft-Ir Spectroscopic Study Of Co(1-Propanethiol)2Ni(Cn)4·Benzene Clathrate

    NASA Astrophysics Data System (ADS)

    Türköz, D.; Kartal, Z.; Bahçeli, S.

    2004-08-01

    By vibrational spectroscopy of the new Hofmann-propanethiol-type clathrate Co(1-propanethiol) 2Ni(CN)4·Benzene it is shown that its structure is similar structure to those of other Hofmanntype clathrates.

  14. CO2-SO2 clathrate hydrate formation on early Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Dartois, E.; Herri, J.; Tian, F.; Schmidt, F.; Mousis, O.; Lakhlifi, A.

    2013-12-01

    It is generally agreed that a dense CO2-dominant atmosphere was necessary in order to keep early Mars warm and wet. However, current models have not been able to produce surface temperature higher than the freezing point of water. Most sulfate minerals discovered on Mars are dated no earlier than the Hesperian, despite likely much stronger volcanic activities and more substantial release of sulfur-bearing gases into Martian atmosphere during the Noachian. Here we show, using a 1-D radiative-convective-photochemical model, that clathrate formation during the Noachian would have buffered the atmospheric CO2 pressure of early Mars at ~2 bar and maintained a global average surface temperature ~230 K. Because clathrates trap SO2 more favorably than CO2, all volcanically outgassed sulfur would have been trapped in Noachian Mars cryosphere, preventing a significant formation of sulfate minerals during the Noachian and inhibiting carbonates from forming at the surface in acidic water resulting from the local melting of the SO2-rich cryosphere. The massive formation of sulfate minerals at the surface of Mars during the Hesperian could be the consequence of a drop of the CO2 pressure below a 2-bar threshold value at the late Noachian-Hesperian transition, which would have released sulfur gases into the atmosphere from both the Noachian sulfur-rich cryosphere and still active Tharsis volcanism. A lower value of the pressure threshold, down to ~0.5 bar, could have been sufficient to maintain middle and high latitude regions below the clathrate formation temperature during the Noachian and to make the trapping of SO2 in clathrates efficient. Our hypothesis could allow to explain the formation of chaotic terrains and outflow channels, and the occurrence of episodic warm episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain the formation of valley networks and the degradation of impact craters, but remain to be confirmed by further modeling.

  15. On the possibilty of clathrate hydrates on the Moon

    NASA Technical Reports Server (NTRS)

    Duxbury, N.; Nealson, K.; Romanovsky, V.

    2000-01-01

    One of the most important inferences of the Lunar Prospector mission data was the existence of subsurface water ice in the permanently shadowed craters near both lunar poles [Feldman et al., 1998]. We propose and substantiate an alternative explanation that hydrogen can exist in the shallow lunar subsurface in the form of clathrate hydrates: CH4 . 6H(2)o and/or CO2 . 6H(2)o.

  16. CO2-SO2 clathrate hydrate formation on early Mars

    NASA Astrophysics Data System (ADS)

    Chassefière, Eric; Dartois, Emmanuel; Herri, Jean-Michel; Tian, Feng; Schmidt, Frédéric; Mousis, Olivier; Lakhlifi, Azzedine

    2013-04-01

    It is generally agreed that a dense CO2-dominant atmosphere was necessary in order to keep early Mars warm and wet. However, current models have not been able to produce surface temperature higher than the freezing point of water. Most sulfate minerals discovered on Mars are dated no earlier than the Hesperian, despite likely much stronger volcanic activities and more substantial release of sulfur-bearing gases into martian atmosphere during the Noachian. Here we show, using a 1-D radiative-convective-photochemical model, that clathrate formation during the Noachian would have buffered the atmospheric CO2 pressure of early Mars at ˜2 bar and maintained a global average surface temperature ˜230 K. Because clathrates trap SO2 more favorably than CO2, all volcanically outgassed sulfur would have been trapped in Noachian Mars cryosphere, preventing a significant formation of sulfate minerals during the Noachian and inhibiting carbonates from forming at the surface in acidic water resulting from the local melting of the SO2-rich cryosphere. The massive formation of sulfate minerals at the surface of Mars during the Hesperian could be the consequence of a drop of the CO2 pressure below a 2-bar threshold value at the late Noachian-Hesperian transition, which would have released sulfur gases into the atmosphere from both the Noachian sulfur-rich cryosphere and still active Tharsis volcanism. A lower value of the pressure threshold, down to ˜0.5 bar, could have been sufficient to maintain middle and high latitude regions below the clathrate formation temperature during the Noachian and to make the trapping of SO2 in clathrates efficient. Our hypothesis could allow to explain the formation of chaotic terrains and outflow channels, and the occurrence of episodic warm episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain the formation of valley networks and the degradation of impact craters, but remain to be confirmed by further modeling.

  17. A theoretical examination of known and hypothetical clathrate hydrate materials

    NASA Astrophysics Data System (ADS)

    Tribello, Gareth A.; Slater, Ben

    2009-07-01

    The recent synthesis of a new hydrogen binary hydrate with the sH structure has highlighted the potential storage capabilities of water clathrates [T. A. Strobel, C. A. Koh, and E. D. Sloan, J. Phys. Chem. B 112, 1885 (2008) and A. R. C. Duarte, A. Shariati, L. J. Rovetto, and C. J. Peters, J. Phys. Chem. B 112, 1888 (2008)]. In this work, the absorption of hydrogen and the promoters used in the experimental work are considered using a simplified model for the host-guest interaction, which allows one to understand the stabilizing effects of multiple help molecules. Two further hypothetical clathrates, which are isostructural with known zeolite structures, are also investigated. It is shown that the energy gained by absorbing adamantane into these two frameworks is far greater than that gained upon absorption of adamantane into the sH structure. Hence, a clathrate with the same topology as the DDR (Sigma 1) zeolite may be synthesizable with adamantane and hydrogen as guest molecules as, in the conditions explored here, this phase appears to be more stable than the sH structure.

  18. Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate

    PubMed Central

    Zhu, Jinlong; Du, Shiyu; Yu, Xiaohui; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C.; Germann, Timothy C.; Francisco, Joseph S.; Izumi, Fujio; Momma, Koichi; Kawamura, Yukihiko; Jin, Changqing; Zhao, Yusheng

    2014-01-01

    Carbon monoxide clathrate hydrate is a potentially important constituent in the solar system. In contrast to the well-established relation between the size of gaseous molecule and hydrate structure, previous work showed that carbon monoxide molecules preferentially form structure-I rather than structure-II gas hydrate. Resolving this discrepancy is fundamentally important to understanding clathrate formation, structure stabilization and the role the dipole moment/molecular polarizability plays in these processes. Here we report the synthesis of structure-II carbon monoxide hydrate under moderate high-pressure/low-temperature conditions. We demonstrate that the relative stability between structure-I and structure-II hydrates is primarily determined by kinetically controlled cage filling and associated binding energies. Within hexakaidecahedral cage, molecular dynamic simulations of density distributions reveal eight low-energy wells forming a cubic geometry in favour of the occupancy of carbon monoxide molecules, suggesting that the carbon monoxide–water and carbon monoxide–carbon monoxide interactions with adjacent cages provide a significant source of stability for the structure-II clathrate framework. PMID:24936712

  19. Noble gas encapsulation: clathrate hydrates and their HF doped analogues.

    PubMed

    Mondal, Sukanta; Chattaraj, Pratim Kumar

    2014-09-07

    The significance of clathrate hydrates lies in their ability to encapsulate a vast range of inert gases. Although the natural abundance of a few noble gases (Kr and Xe) is poor their hydrates are generally abundant. It has already been reported that HF doping enhances the stability of hydrogen hydrates and methane hydrates, which prompted us to perform a model study on helium, neon and argon hydrates with their HF doped analogues. For this purpose 5(12), 5(12)6(8) and their HF doped analogues are taken as the model clathrate hydrates, which are among the building blocks of sI, sII and sH types of clathrate hydrate crystals. We use the dispersion corrected and gradient corrected hybrid density functional theory for the calculation of thermodynamic parameters as well as conceptual density functional theory based reactivity descriptors. The method of the ab initio molecular dynamics (AIMD) simulation is used through atom centered density matrix propagation (ADMP) techniques to envisage the structural behaviour of different noble gas hydrates on a 500 fs timescale. Electron density analysis is carried out to understand the nature of Ng-OH2, Ng-FH and Ng-Ng interactions. The current results noticeably demonstrate that the noble gas (He, Ne, and Ar) encapsulation ability of 5(12), 5(12)6(8) and their HF doped analogues is thermodynamically favourable.

  20. Blue-colored tert-butylamine clathrate hydrate.

    PubMed

    Tani, Atsushi; Koyama, Satoshi; Urabe, Yusuke; Takato, Kenji; Sugahara, Takeshi; Ohgaki, Kazunari

    2014-11-26

    Clathrate hydrates preserve active species more stably than the other icy materials and investigation of the behavior of the active species elucidates the physicochemical properties of clathrate hydrates like guest-guest interaction. Color of the tert-butylamine clathrate hydrate changes to blue after gamma irradiation and is bleachable with visible light. The electron spin resonance (ESR) spectrum at 120 K mainly consists of a triplet signal of the C-centered radical NH2C(CH3)2CH2• together with a single signal at g = 2.0008. The latter signal disappears after light exposure. These results indicate that both the blue color and the single ESR signal are derived from trapped electrons in the hydrate. They thermally decay around 140-160 K by the first-order reaction, and the activation energy is 27 kJ/mol. Since tert-butylamine molecules can capture protons due to the high proton affinity, electrons may remain in the hydrate without reacting with protons, making the hydrate blue after gamma irradiation. The long-lived trapped electrons in the tert-butylamine hydrate have an advantage to investigate those in icy materials because tert-butylamine hydrate is nonionic and has a tetra-coordinated host water network like crystalline ice without any substitution for water molecules.

  1. Alteration of volatile inventories by polar clathrate formation on Mars.

    PubMed

    Musselwhite, D; Lunine, J I

    1995-11-25

    Recent models of chaotic variation in the Martian obliquity suggest that CO2 could be released during times of high obliquity and then recaptured in the polar caps as ice or clathrate during times of lower obliquity (Jakosky, et al., 1995). A natural implication of clathrate trapping is that other species in the Martian atmosphere, including noble gases, must incorporate in the water ice structure as well, in varying amounts according to the size and polarizability of the molecules as well as their atmospheric abundances. For nominal estimates of cap volume and amount of incorporated CO2 , we find that the current atmospheric inventory of noble gases is not representative of the bulk inventory in the Martian surface-atmosphere system. In particular, xenon and krypton are underrepresented in the present atmosphere. Models of source regions for Martian volatiles, which are constrained by noble gas abundances, must be modified to take these fractionation effects into account if indeed evidence for large amounts of polar clathrates is found.

  2. Physical modeling of the formation of clathrate hydrates of methane

    NASA Astrophysics Data System (ADS)

    Drobyshev, A.; Aldiyarov, A.; Kurnosov, V.; Katpaeva, K.; Korshikov, E.; Sokolov, D.; Shinbayeva, A.; Timchenko, A.

    2015-06-01

    Nowadays natural gas hydrates attract special attention as a possible source of fossil fuel. According to various estimates, the reserves of hydrocarbons in hydrates exceed considerably explored reserves of natural gas. Due to the clathrate structure the unit volume of the gas hydrate can contain up to 160-180 volumes of pure gas. In recent years interest to a problem of gas hydrates has considerably increased. Such changes are connected with the progress in searches of the alternative sources of hydrocarbonic raw materials in countries that do not possess the resources of energy carriers. Thus gas hydrates are nonconventional sources of the hydrocarbonic raw materials which can be developed in the near future. At the same time, mechanisms of methane clathrate hydrates formations have not reached an advanced level, their thermophysical and mechanical properties have not been investigated profoundly. Thereby our experimental modeling of the processes of formation of methane clathrate hydrates in water cryomatrix prepared by co-condensation from the gas phase onto a cooled substrate was carried out over the range of condensation temperatures 12-60 K and pressures 10-4-10-6 Torr. In our experiments the concentration of methane in water varied in the range of 5%-90%. The thickness deposited films was 30-60 μm. The vibrational spectra of two-component thin films of CH4 + H2O condensates were measured and analyzed.

  3. Synthesis and structural characterization of the new clathrates K8Cd4Ge42, Rb8Cd4Ge42, and Cs8Cd4Ge42

    DOE PAGES

    Schafer, Marion; Bobev, Svilen

    2016-03-25

    This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K8Cd3.77(7)Ge42.23, Rb8Cd3.65(7)Ge42.35, and Cs7.80(1)Cd3.65(6)Ge42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. Furthermore, this and several other details of the crystal chemistry are elaborated.

  4. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  5. Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C.

    2007-01-01

    We present a laboratory procedure, suitable for high school and undergraduate students, for preparing and studying propane clathrate hydrate. Because of their gas storage potential and large natural deposits, gas clathrate hydrates may have economic importance both as an energy source and a transportation medium. Similar to pure ice, the gas…

  6. Clathrate formation and phase equilibria in the thiourea-bromoform system

    NASA Astrophysics Data System (ADS)

    Chekhova, G. N.; Shubin, Yu. V.; Pinakov, D. V.; Alferova, N. I.

    2008-07-01

    Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270 455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100 35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3 c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.

  7. Oxime-induced reactivation of carboxylesterase inhibited by organophosphorus compounds

    SciTech Connect

    Maxwell, D.M.; Lieske, C.N.; Brecht, K.M.

    1994-06-01

    A structure-activity analysis of the ability of oximes to reactivate rat plasma carboxylesterase (CaE) that was inhibited by organophosphorus (OP) compounds revealed that uncharged oximes, such as 2,3-butanedione monoxime (diacetylmonoxime) or monoisonitrosoacetone, were better reactivators than cationic oximes. Cationic oximes that are excellent reactivators of OP-inhibited acetylcholinesterase, such as pyridine-2-aldoxime or the bis-pyridine aldoximes, HI-6 and TMB. 4, produced poor reactivation of OP-inhibited CaE. The best uncharged reactivator was 2,3. butanedione monoxime, which produced complete reactivation at 0.3 mM in 2 h of CaE that was inhibited by phosphinates, alkoxy-containing phosphates, and alkoxy-containing phosphonates. Complete reactivation of CaE could be achieved even after inhibition by phosphonates with highly branched alkoxy groups, such as sarin and soman, that undergo rapid aging with acetylcholinesterase. CaE that was inhibited by phosphonates or phosphates that contained aryloxy groups were reactivated to a lesser extent. The cause of this decreased reactivation appears to be an oxime-induced aging reaction that competes with the reactivation reaction. This oxime-induced aging reaction is accelerated by electron-withdrawing substituents on the aryloxy groups of phosphonates and by the presence of multiple aryloxy groups on phosphates. Thus, reactivation and aging of OP-inhibited CaE differ from the same processes for OP- inhibited acetylcholinesterase in both their oxime specificity and inhibitor specificity and, presumably, in their underlying mechanisms.

  8. Non Equilibrium Transformations of Molecular Compounds Induced Mechanically

    SciTech Connect

    Descamps, M.; Willart, J. F.; Dudognon, E.

    2006-05-05

    Results clarifying the effects of mechanical milling on molecular solids are shortly reviewed. Special attention has been paid to the temperature of milling with regard to the glass transition temperature of the compounds. It is shown that decreasing the grinding temperature has for incidence to increase the amorphization tendency whereas milling above Tg produces a crystal-to-crystal transformation between polymorphic varieties. These observations contradict the usual proposition that grinding transforms the physical state only by a heating effect which induces a local melting. Equilibrium thermodynamics does not seem to be appropriate for describing the process. The driven alloys concept offers a more rational framework to interpret the effect of the milling temperature. Other results are presented which demonstrate the possibility for grinding to realize low temperature solid state alloying which offers new promising ways to stabilize amorphous molecular solids. In a second part the effect of dehydration of a molecular hydrate is described. It is shown that the rate of the dehydration process is a driving force for this other type of mechanical non equilibrium transformation.

  9. Thermoelectric Properties of Au- Containing Type-I Clathrates Ba8AuxGa16-3xGe30+2x

    SciTech Connect

    Ye, Zuxin; Cho, Jung Young; Tessema, Misle M.; Salvador, James R.; Waldo, Richard A.; Yang, Jihui; Wang, Hsin; Cai, Wei; Kirkham, Melanie J; Yang, Jiong; Zhang, Wenqing

    2014-01-01

    Type I clathrates, with compositions based on Ba8Ga16Ge30, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S2/ where is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution with a thermoelectric figure of merit ZT ~ 0.63 at temperature T = 740 K for the composition Ba8Au5.47Ge39.96. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  10. Heat-pump cool storage in a clathrate of freon

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  11. Migration of hydrogen radicals through clathrate hydrate cages

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, John A.

    2009-09-01

    Electronic structure calculations are used to determine energy barriers to hydrogen radical migration in structure II clathrate small and large cages. Migration of H-radicals through pentagonal and hexagonal faces of small and large cages are considered and energies barriers calculated at the MP2 level with the 6-311++G( d, p) basis set are 61 and 17 kJ mol -1, respectively. Energy barriers (with tunneling corrections) are used to estimate escape rates from the cages and to explain results of recent experiments on the transformation of n-propyl radical in the propane hydrate and the behavior of hydrogen radicals in tetrahydrofuran/H 2 hydrates.

  12. Stability and Vibrations of Guest Molecules in the Type II Clathrate Hydrate: A First-Principles Study of Solid Phase.

    PubMed

    Cao, Xiaoxiao; Su, Yan; Zhao, Jijun

    2015-07-09

    Natural gas mixtures are inclusion compounds composed of major light hydrocarbon gaseous molecules (CH4, C2H6, C3H6, and C3H8). Previous ab initio calculations were mainly limited by the cluster models. For the first time, we report first-principles calculations on the stability and vibrational properties of the gas molecules inside the crystalline lattice of type II clathrate. In accordance with our calculations, the larger the size of guest molecule, the more stable the clathrate hydrate for small-sized alkane guest molecules (CnHm, n ≤ 3, m ≤ 8). The interaction energy per guest molecule gradually increases as the number of guest molecules increase for both sII pure and sII mixed hydrates. In addition, the vibrational frequencies of guest molecules trapped in sII hydrate are also simulated. The C-C stretching frequency shows a blue shift as the amount of guest molecules increase. Our theoretical results prove to be valuable insight for identifying the types of guest molecules from experimental spectroscopic data.

  13. HPHT synthesis, structure and electrical properties of type-I clathrates Ba8AlxSi46-x

    NASA Astrophysics Data System (ADS)

    Liu, Binwu; Jia, Xiaopeng; Sun, Hairui; Sun, Bing; Zhang, Yuewen; Liu, Haiqiang; Kong, Lingjiao; Huo, Dexuan; Ma, Hongan

    2016-01-01

    Clathrate compounds Ba8AlxSi46-x were successfully synthesized using the method of high-pressure and high-temperature (HPHT). In this process, we used BaSi2 as one of the starting materials in place of Ba metals, which reduces the complexity of the program caused by the extremely high chemical reactivity. By using this method, the processing time was reduced from few days to an hour. X-ray diffraction and structural refinement indicated this composition crystallized in type-I clathrate phase. Bond length analysis showed the Ba atoms in small dodecahedron had spherical thermal ellipsoids while those in large tetrakaidecahedron displayed anisotropic thermal ellipsoids. The negative Seebeck coefficient indicated transport processes were dominated by electrons as carriers, and increased with the increasing temperature. The electrical properties, including Seebeck coefficient and Power factor, were greatly enhanced by Al substitution. Middle: X-ray Rietveld refinement profile for Ba8Si46 and element mapping for Ba8Al16Si30. Right: Temperature dependence of Seebeck coefficient for Ba8AlxSi46-x prepared by HPHT.

  14. High pressure-temperature Raman spectroscopy of H2-H2O clathrate.

    NASA Astrophysics Data System (ADS)

    Somayazulu, Maddury; Levedahl, Alexander; Goncharov, Alexander; Mao, Ho-Kwang; Hemley, Russell

    2007-03-01

    The melting curve of the C2 clathrate H2-H2O has been determined by in-situ Raman spectroscopy measurements in an externally heated diamond anvil cell. We have determined the melting curve to a maximum pressure of 27 GPa. These are the first measurements on the melting line in this clathrate. Depending on the stoichiometry of the starting mixture of H2 and H2O, we are able to study either a mixture of C2 and H2O or C2 and H2. In either case, we were able to pinpoint the melting of the clathrate from the measurements of the molecular stretching mode (vibron) in the clathrate. In the case of C2 + Ice VII, we observe the vibron in the clathrate at a frequency higher than in pure H2 at the same pressure. We have cross-calibrated the melting temperatures using the Stokes-anti Stokes ratio of the diamond first order and Raman active TO phonon of cubic Boron Nitride. We find that the clathrate melts well above the H2 melting at all pressures studied indicating that the stabilization of this clathrate at high pressures is indeed due to interactions between the host and guest molecules.

  15. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  16. Prediction of clathrate structure type and guest position by molecular mechanics.

    PubMed

    Fleischer, Everly B; Janda, Kenneth C

    2013-05-16

    The clathrate hydrates occur in various types in which the number, size, and shape of the various cages differ. Usually the clathrate type of a specific guest is predicted by the size and shape of the molecular guest. We have developed a methodology to determine the clathrate type employing molecular mechanics with the MMFF force field employing a strategy to calculate the energy of formation of the clathrate from the sum of the guest/cage energies. The clathrate type with the most negative (most stable) energy of formation would be the type predicted (we mainly focused on type I, type II, or bromine type). This strategy allows for a calculation to predict the clathrate type for any cage guest in a few minutes on a laptop computer. It proved successful in predicting the clathrate structure for 46 out of 47 guest molecules. The molecular mechanics calculations also provide a prediction of the guest position within the cage and clathrate structure. These predictions are generally consistent with the X-ray and neutron diffraction studies. By supplementing the diffraction study with molecular mechanics, we gain a more detailed insight regarding the details of the structure. We have also compared MM calculations to studies of the multiple occupancy of the cages. Finally, we present a density functional calculation that demonstrates that the inside of the clathrates cages have a relatively uniform and low electrostatic potential in comparison with the outside oxygen and hydrogen atoms. This implies that van der Waals forces will usually be dominant in the guest-cage interactions.

  17. Coincident sediment slump/clathrate complexes on the U.S. Atlantic continental slope

    USGS Publications Warehouse

    Carpenter, G.

    1981-01-01

    High-resolution seismic reflection data recorded on the continental slope off the east coast of the United States have revealed instances of sediment mass movement (slumps) which appear to occur above clathrate accumulations. The slumping is believed to be related to the liberation of free gas by clathrate decomposition and consequent weakening of unconsolidated sediments above the clathrate. Pleistocene sea-level lowering and/or post-Pleistocene bottom water temperature increases may have had a significant role in this process. ?? 1981 A.M. Dowden, Inc.

  18. Multiple H2 occupancy of cages of clathrate hydrate under mild conditions.

    PubMed

    Lu, Hailong; Wang, Jianwei; Liu, Changling; Ratcliffe, Christopher I; Becker, Udo; Kumar, Rajnish; Ripmeester, John

    2012-06-06

    Experiments were carried out by reacting H(2) gas with N(2) hydrate at a temperature of 243 K and a pressure of 15 MPa. The characterizations of the reaction products indicated that multiple H(2) molecules can be loaded into both large and small cages of structure II clathrate hydrates. The realization of multiple H(2) occupancy of hydrate cages under moderate conditions not only brings new insights into hydrogen clathrates but also refreshes the perspective of clathrate hydrates as hydrogen storage media.

  19. Polarization response of clathrate hydrates capsulated with guest molecules.

    PubMed

    Zeng, Qun; Li, Jinshan; Huang, Hui; Wang, Xinqin; Yang, Mingli

    2016-05-28

    Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest-cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads to the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.

  20. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan

    1997-01-01

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  1. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

    1997-06-17

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  2. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    SciTech Connect

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  3. Dense Semi-Clathrates at High Pressure: A Study of the Water-tert-Butylamine System.

    PubMed

    Granero-García, Rubén; Falenty, Andrzej; Fabbiani, Francesca P A

    2017-03-13

    In situ high-pressure crystallization and diffraction techniques have been applied to obtain two very structurally distinct semi-clathrates of the tert-butylamine-water system with hydration numbers 5.65 and 5.8, respectively, thereby considerably reducing a notable hydration gap between the monohydrate and the 71/4 -hydrate that results when crystallization space is explored by temperature alone. Both structures can be considered as an intriguing solid-state example of hydrophobic hydration, in which the water network creates wide tert-butylamine-filled channels stabilized by cross-linking hydrogen bonds. The existence of interconnected channels might also add low hydration structures to a list of potential targets for hydrogen storage. A detailed analysis of the topology of host water and host-guest interactions is reported and extended to those of other hydrates of the compound. This analysis offers new insight into properties of the tert-butylamine-water system and provides some clues as to the occurrence of the sizable number of hydrates of this compound.

  4. Two host-inducible genes of Rhizobium fredii and characterization of the inducing compound.

    PubMed Central

    Sadowsky, M J; Olson, E R; Foster, V E; Kosslak, R M; Verma, D P

    1988-01-01

    Random transcription fusions with Mu d1(Kan lac) generated three mutants in Rhizobium fredii (strain USDA 201) which showed induction of beta-galactosidase when grown in root exudate of the host plants Glycine max, Phaseolus vulgaris, and Vigna ungliculata. Two genes were isolated from a library of total plasmid DNA of one of the mutants, 3F1. These genes, present in tandem on a 4.2-kilobase HindIII fragment, appear in one copy each on the symbiotic plasmid and do not hybridize to the Rhizobium meliloti common nodulation region. They comprise two separate transcriptional units coding for about 450 and 950 nucleotides, both of which are transcribed in the same direction. The two open reading frames are separated by 586 base pairs, and the 5H regions of the two genes show a common sequence. No similarity was found with the promoter areas of Rhizobium trifolii, R. meliloti, or Bradyrhizobium japonicum nif genes and with any known nodulation genes. Regions homologous to both sequences were detected in EcoRI digests of genomic DNAs from B. japonicum USDA 110, USDA 122, and 61A76, but not in genomic DNA from R. trifolii, Rhizobium leguminosarum, or Rhizobium phaseoli. Mass spectrometry and nuclear magnetic resonance analysis indicated that the inducing compound has properties of 4',7-dihydroxyisoflavone, daidzein. These results suggest that, in addition to common nodulation genes, several other genes appear to be specifically induced by compounds in the root exudate of the host plants. Images PMID:2447061

  5. On the possibility for Rb- and Eu-cation ordering in type-I clathrates: synthesis and homogeneity range of the novel compounds Rb(8-x)Eu(x)(In,Ge)46 (0.6 ≤ x ≤ 1.8).

    PubMed

    Schäfer, Marion C; Bobev, Svilen

    2013-12-15

    Studies in the Rb-Eu-In-Ge system confirm the existence of the phase Rb(8-x)Eu(x)(In,Ge)46 (0.6 ≤ x ≤ 1.8), crystallizing with the cubic clathrate type-I structure. The In and Ge content can be varied, concomitant with changes in the Rb-Eu ratio. Two of the three framework sites are occupied by statistical mixtures of Ge and In atoms, while the site with the lowest multiplicity is taken by the In atoms only. Based on the three refined formulae [heptarubidium europium nonaindium heptatriacontagermanide, Rb7.39(3)Eu0.61(3)In8.88(5)Ge37.12(5), and two forms of hexarubidium dieuropium decaindium hexatriacontagermanide, Rb6.30(3)Eu1.70(3)In9.76(4)Ge36.24(4) and Rb6.24(2)Eu1.76(2)In10.16(5)Ge35.84(5)] and the explored different synthetic routes, it can be suggested that the known ternary phase Rb8In8Ge38 and the hypothetical quaternary phase Rb6Eu2In10Ge36 represent the boundaries of the homogeneity range. In the former limiting composition, both the (Ge,In)20 and the (Ge,In)24 cages are fully occupied by Rb atoms only, whereas Rb6Eu2In10Ge36 has Rb atoms encapsulated in the larger tetrakaidecahedra, with Eu atoms filling the smaller pentagonal dodecahedra. For the solid solutions Rb(8-x)Eu(x)(In,Ge)46, Rb and Eu are statistically disordered in the dodecahedral cage, and the tetrakaidecahedral cage is only occupied by Rb atoms.

  6. Benzene solubility in ionic liquids: working toward an understanding of liquid clathrate formation.

    PubMed

    Pereira, Jorge F B; Flores, Luis A; Wang, Hui; Rogers, Robin D

    2014-11-17

    The solubility of benzene in 15 imidazolium, pyrrolidinium, pyridinium, and piperidinium ionic liquids has been determined; the resulting, benzene-saturated ionic liquid solutions, also known as liquid clathrates, were examined with (1) H and (19) F nuclear magnetic resonance spectroscopy to try and understand the molecular interactions that control liquid clathrate formation. The results suggest that benzene interacts primarily with the cation of the ionic liquid, and that liquid clathrate formation (and benzene solubility) is controlled by the strength of the cation-anion interactions, that is, the stronger the cation-anion interaction, the lower the benzene solubility. Other factors that were determined to be important in the final amount of benzene in any given liquid clathrate phase included attractive interactions between the anion and benzene (when significant), and larger steric or free volume demands of the ions, both of which lead to greater benzene solubility.

  7. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.

    PubMed

    Kennedy, Martin; Mrofka, David; von der Borch, Chris

    2008-05-29

    The start of the Ediacaran period is defined by one of the most severe climate change events recorded in Earth history--the recovery from the Marinoan 'snowball' ice age, approximately 635 Myr ago (ref. 1). Marinoan glacial-marine deposits occur at equatorial palaeolatitudes, and are sharply overlain by a thin interval of carbonate that preserves marine carbon and sulphur isotopic excursions of about -5 and +15 parts per thousand, respectively; these deposits are thought to record widespread oceanic carbonate precipitation during postglacial sea level rise. This abrupt transition records a climate system in profound disequilibrium and contrasts sharply with the cyclical stratigraphic signal imparted by the balanced feedbacks modulating Phanerozoic deglaciation. Hypotheses accounting for the abruptness of deglaciation include ice albedo feedback, deep-ocean out-gassing during post-glacial oceanic overturn or methane hydrate destabilization. Here we report the broadest range of oxygen isotope values yet measured in marine sediments (-25 per thousand to +12 per thousand) in methane seeps in Marinoan deglacial sediments underlying the cap carbonate. This range of values is likely to be the result of mixing between ice-sheet-derived meteoric waters and clathrate-derived fluids during the flushing and destabilization of a clathrate field by glacial meltwater. The equatorial palaeolatitude implies a highly volatile shelf permafrost pool that is an order of magnitude larger than that of the present day. A pool of this size could have provided a massive biogeochemical feedback capable of triggering deglaciation and accounting for the global postglacial marine carbon and sulphur isotopic excursions, abrupt unidirectional warming, cap carbonate deposition, and a marine oxygen crisis. Our findings suggest that methane released from low-latitude permafrost clathrates therefore acted as a trigger and/or strong positive feedback for deglaciation and warming. Methane hydrate

  8. Models of a partially hydrated Titan interior with clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J.

    2012-04-01

    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  9. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions

    PubMed Central

    Nagashima, Hironori D.; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-01

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6–8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87–0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56–0.76 in the mass fractions for 5.6–8.0 mm samples and 0.37–0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar. PMID:26780867

  10. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions.

    PubMed

    Nagashima, Hironori D; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-19

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  11. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions

    NASA Astrophysics Data System (ADS)

    Nagashima, Hironori D.; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-01

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6–8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87–0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56–0.76 in the mass fractions for 5.6–8.0 mm samples and 0.37–0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  12. Vacancy and copper-doping effect on superconductivity for clathrate materials

    NASA Astrophysics Data System (ADS)

    Li, Yang; Liu, Yang; Chen, Ning; Cao, Guohui; Feng, Zhaosheng; Ross, Joseph H.

    2005-10-01

    We present a joint experimental and theoretical study of the superconductivity and electronic structures in type-I Cu-doped silicon clathrates and germanium clathrates. The superconducting critical temperature in Ba8Si46 xCux is shown to decrease strongly with copper content increasing. These results are corroborated by CASTEP approach, first-principles simulations calculated from the density-functional theory with plane waves and pseudopotentials. The simulations show that Cu-doping results in a large decrease of electronic density of states in Fermi level, which can explain the superconducting critical temperature decrease with Cu-doping in the BCS theoretical frame. Further, comparison of Ba8Ge46 and Ba8Si46 within the CASTEP approach shows that the superconductivity is an intrinsic property of the sp silicon and germanium clathrates without vacancy in the cage framework. By analysis of the density of states (DOS) and reported experimental results of the Zintl-like Ba8Ge43, a new mechanism of vacancy defect is suggested to explain the absence of superconductivity in Ge clathrates, which is of benefit to eliminating the divarication between theoretical prediction and the experimental observation for superconductivity in Ge clathrates. Keeping an entire Si and Ge cage structure without vacancy is the prerequisite for occurrence of superconductivity in clathrates.

  13. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  14. Radiation induced chemical changes of phenolic compounds in strawberries

    NASA Astrophysics Data System (ADS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  15. High-Pressure Torsion to Improve Thermoelectric Efficiency of Clathrates?

    NASA Astrophysics Data System (ADS)

    Yan, X.; Falmbigl, M.; Rogl, G.; Grytsiv, A.; Prokofiev, A.; Bauer, E.; Rogl, P.; Zehetbauer, M.; Paschen, S.

    2013-07-01

    High-pressure torsion (HPT), as a technique to produce severe plastic deformation, has been proven effective to improve the thermoelectric performance of skutterudites. In this report, we present microstructural and thermoelectric properties of the clathrate Ba8Cu3.5Ge41In1.5 processed by HPT. The sample was synthesized from high-purity elements, subsequently annealed, ball milled, and hot pressed, and finally subject to HPT. Compared with the ball-milled and hot-pressed sample, the HPT-processed sample has higher electrical resistivity and Seebeck coefficient, and lower thermal conductivity, electron concentration, and mobility, which is attributed to the reduced grain size and increased density of dislocations, point defects, and cracks. No essential improvement of the dimensionless thermoelectric figure of merit is observed in the investigated temperature range, questioning the universal versatility of this technique for improvement of thermoelectric materials.

  16. Residual entropy of ices and clathrates from Monte Carlo simulation

    SciTech Connect

    Kolafa, Jiří

    2014-05-28

    We calculated the residual entropy of ices (Ih, Ic, III, V, VI) and clathrates (I, II, H), assuming the same energy of all configurations satisfying the Bernal–Fowler ice rules. The Metropolis Monte Carlo simulations in the range of temperatures from infinity to a size-dependent threshold were followed by the thermodynamic integration. Convergence of the simulation and the finite-size effects were analyzed using the quasichemical approximation and the Debye–Hückel theory applied to the Bjerrum defects. The leading finite-size error terms, ln N/N, 1/N, and for the two-dimensional square ice model also 1/N{sup 3/2}, were used for an extrapolation to the thermodynamic limit. Finally, we discuss the influence of unequal energies of proton configurations.

  17. Hydroxyl radical-induced formation of highly oxidized organic compounds

    NASA Astrophysics Data System (ADS)

    Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipilä, Mikko; Kulmala, Markku; Ehn, Mikael

    2016-12-01

    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.

  18. Hydroxyl radical-induced formation of highly oxidized organic compounds

    PubMed Central

    Berndt, Torsten; Richters, Stefanie; Jokinen, Tuija; Hyttinen, Noora; Kurtén, Theo; Otkjær, Rasmus V.; Kjaergaard, Henrik G.; Stratmann, Frank; Herrmann, Hartmut; Sipilä, Mikko; Kulmala, Markku; Ehn, Mikael

    2016-01-01

    Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and β-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere. PMID:27910849

  19. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  20. Radioactive-induced tumors by phosphorus-32 as colloidal compound

    SciTech Connect

    Ubios, A.M.; Silberman, F.S.; Cabrini, R.L.

    1983-05-01

    Chromic colloidal phosphate labeled with 32P, which has been proposed for the treatment of several articular diseases, was injected intra-articularly in the knee joint of adult Wistar rats. After a 270 days minimum latent period, tumors began to appear in the injected zone, to a 70% frequency. Ten lung metastases were detected. In five cases, squamous cell carcinomas were induced in the injected area. The relevance of a sound evaluation of the risk involved in treatments with radioactive isotopes, is discussed.

  1. Direct measurements of the interactions between clathrate hydrate particles and water droplets.

    PubMed

    Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A

    2015-08-14

    Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.

  2. (N2)6Ne7: A High Pressure van der Waals Insertion Compound

    NASA Astrophysics Data System (ADS)

    Plisson, Thomas; Weck, Gunnar; Loubeyre, Paul

    2014-07-01

    The binary phase diagram of N2-Ne mixtures has been measured at 296 K by visual observation and Raman spectroscopy. The topology of the phase diagram points to the existence of the stoichiometric compound (N2)6Ne7. Its structure has been solved by single-crystal synchrotron x-ray diffraction. The N2 molecules form a guest lattice that hosts the Ne atoms. This insertion compound can be viewed as a clathrate with the centers of the N2 molecules forming distorted dodecahedron cages, each enclosing 14 Ne atoms. Remarkably, the (N2)6Ne7 compound is somehow the first clathrate organized by the quadrupolar interaction.

  3. (N(2))(6)Ne(7): A high pressure van der Waals insertion compound.

    PubMed

    Plisson, Thomas; Weck, Gunnar; Loubeyre, Paul

    2014-07-11

    The binary phase diagram of N(2)-Ne mixtures has been measured at 296 K by visual observation and Raman spectroscopy. The topology of the phase diagram points to the existence of the stoichiometric compound N(2))(6)Ne(7). Its structure has been solved by single-crystal synchrotron x-ray diffraction. The N(2) molecules form a guest lattice that hosts the Ne atoms. This insertion compound can be viewed as a clathrate with the centers of the N(2) molecules forming distorted dodecahedron cages, each enclosing 14 Ne atoms. Remarkably, the N(2))(6)Ne(7) compound is somehow the first clathrate organized by the quadrupolar interaction.

  4. Competition between the compound and the pre-compound emission processes in α-induced reactions at near astrophysical energy to well above it

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Sharma, Vijay Raj; Yadav, Abhiskek; Singh, Pushpendra P.; Singh, B. P.; Prasad, R.

    2016-04-01

    The study of pre-compound emission in α-induced reactions, particularly at the low incident energies, is of considerable interest as the pre-compound emission is more likely to occur at higher energies. With a view to study the competition between the compound and the pre-compound emission processes in α-induced reactions at different energies and with different targets, a systematics for neutron emission channels in targets 51V, 55Mn, 93Nb, 121, 123Sb and 141Pr at energy ranging from astrophysical interest to well above it, has been developed. The off-line γ-ray-spectrometry based activation technique has been adopted to measure the excitation functions. The experimental excitation functions have been analysed within the framework of the compound nucleus mechanism based on the Weisskopf-Ewing model and the pre-compound emission calculations based on the geometry dependent hybrid model. The analysis of the data shows that experimental excitation functions could be reproduced only when the pre-compound emission, simulated theoretically, is taken into account. The strength of pre-compound emission process for each system has been obtained by deducing the pre-compound fraction. Analysis of data indicates that in α-induced reactions, the pre-compound emission process plays an important role, particularly at the low incident energies, where the pure compound nucleus process is likely to dominate.

  5. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates.

    PubMed

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee

    2016-06-24

    A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.

  6. The mechanism of alcoholic beverage induced superconductivity in Fe-chalcogenide compounds

    NASA Astrophysics Data System (ADS)

    Deguchi, Keita; Demura, Satoshi; Okazaki, Hiroyuki; Denholme, Saleem; Fujioka, Masaya; Ozaki, Toshinori; Yamaguchi, Takahide; Takeya, Hiroyuki; Takano, Yoshihiko

    2013-03-01

    We have clarified the mechanism of alcoholic beverage induced superconductivity in Fe-chalcogenide compounds. Previously we reported that the bulk superconductivity in Fe-based compounds Fe(Te, Se) and Fe(Te, S) is achieved by heating in alcoholic beverages. However, the exact mechanism of how they act to enhance the superconductivity in the compounds remains unsolved. To understand the effect of alcoholic beverage treatment, we investigated the mechanism using a technology of metabolomic analysis. We found that weak acid in alcoholic beverages has the ability to deintercalate the excess Fe, which is not in favor of superconductivity. In this presentation, we will discuss the systematic mechanism to induce superconductivity in Fe-chalcogenide compounds.

  7. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates.

    PubMed

    Plattner, Nuria; Meuwly, Markus

    2014-01-14

    Vibrational frequency shifts of H2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H2 in the 5(12) cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5(12) cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5(12)6(4) cages for which higher occupation numbers than one H2 per cage are likely.

  8. Mechanism of Clathrate Formation through Binding Nature of Si-X and Ge-X dimers: ab initio Study

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Kazuo; Eguchi, Haruki; Takenaka, Hiroyuki; Suzuki, Akihiko

    2003-03-01

    The Si-clathrates have been synthesized when alkaline or alkaline-earth atoms are coexisted with the host Si atoms, which is also the case for the Ge-clathrates. The I-encapsulating Si-clathrates have been also synthesized recently. In the case of the hydrate clathrates, the formation has been controlled by both the sizes and the hydrophobic interactions of the endohedral molecules.[1] We study the mechanism of the clathrate formation through the binding nature of the Si-X and Ge-X dimmers, where X is selected elements in the periodic table. We calculate the charge transfers (population analysis), the binding energies, and the bonding distances using the ab-initio molecular dynamics method with planewaves and pseudo-potentials. We discuss the mechanism of the formation comparing with that of hydrate clathrates and evaluate the stability of clathrates predicted by the present study. [1]E.Dendy Sloan,Jr, Clathrate Hydrates of Natural Gasses, Marcel Dekker, 1998.

  9. The effect of classical and quantum dynamics on vibrational frequency shifts of H{sub 2} in clathrate hydrates

    SciTech Connect

    Plattner, Nuria; Meuwly, Markus

    2014-01-14

    Vibrational frequency shifts of H{sub 2} in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H{sub 2} in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H{sub 2} in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H{sub 2} vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H{sub 2} in the 5{sup 12} cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5{sup 12} cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5{sup 12}6{sup 4} cages for which higher occupation numbers than one H{sub 2} per cage are likely.

  10. Computational study on the antifreeze glycoproteins as inhibitors of clathrate-hydrate formation.

    PubMed

    Cruz-Torres, Armando; Romero-Martínez, Ascención; Galano, Annia

    2008-08-04

    The ability of antifreeze glycoproteins to inhibit clathrate-hydrate formation is studied using DFT. A 5(12) cavity, dodecahedral (H(2)O)(20), and the AATA peptide are used to model the inhibitor-clathrate interaction. The presence of AATA in the vicinity of the water cavities not only leads to the formation of complexes, with different peptide/cavity ratios, but also to the deformation of the cavity and to the elongation of several of the hydrogen bonds responsible for keeping the dodecahedral (H(2)O)(20) together. The complexes are formed through hydrogen bonding between the peptides and the water cavities. The glycoproteins are expected to anchor onto the clathrate surface, blocking the access of new water molecules and preventing the incipient crystals from growing. They are also expected to weaken the clathrate structure. Amide IR bands are associated with the complexes' formation. They are significantly red-shifted in the hydrogen-bonded systems compared to isolated AATA. The amide A band is the most sensitive to hydrogen bonding. In addition a distinctive band around 3100 cm(-1) is proposed for the identification of clathrate-peptide hydrogen-bonded complexes.

  11. Crystal growth of intermetallic clathrates: Floating zone process and ultra rapid crystallization

    NASA Astrophysics Data System (ADS)

    Prokofiev, A.; Yan, X.; Ikeda, M.; Löffler, S.; Paschen, S.

    2014-09-01

    We studied the crystal growth process of type-I transition metal clathrates in two different regimes: a regime of moderate cooling rate, realized with the floating zone technique, and a regime of ultra rapid cooling, realized by the melt spinning technique. In the former regime, bulk Ba8AuxSi46-x and Ba8Cu4.8GaxGe41.2-x single crystals were grown. We investigated segregation effects of the constituting elements by measurements of the composition profiles along the growth direction. The compositional non-uniformity results in a spatial variation of the electrical resistivity which is discussed as well. Structural features of clathrates and their extremely low thermal conductivities imply specifics in growth behavior which manifest themselves most pronouncedly in a rapid crystallization process. Our melt spinning experiments on Ba8Au5Si41 and Ba8Ni3.5Si42.5 (and earlier on some other clathrates) have revealed surprisingly large grains of at least 1 μm. Because of the anomalously high growth rate of the clathrate phase the formation of impurity phases is considerably kinetically suppressed. We present our scanning and transmission electron microscopy investigations of melt spun samples and discuss structural, thermodynamic and kinetic aspects of the unusual clathrate nucleation and crystallization.

  12. Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates

    SciTech Connect

    Lee, J.; Lee, Y; Takeya, S; Kawamura, T; Yamamoto, Y; Lee, Y; Yoon, J

    2010-01-01

    A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form of HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.

  13. Gas-phase synthesis and characterization of CH4-loaded hydroquinone clathrates.

    PubMed

    Lee, Jong-Won; Lee, Yongjae; Takeya, Satoshi; Kawamura, Taro; Yamamoto, Yoshitaka; Lee, Yun-Je; Yoon, Ji-Ho

    2010-03-11

    A CH(4)-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the alpha-form of crystalline HQ and CH(4) gas at 12 MPa and room temperature. Solid-state (13)C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH(4) molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH(4) molecules, that is, 0.69 CH(4) per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH(4)-loaded HQ clathrate adopts the beta-form of HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 A and c = 5.5038 A. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH(4)-loaded HQ clathrate is stable up to 368 K and gradually transforms to the alpha-form by releasing the confined CH(4) gases between 368-378 K. Using solid-state (13)C CP/MAS NMR, the reaction kinetics between the alpha-form HQ and CH(4) gas is qualitatively described in terms of the particle size of the crystalline HQ.

  14. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

    SciTech Connect

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; Davidowski, Stephen K.; Baggetto, Loic; Zhao, Ran; Cheng, Qian; Yarger, Jeffery L.; Veith, Gabriel M.; Ellis-Terrell, Carol; Miller, Michael A.; Chan, Kwai S.; Chan, Candace K.

    2015-05-05

    In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba8AlySi46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2 and 0.4 V vs. Li/Li+, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g-1 at a 5 mA g-1 rate were observed for silicon clathrate with composition Ba8Al8.54Si37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.

  15. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

    DOE PAGES

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; ...

    2015-05-05

    In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba8AlySi46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2 and 0.4 Vmore » vs. Li/Li+, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g-1 at a 5 mA g-1 rate were observed for silicon clathrate with composition Ba8Al8.54Si37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.« less

  16. A model for the formation and stabilization of charged water clathrates

    NASA Technical Reports Server (NTRS)

    Holland, P. M.; Castleman, A. W., Jr.

    1980-01-01

    A model for the formation and stabilization of charged water clathrates is presented which accounts for observed anomalies in H(+)(H2O)n ion distributions. These anomalies are observed in both ion cluster and neutral expansions and are consistent with the sizes expected for clathrate ions. That the same sizes are observed in both ion cluster and neutral expansions strongly suggests that a rapid ionic process is responsible for their formation. The proposed model is based on the high mobility and bonding effects of the excess proton in water. Computer simulations suggest that excess proton movement in a water clathrate would be suitable for stabilizing the clathrate structure as well as giving it access to a large number of nearly degenerate proton configurations. The formation of clathrates in charged water clusters of proper size can be ascribed to the following: rapid excess proton movement, a strong preference of the H3O(+) for a three-coordinate bonding structure (which is compatible with hydrogen bonding), and finally, relatively slow processes leading to thermal disorder.

  17. The inhibition of tetrahydrofuran clathrate-hydrate formation with antifreeze protein

    NASA Astrophysics Data System (ADS)

    Zeng, H.; Wilson, L. D.; Walker, V. K.; Ripmeester, J. A.

    2003-01-01

    The effect of Type I fish antifreeze protein (AFP) from the winter flounder, Pleuronectes americanus (Walbaum), (WfAFP) on the formation of tetrahydrofuran (THF) clathrate hydrate was studied by observing changes in THF crystal morphology and determining the induction time for nucleation. AFP retarded THF clathrate-hydrate growth at the tested temperatures and modified the THF clathrate-hydrate crystal morphology from octahedral to plate-like. AFP appears to be even more effective than the kinetic inhibitor, polyvinylpyrrolidone (PVP). Recombinant AFP from an insect, a spruce budworm, Choristoneura fumiferana (Clem.), moth, (Cf) was also tested for inhibition activity by observation of the THF-hydrate-crystal-growth habit. Like WfAFP, CfAFP appeared to show adsorption on multiple THF-hydrate-crystal faces. A protein with no antifreeze activity, cytochrome C, was used as a control and it neither changed the morphology of the THF clathrate-hydrate crystals, nor retarded the formation of the hydrate. Preliminary experiments on the inhibition activity of WfAFP on a natural gas hydrate assessed induction time and the amount of propane gas consumed. Similar to the observations for THF, the data indicated that WfAFP inhibited propane-hydrate growth. Taken together, these results support our hypothesis that AFPs can inhibit clathrate-hydrate growth and as well, offer promise for the understanding of the inhibition mechanism.

  18. Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation.

    PubMed

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A; Davidowski, Stephen K; Baggetto, Loïc; Zhao, Ran; Cheng, Qian; Yarger, Jeffery L; Veith, Gabriel M; Ellis-Terrell, Carol; Miller, Michael A; Chan, Kwai S; Chan, Candace K

    2015-06-01

    Silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on Ba8Al y Si46-y as the anode material for lithium-ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X-ray diffraction shows no discernible structural or volume changes even after electrochemical insertion of 44 Li (≈1 Li/Si) into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from large volume changes. The electrochemical reactions are proposed to occur as single phase reactions at approximately 0.2 and 0.4 V versus Li/Li(+) during lithiation and delithiation, respectively, distinct from diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g-(1) at a 5 mA g(-1) rate were observed for silicon clathrate with composition Ba8Al8.54Si37.46, corresponding to ≈1.18 Li/Si. These results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.

  19. High temperature thermoelectric transport properties of p-type Ba8Ga16AlxGe30-x type-I clathrates with high performance

    NASA Astrophysics Data System (ADS)

    Deng, Shukang; Tang, Xinfeng; Li, Peng; Zhang, Qingjie

    2008-04-01

    Using group-III atom Al as doping element, Ba8Ga16AlxGe30-x (x =1.0, 2.0, 3.0, 4.0, and 5.0) type-I clathrates with different Al content were synthesized by combining melting reaction with spark plasma sintering method. The effects of Al content on thermoelectric properties are investigated. X-ray diffraction patterns and Rietveld analysis reveal that the compounds prepared by this method are type-I clathrates and Al atom preference for the 6c site. The Al substitutions do not affect the atomic displacement parameters (ADPs) of framework atoms (Ge/Ga) and filled atoms (Ba) compared to that of Ba8Ga16Ge30, and the ADPs of Al are nearly equivalent to that of other framework Ge /Ga atoms. All specimens exhibit the behavior of the p-type conduction. The carrier concentration and electrical conductivity increase while Seebeck coefficient decreases with the increasing Al content for the specimens with ⩽4.0. Ba8Ga16Al3.0Ge27.0 compound possesses the relatively lower lattice thermal conductivity κL due to the mass fluctuation between Al atoms and other atoms in the framework; it is as low as 0.96W/mK at 300K. The maximum ZT value of 0.61 is obtained at 760K for Ba8Ga16Al3.0Ge27.0.

  20. Calculation of radiation damage induced by neutrons in compound materials

    NASA Astrophysics Data System (ADS)

    Lunéville, L.; Simeone, D.; Jouanne, C.

    2006-07-01

    Many years have been devoted to study the behaviour of solids submitted to impinging particles like ions or neutrons. The nuclear evaluations describe more and more accurately the various neutron-atom interactions. Anisotropic neutron-atom cross-sections are now available for many elements. Moreover, clear mathematical formalism now allows to calculate the number of displacements per atom in polyatomic targets in a realistic way using the binary collision approximation (BCA) framework. Even if these calculations do not take into account relaxation processes at the end of the displacement spike, they can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and fusion facilities like the European Spallation Source (ESS) and the International Fusion Material Irradiation Facility (IFMIF) on a defined material. In this paper, a formalism is presented to describe the neutron-atom cross-section and primary recoil spectra taking into account the anisotropy of nuclear reactions extracted from nuclear evaluations. Such a formalism permitted to compute displacement per atom production rate, primary and weighted recoil spectra within the BCA. The multigroup approximation has been used to calculate displacement per atom production rate and recoil spectra for a define nuclear reactor. All these informations are useful to compare recoil spectra and displacement per atom production rate produced by particle accelerator and nuclear reactor.

  1. Ultrafast laser induced local magnetization dynamics in Heusler compounds

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Müller, T.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2016-12-01

    The overarching goal of the field of femtomagnetism is to control, via laser light, the magnetic structure of matter on a femtosecond time scale. The temporal limits to the light-magnetism interaction are governed by the fact that the electron spin interacts indirectly with light, with current studies showing a laser induced global loss in the magnetic moment on a time scale of the order of a few 100 s of femtoseconds. In this work, by means of ab-initio calculations, we show that more complex magnetic materials - we use the example of the Heusler and half-Heusler alloys - allow for purely optical excitations to cause a significant change in the local moments on the order of 5 fs. This, being purely optical in nature, represents the ultimate mechanism for the short time scale manipulation of spins. Furthermore, we demonstrate that qualitative behaviour of this rich magnetic response to laser light can be deduced from the ground-state spectrum, thus providing a route to tailoring the response of some complex magnetic materials, like the Heuslers, to laser light by the well established methods for material design from ground-state calculations.

  2. Ultrafast laser induced local magnetization dynamics in Heusler compounds

    PubMed Central

    Elliott, P.; Müller, T.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2016-01-01

    The overarching goal of the field of femtomagnetism is to control, via laser light, the magnetic structure of matter on a femtosecond time scale. The temporal limits to the light-magnetism interaction are governed by the fact that the electron spin interacts indirectly with light, with current studies showing a laser induced global loss in the magnetic moment on a time scale of the order of a few 100 s of femtoseconds. In this work, by means of ab-initio calculations, we show that more complex magnetic materials - we use the example of the Heusler and half-Heusler alloys - allow for purely optical excitations to cause a significant change in the local moments on the order of 5 fs. This, being purely optical in nature, represents the ultimate mechanism for the short time scale manipulation of spins. Furthermore, we demonstrate that qualitative behaviour of this rich magnetic response to laser light can be deduced from the ground-state spectrum, thus providing a route to tailoring the response of some complex magnetic materials, like the Heuslers, to laser light by the well established methods for material design from ground-state calculations. PMID:27966585

  3. Ultrafast laser induced local magnetization dynamics in Heusler compounds.

    PubMed

    Elliott, P; Müller, T; Dewhurst, J K; Sharma, S; Gross, E K U

    2016-12-14

    The overarching goal of the field of femtomagnetism is to control, via laser light, the magnetic structure of matter on a femtosecond time scale. The temporal limits to the light-magnetism interaction are governed by the fact that the electron spin interacts indirectly with light, with current studies showing a laser induced global loss in the magnetic moment on a time scale of the order of a few 100 s of femtoseconds. In this work, by means of ab-initio calculations, we show that more complex magnetic materials - we use the example of the Heusler and half-Heusler alloys - allow for purely optical excitations to cause a significant change in the local moments on the order of 5 fs. This, being purely optical in nature, represents the ultimate mechanism for the short time scale manipulation of spins. Furthermore, we demonstrate that qualitative behaviour of this rich magnetic response to laser light can be deduced from the ground-state spectrum, thus providing a route to tailoring the response of some complex magnetic materials, like the Heuslers, to laser light by the well established methods for material design from ground-state calculations.

  4. Phenolic compounds from Pueraria lobata protect PC12 cells against Aβ-induced toxicity.

    PubMed

    Choi, Yun-hyeok; Hong, Seong Su; Shin, Yu Su; Hwang, Bang Yeon; Park, So-Young; Lee, Dongho

    2010-10-01

    Bioassay-guided fractionation of the EtOAc-soluble extract of Pueraria lobata based on the inhibition of Aβ-induced toxicity in PC12 cells resulted in the isolation of four known active compounds, genistein (8), biochanin A (9), sissotrin (10), and puerol B (11). Of these, genistein (8) and biochanin A (9) exhibited potent neuroprotective effects with ED(50) values of 33.7 and 27.8 μM, respectively. In addition, a new coumestan, 2-(α,α-dimethylallyl)coumestrol (1) was isolated and characterized, but proved to be inactive, as were additional seven known compounds. The structure of new compound 1 was determined using spectroscopic techniques.

  5. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  6. HPHT synthesis, structure and electrical properties of type-I clathrates Ba{sub 8}Al{sub x}Si{sub 46−x}

    SciTech Connect

    Liu, Binwu; Jia, Xiaopeng; Sun, Hairui; Sun, Bing; Zhang, Yuewen; Liu, Haiqiang; Kong, Lingjiao; Huo, Dexuan; Ma, Hongan

    2016-01-15

    Clathrate compounds Ba{sub 8}Al{sub x}Si{sub 46−x} were successfully synthesized using the method of high-pressure and high-temperature (HPHT). In this process, we used BaSi{sub 2} as one of the starting materials in place of Ba metals, which reduces the complexity of the program caused by the extremely high chemical reactivity. By using this method, the processing time was reduced from few days to an hour. X-ray diffraction and structural refinement indicated this composition crystallized in type-I clathrate phase. Bond length analysis showed the Ba atoms in small dodecahedron had spherical thermal ellipsoids while those in large tetrakaidecahedron displayed anisotropic thermal ellipsoids. The negative Seebeck coefficient indicated transport processes were dominated by electrons as carriers, and increased with the increasing temperature. The electrical properties, including Seebeck coefficient and Power factor, were greatly enhanced by Al substitution. - Graphical abstract: Left: The cavity structure diagram of a China-type large volume cubic high-pressure apparatus, and the Type-I clathrate structure of sample synthesized using HPHT. Middle: X-ray Rietveld refinement profile for Ba{sub 8}Si{sub 46} and element mapping for Ba{sub 8}Al{sub 16}Si{sub 30}. Right: Temperature dependence of Seebeck coefficient for Ba{sub 8}Al{sub x}Si{sub 46−x} prepared by HPHT. - Highlights: • HPHT is a simple and rapid synthetic approach. • We use BaSi{sub 2} as one of the starting materials replacing Ba metals. • The processing time reduces from few days to an hour. • Structure determination is refined by Rietveld analysis of XRD data. • Variable temperature electrical properties are characterized.

  7. Monte Carlo calculations of the free energy of binary sII hydrogen clathrate hydrates for identifying efficient promoter molecules.

    PubMed

    Atamas, Alexander A; Cuppen, Herma M; Koudriachova, Marina V; de Leeuw, Simon W

    2013-01-31

    The thermodynamics of binary sII hydrogen clathrates with secondary guest molecules is studied with Monte Carlo simulations. The small cages of the sII unit cell are occupied by one H(2) guest molecule. Different promoter molecules entrapped in the large cages are considered. Simulations are conducted at a pressure of 1000 atm in a temperature range of 233-293 K. To determine the stabilizing effect of different promoter molecules on the clathrate, the Gibbs free energy of fully and partially occupied sII hydrogen clathrates are calculated. Our aim is to predict what would be an efficient promoter molecule using properties such as size, dipole moment, and hydrogen bonding capability. The gas clathrate configurational and free energies are compared. The entropy makes a considerable contribution to the free energy and should be taken into account in determining stability conditions of binary sII hydrogen clathrates.

  8. Anchored Clathrate Waters Bind Antifreeze Proteins to Ice

    SciTech Connect

    C Garnham; R Campbell; P Davies

    2011-12-31

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca{sup 2+}-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP{vert_ellipsis}ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the 'anchored clathrate' mechanism of AFP action.

  9. Anchored clathrate waters bind antifreeze proteins to ice.

    PubMed

    Garnham, Christopher P; Campbell, Robert L; Davies, Peter L

    2011-05-03

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca(2+)-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFPice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the "anchored clathrate" mechanism of AFP action.

  10. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental (129) Xe NMR Spectroscopy.

    PubMed

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J; Laitinen, Risto; Jokisaari, Jukka; Day, Graeme M; Lantto, Perttu

    2017-01-23

    An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o- and m-fluorophenol, whose previously unknown clathrate structures have been studied by (129) Xe NMR spectroscopy. The high sensitivity of the (129) Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures.

  11. A peroxovanadium compound induces Xenopus oocyte maturation: inhibition by a neutralizing anti-insulin receptor antibody.

    PubMed

    Cummings, C; Zhu, L; Sorisky, A; Liu, X J

    1996-05-01

    Synthetic peroxovanadium compounds are a new class of potent inhibitors of protein phosphotyrosine phosphatases. These compounds exhibit insulin-like activity both in vitro and in experimental animals. However, the molecular mechanism by which these compounds exert their biological effect is not well defined. We demonstrate here that several of these compounds induce Xenopus oocyte maturation in vitro, as indicated by germinal vesicle breakdown. Using one of these compounds for further studies, we show that the induction is dose-dependent and is accompanied by activation of maturation promoting factor as well as activation of Xenopus MAP kinase. Like insulin, bpV(pic) causes an acute accumulation of PI(3,4,5)P3 (phosphotidylinositol-3,4,5-trisphosphate), a product of PI 3-kinase. More importantly, bpV(pic)-induced oocyte maturation was abolished by microinjection of a neutralizing monoclonal anti-insulin receptor antibody (17A3) into oocytes or preincubation of oocytes with a PI 3-kinase inhibitor (wortmannin). These results suggest that bpV(pic) acts upstream of the Xenopus IGF-1 receptor in the induction of meiotic maturation, presumably by neutralizing an inhibitory protein tyrosine phosphatase(s) that may regulate the receptor. Finally, using an oocyte-follicle cell complex that responded to human chorionic gonadotropin (hCG) to undergo GVBD, we showed that injection of 17A3 anti-insulin receptor antibody into oocytes did not affect hCG-induced oocyte maturation.

  12. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate.

    PubMed

    Florusse, Louw J; Peters, Cor J; Schoonman, Joop; Hester, Keith C; Koh, Carolyn A; Dec, Steven F; Marsh, Kenneth N; Sloan, E Dendy

    2004-10-15

    Thermodynamic, x-ray diffraction, and Raman and nuclear magnetic resonance spectroscopy measurements show that clusters of H2 can be stabilized and stored at low pressures in a sII binary clathrate hydrate. Clusters of H2 molecules occupy small water cages, whereas large water cages are singly occupied by tetrahydrofuran. The presence of this second guest component stabilizes the clathrate at pressures of 5 megapascals at 279.6 kelvin, versus 300 megapascals at 280 kelvin for pure H2 hydrate.

  13. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements.

    PubMed

    Duarte, Ana Rita C; Shariati, Alireza; Rovetto, Laura J; Peters, Cor J

    2008-02-21

    In this experimental phase equilibrium study, we show for the first time that it is possible to stabilize structure sH of hydrogen clathrate hydrate with the help of some selected promoters. It was established that the formation pressures of these systems are significantly higher than that of structure sII of hydrogen clathrate hydrate when tetrahydrofuran (THF) is used as a promoter. Although no experimental evidence is available yet, it is estimated that the hydrogen storage capacity of structure sH can be as high as 1.4 wt % of H2, which is about 40% higher compared to the hydrogen storage capacity in structure sII.

  14. Measurement of Clathrate Hydrate Thermodynamic Stability in the Presence of Ammonia

    NASA Technical Reports Server (NTRS)

    Dunham, Marc

    2012-01-01

    There is a lack of data available for the stability of clathrate hydrates in the presence of ammonia for low-to-moderate pressures in the 0-10 MPa range. Providing such data will allow for a better understanding of natural mass transfer processes on celestial bodies like Titan and Enceladus, on which destabilization of clathrates may be responsible for replenishment of gases in the atmosphere. The experimental process utilizes a custom-built gas handling system (GHS) and a cryogenic calorimeter to allow for the efficient testing of samples under varying pressures and gas species.

  15. Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water.

    PubMed

    Sivaprakasam, Vasanthi; Killinger, Dennis K

    2003-11-20

    We developed a tunable (220-285-nm) UV and fixed 266-nm laser-induced fluorescence (LIF) system using a spectrometer and a cooled CCD imaging detector to measure the excitation-emission matrix spectra of various compounds in water, including quinine sulfate and plastic compound bisphenol-A. The LIF instrument was used for the fast, nonspecific determination of trace amounts of dissolved organic compounds present in natural water supplies and various brand name bottled distilled water and bottled drinking water. Plastic-related compounds that leached out of plastic utensils and containers were also detected with this instrument. The sensitivity of the system was approximately 1-2 orders of magnitude better than that for a commercial system.

  16. Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Killinger, Dennis K.

    2003-11-01

    We developed a tunable (220-285-nm) UV and fixed 266-nm laser-induced fluorescence (LIF) system using a spectrometer and a cooled CCD imaging detector to measure the excitation-emission matrix spectra of various compounds in water, including quinine sulfate and plastic compound bisphenol-A. The LIF instrument was used for the fast, nonspecific determination of trace amounts of dissolved organic compounds present in natural water supplies and various brand name bottled distilled water and bottled drinking water. Plastic-related compounds that leached out of plastic utensils and containers were also detected with this instrument. The sensitivity of the system was approximately 1-2 orders of magnitude better than that for a commercial system.

  17. [The effects of digitalis compounds on K(+)-induced relaxation in aortic rings].

    PubMed

    Dorantes, A L; Aldana, I; Pastelín, G; Escalante, B

    1994-01-01

    It has been shown that, changes in the structure of the cardiac glycoside, are related to changes in their biological effects. In the present study we compared the effects of two structurally different digitalis compound (ouabain and ouabagenin), on K+ induced vascular relaxation as an index of the Na+K+ ATPase activity. Ouabain was the most potent compound tested, and had vasoconstrictor effect on the rat aortic rings, as, well as inhibitory effect on the K(+)-induced relaxation. Ouabagenin did not affect either the vascular tone or K(+)-induced relaxation. It is well known that changes in the part of the structure of the cardiac glycoside that contain the sugar, are important to maintain some of their biological effects. In this paper we demonstrate that elimination of the 1-rhamnose in ouabagenin reduces its vascular effects associated to the inhibition of the Na+ K+ ATPase pump.

  18. The strength and rheology of methane clathrate hydrate

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.

    2003-01-01

    Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.

  19. Cryolava flow destabilization of crustal methane clathrate hydrate on Titan

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Matson, Dennis L.; Johnson, Torrence V.

    2016-08-01

    To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically ≈30% of the thickness of the lava flow (≈3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m2 of flow area. Such an event would release methane for nearly a year. One or two events per year covering ∼20 km2 would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of ≈9000 km2 with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane.

  20. The Phenomenology of Ion Implantation-Induced Blistering and Thin-Layer Splitting in Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Singh, R.; Christiansen, S. H.; Moutanabbir, O.; Gösele, U.

    2010-10-01

    Hydrogen and/or helium implantation-induced surface blistering and layer splitting in compound semiconductors such as InP, GaAs, GaN, AlN, and ZnO are discussed. The blistering phenomenon depends on many parameters such as the semiconductor material, ion fluence, ion energy, and implantation temperature. The optimum values of these parameters for compound semiconductors are presented. The blistering and splitting processes in silicon have been studied in detail, motivated by the fabrication of the widely used silicon-on-insulator wafers. Hence, a comparison of the blistering process in Si and compound semiconductors is also presented. This comparative study is technologically relevant since ion implantation-induced layer splitting combined with direct wafer bonding in principle allows the transfer of any type of semiconductor layer onto any foreign substrate of choice—the technique is known as the ion-cut or Smart-Cut™ method. For the aforementioned compound semiconductors, investigations regarding layer transfer using the ion-cut method are still in their infancy. We report feasibility studies of layer transfer by the ion-cut method for some of the most important and widely used compound semiconductors. The importance of characteristic values for successful wafer bonding such as wafer bow and surface flatness as well as roughness are discussed, and difficulties in achieving some of these values are pointed out.

  1. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  2. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ``unattached`` fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ``unattached`` fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the {sup 218}PoO{sub 2}{sup +} ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the {sup 218}PoO{sub 2}{sup +} ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the {sup 218}PoO{sub 2}{sup +} ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos).

  3. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1996-01-01

    Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.

  4. Dynamical interrogation of the hydration cage of bromine in single crystal clathrate hydrates versus water.

    PubMed

    Goldschleger, I U; Kerenskaya, G; Senekerimyan, V; Janda, K C; Apkarian, V A

    2008-12-28

    We report transient grating measurements carried out on single crystals of bromine clathrate hydrates and on bromine dissolved in water. In all cases, excitation into the B-state of Br2 leads to prompt predissociation, followed by cage-induced recombination on the A/A' electronic surfaces. In liquid water, the vibrationally incoherent recombinant population peaks at t=1 ps and decays with a time constant of 1.8 ps. In the hydrate crystals, the recombination is sufficiently impulsive to manifest coherent oscillations of the reformed bond. In tetragonal TS-I crystals, with the smaller cages, the recombination is fast, t=360 fs, and the bond oscillation period is 240 fs. In cubic CS-II crystals, the recombination is slower, t=490 fs, and the visibility of the vibrational coherence, which shows a period of 290 fs, is significantly reduced due to the larger cages and the looser fit around bromine. The mechanical cage effect is quantified in terms of the recombination time-distribution, the first three moments of which are associated with size, structural rigidity, and anelasticity of the cage. In the crystalline cages, the distribution is symmetric about the mean: mean time tm=300 fs, 400 fs and standard deviation sigma=70 fs, 100 fs, in TS-I and CS-II, respectively. The finding is consistent with the assignment of occupied cages: principally 5(12)6(2) polyhedra in TS-I and 5(12)6(4) polyhedra in CS-II. In liquid water, with diffuse cages, the distribution characterized by tm=555 fs and sigma=400 fs, is strongly skewed (gamma1=1.88) toward delayed recombination-the effective liquid phase hydration shell is larger than that in a hydrate phase, structurally disordered, and anelastic. Information about dipolar disorder, comparable in all three media, is extracted from electronic predissociation rates of the B-state, which is sensitive to the symmetry in the guest-host interaction.

  5. REMOVAL OF TITAN'S ATMOSPHERIC NOBLE GASES BY THEIR SEQUESTRATION IN SURFACE CLATHRATES

    SciTech Connect

    Mousis, Olivier; Picaud, Sylvain; Cordier, Daniel; Mandt, Kathleen E.; Hunter Waite, J. Jr.

    2011-10-10

    A striking feature of the atmosphere of Titan is that no heavy noble gases other than argon were detected by the Gas Chromatograph Mass Spectrometer aboard the Huygens probe during its descent to Titan's surface in 2005 January. Here we provide an explanation of the mysterious absence or rarity of these noble gases in Titan's atmosphere: the thermodynamic conditions prevailing at the surface-atmosphere interface of the satellite allow the formation of multiple guest clathrates that preferentially store some species, including all heavy noble gases, over others. The clean water ice needed for the formation of these clathrates could be delivered by successive episodes of cryovolcanic lavas that have been hypothesized to regularly cover the surface of Titan. The formation of clathrates in the porous lavas and their propensity for trapping Ar, Kr, and Xe would progressively remove these species from the atmosphere of Titan over the course of its history. In some circumstances, a global clathrate crust with an average thickness not exceeding a few meters could be sufficient on Titan for a complete removal of the heavy noble gases from the atmosphere.

  6. A simplified Van der Waals-Platteeuw model of clathrate hydrates with multiple occupancy of cavities.

    PubMed

    Martín, Angel

    2010-07-29

    In clathrate hydrates formed by small guest molecules such as H(2) or He, hydrate cavities may be occupied by clusters of several guest molecules. Multiple occupancy of cavities is important for applications of clathrate hydrates as gas storage and transportation media due to the increase of storage capacity of the material associated with multiple occupancy. Computational approaches for clathrate hydrates with multiple occupancy such as Grand Canonical Monte Carlo (GCMC) simulations or van der Waals-Platteeuw (vdW-P) models with rigorous calculations of Langmuir adsorption constants are complex and require considerable computational effort. In this work, a simplified vdW-P model for clathrate hydrates with multiple occupancy is presented. In this model, it is assumed that guest molecules inside cavities form clusters in which molecules occupy fixed positions with respect to each other. For validation of this supposition, results obtained with this model have been compared with GCMC simulations of sII He and H(2) hydrates with multiple occupancy. Results of the simplified procedure presented in this work regarding the fractional occupancy of cavities by molecular clusters agree well with GCMC simulations. The simplified vdW-P model presented in this work requires a small computational effort, equivalent to calculations with the standard vdW-P model for hydrates with single occupancy.

  7. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  8. Phase behaviour of methane clathrate under conditions relevant to Titan's interior

    NASA Astrophysics Data System (ADS)

    Sclater, G.; Wood, I. G.; Tucker, M. G.; Crawford, I. A.; Fortes, A. D.

    2013-09-01

    Microporous gas hydrates - known as clathrates - are common on the Earth and are also thought to be abundant in the outer Solar System [1]. The conditions for the existence of clathrates prevail throughout the Solar System and they are considered to be abundant from the Martian permafrost to the surfaces and interiors of many icy satellites [7]. These materials have been extensively studied in the range 0 - 5 GPa at ambient temperatures [2-5]; however, their behaviour in the range close to the dissociation (or melting) point is not well known at all, with some suggesting the occurrence of a facecentred cubic (sII) phase, and others that the clathrate becomes unstable with respect to mixtures of solid methane and ice. The high-pressure behaviour underpins planetary modelling; for example, the behaviour of methane hydrate in the ranges 0-6 GPa and 100-400 K is crucial to accurate modelling of Saturn's largest moon, Titan where clathrates are hypothesised to be the source of CH4 in Titan's atmosphere [6]. In order to address these problems we are carrying out a program of investigation using neutron diffraction to investigate the phase behaviour of methane clathrate close to its dissociation temperature in the 0.6-2.5 GPa region. Our goals were to obtain data to provide the first in-situ diffraction-based evidence for the phase behaviour of methane clathrate near to its high-pressure dissociation temperature (along with a control measurement at room temperature for comparison with other workers), to obtain P-V curves along two isotherms for each of the phases observed, and to complete structure refinements of all three clathrate polymorphs, thereby allowing us to carry out a full audit of the methane concentration in each phase as a function of pressure (including cage occupancies). Thus far we have successfully completed our RT measurements and will make the higher temperature observations in July 2013; we anticipate being able to report our findings from this second

  9. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman).

    PubMed

    Loughrin, J H; Potter, D A; Hamilton-Kemp, T R

    1995-10-01

    The Japanese beetle is a polyphagous insect that typically aggregates on preferred host plants in the field. We studied the response of Japanese beetles to artificial damage, fresh feeding damage, and overnight feeding damage to test the hypothesis that beetles are attracted to feeding-induced volatiles. Crabapple leaves that had been damaged overnight by Japanese beetles or fall webworms attracted significantly more Japanese beetles than did undamaged leaves. Artificially damaged leaves or leaves freshly damaged by Japanese beetles, however, were not significantly more attractive than undamaged leaves. Leaves that had been damaged overnight by Japanese beetles or fall webworms produced a complex mixture of aliphatic compounds, phenylpropanoid-derived compounds, and terpenoids. In comparison, artificially damaged leaves or leaves with fresh Japanese beetle feeding damage generated a less complex blend of volatiles, mainly consisting of green-leaf odors. Feeding-induced odors may facilitate host location and/or mate finding by the Japanese beetle.

  10. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.

    PubMed

    Hiratsuka, Masaki; Ohmura, Ryo; Sum, Amadeu K; Alavi, Saman; Yasuoka, Kenji

    2015-05-21

    Clathrate hydrates are typically stabilized by suitably sized hydrophobic guest molecules. However, it has been experimentally reported that isomers of amyl-alcohol C5H11OH can be enclosed into the 5(12)6(4) cages in structure II (sII) clathrate hydrates, even though the effective radii of the molecules are larger than the van der Waals radii of the cages. To reveal the mechanism of the anomalous enclathration of hydrophilic molecules, we performed ab initio and classical molecular dynamics simulations (MD) and analyzed the structure and dynamics of a guest-host hydrogen bond for sII 3-methyl-1-butanol and structure H (sH) 2-methyl-2-butanol clathrate hydrates. The simulations clearly showed the formation of guest-host hydrogen bonds and the incorporation of the O-H group of 3-methyl-1-butanol guest molecules into the framework of the sII 5(12)6(4) cages, with the remaining hydrophobic part of the amyl-alcohol molecule well accommodated into the cages. The calculated vibrational spectra of alcohol O-H bonds showed large frequency shifts due to the strong guest-host hydrogen bonding. The 2-methyl-2-butanol guests form strong hydrogen bonds with the cage water molecules in the sH clathrate, but are not incorporated into the water framework. By comparing the structures of the alcohols in the hydrate phases, the effect of the location of O-H groups in the butyl chain of the guest molecules on the crystalline structure of the clathrate hydrates is indicated.

  11. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Majsterek, Ireneusz; Blasiak, Janusz

    2005-07-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic compound found in grapes and wine, has been shown to have anti-inflammatory, anti-oxidant, anti-tumor and anti-platelet activities. Using different methods, we show that resveratrol reduces oxidative stress induced by cisplatin (cis-diamminedichloroplatinum II) and selenium-cisplatin conjugate ([NH(3)](2)Pt(SeO(3)), Se-Pt) in human blood platelets, lymphocytes and plasma. Resveratrol decreased the production of 8-epi-prostaglandin F(2) (a biomarker of lipid peroxidation) in control blood platelets and platelets treated with platinum compounds (10 microg/ml), and markedly reduced activities of different anti-oxidative enzymes (glutathione peroxidase, superoxide dismutase and catalase) in these cells. A combined action of resveratrol and Se-Pt evoked a significant decrease of DNA damage (measured by comet assay) in lymphocytes compared with cells treated with Se-Pt only. Resveratrol also caused a distinct reduction of total anti-oxidant level in plasma after incubation with platinum compounds. Therefore, anti-oxidative activity of resveratrol may diminish oxidative stress and damage to cellular biomolecules (lipids, proteins and DNA) induced by platinum compounds.

  12. Isolation of furocoumarins from bergamot fruits as HL-60 differentiation-inducing compounds.

    PubMed

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-10-01

    The HL-60 differentiation-inducing compounds in bergamot fruits were isolated with column chromatography and identified as bergamottin, bergapten, and citropten by (1)H and (13)C NMR. Their HL-60 differentiation-inducing activity was measured by examining nitro blue tetrazolium (NBT) reducing, nonspecific acid esterase (NSE), specific esterase (SE), and phagocytic activities, and bergamottin showed the strongest activity among the coumarins isolated from bergamot fruits. The structure-activity relationship obtained from HL-60 differentiation assay suggests that hydrophobicity of furocoumarins is correlated with their activity.

  13. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells.

    PubMed

    Kim, Do Yeon; Park, Min Woo; Yuan, Hai Dan; Lee, Hyo Jung; Kim, Sung Hoon; Chung, Sung Hyun

    2009-11-25

    Although compound K (CK), an intestinal metabolite of ginseng protopanaxadiol saponins, has been known to induce apoptosis in various cancer cells, association of AMP-activated protein kinase (AMPK) with apoptosis in HT-29 colon cancer cells remains unclear. We hypothesized that CK may exert an anticancer activity through modulating the AMPK pathway in HT-29 cells. CK-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic factors (cytochrome c and apoptosis-inducing factor) from mitochondria, and cleavage of caspase-9, caspase-3, caspase-8, Bid, and PARP proteins. This apoptotic effect of CK on colon cancer cells was found to be initiated by AMPK activation, and AMPK was activated through phosphorylation by Ca2+/calmodulin-activated protein kinase-IV (CAMK-IV). Treatment of HT-29 cells with compound C (AMPK inhibitor) or siRNA for AMPK completely abolished the CK-induced apoptosis. STO-609, CAMKs inhibitor, also attenuated CK-induced AMPK activation and apoptosis. In conclusion, the present study demonstrates that CK-mediated cell death of HT-29 colon cancer cells is regulated by CAMK-IV/AMPK pathways, and these findings provide a molecular basis for the anticancer effect of CK.

  14. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    PubMed

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm(-1) were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds.

  15. Lipoic acid suppresses compound 48/80-induced anaphylaxis-like reaction

    PubMed Central

    Choi, Yun Ho; Chai, Ok Hee; Han, Eui-Hyeog; Choi, Su-Young; Kim, Hyoung Tae

    2010-01-01

    Alpha-lipoic acid (LA), a naturally occurring dithiol compound, is an essential cofactor in metabolic reactions involved in energy utilization. LA improves glycemic control, reduces diabetic polyneuropathies, atherosclerosis, and allergic inflammation. The effects of LA on mast cell-mediated anaphylactic reactions, however, are unknown. LA dose-dependently inhibited systemic and passive cutaneous anaphylaxis-like reactions in mice induced by compound 48/80, a condensation product of N-methyl-p-methoxyphenethylamine and formaldehyde. Pretreatment with LA, prior to induction of the systemic anaphylaxis-like reaction with compound 48/80, reduced plasma histamine levels in a dose-dependent manner. In our in vitro study, LA decreased histamine release from rat peritoneal mast cells (RPMCs) triggered by compound 48/80. Moreover, an increase in calcium uptake activated by compound 48/80 was inhibited by LA. LA also significantly elevated intracellular cyclic adenosine-3',5' monophosphate (cAMP) levels in RPMCs. This inhibition of mediator release from RPMCs may be due to inhibition of calcium uptake and augmentation of intracellular cAMP levels. Based on these results, we suggest that LA may be a potential remedy for allergy-related diseases. PMID:21267406

  16. The HD molecule in small and medium cages of clathrate hydrates: Quantum dynamics studied by neutron scattering measurements and computation

    SciTech Connect

    Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo; Powers, Anna; Xu, Minzhong; Bačić, Zlatko

    2014-10-07

    We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)

  17. Molecular and crystal structures of noble gas compounds

    NASA Astrophysics Data System (ADS)

    Nabiev, Sh Sh; Sokolov (deceased, V. B.; Chaivanov, B. B.

    2014-12-01

    Data on the structures of xenon and krypton compounds in various physical states are analyzed and generalized. The structures of simple, coordination, polymeric and clathrate-like compounds of these elements with various types of bonds are considered. Characteristic features of their vibrational spectra are discussed in relation to structural transformations caused by cation-anion interactions, structurally non-rigid intramolecular rearrangements and other factors. The bibliography includes 332 references.

  18. Preliminary Measurements on the Mechanical Properties of Clathrate Hydrates with Implications for the Internal Dynamics of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Choukroun, M.; Barmatz, M. B.; Castillo, J. C.; Sotin, C.

    2008-12-01

    Surface features potentially associated with cryovolcanism have been identified on Titan, and the processes taking place beneath the surface are likely associated with the dissociation of clathrate hydrates and the release of methane. On Enceladus, the South Pole plume discovered by the Cassini-Huygens mission contains a large proportion of volatiles, in amounts consistent with models of clathrate hydrates dissociation at depth (Kieffer et al., Science 314, 1764-1766, 2006). The stability of clathrate hydrates is relatively well constrained in pure and mixed gas systems (e.g., Sloan, Clathrate hydrates of natural gases, Marcel Dekker, New York, 1998). Recent measurements of clathrate destabilization in presence of ammonia, a likely component of Titan's interior, led to the development of a new model of cryovolcanism (Choukroun et al., Lunar Planet. Sci. Conf., #1837, Houston, 2008). Internal dynamics relies on ice convection at depth on Titan and Enceladus (e.g., Tobie et al., Icarus 175, 496-502, 2005), and on relatively large tidal stresses on Enceladus. Clathrates are expected to destabilize when subject to stress (Durham et al., J. Geophys. Res. 108 (B4), 2182, 2003). Therefore, addressing the mechanical properties of clathrate hydrates in these environments is a necessary step toward better understanding cryovolcanic processes. We have developed a new apparatus for growing clathrate hydrates samples with controlled geometry, composition, and grain size. This system consists of a high-pressure autoclave and a cooling system and supports gas pressures up to 500 bars, and temperatures within the range -50 - 150 °C. We have started the production of clathrate hydrates of CH4, CO2, and N2 with this system, with the purpose to test their mechanical properties using an Instron compression system (Castillo-Rogez et al., submitted to J. Geophys. Res.; Castillo-Rogez et al., this meeting). We will present initial measurements on the creep response and on the

  19. Modulation of 17{beta}-estradiol-induced responses in fish by cytochrome P4501A1 inducing compounds

    SciTech Connect

    Anderson, M.J.; Hinton, D.E.

    1995-12-31

    Some compounds which induce cytochrome P4501A1 (CYP1A1) are antiestrogenic in mammalian bioassay, and this effect is linked to aryl hydrocarbon (Ah) receptor. Liver of fish synthesizes estrogen-inducible egg yolk precursor protein vitellogenin (Vg) which is critical for oocyte maturation and ovarian development. To determine if Ah receptor-linked endocrine modulation could occur in fish liver, primary cultures of juvenile rainbow trout (Oncorhynchus mykiss) liver cells were co-administered 17{beta}-estradiol and CYP1A1 inducing compounds. Vitellogenin and albumin, estimated by ELISA measurement of concentration in the media 48 hrs after treatment, formed the basis for the test. Cellular CYP1A1 protein content and catalytic activity was estimated by ELISA and ethoxyresorufin-O-deethylase (EROD) activity assays respectively. Equivalent viability (mitochondrial dehydrogenase activity) and secretary functional capacity (albumin synthesis) were estimated and correlated with other results. In descending order, 2,3,4,7,8 pentachlorodibenzofuran (10{sup {minus}12} to 10{sup {minus}8} M) > 2,3,7,8 tetrachlorodibenzo-p-dioxin {approx_equal} 2,3,7,8 tetrachlorodibenzofuran (10{sup {minus}11} to 10{sup {minus}8} M) > {beta}-naphthoflavone (10{sup {minus}7} to 10{sup {minus}6} M) inhibited Vg synthesis in 17{beta}-estradiol treated liver cells. Potency of inhibition directly related to strength as an inducer of CYP1A1 protein. At 10-8 M, PCB congeners 77, 126, and 156 did not inhibit Vg synthesis and induced no or only moderate CYP1A1 protein. At 10-8 M, PCB congener 114, a weak CYP1A1 inducer, potentiated Vg synthesis relative to cells treated with 17{beta}-estradiol alone. This study increases their understanding of the consequences of hepatic CYP1A1 induction, forewarns of reproductive impairment of sexually maturing fishes exposed to CYP1A1 inducing compounds and argues for further, more detailed in vivo investigation.

  20. Bioactive compounds from liverworts: Inhibition of lipopolysaccharide-induced inducible NOS mRNA in RAW 264.7 cells by herbertenoids and cuparenoids.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Nishizawa, Takashi; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2007-08-01

    The inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) by herbertenoids and cuparenoids isolated from liverworts in RAW 264.7 macrophages was evaluated. Among compounds tested, herbertenediol, cuparenediol, 1,2-diacetoxyherbertene and 2-hydroxy-4-methoxycuparene exhibited significant activity. For 2-hydroxy-4-methoxycuparene, chosen as representative compound, the strong inhibitory activity was related to the inhibition on LPS-induced iNOS mRNA. The structure-activity relationship will be discussed.

  1. Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions.

    PubMed

    Hayami, Shinya; Hiki, Kenji; Kawahara, Takayoshi; Maeda, Yonezo; Urakami, Daisuke; Inoue, Katsuya; Ohama, Mitsuo; Kawata, Satoshi; Sato, Osamu

    2009-01-01

    Iron(III) spin-crossover compounds [Fe(pap)(2)]ClO(4) (1), [Fe(pap)(2)]BF(4) (2), [Fe(pap)(2)]PF(6) (3), [Fe(qsal)(2)]NCS (4), and [Fe(qsal)(2)]NCSe (5) (Hpap=2-(2-pyridylmethyleneamino)phenol and Hqsal=2-[(8-quinolinylimino)methyl]phenol) were prepared and their spin-transition properties investigated by magnetic susceptibility and Mössbauer spectroscopy measurements. The iron(III) compounds exhibited spin transition with thermal hysteresis. Single crystals of the iron(III) compounds were obtained as suitable solvent adducts for X-ray analysis, and structures in high-spin (HS) and low-spin (LS) states were revealed. Light-induced excited-spin-state trapping (LIESST) effects of the iron(III) compounds were induced by light irradiation at 532 nm for 1-3 and at 800 nm for 4 and 5. The activation energy E(a) and the low-temperature tunneling rate k(HL)(T-->0) of iron(III) LIESST compound 1 were estimated to be 1079 cm(-1) and 2.4x10(-8) s(-1), respectively, by HS-->LS relaxation experiments. The Huang-Rhys factor S of 1 was also estimated to be 50, which was similar to that expected for iron(II) complexes. It is thought that the slow relaxation in iron(III) systems is achieved by the large structural distortion between HS and LS states. Introduction of strong intermolecular interactions, such as pi-pi stacking, can also play an important role in the relaxation behavior, because it can enhance the structural distortion of the LIESST complex.

  2. Compound mechanism hypothesis on +Gz induced brain injury and dysfunction of learning and memory

    NASA Astrophysics Data System (ADS)

    Sun, Xi-Qing; Li, Jin-Sheng; Cao, Xin-Sheng; Wu, Xing-Yu

    2005-08-01

    We systematically studied the effect of high- sustained +Gz on the brain and its mechanism in past ten years by animal centrifuge experiments. On the basis of the facts we observed and the more recent advances in acceleration physiology, we put forward a compound mechanism hypothesis to offer a possible explanation for +Gz-induced brain injury and dysfunction of learning and memory. It states that, ischemia during high G exposure might be the main factor accounting for +Gz-induced brain injury and dysfunction of learning and memory, including transient depression of brain energy metabolism, disturbance of ion homeostasis, increased blood-brain barrier permeability, increased brain nitric oxide synthase expression, and the protective effect of heat shock protein 70. In addition, the large rapid change of intracranial pressure and increased stress during +Gz exposure, and the hemorrheologic change after +Gz exposure might be one of the important factors accounting for +Gz-induced brain injury and dysfunction of learning and memory.

  3. Prevention of acrylonitrile-induced gastrointestinal bleeding by sulfhydryl compounds, atropine and cimetidine

    SciTech Connect

    Ghanayem, B.I.; Ahmed, A.E.

    1986-07-01

    We have recently demonstrated that acrylonitrile (VCN) causes acute gastric hemorrhage and mucosal erosions. The current studies were undertaken to investigate the effects of the sulfhydryl-containing compounds, cysteine and cysteamine, the cholinergic blocking agent atropine and the histamine H2 receptor antagonist, cimetidine on the VCN-induced gastrointestinal (GI) bleeding in rats. Our data shows that pretreatment with L-cysteine, cysteamine, atropine or cimetidine has significantly protected rats against the VCN-induced GI bleeding. A possible mechanism of the VCN-induced GI bleeding may involve the interaction of VCN with critical sulfhydryl groups that, in turn, causes alteration of acetylcholine muscarinic receptors to lead to gastric hemorrhagic lesions and bleeding.

  4. Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo

    PubMed Central

    Nosál'ová, Viera; Sotníková, Ružena; Drábiková, Katarína; Fialová, Silvia; Košťálová, Daniela; Banášová, Silvia; Navarová, Jana

    2010-01-01

    Ischaemia and reperfusion (I/R) play an important role in human pathophysiology as they occur in many clinical conditions and are associated with high morbidity and mortality. Interruption of blood supply rapidly damages metabolically active tissues. Restoration of blood flow after a period of ischaemia may further worsen cell injury due to an increased formation of free radicals. The aim of our work was to assess macroscopically the extent of intestinal pathological changes caused by mesenteric I/R, and to study free radical production by luminol enhanced chemiluminescence (CL) of ileal samples. In further experiments, the antioxidative activity of the drugs tested was evaluated spectrophotometrically by the use of the DPPH radical. We studied the potential protective ex vivo effect of the plant origin compound arbutin as well as of the pyridoindole stobadine and its derivative SMe1EC2. I/R induced pronounced haemorrhagic intestinal injury accompanied by increase of myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGA) activity. Compared to sham operated (control) rats, there was only a slight increase of CL response after I/R, probably in association with neutrophil increase, indicated by enhanced MPO activity. All compounds significantly reduced the peak values of CL responses of the ileal samples ex vivo, thus reducing the I/R induced increase of free radical production. The antioxidants studied showed a similar inhibitory effect on the CL response influenced by mesenteric I/R. If proved in vivo, these compounds would represent potentially useful therapeutic antioxidants. PMID:21217883

  5. The natural compounds piperovatine and piperlonguminine induce autophagic cell death on Trypanosoma cruzi.

    PubMed

    Veiga-Santos, Phercyles; Desoti, Vânia Cristina; Miranda, Nathielle; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; Silva, Sueli Oliveira; Cortez, Diogenes Aparício Garcia; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru

    2013-03-01

    The currently available treatments for Chagas disease show limited therapeutic potential and are associated with serious side effects. Our group has been attempting to find alternative drugs isolated from natural products as a potential source of pharmacological agents against Trypanosoma cruzi. Here, we demonstrate the antitrypanosomal activity of the amides piperovatine and piperlonguminine isolated from Piper ovatum against epimastigotes and intracellular amastigotes. We also investigated the mechanisms of action of these compounds on extracellular amastigote and epimastigote forms of T. cruzi. These amides showed low toxicity to LLCMK(2) mammalian cells. By using transmission and scanning electron microscopy, we observed that the compounds caused severe alterations in T. cruzi. These alterations were mainly located in plasma membrane and mitochondria. Furthermore, the study of treated parasites labeled with Rh123, PI and MDC corroborate with our TEM data. These mitochondrial dysfunctions induced by the amides might trigger biochemical alterations that lead to cell death. Altogether, our data evidence a possible autophagic process.

  6. Allergy-Inducing Chromium Compounds Trigger Potent Innate Immune Stimulation Via ROS-Dependent Inflammasome Activation.

    PubMed

    Adam, Christian; Wohlfarth, Jonas; Haußmann, Maike; Sennefelder, Helga; Rodin, Annette; Maler, Mareike; Martin, Stefan F; Goebeler, Matthias; Schmidt, Marc

    2017-02-01

    Chromium allergy is a common occupational skin disease mediated by chromium (VI)-specific T cells that induce delayed-type hypersensitivity in sensitized individuals. Additionally, chromium (VI) can act as an irritant. Both responses critically require innate immune activation, but if and how chromium (VI) elicits this signal is currently unclear. Using human monocytes, primary human keratinocytes, and murine dendritic cells we show that chromium (VI) compounds fail to trigger direct proinflammatory activation but potently induce processing and secretion of IL-1β. IL-1β release required priming by phorbol-ester or toll-like receptor stimulation and was prevented by inhibition of K(+) efflux, NLRP3 depletion or caspase-1 inhibition, identifying chromium (VI) as a hapten activator of the NLRP3 inflammasome. Inflammasome activation was initiated by mitochondrial reactive oxygen species production triggered by chromium (VI), as indicated by sensitivity to treatment with the ROS scavenger N-acetyl cysteine and a coinciding failure of K(+) efflux, caspase-1, or NLRP3 inhibition to prevent mitochondrial reactive oxygen species accumulation. IL-1β release further correlated with cytotoxicity that was secondary to reactive oxygen species, K(+) efflux, and NLRP3 activation. Trivalent chromium was unable to induce mitochondrial reactive oxygen species production, inflammasome activation, and cytotoxicity, suggesting that oxidation state-specific differences in mitochondrial reactivity may determine inflammasome activation and allergic/irritant capacity of different chromium compounds.

  7. Generalized Electron Counting in Determination of Metal-Induced Reconstruction of Compound Semiconductor Surfaces

    SciTech Connect

    Zhang, Lixin; Wang, E. G.; Xue, Qi-Kun; Zhang, S. B.; Zhang, Zhenyu

    2006-01-01

    Based on theoretical analysis, first-principles calculations, and experimental observations, we establish a generic guiding principle, embodied in generalized electron counting (GEC), that governs the surface reconstruction of compound semiconductors induced by different metal adsorbates. Within the GEC model, the adsorbates serve as an electron bath, donating or accepting the right number of electrons as the host surface chooses a specific reconstruction that obeys the classic electron-counting model. The predictive power of the GEC model is illustrated for a wide range of metal adsorbates.

  8. Laser-induced forward transfer of a bis-pyrene compound for OTFTs

    NASA Astrophysics Data System (ADS)

    Constantinescu, Catalin; Diallo, Abdou Karim; D'Aleo, Anthony; Fages, Frédéric; Videlot-Ackermann, Christine; Delaporte, Philippe; Alloncle, Anne-Patricia

    2015-05-01

    We present results on a newly synthesized bis-pyrene compound that, besides the typical fluorescence, also exhibits semiconducting properties. Thin films have been grown by vacuum thermal evaporation on oxidized silicon and on transparent quartz substrates. Micrometric-sized pixels have subsequently been printed by laser-induced forward transfer (LIFT), in air and at low pressure (90 mbar), by using a Nd:YAG laser source (355 nm, 50 ps pulse duration) to produce functional organic thin film transistors (o-TFTs). Top-contact (TC) configurations are emphasized, and the influence of the pressure and laser fluence during the LIFT procedure is discussed.

  9. Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL

    PubMed Central

    Vieira, Otilia; Escargueil-Blanc, Isabelle; Meilhac, Olivier; Basile, Jean-Pierre; Laranjinha, Joao; Almeida, Leonor; Salvayre, Robert; Nègre-Salvayre, Anne

    1998-01-01

    Oxidized low density lipoproteins (LDL) are toxic to cultured endothelial cells. Mildly oxidized LDL, characterized by relatively low levels of TBARS and only minor modifications of apoB, were obtained by using 2 experimental model systems of oxidation, namely oxidation by u.v. radiation or ferrylmyoglobin (a two electron oxidation product from the reaction of metmyoglobin with H2O2). Toxic concentrations of mildly oxidized LDL induce apoptosis (programmed cell death) of cultured endothelial cells, as shown by typical morphological features, by the in situ TUNEL procedure and by DNA fragmentation revealed on gel electrophoresis. This apoptosis is calcium-dependent and subsequent to the intense and sustained cytosolic [Ca2+]i peak elicited by oxidized LDL. Five naturally occurring phenolic compounds present in food and beverages were able to prevent, in a concentration-dependent manner, the apoptosis of endothelial cells induced by oxidized LDL. Among the compounds tested, caffeic acid was the most effective. Under the conditions used, the protective effect of caffeic acid (IC50 8.3±2.1 μmol  l−1) in the prevention of apoptosis induced by oxidized LDL was significantly higher than that of the other compounds tested (IC50s were 12.4±3.2, 14.1±4.1, 20.4±4.4 and 72.6±9.2 μmol  l−1 for ferulic, protocatechuic, ellagic and p-coumaric acids, respectively). The anti-apoptotic effect of caffeic acid results from the addition of two effects, (i) the antioxidant effect which prevents LDL oxidation and subsequent toxicity (‘indirect' protective effect); (ii) a ‘direct' cytoprotective effect, acting at the cellular level. Effective concentrations of caffeic acid acted at the cellular level by blocking the intense and sustained cytosolic [Ca2+]i rise elicited by oxidized LDL. In conclusion, phenolic acids (caffeic and ferulic acids being the most potent of the compounds tested under the conditions used) exhibit a potent cytoprotective effect of

  10. Organic free radicals in clathrate hydrates investigated by muon spin spectroscopy.

    PubMed

    Percival, Paul W; Mozafari, Mina; Brodovitch, Jean-Claude; Chandrasena, Lalangi

    2014-02-20

    Very little is known about the behavior of free H atoms and small organic radicals inside clathrate hydrate structures despite the relevance of such species to combustion of hydrocarbon hydrates. Muonium is an H atom analog, essentially a light isotope of hydrogen, and can be used to probe the chemistry of H atoms and transient free radicals. We demonstrate the first application of muon spin spectroscopy to characterize radicals in clathrate hydrates. Atomic muonium was detected in hydrates of cyclopentane and tetrahydrofuran, and muoniated free radicals were detected in the hydrates of cyclopentene and 2,5-dihydrofuran, indicating rapid addition of muonium to the organic guest. Muon avoided level-crossing spectra of the radicals in hydrates are markedly different to those of the same radicals in pure organic liquids at the same temperature, and this can be explained by limited mobility of the enclathrated radicals, leading to anisotropy in the hyperfine interactions.

  11. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  12. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOEpatents

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  13. Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates

    NASA Technical Reports Server (NTRS)

    Duxbury, N.; Romanovsky, V.

    2004-01-01

    Underground sequestration has been proposed as a novel method of permanent disposal of harmful gases emitted into the atmosphere as a result of human activity. The method was conceived primarily for disposal of carbon dioxide (CO2, greenhouse gas causing global warming), but could also be applied to CO, H2S, NOx, and chorofluorocarbons (CFCs, which are super greenhouse gases). The method is based on the fact that clathrate hydrates (e.g., CO2 6H2O) form naturally from the substances in question (e.g., CO2) and liquid water in the pores of sub-permafrost rocks at stabilizing pressures and temperatures. The proposed method would be volumetrically efficient: In the case of CO2, each volume of hydrate can contain as much as 184 volumes of gas. Temperature and pressure conditions that favor the formation of stable clathrate hydrates exist in depleted oil reservoirs that lie under permafrost. For example, CO2-6H2O forms naturally at a temperature of 0 C and pressure of 1.22 MPa. Using this measurement, it has been calculated that the minimum thickness of continuous permafrost needed to stabilize CO2 clathrate hydrate is only about 100 m, and the base of the permafrost is known to be considerably deeper at certain locations (e.g., about 600 m at Prudhoe Bay in Alaska). In this disposal method, the permafrost layers over the reservoirs would act as impermeable lids that would prevent dissociation of the clathrates and diffusion of the evolved gases up through pores.

  14. Pressure-induced superconductivity in topological parent compound Bi2Te3

    PubMed Central

    Zhang, J. L.; Zhang, S. J.; Weng, H. M.; Zhang, W.; Yang, L. X.; Liu, Q. Q.; Feng, S. M.; Wang, X. C.; Yu, R. C.; Cao, L. Z.; Wang, L.; Yang, W. G.; Liu, H. Z.; Zhao, W. Y.; Zhang, S. C.; Dai, X.; Fang, Z.; Jin, C. Q.

    2011-01-01

    We report a successful observation of pressure-induced superconductivity in a topological compound Bi2Te3 with Tc of ∼3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi2Te3 single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor. PMID:21173267

  15. Cytoprotective Effects of Organosulfur Compounds against Methimazole Induced Toxicity in Isolated Rat Hepatocytes

    PubMed Central

    Heidari, Reza; Babaei, Hossein; Eghbal, Mohammad Ali

    2013-01-01

    Purpose: Methimazole is a drug widely used in hyperthyroidism. However, life threatening hepatotoxicity has been associated with its clinical use. No protective agent has been found to be effective against methimazole induced hepatotoxicity yet. Hence, the capacity of organosulfur compounds to protect rat hepatocytes against cytotoxic effects of methimazole and its proposed toxic metabolite, N-methylthiourea was evaluated. Methods: Hepatocytes were prepared by the method of collagenase enzyme perfusion via portal vein. Cells were treated with different concentrations of methimazole, N methylthiourea, and organosulfur chemicals. Cell death, protein carbonylation, reactive oxygen species formation, lipid peroxidation, and mitochondrial depolarization were assessed as toxicity markers and the role of organosulfurs administration on them was investigated. Results: Methimazole caused a decrease in cellular glutathione content, mitochondrial membrane potential (ΔΨm) collapse, and protein carbonylation. In addition, an increase in reactive oxygen species (ROS) formation and lipid peroxidation was observed. Treating hepatocytes with N methylthiourea caused a reduction in hepatocytes glutathione reservoirs and an elevation in carbonylated proteins, but no significant ROS formation, lipid peroxidation, or mitochondrial depolarization was observed. N-acetyl cysteine, allylmercaptan, and diallyldisulfide attenuated cell death and prevented ROS formation and lipid peroxidation caused by methimazole. Furthermore, organosulfur compounds diminished methimazole induced mitochondrial damage and reduced the carbonylated proteins. In addition, these chemicals showed protective effects against cell death and protein carbonylation induced by methimazole metabolite. Conclusion: Organosulfur chemicals extend their protective effects against methimazole-induced toxicity by attenuating oxidative stress caused by this drug and preventing the adverse effects of methimazole and/or its

  16. A simple van't Hoff law for calculating Langmuir constants in clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Lakhlifi, Azzedine; Dahoo, Pierre Richard; Picaud, Sylvain; Mousis, Olivier

    2015-02-01

    This work gives a van't Hoff law expression of Langmuir constants of different species for determining their occupancy in clathrate hydrates. First, a pairwise site-site interaction potential energy model is used to calculate the Langmuir constants in an otherwise anisotropic potential environment, as a function of temperature. The results are then fitted to a van't Hoff law expression to give a set of parameters that can be used for calculating clathrates compositions. The van't Hoff law's parameters are given for eighteen gas species trapped in the small and large cavities of structure types I and II. The accuracy of this approach is based on a detailed comparison with available experimental and/or previously calculated data for ethane, cyclo-propane, methane and carbon dioxide clathrate hydrates. A comparison with the analytical cell method is also carried out to better understand the importance of asymmetry and possible limitations of the van't Hoff temperature dependence.

  17. Nonequilibrium air clathrate hydrates in Antarctic ice: a paleopiezomdter for polar ice caps.

    PubMed Central

    Craig, H; Shoji, H; Langway, C C

    1993-01-01

    "Craigite," the mixed-air clathrate hydrate found in polar ice caps below the depth of air-bubble stability, is a clathrate mixed crystal of approximate composition (N2O2).6H2O. Recent observations on the Byrd Station Antarctic core show that the air hydrate is present at a depth of 727 m, well above the predicted depth for the onset of hydrate stability. We propose that the air hydrate occurs some 100 m above the equilibrium phase boundary at Byrd Station because of "piezometry"--i.e., that the anomalous depth of hydrate occurrence is a relic of a previous greater equilibrium depth along the flow trajectory, followed by vertical advection of ice through the local phase-boundary depth. Flowline trajectories in the ice based on numerical models show that the required vertical displacement does indeed occur just upstream of Byrd Station. Air-hydrate piezometry can thus be used as a general parameter to study the details of ice flow in polar ice caps and the metastable persistence of the clathrate phase in regions of upwelling blue ice. Images Fig. 2 PMID:11607442

  18. NMR Evidence of Cage-to-Cage Diffusion of H2 in H2-Clathrates

    NASA Astrophysics Data System (ADS)

    Senadheera, Lasitha; Conradi, Mark

    2008-03-01

    H2 and heavy-ice at P>1 kbar and T ˜250 K form H2-D2O clathrate; four and one H2 may occupy each large (L) and small (S) cage, respectively. In H2-THF-H2O clathrate, H2 occupies singly and only S cages. Previous electronic-structure calculations estimate the barriers for H2 passage though hexagonal and pentagonal faces of cages as ˜6 and ˜25 kcal/mol, respectively. Our H2 NMR linewidth data reflect random crystal fields from frozen cage-wall D2O orientations. We find dramatic reductions in linewidth starting at 120 K (175 K) for H2-D2O (H2-TDF-D2O) indicating time-averaging of the crystal fields. Assuming Arrhenius behavior, our data imply energies for escape from L (S) cages of about ˜4 (˜6) kcal/mol. For L cages, the agreement with the calculated (cages were treated as rigid) barrier is reasonable. For H2 in S cages, in H2-TDF-D2O, the extreme disagreement with theory points to another mechanism of time-averaging, reorientations of the cage-wall D2O molecules, as suggested by previous work in TDH-H2O clathrate. Our limited NMR spectra at high T ˜145 K in H2-D2O show evidence of distinct resonances from diffusionally mobile and immobile H2 molecules, as expected.

  19. Homogeneous two-dimensional nucleation of guest-free silicon clathrates

    NASA Astrophysics Data System (ADS)

    Lü, Yong jun

    2015-01-01

    The difficulty in synthesizing guest-free semiconductor clathrates complicates the process of determining how these cage-like structures form. This work studies the microscopic mechanism of the nucleation of guest-free Si136 clathrate using molecular dynamics simulations with the Stillinger-Weber potential. The homogeneous nucleation of Si136, which is realized in a narrow negative pressure range before liquid cavitation, exhibits the characteristic feature of the two-dimensional (2D) mode. The critical nucleus is composed of one to two five-membered rings, and the nucleation barrier is close to 1 kBT. According to a thermodynamic model based on atomistic nucleation theory, the effective binding energy associated with the formation of 2D critical nuclei is significantly low, which is responsible for the low nucleation barrier of Si136 clathrate. In the post-nucleation period, the critical nucleus preferentially grows into a dodecahedron, and the latter continuously grows with sharing face along <1 1 0>.

  20. Nonequilibrium air clathrate hydrates in Antarctic ice: a paleopiezomdter for polar ice caps.

    PubMed

    Craig, H; Shoji, H; Langway, C C

    1993-12-01

    "Craigite," the mixed-air clathrate hydrate found in polar ice caps below the depth of air-bubble stability, is a clathrate mixed crystal of approximate composition (N2O2).6H2O. Recent observations on the Byrd Station Antarctic core show that the air hydrate is present at a depth of 727 m, well above the predicted depth for the onset of hydrate stability. We propose that the air hydrate occurs some 100 m above the equilibrium phase boundary at Byrd Station because of "piezometry"--i.e., that the anomalous depth of hydrate occurrence is a relic of a previous greater equilibrium depth along the flow trajectory, followed by vertical advection of ice through the local phase-boundary depth. Flowline trajectories in the ice based on numerical models show that the required vertical displacement does indeed occur just upstream of Byrd Station. Air-hydrate piezometry can thus be used as a general parameter to study the details of ice flow in polar ice caps and the metastable persistence of the clathrate phase in regions of upwelling blue ice.

  1. Vibrational modes of methane in the structure H clathrate hydrate from ab initio molecular dynamics simulation.

    PubMed

    Hiratsuka, Masaki; Ohmura, Ryo; Sum, Amadeu K; Yasuoka, Kenji

    2012-10-14

    Vibrational spectra of guest molecules in clathrate hydrates are frequently measured to determine the characteristic signatures of the molecular environment and dynamical properties of guest-host interactions. Here, we present results of our study on the vibrational frequencies of methane molecules in structure H clathrate hydrates, namely, in the 5(12) and 4(3)5(6)6(3) cages, as the frequencies of stretching vibrational modes in these environments are still unclear. The vibrational spectra of methane molecules in structure H clathrate hydrate were obtained from ab initio molecular dynamics simulation and computed from Fourier transform of autocorrelation functions for each distinct vibrational mode. The calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules were found to be lower in the 4(3)5(6)6(3) cages than in the 5(12) cages (3.8 cm(-1) for symmetric stretching and 6.0 cm(-1) for asymmetric stretching). The C-H bond length and average distance between methane molecules and host-water molecules in 4(3)5(6)6(3) cages were slightly longer than those in the 5(12) cages.

  2. On the Design of High Efficiency Thermoelectric Type I Clathrates through Transition Metal Doping

    SciTech Connect

    Shi, Xun; Yang, Jiong; Yang, Jihui; Salvador, James R.; Bai, Shengqiang; Zhang, Weiqing; Chen, Lidong; Wong-Ng, W.; Wang, Hsin

    2010-01-01

    The lack of high efficiency thermoelectric materials hinders their deployment into wide ranging applications such as power generation from waste heat and solid state heating and cooling, which could lead to significant energy savings. Type I clathrates have recently been identified as prospective thermoelectric materials for power generation purposes due to their very low lattice thermal conductivity values. The maximum thermoelectric figure of merit of almost all type I clathrates is, however, less than 1; and occurs at, or above, 1000 K making them unfavorable especially for intermediate temperature applications. In this report, we demonstrate that transition metal doping introduces charge distortion and lattice defects into these materials which increases the ionized impurity scattering of carriers and point defect scattering of lattice phonons, respectively; leading to an enhanced power factor, reduced lattice thermal conductivity, and therefore improved thermoelectric figure of merit. Most importantly, the band gap of these materials can be tuned between 0.1 eV and 0.5 eV by adjusting the transition metal content, making it possible to design type I clathrates with excellent thermoelectric properties between 500 K and 1000 K.

  3. Ambient ionization and direct identification of volatile organic compounds with microwave-induced plasma mass spectrometry.

    PubMed

    Li, Dandan; Tian, Yong-Hui; Zhao, Zhongjun; Li, Wenwen; Duan, Yixiang

    2015-02-01

    An innovative method of volatile organic compounds analysis by using microwave-induced plasma ionization (MIPI) source in combination with an ambient ion trap mass spectrometer is presented here. Using MIPI for direct sample vapor, analysis was achieved without any sample preparation or subsequent heating. The relative abundance of the target compounds can be obtained almost instantly within a few seconds. The ionization processes of different volatile compounds was optimized, and the limits of detection were identified in the range of 0.15-4.5 pptv or 0.73-8.80 pg ml(-1). The relative standard deviation (RSD) is in the range of 4-14%, while correlation coefficients of the working curves (R(2)) are better than 0.98. The new method possesses advantages of ease operation, time-saving, high sensitivity and inexpensive setup. In addition, the ionization processes of short n-alkane chains were investigated with the MIPI technique, and a unique [M + 13](+) was detected, which has not been reported in detail by any other related ionization techniques. An ionization mechanism was proposed on the basis of the experimental results obtained in this work and available information in literatures, in which the n-alkanes in the plasma environment possibly generate protonated cyclopentadiene [M - 5](+) or alkyl-substituted analogues as well as hydrous ions [M + 13](+) and [M + 13 + 18](+), as shown in Scheme 1 in the main text.

  4. Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Xu; Zhang, Hu; Wu, Mei-Ling; Tao, Kun; Li, Ya-Wei; Yan, Tim; Long, Ke-Wen; Long, Teng; Pang, Zheng; Long, Yi

    2016-12-01

    The magnetic properties and magnetocaloric effects (MCE) of HoNiGa compound are investigated systematically. The HoNiGa exhibits a weak antiferromagnetic (AFM) ground state below the Ńeel temperature TN of 10 K, and the AFM ordering could be converted into ferromagnetic (FM) ordering by external magnetic field. Moreover, the field-induced FM phase exhibits a high saturation magnetic moment and a large change of magnetization around the transition temperature, which then result in a large MCE. A large -ΔSM of 22.0 J/kg K and a high RC value of 279 J/kg without magnetic hysteresis are obtained for a magnetic field change of 5 T, which are comparable to or even larger than those of some other magnetic refrigerant materials in the same temperature range. Besides, the μ0H2/3 dependence of well follows the linear fitting according to the mean-field approximation, suggesting the nature of second-order FM-PM magnetic transition under high magnetic fields. The large reversible MCE induced by metamagnetic transition suggests that HoNiGa compound could be a promising material for magnetic refrigeration in low temperature range. Project supported by the National Natural Science Foundation of China (Grant Nos. 51671022 and 51427806), the Beijing Natural Science Foundation, China (Grant No. 2162022), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-002A3).

  5. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    PubMed

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction.

  6. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction

    PubMed Central

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2016-01-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. PMID:26235983

  7. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and jnk activation

    PubMed Central

    2012-01-01

    Background Glioblastoma multiforme (GBM) is the most aggressive of the primary brain tumors, with a grim prognosis despite intensive treatment. In the past decades, progress in research has not significantly increased overall survival rate. Methods The in vitro antineoplastic effect and mechanism of action of Casiopeina III-ia (Cas III-ia), a copper compound, on rat malignant glioma C6 cells was investigated. Results Cas III-ia significantly inhibited cell proliferation, inducing autophagy and apoptosis, which correlated with the formation of autophagic vacuoles, overexpression of LC3, Beclin 1, Atg 7, Bax and Bid proteins. A decrease was detected in the mitochondrial membrane potential and in the activity of caspase 3 and 8, together with the generation of intracellular reactive oxygen species (ROS) and increased activity of c-jun NH2-terminal kinase (JNK). The presence of 3-methyladenine (as selective autophagy inhibitor) increased the antineoplastic effect of Cas III-ia, while Z-VAD-FMK only showed partial protection from the antineoplastic effect induced by Cas III-ia, and ROS antioxidants (N-acetylcysteine) decreased apoptosis, autophagy and JNK activity. Moreover, the JNK –specific inhibitor SP600125 prevented Cas III-ia-induced cell death. Conclusions Our data suggest that Cas III-ia induces cell death by autophagy and apoptosis, in part due to the activation of ROS –dependent JNK signaling. These findings support further studies of Cas III-ia as candidate for treatment of human malignant glioma. PMID:22540380

  8. Synthesis of a fluorescently labeled compound for the detection of arsenic-induced apoptotic HL60 cells.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Amor, M Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-03-01

    Arsenic compounds have shown medical usefulness since they proved to be effective in causing complete remission of acute promyelocytic leukemia. In this work we obtained a fluorescently labeled arsenic compound that can be used with current fluorescence techniques for basic and applied research, focused on arsenic-induced apoptosis studies. This compound is an arsanilic acid bearing a covalently linked FITC that was chemically synthesized and characterized by fluorescence, UV-Vis, mass and FTIR spectrometry. In addition, we assessed its apoptotic activity as well as its fluorescent labeling properties in HL60 cell line as a leukemia cell model through flow cytometry. We obtained a compound with a 1:1 FITC:arsenic ratio and a 595 m/z, confirming its structure by FTIR. This compound proved to be useful at inducing apoptosis in the leukemia cell model and labeling this apoptotic cell population, in such a way that the highest FITC fluorescence correlated with the highest arsenic amount.

  9. Attenuation of 2-methoxyethanol-induced testicular toxicity in the rat by simple physiological compounds.

    PubMed

    Mebus, C A; Welsch, F; Working, P K

    1989-06-01

    2-Methoxyethanol (2-ME) is an industrial solvent which is toxic to both male and female reproductive systems of laboratory animals. Earlier data have demonstrated that the developmental toxicity of 2-ME can be attenuated by simple physiological compounds such as serine, acetate, sarcosine, glycine, and D-glucose. The present experiments were designed to evaluate the same compounds for their ability to ameliorate the testicular toxicity that occurs in rats after 2-ME exposure. The extent of testicular damage was assessed by quantitating daily sperm production (DSP) on Day 24 following a single dose of 2-ME (6.6 mmol/kg, 500 mg/kg). Serine completely eliminated 2-ME-induced decreases in DSP, while glucose was without effect. Acetate, sarcosine, and glycine were of similar efficacy resulting in DSP that was significantly greater than that observed in rats which received 2-ME alone. Histopathological studies revealed that 2-ME treatment resulted in stage-specific degeneration of late stage pachytene spermatocytes 24 hr after treatment. No apparent degenerative changes occurred after concurrent treatment with serine. Similarly, serine also prevented the decreased number of spermatids in the lumina of the seminiferous tubules on Day 24 after 2-ME exposure alone. All of the compounds utilized in this study are linked to oxidation pathways involving tetrahydrofolic acid as a catalyst for one-carbon moiety transfer into purine and pyrimidine bases which are necessary precursors for DNA and RNA synthesis. The ability of these compounds to attenuate the testicular toxicity of 2-ME may result from their ability to donate one-carbon units which can be used in purine base biosynthesis. Reduced availability of bases would be expected to affect late stage pachytene spermatocytes which are known to be undergoing rapid RNA synthesis.

  10. Compound 48/80-induced serotonin release from brain mast cells

    SciTech Connect

    Lambracht-Hall, M.; Marathias, K.P.; Theoharides, T.C.

    1986-03-01

    Mast cells secrete a variety of potent mediators and are mostly known to participate in allergic reactions. Here the authors report that perfused brain mast cells can take up and release serotonin (5-HT) in response to compound 48/80. Thalamic or hypothalamic slices were loaded with /sup 3/H-5-HT (5 x 10/sup -7/M, for 12 min at 37/sup 0/C), washed and placed in individual 2 ml-perfusion wells. A Krebs-Ringer bicarbonate buffer with 1 x 10/sup -6/M imipramine (KRB + IMI) saturated with 5% CO/sub 2//95% O/sub 2/ at 37/sup 0/C and pH 7.4, was used throughout at a perfusion rate of 1 ml/min. After a 60 min wash in KRB + IMI, with or without Ca/sup +2/ + 0.1 M EDTA, the slices were perfused for 45 min with 100 ..mu..g/ml compound 48/80 with or without Ca/sup +2/. The tissue was washed for 30 min as before and then perfused with high K/sup +/ KRB (40mM KCl) for 45 min to induce neuronal depolarization. Finally, calcium was restored to Ca/sup +2/-depleted tissues and all samples were again perfused for 45 min with high K/sup +/ KRB. The first 5-HT peak due to 48/80-induced mast cell release was independent of extracellular Ca/sup +2/, while the second 5-HT peak due to high K/sup +/ was not. These studies indicate that the 48/80-induced 5-HT release was not of neuronal origin and that brain mast cells can utilize intracellular Ca/sup +2/, much like their peritoneal counterparts. The authors are now studying brain mast cells secretion in response to neuropeptides.

  11. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2013-09-01

    The effect of UV radiation on the accumulation of novel mycosporine-like amino acids (MAAs) along with their photoprotective function was investigated in the green alga Tetraspora sp. CU2551. No UV-absorbing compound was detected in this organism growing under normal light condition while two MAAs with absorption maxima at 324 nm and 322 nm were found to be accumulated after UV irradiation. The effects of UV exposure time with different cut-off filter foils namely 295 (PAR + UV-A + UV-B), 320 (PAR + UV-A) and 395 nm (PAR only) were studied on induction of the synthesis of these MAAs. Concentration of MAAs was found to increase with increase in exposure time under UV radiation. Furthermore, the antioxidant and photoprotective action of these MAAs was also investigated. The role of MAAs in diminishing the UV-induced production of ROS in vivo was also demonstrated using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and results obtained supported the results of DPPH free radical scavenging assay. The MAAs also exhibited efficient photoprotective ability on Escherichia coli cells against UV-B stress. Thus, the MAAs in Tetraspora sp. CU2551 may act as efficient antioxidants as well as UV-sunscreen. This is the first report for the UV-induced synthesis and co-accumulation of these MAAs and their photoprotective actions in Tetraspora sp. which is a member of the class Chlorophyceae. Moreover, UV-induced accumulation as well as photoprotective function of these compounds may facilitate this chlorophyte to perform important ecological functions in harsh environmental conditions with high UV-B fluxes in their brightly lit habitats.

  12. A spectroscopic study of the structure and occupancies of clathrate hydrates incorporating hydrogen

    NASA Astrophysics Data System (ADS)

    Grim, R. Gary

    With the ability to store and concentrate gases inside a clean and abundant water framework, clathrate hydrates are considered to be a promising material for many applications related to gas storage, separation, and sequestration. Hydrates of hydrogen are particularly interesting, for in addition to these potential applications, the small molecular size provides an opportunity for use as a model guest in many fundamental studies such as guest diffusion, multiple guest occupancy, and quantum mechanical effects upon confinement. In attempt to study these effects and the viability of H 2 hydrates as an energy storage material, a combined experimental and theoretical approach incorporating Raman spectroscopy, X-ray and neutron diffraction, nuclear magnetic resonance, ab-initio calculations, and molecular dynamic simulations was performed. One of the most significant challenges in the application of H2 clathrate hydrates is the demanding thermodynamic requirements needed for stability. In recent years, a mechanism known as the `tuning' effect had reportedly solved this issue where thermodynamic requirements could be reduced while simultaneously maintaining high storage capacities. In this work, the viability and validity of this technique is explored and alternative explanations in the form of epitaxial hydrate growth under high driving force conditions are discussed. A second, and equally important challenge facing clathrate hydrates as a future storage material is the overall storage capacity of H2. In previous work, H2 has only been experimentally verified to occupy the small 512 and 43566 3 cages and also in the large 51264 cages of the type II clathrate, often with an energy deficient promoter. In order to achieve more robust energy densities, other hydrate cages must be accessible. Herein a new method for increasing overall hydrate energy densities is presented involving the incorporation of H2 in the large cages of the type I clathrate with CH4 as a co

  13. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2.

    PubMed

    Alavi, Saman; Ohmura, Ryo; Ripmeester, John A

    2011-02-07

    Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

  14. Transition metal-induced degradation of a pharmaceutical compound in reversed-phase liquid chromatographic analysis.

    PubMed

    Wang, Qinggang; He, Brian Lingfeng; Zhang, Jin; Huang, Yande; Kleintop, Brent; Raglione, Thomas

    2015-01-01

    Drug degradation that occurs in HPLC analysis, during either sample preparation or chromatographic separation, can greatly impact method robustness and result accuracy. In this work, we report a case study of drug dimerization in HPLC analysis where proximate causes were attributed to either the LC columns or the HPLC instrument. Solution stress studies indicated that the same pseudo-dimeric degradants could also be formed rapidly when the compound was exposed to certain oxidative transition metal ions, such as Cu(II) and Fe(III). Two pseudo-dimeric degradants were isolated from transition metal stressed samples and their structures were elucidated. A degradation pathway was proposed, whereby the degradation was initiated through transition metal-induced single electron transfer oxidation. Further studies confirmed that the dimerization was induced by trace transition metals in the HPLC flow path, which could arise from either the stainless steel frits in the LC column or stainless steel tubing in the HPLC instrument. Various procedures to prevent transition metal-induced drug degradation were explored, and a general strategy to mitigate such risks is briefly discussed.

  15. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4.

    PubMed

    Youn, Hyung S; Lee, Joo Y; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H

    2006-12-01

    Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-kappaB and IRF3, and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-kappaB activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKbeta, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity.

  16. Inhibition of sodium current by taurine magnesium coordination compound prevents cesium chloride-induced arrhythmias.

    PubMed

    Yin, Yongqiang; Wen, Ke; Wu, Yanna; Kang, Yi; Lou, Jianshi

    2012-05-01

    The mechanism(s) by which taurine magnesium coordination compound (TMCC) inhibits experimental arrhythmias remains poorly understood. The purpose of this study was to observe the effects of TMCC against cesium chloride-induced arrhythmia in the rabbit heart and find whether the antiarrhythmic activity is related to inhibition of sodium current. Early afterdepolarization was induced by 1.5 mM cesium chloride (1 ml kg(-1)) through intravenous injection. The monophasic action potentials (MAP) and electrocardiograms were simultaneously recorded. The effect of TMCC on functional refractory periods (FRPs) in the left atrium was also observed in vitro. Arrhythmias onset was significantly retarded by TMCC. The number of ventricular premature contractions and incidence of monophasic ventricular tachycardia and polyphasic ventricular tachycardia in 10 min were decreased by TMCC. These effects can be abolished by veratridine (10 μg kg(-1)). MAP duration at 90% repolarization was significantly prolonged by TMCC, which can be prolonged even longer by veratridine (10 μg kg(-1)). In vitro experiments showed that FRPs was prolonged by TMCC which can be cancelled by veratridine (10 μg kg(-1)). TMCC prevents cesium chloride-induced arrhythmias, and inhibition of sodium current, in part, contributes to the antiarrhythmic effect of TMCC.

  17. Metabolical shifts towards alternative BTEX biodegradation intermediates induced by perfluorinated compounds in firefighting foams.

    PubMed

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Cruz, Jaqueline Matos; Claro, Marina Turini; Quiterio, Gabriela Mercuri; Bidoia, Ederio Dino

    2017-04-01

    The type and concentration of perfluorinated compounds (PFCs) can induce different types of enzymes and promote alternate patterns of BTEX transformation. However, it is not known how the presence of active fluorocarbon-degrading microbial populations affects the transformation of BTEX. In addition to chemical analysis at the molecular level, our research approached the aqueous film forming fire-fighting foams (AFFF) and BTEX co-contamination at a large-scale with respirometers to quantify the total microbial metabolism of soil via CO2 output levels. The intended outcome of this research was to obtain and characterize shifts in BTEX degradation at a set realistic environmental condition while measuring byproducts and CO2 production. Both methodologies complimentarily provided an in-depth knowledge of the environmental behavior of fire-fighting foams. The biodegradation was monitored using headspace sampling and two types of gas chromatography: thermal conductivity detector and flame ionization detector. Headspace samples were periodically withdrawn for BTEX biodegradation and CO2 production analysis. Our research suggests the discovery of an altered metabolic pathway in aromatic hydrocarbons biodegradation that is directly affected by fluorinated substances. The fluorinated compounds affected the BTEX biodegradation kinetics, as PFCs may contribute to a shift in styrene and catechol concentrations in co-contamination scenarios. A faster production of styrene and catechol was detected. Catechol is also rapidly consumed, thus undergoing further metabolic stages earlier under the presence of PFCs. The release of AFFF compounds not only changes byproducts output but also drastically disturbs the soil microbiota according to the highly variable CO2 yields. Therefore, we observed a high sensitivity of microbial consortia due to PFCs in the AFFF formulation, therefore shifting their BTEX degradation routes in terms of intermediate products concentration.

  18. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  19. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  20. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  1. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  2. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    SciTech Connect

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-04-15

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis.

  3. Morphine-induced Straub tail reaction in mice treated with serotonergic compounds.

    PubMed

    Belozertseva, Irina V; Dravolina, Olga A; Tur, Margarita A; Semina, Marina G; Zvartau, Edwin E; Bespalov, Anton Yu

    2016-11-15

    Constitutively active 5-HT2 receptors have been suggested to contribute to motoneuronal excitability, muscle spasms and spasticity. Accordingly, 5-HT2C receptor inverse agonists have been demonstrated in pilot experiments to reduce spasticity in animal model of spasticity and patients with spinal cord injuries. Thus, 5-HT2C receptor inverse agonists may represent a novel class of anti-spasticity agents justifying a search for compounds with robust 5-HT2C receptor inverse agonist activity either among the existing medications or via a dedicated drug discovery program. Morphine-induced Straub tail response in mice is regarded as a model of transient spasticity that may be suitable for supporting such drug discovery efforts. Subcutaneous injection of morphine (10-60mg/kg) induced a dose-dependent Straub tail reaction in male Swiss mice with maximum response obtained 15-30min after the morphine administration. When given prior to morphine, 5-HT2B/2C receptor inverse agonists cyproheptadine (1-10mg/kg, i.p.) and SB206553 (0.3-3mg/kg, i.p.) diminished Straub tail reaction dose-dependently without affecting spontaneous locomotor activity. In contrast, 5-HT2B/2C receptor antagonist methysergide (1-5.6mg/kg, i.p.) and 5-HT2C receptor antagonist SB242084 (1-5.6mg/kg, i.p.) as well as 5-HT2A receptor inverse agonist pimavanserin (1-10mg/kg, i.p.) had no appreciable effects on Straub tail response. Taken together, the findings indicate that constitutive activity of 5-HT2B/2C receptor may be involved in the mechanisms of morphine-induced spasticity. Thus, morphine-induced Straub tail response may be evaluated further as a candidate higher throughput test to identify 5-HT2C receptor inverse agonists with anti-spasticity effects in vivo.

  4. Hydration structures of lactic acid: characterization of the ionic clathrate hydrate formed with a biological organic acid anion.

    PubMed

    Muromachi, Sanehiro; Abe, Toru; Yamamoto, Yoshitaka; Takeya, Satoshi

    2014-10-21

    Ionic clathrate hydrates are water-based materials that have unique properties, such as a wide range of melting temperatures and high gas capacities. In their structure, water molecules coordinate around ionic substances, which is regarded as the actual hydration structure and also linking of the hydrate clusters, giving insight into the dynamics of the water molecules and ions. This paper reports the synthesis and characterization of the ionic clathrate hydrate of tetra-n-butylammonium lactate (TBAL), the anion of which is a biological organic material. Phase equilibrium measurements and optical observations of the crystal morphology and crystal structure analysis were performed. The TBAL hydrate has a melting temperature of 284.8 K suitable for cool energy storage applications. The actual hydration patterns around a lactate anion are shown in the form of ionic clathrate hydrate structure.

  5. Enzyme entrapped nanoporous scaffolds formed through flow induced gelation in microfluidic filter device for sensitive biosensing of organophosphorus compounds

    SciTech Connect

    Lu, Donglai; Shao, Guocheng; Du, Dan; Wang, Jun; Wang, Limin; Wang, Wanjun; Lin, Yuehe

    2011-02-01

    A novel and versatile processing method was developed for the formation of gel scaffolds with in-situ AChE-AuNPs immobilization for biosensing of organophosphorus compounds. The biosensor designed by our new approach shows high sensitivity, selectivity and reactivation efficiency. This flow induced immobilziation technique opens up new pathways for designing simple, fast, biocompatible, and cost-effective process for enhanced sensor performance and on-site testing of a variety of toxic organophosphorus compounds.

  6. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP(+)-induced neurodegeneration.

    PubMed

    Jouha, Jabrane; Loubidi, Mohammed; Bouali, Jamila; Hamri, Salha; Hafid, Abderrafia; Suzenet, Franck; Guillaumet, Gérald; Dagcı, Taner; Khouili, Mostafa; Aydın, Fadime; Saso, Luciano; Armagan, Güliz

    2017-03-31

    Neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and Huntington's disease affect millions of people in the world. Thus several new approaches to treat brain disorders are under development. The aim of the present study is to synthesize potential neuroprotective heterocyclic compounds based on pyrazolopyridine derivatives and then to evaluate their effects in MPP(+)-induced neurodegeneration in human neuroblastoma cell line (SH-SY5Y cells). The effects of the compounds on cell viability were measured by MTT assay and the changes in apoptosis-related proteins including bax, Bcl-2, Bcl-xl and caspase-3 were investigated by western blot technique. Based on the cell viability results obtained by MTT assay, the percentage of neuroprotection-induced by compounds against MPP(+)-induced neurotoxicity in SH-SY5Y cells was between 20% and 30% at 5 μM concentrations of all synthesized compounds. Moreover, the downregulation in pro-apoptotic proteins including bax and caspase-3 were found following the novel synthesized compounds treatments and these effects were observed in a dose-dependent manner. Our results provide an evidence that these heterocyclic compounds based on pyrazolopyridine derivatives may have a role on dopaminergic neuroprotection via antiapoptotic pathways.

  7. Probe Beam Detection of Laser-Induced Breakdown for Measuring Solubility of Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Cho, Hye-Ryun; Jung, Euo Chang; Jee, Kwang Yong

    2008-05-01

    A nondestructive laser-induced breakdown detection technique is developed, which entails measuring the deflection of a probe laser beam due to a shock wave generated by a laser-induced breakdown of colloidal nanoparticles in liquids. Comparing this optical method with a previously developed acoustic detection method using a piezoelectric transducer, it enables remote measurement and therefore facilitates the in situ measurement of samples in a radiation-shielded glove box. The probe beam detection of a shock wave shows a sufficiently high sensitivity for monitoring the initial colloid formation when the uranium ion concentration exceeds the solubility limit of uranium hydrolysis compounds at a certain pH. The mean solubility product log Ksp° = -23.23 ±0.04 at an ionic strength of zero determined in this work agrees well with the previously reported result, log Ksp° = -23.19 ±0.43, measured by a calorimetric experiment on UO3·2H2O(cr).

  8. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    PubMed

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  9. Olive oil phenolic compounds inhibit homocysteine-induced endothelial cell adhesion regardless of their different antioxidant activity.

    PubMed

    Manna, Caterina; Napoli, Daniela; Cacciapuoti, Giovanna; Porcelli, Marina; Zappia, Vincenzo

    2009-05-13

    In this study, we examine the effect of extra virgin olive oil phenolic compounds on homocysteine-induced endothelial dysfunction and whether the protective effects are related to their different scavenging activities. Structurally related compounds have been assayed for their ability to reduce homocysteine-induced monocyte adhesion as well as the cell surface expression of intercellular adhesion molecule-1 (ICAM-1) in EA.hy.926 cells. As well-known, among the selected phenolic compounds, hydroxytyrosol, homovanillyl alcohol, and the hydroxycinnamic acid derivatives caffeic and ferulic acid display high scavenging activities, while tyrosol and p-coumaric acid are poorly active. All of the tested compounds, approaching potential in vivo concentrations, significantly reduce homocysteine-induced cell adhesion and ICAM-1 expression. Interestingly, we report the first evidence that monophenols tyrosol and p-coumaric acid are selectively protective only in homocysteine-activated cells, while they are ineffective in reducing ICAM-1 expression induced by TNFalpha. Finally, we report the synergistic effect of o-diphenolic and monophenolic compounds.

  10. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase

    PubMed Central

    Rajfer, R. A.; Kilic, A.; Neviaser, A. S.; Schulte, L. M.; Hlaing, S. M.; Landeros, J.; Ferrini, M. G.; Ebramzadeh, E.

    2017-01-01

    Objectives We investigated the effects on fracture healing of two up-regulators of inducible nitric oxide synthase (iNOS) in a rat model of an open femoral osteotomy: tadalafil, a phosphodiesterase inhibitor, and the recently reported nutraceutical, COMB-4 (consisting of L-citrulline, Paullinia cupana, ginger and muira puama), given orally for either 14 or 42 days. Materials and Methods Unilateral femoral osteotomies were created in 58 male rats and fixed with an intramedullary compression nail. Rats were treated daily either with vehicle, tadalafil or COMB-4. Biomechanical testing of the healed fracture was performed on day 42. The volume, mineral content and bone density of the callus were measured by quantitative CT on days 14 and 42. Expression of iNOS was measured by immunohistochemistry. Results When compared with the control group, the COMB-4 group exhibited 46% higher maximum strength (t-test, p = 0.029) and 92% higher stiffness (t-test, p = 0.023), but no significant changes were observed in the tadalafil group. At days 14 and 42, there was no significant difference between the three groups with respect to callus volume, mineral content and bone density. Expression of iNOS at day 14 was significantly higher in the COMB-4 group which, as expected, had returned to baseline levels at day 42. Conclusion This study demonstrates an enhancement in fracture healing by an oral natural product known to augment iNOS expression. Cite this article: R. A. Rajfer, A. Kilic, A. S. Neviaser, L. M. Schulte, S. M. Hlaing, J. Landeros, M. G. Ferrini, E. Ebramzadeh, S-H. Park. Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase: Acceleration of fracture healing via inducible nitric oxide synthase. Bone Joint Res 2017:6:–97. DOI: 10.1302/2046-3758.62.BJR-2016-0164.R2. PMID:28188129

  11. Organophosphorus compound-induced delayed neurotoxicity in white leghorn hens assessed by Fluoro-Jade.

    PubMed

    Carlson, Kent; Ehrich, Marion

    2004-01-01

    Certain organophosphorus (OP) compounds can induce a delayed neuropathy, termed OPIDN, that involves central and peripheral nervous system axons, terminals, and perikarya. Historically, OPIDN has been characterized by staining neural sections with silver or hematoxylin and eosin (H and E). This study utilized a novel staining method, Fluoro-Jade, for evaluating the distribution and extent of OPIDN in the central nervous system of hens. Results were then compared to synoptically sectioned and stained H and E preparations. White Leghorn hens were injected with phenyl saligenin phosphate (PSP, 2.5 mg/kg, intramuscular [im]), triphenyl phosphite (TPPi, 500 mg/kg, subcutaneous [sc]), or dimethyl sulfoxide vehicle (DMSO, 0.5 ml/kg, im or sc) and evaluated clinically for signs of neurological dysfunction associated with OPIDN. Hens were sacrificed 7, 14, and 21 days post dosing. Brains and spinal cords were removed immediately following sacrifice, fixed in formalin, and embedded in paraffin. Microtome-cut sections (7 micro m) were then stained with Fluoro-Jade (0.001%, w/v) or H&E. Staining with Fluoro-Jade revealed time-dependent degeneration of nerve fibers and terminals (with PSP and TPPi), or cell bodies (with TPPi) in lamina VII, spinocerebellar, and medial pontine-spinal tracts of the lumbar spinal cord, in white matter and mossy fibers of foliae I-V and IX of the cerebellum, and in medullary, pontine, and midbrain nuclei and paleostriatal fibers surrounding the optic tract. TPPi-induced degeneration was more extensive than that induced by PSP and affected additional cerebellar folia, medullary, pontine, midbrain, and forebrain nuclei and fiber tracts. H&E-stained sections revealed fewer sites of neurodegeneration when compared to Fluoro-Jade. These results demonstrate that Fluoro-Jade is a sensitive method for staining neural tissue affected by OPIDN.

  12. The effect of topically applied salicylic compounds on serotonin-induced scratching behaviour in hairless rats.

    PubMed

    Thomsen, J S; Simonsen, L; Benfeldt, E; Jensen, S B; Serup, J

    2002-08-01

    There is a strong need for antipruritic substances for treating itch in clinical dermatology. In one recent human study, topically applied acetylsalicylic acid has been described to rapidly decrease histamine-induced itch. We have established a model for periferally elicited pruritus by injecting serotonin into the rostral back area (neck) in rats. Using this model, we aimed to investigate the antipruritic potential of four different salicylic compounds, which all possess different skin penetration characteristics. Eighteen rats were studied for 6 weeks. Prior to serotonin injections (2 mg/ml, 50 micro l), 10 micro l of test substances was applied to a circular area 18 mm in diameter. The four substances were salicylic acid, butyl salicylate, diethylamine salicylate and salicylamide, all solubilized in dimethyl isosorbide to a concentration of 5% w/w. Diethylamine salicylate and salicylamide were previously shown to be slowly absorbed through rat skin in contrast to salicylic acid and butyl salicylate. After serotonin injections, scratching was monitored by video recording for 1.5 h. Compared with the vehicle, a lower number of scratch sequences were seen when diethylamine salicylate (P < 0.001) and salicylamide (P = 0.005) had been applied. The numbers of scratch sequences were lower with diethylamine salicylate and salicylamide than with the vehicle throughout the 1.5-h study period. We conclude that topical application of diethylamine salicylate and salicylamide could suppress serotonin-induced scratching in rats. The antipruritic effect seems to be related to the slow drug release of the two substances. The results may be clinically relevant as serotonin induces itch in humans.

  13. A new family of multifunctional silicon clathrates: Optoelectronic and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Liu, Yinqiao; Jiang, Xue; Huang, Yingying; Zhou, Si; Zhao, Jijun

    2017-02-01

    To develop Si structures for multifunctional applications, here we proposed four new low-density silicon clathrates (Si-CL-A, Si-CL-B, Si-CL-C, and Si-CL-D) based on the same bonding topologies of clathrate hydrates. The electronic and thermal properties have been revealed by first-principles calculations. By computing their equation of states, phonon dispersion, and elastic constants, the thermodynamic, dynamic, and mechanical stabilities of Si-CL-A, Si-CL-B, Si-CL-C, and Si-CL-D allotropes are confirmed. In the low-density region of the phase diagram, Si-CL-B, Si-CL-D, and Si-CL-C would overtake diamond silicon and type II clathrate (Si-CL-II) and emerge as the most stable Si allotropes successively. Among them, the two direct semiconductors with bandgaps of 1.147 eV (Si-CL-A) and 1.086 eV (Si-CL-D) are found. The suitable bandgaps close to the optimal Shockley-Queisser limit result in better absorption efficiency in solar spectrum than conventional diamond silicon. Owing to the unique cage-based framework, the thermal conductivity of these Si allotropes at room temperature are very low (2.7-5.7 Wm-1 K-1), which are lower than that of diamond structured Si by two orders of magnitude. The suitable bandgaps, small effective masses, and low thermal conductivity of our new silicon allotropes are anticipated to find applications in photovoltaic and thermoelectric devices.

  14. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock.

    PubMed

    Yang, Chul-Su; Ko, Sung-Ryong; Cho, Byung-Goo; Shin, Dong-Min; Yuk, Jae-Min; Li, Shengjin; Kim, Jin-Man; Evans, Ronald M; Jung, Jun-Sub; Song, Dong-Keun; Jo, Eun-Kyeong

    2008-01-01

    Compound K (C-K), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. Here, we describe a novel therapeutic role for C-K in the treatment of lethal sepsis through the modulation of Toll-like receptor (TLR) 4-associated signalling via glucocorticoid receptor (GR) binding. In mononuclear phagocytes, C-K significantly repressed the activation of TLR4/lipopolysaccharide (LPS)-induced NF-kappaB and mitogen-activated protein kinases (MAPKs), as well as the secretion of pro-inflammatory cytokines. However C-K did not affect the TLR3-mediated expression of interferon-beta or the nuclear translocation of IRF-3. C-K competed with the synthetic glucocorticoid dexamethasone for binding to GR and activated glucocorticoid responsive element (GRE)-containing reporter plasmids in a dose-dependent manner. In addition, the blockade of GR with either the GR antagonist RU486 or a siRNA against GR substantially reversed the anti-inflammatory effects of C-K. Furthermore, TLR4-dependent repression of inflammatory response genes by C-K was mediated through the disruption of p65/interferon regulatory factor complexes. Importantly, pre- or post-treatment with C-K significantly rescued mice from Gram-negative bacterial LPS-induced lethal shock by lowering their systemic inflammatory cytokine levels and by reversing the lethal sequelae of sepsis. Collectively, these results demonstrate that C-K, as a functional ligand of GR, regulates distinct TLR4-mediated inflammatory responses, and suggest a novel therapy for Gram-negative septic shock.

  15. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    PubMed

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  16. THz frequency dynamics of network/guest atom systems : liquid water, clathrates, and network glasses.

    SciTech Connect

    Nakayama, T.; Materials Science Division

    2009-02-01

    Network/guest atom systems show peculiar dynamic behaviors at THz frequency region such as the plateau of thermal conductivities and the broad band spectra called the Boson peak. These are commonly realized in network/guest atom systems such as glasses, clathrates and even for liquid water. Though the phenomena are universal, there is no consistent view to explain these on the same basis. This paper, pointing out similar behaviors for these different systems, tries to present a unified view for these peculiar dynamics.

  17. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    SciTech Connect

    Dureckova, Hana Woo, Tom K.; Alavi, Saman

    2016-01-28

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

  18. EQCM Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and Their Electrocatalysis on Gold Electrodes

    DTIC Science & Technology

    1990-08-01

    EQCM Mwasurements: Redox-Induced Changes in Solvent and M0 Content in Anchored Redox Monolayers of Organosulfur CD Compounds and their Electrocatalysis ...REDOX-INDUCED CHANGES IN SOLVENT AND ION CONTENT IN ANCHORED REDOX MONOLAYERS OF ORGANOSULFUR COMPOUNDS AND THEIR ELECTROCATALYSIS ON GOLD...Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and their Electrocatalysis on

  19. Antibacterial active compounds from Hypericum ascyron L. induce bacterial cell death through apoptosis pathway.

    PubMed

    Li, Xiu-Mei; Luo, Xue-Gang; Si, Chuan-Ling; Wang, Nan; Zhou, Hao; He, Jun-Fang; Zhang, Tong-Cun

    2015-01-01

    Hypericum ascyron L. has been used as a traditional medicine for the treatment of wounds, swelling, headache, nausea and abscesses in China for thousands of years. However, modern pharmacological studies are still necessary to provide a scientific basis to substantiate their traditional use. In this study, the mechanism underlying the antimicrobial effect of the antibacterial activity compounds from H. ascyron L. was investigated. Bioguided fractionation of the extract from H. ascyron L. afforded antibacterial activity fraction 8. The results of cup plate analysis and MTT assay showed that the MIC and MBC of fraction 8 is 5 mg/mL. Furthermore, using Annexin V-FITC/PI, TUNEL labeling and DNA gel electrophoresis, we found that cell death with apoptosis features similar to those in eucaryon could be induced in bacteria strains after exposure to the antibacterial activity compounds from H. ascyron L. at moderate concentration. In addition, we further found fraction 8 could disrupt the cell membrane potential indicate that fraction 8 exerts pro-apoptotic effects through a membrane-mediated apoptosis pathway. Finally, quercetin and kaempferol 3-O-β-(2″-acetyl)-galactopyranoside, were identified from fraction 8 by means of Mass spectrometry and Nuclear magnetic resonance. To our best knowledge, this study is the first to show that Kaempferol 3-O-β-(2″-acetyl)-galactopyranoside coupled with quercetin had significant antibacterial activity via apoptosis pathway, and it is also the first report that Kaempferol 3-O-β-(2″-acetyl)-galactopyranoside was found in clusiacea. Our data might provide a rational base for the use of H. ascyron L. in clinical, and throw light on the development of novel antibacterial drugs.

  20. Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity

    PubMed Central

    Xia, Tian; Korge, Paavo; Weiss, James N.; Li, Ning; Venkatesen, M. Indira; Sioutas, Constantinos; Nel, Andre

    2004-01-01

    Particulate pollutants cause adverse health effects through the generation of oxidative stress. A key question is whether these effects are mediated by the particles or their chemical compounds. In this article we show that aliphatic, aromatic, and polar organic compounds, fractionated from diesel exhaust particles (DEPs), exert differential toxic effects in RAW 264.7 cells. Cellular analyses showed that the quinone-enriched polar fraction was more potent than the polycyclic aromatic hydrocarbon (PAH)–enriched aromatic fraction in O2•− generation, decrease of membrane potential (ΔΨm), loss of mitochondrial membrane mass, and induction of apoptosis. A major effect of the polar fraction was to promote cyclosporin A (CsA)–sensitive permeability transition pore (PTP) opening in isolated liver mitochondria. This opening effect is dependent on a direct effect on the PTP at low doses as well as on an effect on ΔΨm at high doses in calcium (Ca2+)-loaded mitochondria. The direct PTP effect was mimicked by redox-cycling DEP quinones. Although the aliphatic fraction failed to perturb mitochondrial function, the aromatic fraction increased the Ca2+ retention capacity at low doses and induced mitochondrial swelling and a decrease in ΔΨm at high doses. This swelling effect was mostly CsA insensitive and could be reproduced by a mixture of PAHs present in DEPs. These chemical effects on isolated mitochondria could be reproduced by intact DEPs as well as ambient ultrafine particles (UFPs). In contrast, commercial polystyrene nanoparticles failed to exert mitochondrial effects. These results suggest that DEP and UFP effects on the PTP and ΔΨm are mediated by adsorbed chemicals rather than the particles themselves. PMID:15471724

  1. First Tin Pnictide Halides Sn(24)P(19.3)I(8) and Sn(24)As(19.3)I(8): Synthesis and the Clathrate-I Type of the Crystal Structure.

    PubMed

    Shatruk, Mikhail M.; Kovnir, Kirill A.; Shevelkov, Andrei V.; Presniakov, Igor A.; Popovkin, Boris A.

    1999-07-26

    Sn(24)P(19.3)I(8) (I) and Sn(24)As(19.3)I(8) (II) have been prepared by a standard ampule synthesis. I crystallizes in a cubic space group Pm&thremacr;n, a = 10.9540(10) Å, z = 1. The crystal structure of I is built of the 3D net composed of tin and phosphorus atoms, while iodine atoms occupy large polyhedral holes of two different types, pentagonal dodecahedral and tetrakaidodecahedral. An arrangement of such polyhedra follows that of the clathrate-I type. The 3D net has vacancies at one of the phosphorus atoms positions. The vacancies cause the split of the tin atomic position into two, having different coordination, which is reflected in the (119)Sn Mössbauer spectrum. The vacancy concentration correlates well with the occupancy factors of the split tin atomic positions, and in accordance with the Zintl-Klemm formalism for valence compounds, I is a narrow-gap semiconductor. Powder diffraction data shows that II belongs to the same clathrate family, but has an 8 times larger face-centered cubic unit cell.

  2. Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae by specific individual compounds derived from native Korean plant species.

    PubMed

    Song, Geun Cheol; Ryu, Shi Yong; Kim, Young Sup; Lee, Ji Young; Choi, Jung Sup; Ryu, Choong-Min

    2013-10-16

    Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc) in tobacco (Nicotiana tabacum) and Pseudomonas syringae pv. tomato (Pst) in Arabidopsis thaliana. To select target compound(s) with direct and indirect (volatile) effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA) and jasmonic acid (JA) signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.

  3. Compound 19e, a Novel Glucokinase Activator, Protects against Cytokine-Induced Beta-Cell Apoptosis in INS-1 Cells

    PubMed Central

    Oh, Yoon Sin; Seo, Eunhui; Park, Kaapjoo; Jun, Hee-Sook

    2017-01-01

    Previously, compound 19e, a novel heteroaryl-containing benzamide derivative, was identified as a potent glucokinase activator (GKA) and showed a glucose-lowering effect in diabetic mice. In this study, the anti-apoptotic actions of 19e were evaluated in INS-1 pancreatic beta-cells co-treated with TNF-α and IL-1β to induce cell death. Compound 19e protected INS-1 cells from cytokine-induced cell death, and the effect was similar to treatment with another GKA or exendin-4. Compound 19e reduced annexin-V stained cells and the expression of cleaved caspase-3 and poly (ADP-ribose) polymerase protein, as well as upregulated the expression of B-cell lymphoma-2 protein. Compound 19e inhibited apoptotic signaling via induction of the ATP content, and the effect was correlated with the downregulation of nuclear factor-κB p65 and inducible nitric oxide synthase. Further, 19e increased NAD-dependent protein deacetylase sirtuin-1 (SIRT1) deacetylase activity, and the anti-apoptotic effect of 19e was attenuated by SIRT1 inhibitor or SIRT1 siRNA treatment. Our results demonstrate that the novel GKA, 19e, prevents cytokine-induced beta-cell apoptosis via SIRT1 activation and has potential as a therapeutic drug for the preservation of pancreatic beta-cells.

  4. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway.

    PubMed

    Vucicevic, Ljubica; Misirkic, Maja; Janjetovic, Kristina; Vilimanovich, Urosh; Sudar, Emina; Isenovic, Esma; Prica, Marko; Harhaji-Trajkovic, Ljubica; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2011-01-01

    In the present study, we report that compound C, an inhibitor of a key intracellular energy sensor AMP-activated protein kinase (AMPK), can induce autophagy in cancer cells. The induction of autophagy in U251 human glioma cell line was demonstrated by acridine orange staining of intracellular acidic vesicles, Beclin 1 induction, p62 decrease and conversion of LC3-I to autophagosome-associated LC3-II in the presence of proteolysis inhibitors. The presence of autophagosome-like vesicles was confirmed by transmission electron microscopy. Compound C-mediated inhibition of AMPK and raptor in U251 cells was associated with paradoxical decrease in phosphorylation of AMPK/raptor-repressed mTOR, a major negative regulator of autophagy, and its downstream target p70S6K. The phosphorylation of an mTOR activator Akt and the PI3K-activating kinase Src was also impaired in compound C-treated cells. The siRNA-mediated AMPK silencing did not reduce the activity of the Akt/mTOR/p70S6K pathway and AMPK activators metformin and AIC AR failed to block compound C-induced autophagy. Autophagy inhibitors bafilomycin and chloroquine significantly increased the cytotoxicity of compound C towards U251 cells, as confirmed by increase in lactate dehydrogenase release, DNA fragmentation and caspase-3 activation. Similar effects of compound C were also observed in C6 rat glioma, L929 mouse fibrosarcoma and B16 mouse melanoma cell lines. Since compound C has previously been reported to suppress AMPK-dependent autophagy in different cell types, our findings suggest that the effects of compound C on autophagy might be dose-, cell type- and/or context-dependent. By demonstrating the ability of compound C to induce autophagic response in cancer cells via AMPK inhibition-independent downregulation of Akt/mTOR pathway, our results warrant caution when using compound C to inhibit AMPK-dependent cellular responses, but also support further exploration of compound C and related molecules as potential

  5. Gadolinium-based Compounds Induce NLRP3-dependent IL-1β Production and Peritoneal Inflammation

    PubMed Central

    Schmidt-Lauber, Christian; Bossaller, Lukas; Abujudeh, Hani H.; Vladimer, Gregory I.; Christ, Anette; Fitzgerald, Katherine A.; Latz, Eicke; Gravallese, Ellen M.; Marshak-Rothstein, Ann; Kay, Jonathan

    2015-01-01

    Objective Nephrogenic systemic fibrosis (NSF) is a progressive fibrosing disorder that may develop in patients with chronic kidney disease (CKD) after administration of gadolinium-based contrast agents (GBCAs). In the setting of impaired renal clearance of GBCAs, gadolinium (Gd) deposits in various tissues and fibrosis subsequently develops. However, the precise mechanism by which fibrosis occurs in NSF is incompletely understood. Because other profibrotic agents, such silica or asbestos, activate the NOD-like receptor protein 3 (NLRP3) inflammasome and initiate IL-1β release with the subsequent development of fibrosis, we evaluated the effects of GBCAs on inflammasome activation. Methods Bone marrow derived macrophages (BMDM) from C57BL/6, Nlrp3−/− and Asc−/− mice were incubated with three Gd-containing compounds and IL-1β activation and secretion was detected by ELISA and Western blot analysis. Inflammasome activation and regulation was investigated in IL-4- and IFNγ-polarized macrophages by ELISA, qRT-PCR and NanoString nCounter analysis. Furthermore, C57BL/6 and Nlrp3−/− mice were injected i.p. with GBCA and recruitment of inflammatory cells to the peritoneum was analyzed by FACS. Results Both free Gd and GBCAs activate the NLRP3 inflammasome and induce IL-1β secretion in vitro. Gd-DTPA also induces the recruitment of neutrophils and inflammatory monocytes to the peritoneum in vivo. Gd activated IL-4-polarized macrophages more effectively than IFNγ-polarized macrophages, which preferentially expressed genes known to downregulate inflammasome activity. Conclusion These data suggest that Gd released from GBCAs triggers a NLRP3 inflammasome-dependent inflammatory response that leads to fibrosis in an appropriate clinical setting. The preferential activation of IL-4-differentiated macrophages is consistent with the predominantly fibrotic presentation of NSF. PMID:24914072

  6. Paeonol, a Major Compound of Moutan Cortex, Attenuates Cisplatin-Induced Nephrotoxicity in Mice

    PubMed Central

    Lee, Hyojung; Lee, Gihyun; Kim, Hyunseong; Bae, Hyunsu

    2013-01-01

    Cisplatin is an effective chemotherapeutic agent that is used for the treatment of a variety of cancers; however, its nephrotoxicity limits the use of this drug. In the present study, we examined whether paeonol, a major compound of Moutan Cortex, has protective effects on cisplatin-induced acute renal failure in mice. To accomplish this, Balb/c mice (6 to 8 wk of age, weighing 20 to 25 g) were administered, Moutan Cortex (300 mg/kg) or paeonol (20 mg/kg) once a day. At day 4, mice received cisplatin (30, 20, or 10 mg/kg) intraperitoneally. The paeonol-treated group showed marked attenuation of serum creatine and blood urea nitrogen levels as well as reduced levels of proinflammatory cytokines and nitric oxide when compared to the control group. In addition, the paeonol-treated group showed prolonged survival and marked attenuation of renal tissue injury. Taken together, these results demonstrated that paeonol can prevent the renal toxic effects of cisplatin. PMID:24171038

  7. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds

    NASA Astrophysics Data System (ADS)

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Wu, W.; Luo, J. L.; Rosenbaum, T. F.

    2016-10-01

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

  8. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds

    PubMed Central

    Wang, Yishu; Feng, Yejun; Cheng, J.-G.; Wu, W.; Luo, J. L.; Rosenbaum, T. F.

    2016-01-01

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity. PMID:27708255

  9. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds.

    PubMed

    Wang, Yishu; Feng, Yejun; Cheng, J-G; Wu, W; Luo, J L; Rosenbaum, T F

    2016-10-06

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

  10. Gene expression for peroxisome-associated enzymes in hepatocellular carcinomas induced by ciprofibrate, a hypolipidemic compound

    SciTech Connect

    Rao, M.S.; Nemali, M.R.; Reddy, J.K.

    1986-03-05

    Administration of hypolipidemic compounds leads to marked proliferation of peroxisomes and peroxisome-associated enzymes (PAE) in the livers of rodents and non-rodent species. The increase peroxisome-associated enzymes such as fatty acid ..beta..-oxidation system and catalase is shown to be due to an increase in the levels of mRNA. In this experiment they have examined hepatocellular carcinomas (HCC), induced in male F-344 rats by ciprofibrate (0.025%, w/w for 60 weeks), for gene expression of PAE. Total RNA was purified from HCC as well as from control and ciprofibrate (0.025% for 2 weeks) fed rat livers. Northern blot analysis was performed using (32/sub p/)cDNA probes for albumin, fatty acetyl-CoA oxidase, enoyl-CoA hydratase 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and catalase. mRNA levels in HCC for albumin, fatty acid ..beta..-oxidation enzymes and catalase were comparable with those levels observed in the livers of rats given ciprofibrate for 2 weeks. In control livers the mRNAs for ..beta..-oxidation enzymes were low. Albumin mRNA levels in all the 3 groups were comparable. Additional studies are necessary to determine whether the increased level of mRNAs for the ..beta..-oxidation enzymes in HCC is due to the effect of ciprofibrate or to the gene amplification.

  11. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM.

    PubMed

    Follin-Arbelet, Virginie; Misund, Kristine; Naderi, Elin Hallan; Ugland, Hege; Sundan, Anders; Blomhoff, Heidi Kiil

    2015-08-26

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM.

  12. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    PubMed

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  13. Strain induced superconductivity in the parent compound BaFe2As2.

    PubMed

    Engelmann, J; Grinenko, V; Chekhonin, P; Skrotzki, W; Efremov, D V; Oswald, S; Iida, K; Hühne, R; Hänisch, J; Hoffmann, M; Kurth, F; Schultz, L; Holzapfel, B

    2013-01-01

    The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors.

  14. Electric Double-Layer Capacitor Based on an Ionic Clathrate Hydrate

    SciTech Connect

    Lee, Wonhee; Kwon, Minchul; Park, Seongmin; Lim, Dongwook; Cha, Jong-Ho; Lee, Huen

    2013-05-13

    Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me{sub 4}NOH[DOT OPERATOR]5H{sub 2}O show a high specific capacitance, reversible charge–discharge behavior, and a long cycle life. The ionic-hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1)The ICH does not cause leakage problems under normal EDLC operating conditions. 2)The hydrate material can be utilized itself, without requiring any pre-treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3)The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4)The hydrate solid electrolyte exhibits more-favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems.

  15. The presence of clathrates in comet 67P/Churyumov-Gerasimenko

    PubMed Central

    Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A.; Lunine, Jonathan I.; Marty, Bernard; Mandt, Kathleen E.; Wurz, Peter; Rubin, Martin

    2016-01-01

    Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate. PMID:27152351

  16. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory

    NASA Astrophysics Data System (ADS)

    Ramya, K. R.; Venkatnathan, Arun

    2013-03-01

    Hydrogen clathrate hydrates are promising sources of clean energy and are known to exist in a sII hydrate lattice, which consists of H2 molecules in dodecahedron (512) and hexakaidecahedron (51264) water cages. The formation of these hydrates which occur in extreme thermodynamic conditions is known to be considerably reduced by an inclusion of tetrahydrofuran (THF) in cages of these hydrate lattice. In this present work, we employ the density functional theory with a dispersion corrected (B97-D) functional to characterize vibrational Raman modes in the cages of pure and THF doped hydrogen clathrate hydrates. Our calculations show that the symmetric stretch of the H2 molecule in the 51264H2.THF cage is blueshifted compared to the 51264H2 cage. However, all vibrational modes of water molecules are redshifted which suggest reduced interaction between the H2 molecule and water molecules in the 51264H2.THF cage. The symmetric and asymmetric O-H stretch of water molecules in 512H2, 51264H2, and 51264H2.THF cages are redshifted compared with the corresponding guest free cages due to interactions between encapsulated H2 molecules and water molecules of the cages. The low frequency modes contain contributions from contraction and expansion of water cages and vibration of water molecules due to hydrogen bonding and these modes could possibly play an important role in the formation of the hydrate lattice.

  17. High pressure synthesis and in situ Raman spectroscopy of H2 and HD clathrate hydrates.

    PubMed

    Zaghloul, Mohamed A S; Celli, Milva; Salem, N M; Elsheikh, S M; Ulivi, Lorenzo

    2012-10-28

    By means of a newly constructed high pressure and low temperature optical apparatus we have measured the Raman spectra of H(2) and HD simple clathrate hydrates, synthesized in situ by the application of more than 2500 bar gas pressure on solid water. High resolution spectra of the molecular vibration have been measured at low temperature (about 20 K). In the case of HD this band is simpler than in the case of H(2), where the presence of the ortho- and para-species complicated the interpretation of the spectrum. We have determined frequency positions of the bands arising from multiple occupancy of the large cages of the sII clathrate, some of which are almost superimposed. The intensity of the bands gives information on the average and distribution of cage occupation, and of the ortho-para (o-p) ratio of H(2) molecules. Hydrogen o-p conversion rate is measured, for molecules in the small cages and in the large cages, and it is observed that these are different. A model considering both intrinsic and extrinsic conversion processes is applied to the measured data. The intrinsic conversion rate so derived is compared favorably to that measured for pure hydrogen in different situations.

  18. Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory.

    PubMed

    Ashbaugh, Henry S; Asthagiri, D; Pratt, Lawrence R; Rempe, Susan B

    2003-09-01

    Ab initio molecular dynamics (AIMD) results on a krypton-water liquid solution are presented and compared to recent XAFS results for the radial hydration structure for a Kr atom in liquid water solution. Though these AIMD calculations have important limitations of scale, the comparisons with the liquid solution results are satisfactory and significantly different from the radial distributions extracted from the data on the solid Kr/H(2)O clathrate hydrate phase. The calculations also produce the coordination number distribution that can be examined for metastable coordination structures suggesting possibilities for clathrate-like organization; none are seen in these results. Clathrate pictures of hydrophobic hydration are discussed, as is the quasi-chemical theory that should provide a basis for clathrate pictures. Outer shell contributions are discussed and estimated; they are positive and larger than the positive experimental hydration free energy of Kr(aq), implying that inner shell contributions must be negative and of comparable size. Clathrate-like inner shell hydration structures on a Kr atom solute are obtained for some, but not all, of the coordination number cases observed in the simulation. The structures found have a delicate stability. Inner shell coordination structures extracted from the simulation of the liquid, and then subjected to quantum chemical optimization, always decomposed. Interactions with the outer shell material are decisive in stabilizing coordination structures observed in liquid solution and in clathrate phases. The primitive quasi-chemical estimate that uses a dielectric model for the influence of the outer shell material on the inner shell equilibria gives a contribution to hydration free energy that is positive and larger than the experimental hydration free energy. The 'what are we to tell students' question about hydrophobic hydration, often answered with structural clathrate pictures, is then considered; we propose an

  19. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells

    PubMed Central

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3

  20. Superconductive sodalite-like clathrate calcium hydride at high pressures.

    PubMed

    Wang, Hui; Tse, John S; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-04-24

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H(2) fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH(6) a body-centered cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H(2) of electrons donated by Ca forming an "H(4)" unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH(6). A superconducting critical temperature (T(c)) of 220-235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far.

  1. Superconductive sodalite-like clathrate calcium hydride at high pressures

    PubMed Central

    Wang, Hui; Tse, John S.; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centered cubic structure with hydrogen that forms unusual “sodalite” cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming an “H4” unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn–Teller effect helps to enhance electron–phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220–235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far. PMID:22492976

  2. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance.

    PubMed

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T; Lagakos, William S; Oh, Dayoung; Watkins, Steven M; Kim, Jane J

    2015-08-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9-39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation.

  3. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  4. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  5. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  6. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Astrophysics Data System (ADS)

    Scattergood, T. W.; McKay, C. P.; Borucki, W. J.; Giver, L. P.; van Ghyseghem, H.; Parris, J. E.; Miller, S. L.

    1989-10-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  7. A study of the xenon effect in type-II clathrate hydrate synthesis; Commencing with hydrogen, argon and xenon uptake into a propane clathrate hydrate

    NASA Astrophysics Data System (ADS)

    Abbondondola, Joanne Angela

    It has been proposed that clathrate hydrates can be a possible storage medium for alternative fuels, such as hydrogen. The type-II propane gas hydrate is a viable choice because there are twice as many small cages as large cages and the small cavities are available for hydrogen storage. However, propane hydrate formation is a kinetically slow process which makes it commercially unattractive. Our objectives were twofold; (1) to quantify hydrogen, argon and xenon sorption into a preformed type-II propane hydrate at near-ambient conditions and (2) to investigate the effect of xenon on the rate of type-II propane hydrate formation. The propane hydrate is synthesized from 250 mum ice grains, and is estimated to have a porosity of 65 %. Hydrogen is rapidly absorbed by the hydrate sample and approaches the equilibrium vapor pressure in an hour before a very slow residual absorption process ensues. For an initial hydrogen pressure of 1.5 MPa, about 4.5 % of the available 512 cages are occupied by hydrogen after one hour, and 4.9 % after 18 hours. In contrast, for both argon and xenon significantly more gas is absorbed by the hydrate, but at a much slower rate: about 5% as fast for xenon and 1% as fast for argon. We conclude that hydrogen readily diffuses through the propane hydrate microcrystal structure, while argon and xenon are probably absorbed by growing new double hydrate while consuming the propane hydrate. Thus, although considerably higher pressures would be required to store significant quantities of hydrogen in propane hydrate, it appears that the crystal can be loaded and emptied in relatively short amounts of time. Experimental results show that propane is incorporated into clathrate hydrate cages more rapidly using propane-xenon mixtures than for pure propane gas. For a 0.92 xenon: propane mix, 60% of the theoretical yield of propane enclathration is achieved in 20 minutes, versus several days for pure propane. It appears that xenon serves to nucleate the

  8. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater.

    PubMed

    Grueneberg, Jan; Engelen, Aschwin H; Costa, Rodrigo; Wichard, Thomas

    2016-01-01

    Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in

  9. Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin.

    PubMed

    Olas, Beata; Wachowicz, Barbara; Saluk-Juszczak, Joanna; Zieliński, Tomasz

    2002-08-15

    Resveratrol (3, 4', 5-trihydroxystilbene), a natural polyphenol, is found in some plants that are used in human nutrition. Grapes are a major source for resveratrol, and a significant amount can also be found in red wine. Several experimental studies have demonstrated biological properties of resveratrol, especially its anti-inflammatory, antioxidant, anti-platelet and antitumor effects. In the present study, we investigated the first step of platelet activation-platelet adhesion stimulated by lipopolysaccharide (LPS) from Proteus mirabilis (weak stimulator) and thrombin (strong activator) in the presence of resveratrol. Our studies show that endotoxin (0.3 microg/10(8) platelets), like thrombin (0.2 U/10(8) platelets), induced the adhesion of platelets (expressed as absorbance of cell attached proteins) to collagen and fibrinogen. Preincubation of washed platelets with resveratrol at physiological plasma concentrations (25-100 microg/ml, 30 min, 37 degrees C) had an inhibitory effect on adhesion of platelets to collagen after activation by LPS alone or LPS with thrombin. The strongest effect on this process was caused by resveratrol at the concentration of 100 microg/ml. Pretreatment of platelets with resveratrol (25-100 microg/ml, 30 min, 37 degrees C) had also inhibitory effects on adhesion of platelets to fibrinogen after stimulation of these cells by LPS alone or by LPS with thrombin at the same concentration. In conclusion, we suggest that resveratrol present in human diet may be an important compound responsible for the reduction of platelet adhesion and changed reactivity of blood platelets in inflammatory process.

  10. The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells.

    PubMed

    Singh, Raminder; Fröbel, Julia; Cadeddu, Ron-Patrick; Bruns, Ingmar; Schroeder, Thomas; Brünnert, Daniela; Wilk, Christian Matthias; Zerbini, Luiz Fernando; Haas, Rainer; Czibere, Akos

    2012-02-01

    Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Treatment of patients suffering from high-risk AML as defined by clinical parameters, cytogenetics, and/or molecular analyses is often unsuccessful. OSI-461 is a pro-apoptotic compound that has been proposed as a novel therapeutic option for patients suffering from solid tumors like prostate or colorectal carcinoma. But little is known about its anti-proliferative potential in AML. Hence, we treated bone marrow derived CD34(+) selected blast cells from 20 AML patients and the five AML cell lines KG-1a, THP-1, HL-60, U-937, and MV4-11 with the physiologically achievable concentration of 1 μM OSI-461 or equal amounts of DMSO as a control. Following incubation with OSI-461, we found a consistent induction of apoptosis and an accumulation of cells in the G2/M phase of the cell cycle. In addition, we demonstrate that the OSI-461 mediated anti-proliferative effects observed in AML are associated with the induction of the pro-apoptotic cytokine mda-7/IL-24 and activation of the growth arrest and DNA-damage inducible genes (GADD) 45α and 45γ. Furthermore, OSI-461 treated leukemia cells did not regain their proliferative potential for up to 8 days after cessation of treatment following the initial 48 h treatment period with 1 μM OSI-461. This indicates sufficient targeting of the leukemia-initiating cells in our in vitro experiments through OSI-461. The AML samples tested in this study included samples from patients who were resistant to conventional chemotherapy and/or had FLT3-ITD mutations demonstrating the high potential of OSI-461 in human AML.

  11. Experimental Study of Flows Induced Scour around compound Vegetation Patch in Different Densities

    NASA Astrophysics Data System (ADS)

    Chan, Hsun-Chuan; Huang, Tai-Ran

    2015-04-01

    In the natural rivers, woody vegetation commonly grows along the riverbank. When flows run through the woody vegetation zones, the stream processes are markedly affected. Previous studies were to explore Single-density vegetation group. This study used a combination of dual-density vegetation group. We experimentally investigated the flows induced scour around vegetation patch in different density. Since vegetation grows along the nature bank, so the vegetation model is arranged along one side of the flume wall. The experiments were expected to simulate the near bank scour in the jointed effects of vegetation and levee. The woody vegetation was set in 10 square centimeters. Modelled vegetation was simulated by the steel columns in the emergent flow conditions. Uniform sand with a median size of 0.88 mm was used as the bed sediment. The experimental flow was steady and flow velocity was adopted to close to the initiation of sediment motion. It was observed sediment erosion phenomenon around the vegetation zone. The bed morphology of equilibrium scour condition was measured by a Laser Distance Meter in the cases of vegetation density equal to 0.03, 0.04, 0.05, 0.07, 0.09, 0.12, 0.15,0.2, and 0.3. Test result of the vegetation group compound arrangement made by a combination of density 0.03, 0.05, 0.09, and 0.12. The difference between double density and single density of the vegetation was compared. Vegetation densities were used to research the effects of vegetation on the maximum scour depth of the scour hole. Near the vegetation zone, the size of the scour hole increased as the vegetation density increased. However, the height of depositing dune is in a low correlation with vegetation density. Location of Maximum scour depth and the maximum accumulation will move upstream with the density increase.

  12. Protective effect of bioactive compounds from Lonicera japonica Thunb. against H2O2-induced cytotoxicity using neonatal rat cardiomyocytes

    PubMed Central

    Wang, Chen; Wang, Gang; Liu, Hong; Hou, Yun-long

    2016-01-01

    Objective(s): Pharmacological studies showed that the extracts of Jin Yin Hua and its active constituents have lipid lowering, antipyretic, hepatoprotective, cytoprotective, antimicrobial, antibiotic, antioxidative, antiviral, and anti-inflammatory effects. The purpose of the present study was to investigate the protective effects of caffeoylquinic acids (CQAs) from Jin Yin Hua against hydrogen peroxide (H2O2)-induced and hypoxia-induced cytotoxicity using neonatal rat cardiomyocytes. Materials and Methods: Seven CQAs (C1 to C7) isolated and identified from Jin Yin Hua were used to examine the effects of H2O2-induced and hypoxia-induced cytotoxicity. We studied C4 and C6 as preventative bioactive compounds of the reactive oxygen species (ROS) production, apoptotic pathway, and apoptosis-related gene expression. Results: C4 and C6 were screened as bioactive compounds to exert a cytoprotective effect against oxidative injury. Pretreatment with C4 and C6, dose-dependently attenuated hypoxia-induced ROS production and reduced the ratio of GSSG/GStotal. Western blot data revealed that the inhibitory effect of C4 on H2O2-induced up and down-regulation of Bcl-2, Bax, caspase-3, and cleaved caspase-3. Apoptosis was evaluated by detection of DNA fragmentation using TUNEL assay, and quantified with Annexin V/PI staining. Conclusion: In vitro experiments revealed that both C4 and C6 protect cardiomyocytes from necrosis and apoptosis during H2O2-induced injury, via inhibiting the generation of ROS and activation of caspase-3 apoptotic pathway. These results demonstrated that CQAs might be a class of compounds which possess potent myocardial protective activity against the ischemic heart diseases related to oxidative stress. PMID:27096070

  13. Effects of Constituent Compounds of Smilax china on Nicotine-Induced Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells.

    PubMed

    Lincha, Victor Ruberio; Zhao, Bing-Tian; Woo, Mi-Hee; Yang, In-Jun; Shin, Heung-Mook

    2016-01-01

    This study investigated the effects of compounds isolated from 70% ethanol (EtOH) extraction of Smilax china L. (SCE), a plant belonging to the family Smilacaceae on nicotine-induced endothelial dysfunction (ED) in human umbilical vein endothelial cells. We isolated 10 compounds from ethyl acetate (EtOAc) fraction of 70% EtOH extract of SCE and investigated their inhibitory effect on nicotine-induced ED in endothelial cells. Kaempferol, kaempferol 7-O-α-L-rhamnopyranoside, puerarin and ferulic acid showed strong inhibition of nicotine-induced vascular cell adhesion molecule (VCAM-1) expression while kaempferol, kaempferin, and caffeic acid attenuated intercellular adhesion molecule (ICAM-1) expression. Lepidoside, caffeic acid and methylsuccinic acid caused the highest up-regulated expression of endothelial nitric oxide synthase at the protein level with caffeic acid and ferulic acid showing strong inhibitory effects on inducible nitric oxide synthase (iNOS) expression. In addition, ferulic acid and kaempferol showed inhibition against interleukin-8 (IL-8) and interleukin-1β (IL-1β) expression while ferulic acid and caffeic acid showed comparatively higher inhibition of ED associated tumor necrosis factor-α (TNF-α) expression. These results show the potential of the aforementioned compounds to reverse the toxic effects of nicotine on the endothelium.

  14. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    PubMed

    Ter Veld, Marcel G R; Zawadzka, E; van den Berg, J H J; van der Saag, Paul T; Rietjens, Ivonne M C M; Murk, Albertinka J

    2008-07-30

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues 8h after dosing the ER-luc male mice intraperitoneally (IP) or 14h after oral dosing. Estradiol-propionate (EP) was used as a positive control at 0.3 and 1mg/kg bodyweight (bw), DMSO as solvent control. The food-associated estrogenic compounds tested at non-toxic doses were bisphenol A (BPA) and nonylphenol (NP) (both at 10 and 50mg/kgbw), dichlorodiphenyldichloroethylene (p,p'-DDE; at 5 and 25mg/kgbw), quercetin (at 1.66 and 16.6mg/kgbw), di-isoheptyl phthalate (DIHP), di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) all at 30 and 100mg/kgbw. In general IP dosing resulted in higher luc inductions than oral dosing. EP induced luc activity in the liver in a statistically significant dose-related way with the highest induction of all compounds tested which was 20,000 times higher than the induction by the DMSO-control. NP, DDE, DEHA and DIHP did not induce luc activity in any of the tissues tested. BPA induced luc in the liver up to 420 times via both exposure routes. BPA, DEHP and quercetin induced luc activity in the liver after oral exposure. BPA (50mg/kgbw IP) also induced luc activity in the testis, kidneys and tibia. The current study reveals that biomarker-responses in ER-luc male mice occur after a single oral exposure to food-associated estrogenic model compounds at exposure levels 10 to 10(4) times higher than the established TDI's for some of these compounds. Given the facts that (i) the present study did not include chronic exposure and that (ii) simultaneous exposure to multiple estrogenic compounds may be a realistic exposure scenario, it remains to be seen whether this margin is sufficiently high.

  15. DJ-1-binding compounds prevent oxidative stress-induced cell death and movement defect in Parkinson's disease model rats.

    PubMed

    Miyazaki, Shin; Yanagida, Takashi; Nunome, Kana; Ishikawa, Shizuma; Inden, Masatoshi; Kitamura, Yoshihisa; Nakagawa, Shinsuke; Taira, Takahiro; Hirota, Kosaku; Niwa, Masami; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2008-06-01

    Parkinson's disease (PD) is caused by neuronal cell death. Although a precursor of dopamine and inhibitors of dopamine degradation have been used for PD therapy, cell death progresses during treatment. DJ-1, a causative gene product of a familial form of PD, PARK7, plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in the onset of PD. Superfluous oxidation of cysteine at amino acid 106 (C106) of DJ-1 renders DJ-1 inactive, and such oxidized DJ-1 has been observed in patients with the sporadic form of PD. In this study, we isolated compounds that bind to the region at C106 by a virtual screening. These compounds prevented oxidative stress-induced death of SH-SY5Y cells, embryonic stem cell-derived dopaminergic cells and primary neuronal cells of the ventral mesencephalon, but not that of DJ-1-knockdown cells of SH-SY5Y and NIH3T3 cells, indicating that the effect of the compounds is specific to DJ-1. These compounds inhibited production of reactive oxygen species and restored activities of mitochondrial complex I and tyrosine hydroxylase that had been compromised by oxidative stress. These compounds prevented dopaminergic cell death in the substantia nigra and restored movement abnormality in 6-hydroxyldopamine-injected PD model rats. One mechanism of action of these compounds is prevention of superfluous oxidation of DJ-1, and the compounds passed through the blood-brain barrier in vitro. Taken together, the results indicate that these compounds should become fundamental drugs for PD therapy.

  16. Soil aeration to achieve co-metabolic biodegradation of chlorinated solvents in the presence of inducer compounds

    SciTech Connect

    Eisenbeis, J.J.; Bourquin, A.W.

    1995-12-31

    A chemical distribution facility in Denver has been found to have soil and ground water contaminated with a wide variety of organic compounds, primarily toluene and chlorinated solvents, and their breakdown products. Since toluene and chlorobenzenes (both present at the site) have been shown to be inducers for an aerobic enzyme pathway that can degrade trichloroethene (TCE), 1,2-dichloroethene (DCE) and vinyl chloride, field and laboratory studies are being conducted to determine if cometabolic aerobic biodegradation of these and other compounds is occurring in soils that have been aerated with soil vapor extraction (SVE). Studies summarized in this paper include in situ respiration tests to estimate overall biodegradation rate in aerated soils within the influence of a SVE system, sampling to determine if in situ biodegradation of chlorinated volatile organic compounds in ground water has occurred, and a laboratory column study simulating bioventing of unremediated soils.

  17. Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate.

    PubMed

    Chitambar, Christopher R; Purpi, David P; Woodliff, Jeffrey; Yang, Meiying; Wereley, Janine P

    2007-09-01

    Clinical studies have shown gallium nitrate to have significant antitumor activity against non-Hodgkin's lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents. In this study, we compared the cytotoxicity of gallium maltolate, a novel gallium compound, with gallium nitrate in lymphoma cell lines, including p53 variant and unique gallium nitrate-resistant cells. We found that gallium maltolate inhibited cell proliferation and induced apoptosis through the mitochondrial pathway at lower concentrations and more rapidly than gallium nitrate. Gallium maltolate produced an increase in intracellular reactive oxygen species (ROS) within 2 h of incubation with cells; this effect could be blocked by mitoquinone, a mitochondria-targeted antioxidant. The role of the transferrin receptor (TfR) in gallium maltolate's action was examined using monoclonal antibody (MoAb) 42/6 to block TfR function. However, although MoAb 42/6 reduced gallium maltolate-induced caspase-3 activity, it had only a minor effect on cell growth inhibition. Importantly, gallium maltolate induced apoptosis in cells resistant to gallium nitrate, and, unlike gallium nitrate, its cytotoxicity was not affected by cellular p53 status. Cellular gallium uptake was greater with gallium maltolate than with gallium nitrate. We conclude that gallium maltolate inhibits cell proliferation and induces apoptosis more efficiently than gallium nitrate. Gallium maltolate is incorporated into lymphoma cells to a greater extent than gallium nitrate via both TfR-independent and -dependent pathways; it has significant activity against gallium nitrate-resistant cells and acts independently of p53. Further studies to evaluate its antineoplastic activity in vivo are warranted.

  18. First Principles Study of the Properties of the Type II Clathrate Alloy Si136-xGex(x = 8, 32, 96)

    NASA Astrophysics Data System (ADS)

    Xue, Dong; Myles, Charles

    The Type-II clathrate materials based on Si, Ge, and Sn have ``open-framework'' lattices consisting of large ``cages'' of atoms covalently bonded together. Due primarily to their potential thermoelectric applications, there has been considerable research on these materials with various guest atoms in the cages and with various substitutional atoms on the lattice framework. Also of interest are the pure Type II clathrates M136 (M = Si, Ge, Sn) with neither framework substitution nor guest atoms in the cages. A fundamental understanding of the intrinsic properties of these ``guest-free'' clathrates is therefore also needed. Mixtures or ``alloys'' of two different Type II clathrate materials are also potentially interesting. For example, Moriguchi et al. have reported the successful synthesis of Type II clathrates with mixtures of Si and Ge on the framework lattice. Motivated by these experiments, we have carried out a computational and theoretical study the properties of the Type II clathrate ``alloy'' Si136-xGex. We report the results of DFT-based first-principles calculations of the structural, electronic, vibrational, and thermal properties of Si136-xGex for x = 8, 32, 96. Our calculations have assumed that the ideal lattice symmetry is unaffected by the mixing of Si and Ge. Among other results, we predict that Si136-xGex should have a direct band gap ranging from 1.2 to 2.0 eV.

  19. The Promoter of Rv0560c Is Induced by Salicylate and Structurally-Related Compounds in Mycobacterium tuberculosis

    PubMed Central

    Schuessler, Dorothée L.; Parish, Tanya

    2012-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. PRv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of PRv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The −10 and −35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the −35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter. PMID:22485172

  20. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    SciTech Connect

    Daisey, J.M. ); Hopke, P.K. )

    1993-07-01

    The theoretical potential for the formation of clusters of vapor-phase organic compounds found in indoor air around the [sup 218]PoO[sub x][sup +] ion was investigated as well as which compounds were most likely to form clusters. A compilation of measurements of indoor organic compounds has been made for future experiments and theoretical calculations by the radon research community. Forty-four volatile and semivolatile organic compounds out of the more than 300 that have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the [sup 218]PoO[sub x][sup +] ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones, and the acetates) and the semivolatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos). Although the estimated diameters are consistent with the measured diameters for the unattached fraction, the state of experimental and theoretical knowledge in this area is not sufficiently developed to judge the quantitative validity of these predictions. 48 refs., 1 fig., 5 tabs.

  1. S-52, a novel nootropic compound, protects against β-amyloid induced neuronal injury by attenuating mitochondrial dysfunction.

    PubMed

    Gao, Xin; Zheng, Chun Yan; Qin, Guo Wei; Tang, Xi Can; Zhang, Hai Yan

    2012-10-01

    Accumulating evidence suggests that β-amyloid (Aβ)-induced oxidative DNA damage and mitochondrial dysfunction may initiate and contribute to the progression of Alzheimer's disease (AD). This study evaluated the neuroprotective effects of S-52, a novel nootropic compound, on Aβ-induced mitochondrial failure. In an established paradigm of moderate cellular injury induced by Aβ, S-52 was observed to attenuate the toxicity of Aβ to energy metabolism, mitochondrial membrane structure, and key enzymes in the electron transport chain and tricarboxylic acid cycle. In addition, S-52 also effectively inhibited reactive oxygen species accumulation dose dependently not only in Aβ-harmed cells but also in unharmed, normal cells. The role of S-52 as a scavenger of free radicals is involved in the antioxidative effect of this compound. The beneficial effects on mitochondria and oxidative stress extend the neuroprotective effects of S-52. The present study provides crucial information for better understanding the beneficial profiles of this compound and discovering novel potential drug candidates for AD therapy.

  2. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways.

    PubMed

    Afsar, Tayyaba; Trembley, Janeen H; Salomon, Christine E; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-03-15

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer.

  3. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    PubMed Central

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  4. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  5. Novel therapeutic compound tuftsin-phosphorylcholine attenuates collagen-induced arthritis.

    PubMed

    Bashi, T; Shovman, O; Fridkin, M; Volkov, A; Barshack, I; Blank, M; Shoenfeld, Y

    2016-04-01

    Treatment with helminthes and helminthes ova improved the clinical symptoms of several autoimmune diseases in patients and in animal models. Phosphorylcholine (PC) proved to be the immunomodulatory molecule. We aimed to decipher the tolerogenic potential of tuftsin-PC (TPC), a novel helminth-based compound in collagen-induced arthritis (CIA) a mouse model of rheumatoid arthritis (RA). CIA DBA/1 mice were treated with TPC subcutaneously (5 µg/0.1 ml) or orally (250 µg/0.1 ml), starting prior to disease induction. The control groups were treated with PBS. Collagen antibodies were tested by enzyme-linked immunosorbent assay (ELISA), cytokine protein levels by ELISA kits and regulatory T (Treg ) and regulatory B (Breg ) cell phenotypes by fluorescence-activated cell sorter (FACS). TPC-treated mice had a significantly lower arthritis score of 1.5 in comparison with control mice 11.8 (P < 0.0001) in both subcutaneous and orally treated groups at day 31. Moreover, histology analysis demonstrated highly inflamed joints in control mice, whereas TPC-treated mice maintained normal joint structure. Furthermore, TPC decreased the titres of circulating collagen II antibodies in mice sera (P < 0.0001), enhanced expression of IL-10 (P < 0.0001) and inhibited production of tumour necrosis factor (TNF)-α, interleukin (IL)-17 and IL-1β (P < 0.0001). TPC significantly expanded the CD4(+) CD25(+) forkhead box protein 3 (FoxP3(+) ) Treg cells and CD19(+) IL-10(+) CD5(high) CD1d(high) T cell immunoglobulin mucin-1 (TIM-1(+) ) Breg cell phenotypes (P < 0.0001) in treated mice. Our data indicate that treatment with TPC attenuates CIA in mice demonstrated by low arthritic score and normal joints histology. TPC treatment reduced proinflammatory cytokines and increased anti-inflammatory cytokine expression, as well as expansion of Treg and Breg cells. Our results may lead to a new approach for a natural therapy for early rheumatoid arthritis onset.

  6. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synthesis and high temperature thermoelectric transport properties of Si-based type-I clathrates

    NASA Astrophysics Data System (ADS)

    Deng, Shu-Kang; Tang, Xin-Feng; Tang, Run-Sheng

    2009-07-01

    N-type Si-based type-I clathrates with different Ga content were synthesized by combining the solid-state reaction method, melting method and spark plasma sintering (SPS) method. The effects of Ga composition on high temperature thermoelectric transport properties were investigated. The results show that at room temperature, the carrier concentration decreases, while the carrier mobility increases slightly with increasing Ga content. The Seebeck coefficient increases with increasing Ga content. Among all the samples, Ba7.93Ga17.13Si28.72 exhibits higher Seebeck coefficient than the others and reaches -135 μV.K-1 at 1000 K. The sample prepared by this method exhibits very high electrical conductivity, and reaches 1.95×105 S.m-1 for Ba8.01Ga16.61Si28.93 at room temperature. The thermal conductivity of all samples is almost temperature independent in the temperature range of 300-1000 K, indicating the behaviour of a typical metal. The maximum ZT value of 0.75 is obtained at 1000 K for the compound Ba7.93Ga17.13Si28.72.

  7. Development of Novel Bifunctional Compounds that Induce Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2005-02-01

    have administered the compound dissolved in a vehicle containing Cremophor EL, a polyoxyethylated castor oil. The availability of radiolabeled...seeking an improved vehicle in which to administer the compound. One reason for this was that Cremophor EL in our current vehicle poses potential problems...effective and have fewer adverse side effects formulations in which these drugs are administered in Cremophor EL or other 7 vehicles. Selective

  8. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production.

    PubMed

    Fatouros, Nina E; Pashalidou, Foteini G; Aponte Cordero, Wilma V; van Loon, Joop J A; Mumm, Roland; Dicke, Marcel; Hilker, Monika; Huigens, Martinus E

    2009-11-01

    During mating in many butterfly species, males transfer spermatophores that contain anti-aphrodisiacs to females that repel conspecific males. For example, males of the large cabbage white, Pieris brassicae (Lepidoptera: Pieridae), transfer the anti-aphrodisiac, benzyl cyanide (BC) to females. Accessory reproductive gland (ARG) secretion of a mated female P. brassicae that is deposited with an egg clutch contains traces of BC, inducing Brussels sprouts plants (Brassica oleracea var. gemmifera) to arrest certain Trichogramma egg parasitoids. Here, we assessed whether deposition of one egg at a time by the closely related small cabbage white, Pieris rapae, induced B. oleracea var. gemmifera to arrest Trichogramma wasps, and whether this plant synomone is triggered by substances originating from male P. rapae seminal fluid. We showed that plants induced by singly laid eggs of P. rapae arrest T. brassicae wasps three days after butterfly egg deposition. Elicitor activity was present in ARG secretion of mated female butterflies, whereas the secretion of virgin females was inactive. Pieris rapae used a mixture of methyl salicylate (MeSA) and indole as an anti-aphrodisiac. We detected traces of both anti-aphrodisiacal compounds in the ARG secretion of mated female P. rapae, whereas indole was lacking in the secretion of virgin female P. rapae. When applied onto the leaf, indole induced changes in the foliar chemistry that arrested T. brassicae wasps. This study shows that compounds of male seminal fluid incur possible fitness costs for Pieris butterflies by indirectly promoting egg parasitoid attack.

  9. Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells

    PubMed Central

    Zhang, Aiqing; He, Wei; Shi, Huimin; Huang, Xiaodan; Ji, Guozhong

    2016-01-01

    The compounds, which are obtained from natural plants or microbes may offer potential as one of the strategies for the management of cholangiocarcinoma. Oblongifolin C (OC), a natural small molecule compound extracted and purified from Garcinia yunnanensis Hu, can activate the mitochondrial apoptotic pathway in human cervical cancer cells. However, the direct effects of OC on cholangiocarcinoma cells are not well defined. The effect of OC on cell apoptosis and its underlying mechanisms were investigated in cultured QBC939 cells by the methyl thiazol tetrazolium assay, mitochondrial membrane potential, ATP content and western blot analysis. The present study reported that the in vitro treatment of human cholangiocarcinoma QBC939 cells with different concentrations (5, 10, 20 and 40 μM) of OC decreased cell viability and induced apoptosis in a dose-dependent manner. The results of the present study also showed that OC-induced QBC939 cell apoptosis was mediated through the inhibition of autophagy and mitochondrial dysfunction (MtD). Additionally, inhibiting autophagy increased OC-induced apoptosis and MtD, whereas exposure to the autophagy inducer, rapmycin, attenuated these changes. Together, the results of the present study are the first, to the best of our knowledge, to identify OC as a chemotherapeutic agent against human cholangiocarcinoma QBC939 cells in vitro via the regulation of autophagy and MtD. PMID:27499017

  10. Tracking "apolar" NMe4+ ions within two polyoxothiomolybdates that have the same pores: smaller clathrate and larger highly porous clusters in action.

    PubMed

    Korenev, Vladimir S; Boulay, Antoine G; Haouas, Mohamed; Bannani, Fatma; Fedin, Vladimir P; Sokolov, Maxim N; Terazzi, Emmanuel; Garai, Somenath; Müller, Achim; Taulelle, Francis; Marrot, Jérôme; Leclerc, Nathalie; Floquet, Sébastien; Cadot, Emmanuel

    2014-03-10

    Two nanosized polyoxothiometalates were synthesized based on linking oxomolybdate building blocks with {Mo2O2S2}(2+) groups. Remarkably, both compounds are formed selectively primarily upon changing the related concentrations in a logical way; they exhibit common structural features based on the same {Mo9O6S3}-type pores, which result in connections between {Mo6O21} pentagons and {Mo2O2S2}(2+) linkers. Whereas the much larger spherical Mo132-type Keplerate contains twenty pores, the smaller Mo63 -type cluster remarkably contains only two. The two compounds and a similar Keplerate exhibit interesting supramolecular properties related to interactions with the unusual predominantly apolar NMe4(+) cations. Structural characterization of the Mo63 -type compound reveals in the solid state a clathrate-like species that contains four NMe4(+) cations embedded in two types of structurally well-adapted pockets. Related NMR spectroscopic investigations in solution using NMe4(+) as the NMR spectroscopic probe are in agreement with the solid-state description. (1)H NMR spectroscopic experiments (1D variable-temperature, 2D total correlation spectroscopy (TOCSY), exchange spectroscopy (EXSY), and diffusion-ordered spectroscopy (DOSY)) feature firmly immobilized and mobile NMe4(+) ions in relationship with the type of host-guest arrangements. The use of the (1)H NMR DOSY spectroscopic methodology has been successfully applied to track the interactions of the NMe4(+) cations with the {Mo9O6S3} pores of a sulfurated Keplerate, thereby allowing the first quantitative analysis of this type of plugging process. The stability constant K=(210±20) mol(-1)  L is discussed related to the character of the process.

  11. Properties of CO2 clathrate hydrates formed in the presence of MgSO4 solutions with implications for icy moons

    NASA Astrophysics Data System (ADS)

    Safi, E.; Thompson, S. P.; Evans, A.; Day, S. J.; Murray, C. A.; Parker, J. E.; Baker, A. R.; Oliveira, J. M.; van Loon, J. Th.

    2017-04-01

    Context. There is evidence to suggest that clathrate hydrates have a significant effect on the surface geology of icy bodies in the solar system. However the aqueous environments believed to be present on these bodies are likely to be saline rather than pure water. Laboratory work to underpin the properties of clathrate hydrates in such environments is generally lacking. Aims: We aim to fill this gap by carrying out a laboratory investigation of the physical properties of CO2 clathrate hydrates produced in weak aqueous solutions of MgSO4. Methods: We use in situ synchrotron X-ray powder diffraction to investigate clathrate hydrates formed at high CO2 pressure in ice that has formed from aqueous solutions of MgSO4 with varying concentrations. We measure the thermal expansion, density and dissociation properties of the clathrates under temperature conditions similar to those on icy solar system bodies. Results: We find that the sulphate solution inhibits the formation of clathrates by lowering their dissociation temperatures. Hysteresis is found in the thermal expansion coefficients as the clathrates are cooled and heated; we attribute this to the presence of the salt in solution. We find the density derived from X-ray powder diffraction measurements is temperature and pressure dependent. When comparing the density of the CO2 clathrates to that of the solution in which they were formed, we conclude that they should sink in the oceans in which they form. We also find that the polymorph of ice present at low temperatures is Ih rather than the expected Ic, which we tentatively attribute to the presence of the MgSO4. Conclusions: We (1) conclude that the density of the clathrates has implications for their behaviour in satellite oceans as their sinking and floating capabilities are temperature and pressure dependent; (2) conclude that the presence of MgSO4 inhibits the formation of clathrates and in some cases may even affect their structure and (3) report the dominance

  12. Organic compounds characteristics associated with heat-induced increases of water repellency in Australian eucalypt forest soils

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan H.

    2010-05-01

    Ground surface heating during wildfires often leads to increased water repellency in soils. The effect of elevated soil temperature on water repellency has been investigated in many laboratory-based studies and temperature thresholds for increases in, and destruction of, water repellency have been established. However, little is known about the changes in organic compounds patterns and their chemical structure that associated with these changes. Here we report on the characterisation of the chemical changes of organic compounds associated with heat-induced increases in water repellency in Eucalypt soils of different repellency levels. Fires are very common in eucalypt forest environments and soils under eucalypt species exhibit one of the most severe repellency levels, providing an ideal study case. Three SE Australian eucalypt forest soils from different locations (two sands and one sandy loam) were heated in the laboratory for 10 min at 300° C. Laboratory heating resulted in extreme repellency in the three soils studied. Heated and unheated control samples were then extracted by accelerated solvent extraction (ASE) with iso-propanol/ammonia mixture (IPA/NH3 95:5). Extraction led to the elimination of any water repellency present both in the original (heated) and the control samples. Organic compounds in the IPA/NH3 solvent were measured in extracts of increasing polarity in order to solubilise the residue. Before heating, the total solvent extracts from the soils with sandy texture were dominated by n-alkanols, terpenoids, C16 acid, C29 alkane, β-sitosterol and polar compounds such as glycerol, monosaccharides and glycosides. Fatty acids with chain length over C20 were detected in the sandy soils, while the soil of heavier texture (sandy loam) lacked longer than C20 fatty acids and had lower concentrations of alkanols (exceeding C26 chain lenght) and alkanes (C29, C31). Alkane patterns were characterized by the predominance of C21 - C31 homologues with a

  13. Photoperiod and aggression induce changes in ventral gland compounds exclusively in male Siberian hamsters.

    PubMed

    Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Weigel, Ellen R; Novotny, Milos V; Demas, Gregory E

    2016-05-01

    Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent.

  14. Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiations

    NASA Astrophysics Data System (ADS)

    Čuba, Václav; Pavelková, Tereza; Bárta, Jan; Gbur, Tomáš; Vlk, Martin; Zavadilová, Alena; Indrei, Jakub; Dočekalová, Zuzana; Pospíšil, Milan; Múčka, Viliam

    2012-09-01

    Results on preparation of nickel, zinc, yttrium, aluminum and cobalt oxides, zinc peroxide and hydroxide, yttrium and lutetium aluminum garnets and cobalt(II) aluminate via irradiation of aqueous solutions containing soluble metal salts and radical scavengers (formate anion or propan-2-ol) are summarized in this paper. Various physico-chemical and structural properties of prepared compounds (e.g. crystallinity, specific surface area, particle size) are also reported. All used variants of radiation method are rather convenient and simple, and yield nano-scale powder materials with interesting characteristics. Prepared materials generally have high chemical purity, high specific surface area and narrow distribution of particle size (ranging in tens of nm). Generally, accelerated electrons, gamma, and UV radiation yield materials with comparable properties and structural characteristics, but UV-radiation seems to be the most convenient for preparation of intricate compounds such as synthetic garnets and spinels, while ionizing radiation is better for preparation of compounds doped with foreign ions. Among discussed compounds, only zinc oxide, peroxide and hydroxide were prepared directly via irradiation. For preparation of other crystalline oxidic compounds, mild heat treatment of amorphous or weakly crystalline solid phase was necessary.

  15. The pyrogallol related compounds reduce UV-induced mutations in Escherichia coli B/r WP2.

    PubMed

    Shimoi, K; Nakamura, Y; Tomita, I; Hara, Y; Kada, T

    1986-04-01

    Plant components with bio-antimutagenic activity were screened on UVC (254 nm)-induced mutagenesis using E. coli B/r WP2. The components with a pyrogallol moiety including gallic acid, (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) reduced the mutation induction, but other components such as caffeic acid, chlorogenic acid and quercetin did not. The above compounds with a pyrogallol moiety were also effective on UVAB (295-400 nm)-induced mutagenesis, while they showed little effect on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced mutagenesis. As this bio-antimutagenic effect was not seen in the DNA excision-repair-deficient strains WP2s and ZA159, the activity by the above plant components might be based on the promotion of the excision-repair system in E. coli B/r WP2.

  16. Recently Confirmed Apoptosis-Inducing Lead Compounds Isolated from Marine Sponge of Potential Relevance in Cancer Treatment

    PubMed Central

    Essack, Magbubah; Bajic, Vladimir B.; Archer, John A.C.

    2011-01-01

    Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review. PMID:22131960

  17. Action of pregnane compounds from Mandevilla illustris against contractions induced by kinins and other oxytocics in the rat isolated uterus.

    PubMed

    Calixto, J B; Brum, R L; Yunes, R A

    1991-01-01

    1. The effects of 5 pregnane compounds isolated from the rhizomes of Mandevilla illustris were examined against bradykinin (BK), Lysyl-bradykinin (L-BK), acetylcholine (ACh) and oxytocin (Ot)-induced contractions in the isolated uteri of the rat. 2. Compounds MI 15 and MI 18 (5-40 micrograms/ml) caused a parallel and concentration-dependent rightward displacement of BK and L-BK concentration-response curves. Compound MI 21 (2.5-10 micrograms/ml) also produced a concentration-dependent displacement to the right of the BK concentration-response curve, but reduced its maximal response. Schild analysis of these data were linear (r close to 1) and furnished the following PA2 values (as G/ml): 6.0, 5.1 and 5.9, respectively. However, the slopes were significantly higher than unity. Compounds MI 25 and MI 27 (10-40 micrograms/ml) caused little or even no effect against BK and ACh responses. 3. In addition, compounds MI 18 and MI 21 (10-40 micrograms/ml) also antagonized in a concentration-dependent manner L-BK concentration-response curves. Schild plot were linear (r close to 1) and yielded the nominal pA2 values (as G/ml) of 5.0 and 5.8, respectively, but the slopes were significantly different from one. 4. Like the results obtained previously with the crude extract from M. illustris, the purified compounds from the rhizome of this plant were not selective towards kinin action since at the same range concentrations they markedly interfered with both the sensitivities and the maximal responses caused by ACh and Ot in this preparation.

  18. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells.

    PubMed

    Wang, J; Zhao, Y M; Zhang, B; Guo, C Y

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration.

  19. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage

    SciTech Connect

    Kim, Kyung-A; Shim, Sang Hee; Ahn, Hong Ryul; Jung, Sang Hoon

    2013-06-01

    The mechanism underlying glaucoma remains controversial, but apoptosis caused by increased levels of reactive oxygen species (ROS) is thought to play a role in its pathogenesis. We investigated the effects of compounds isolated from Psoralea corylifolia on oxidative stress-induced cell death in vitro and in vivo. Transformed retinal ganglion cells (RGC-5) were treated with L-buthione-(S,R)-sulfoximine (BSO) and glutamate in the presence or with pre-treatment with compound 6, bakuchiol isolated from P. corylifolia. We observed reduced cell death in cells pre-treated with bakuchiol. Moreover, bakuchiol inhibited the oxidative stress-induced decrease of mitochondrial membrane potential (MMP, ΔΨm). Furthermore, while intracellular Ca{sup 2+} was high in RGC-5 cells after exposure to oxidative stress, bakuchiol reduced these levels. In an in vivo study, in which rat retinal damage was induced by intravitreal injection of N-methyl-D-aspartate (NMDA), bakuchiol markedly reduced translocation of AIF and release of cytochrome c, and inhibited up-regulation of cleaved caspase-3, cleaved caspase-9, and cleaved PARP. The survival rate of retinal ganglion cells (RGCs) 7 days after optic nerve crush (ONC) in mice was significantly decreased; however, bakuchiol attenuated the loss of RGCs. Moreover, bakuchiol attenuated ONC-induced up-regulation of apoptotic proteins, including cleaved PARP, cleaved caspase-3, and cleaved caspase-9. Bakuchiol also significantly inhibited translocation of mitochondrial AIF into the nuclear fraction and release of mitochondrial cytochrome c into the cytosol. These results demonstrate that bakuchiol isolated from P. corylifolia has protective effects against oxidative stress-induced retinal damage, and may be considered as an agent for treating or preventing retinal degeneration. - Highlights: • Psoralea corylifolia have neuroprotective effects in vitro and in vivo. • Bakuchiol attenuated the increase of apoptotic proteins induced by oxidative

  20. The effect of additive compounds on glycerol-induced damage to human chondrocytes.

    PubMed

    Hahn, Joshua; Laouar, Leila; Elliott, Janet A W; Korbutt, Gregory S; Jomha, Nadr M

    2017-04-01

    High concentrations of cryoprotective agents are required for cryopreservation techniques such as vitrification. Glycerol is a common cryoprotective agent used in cryopreservation protocols but this agent is toxic at high concentrations. This work is an attempt to mitigate the toxic effects of high concentrations of glycerol on intact chondrocytes in human knee articular cartilage from total knee arthroplasty patients by simultaneous exposure to glycerol and a variety of additive compounds. The resulting cell viability in the cartilage samples as measured by membrane integrity staining showed that, in at least one concentration or in combination, all of the tested additive compounds (tetramethylpyrazine, ascorbic acid, chondroitin sulphate, glucosamine sulphate) were able to reduce the deleterious effects of glycerol exposure when examination of membrane integrity took place on a delayed time frame. The use of additive compounds to reduce cryoprotectant toxicity in articular cartilage may help improve cell recovery after cryopreservation.

  1. In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells.

    PubMed

    Ferreira, Martiña; Blanco, Lucía; Garrido, Alejandro; Vieites, Juan M; Cabado, Ana G

    2013-05-01

    The toxic effects of the organotin compounds (OTCs) monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were evaluated in vitro in a neuroblastoma human cell line. Mechanisms of cell death, apoptosis versus necrosis, were studied by using several markers: inhibition of cell viability and proliferation, F-actin, and mitochondrial membrane potential changes as well as reactive oxygen species (ROS) production and DNA fragmentation. The most toxic effects were detected with DBT and TBT even at very low concentrations (0.1-1 μM). In contrast, MBT induced lighter cytotoxic changes at the higher doses tested. None of the studied compounds stimulated propidium iodide uptake, although the most toxic chemical, TBT, caused lactate dehydrogenase release at the higher concentrations tested. These findings suggest that in neuroblastoma, OTC-induced cytotoxicity involves different pathways depending on the compound, concentration, and incubation time. A screening method for DBT and TBT quantification based on cell viability loss was developed, allowing a fast detection alternative to complex methodology.

  2. Salvinorin A analogues PR-37 and PR-38 attenuate compound 48/80-induced itch responses in mice

    PubMed Central

    Salaga, M; Polepally, P R; Zielinska, M; Marynowski, M; Fabisiak, A; Murawska, N; Sobczak, K; Sacharczuk, M; Do Rego, J C; Roth, B L; Zjawiony, J K; Fichna, J

    2015-01-01

    Background and Purpose The opioid system plays a crucial role in several physiological processes in the CNS and in the periphery. It has also been shown that selective opioid receptor agonists exert potent inhibitory action on pruritus and pain. In this study we examined whether two analogues of Salvinorin A, PR-37 and PR-38, exhibit antipruritic properties in mice. Experimental Approach To examine the antiscratch effect of PR-37 and PR-38 we used a mouse model of compound 48/80-induced pruritus. In order to elucidate the mechanism of action of tested compounds, specific antagonists of opioid and cannabinoid receptors were used. The effect of PR-37 on the CNS was assessed by measuring motor parameters and exploratory behaviours in mice. Key Results PR-37 and PR-38, jnjected s.c., significantly reduced the number of compound 48/80-induced scratching behaviours in mice in a dose- and time-dependent manner. PR-38 was also active when orally administered. The antiscratch activity of PR-37 was blocked by the selective κ opioid receptor antagonist, nor-binaltorphimine, and that of PR-38 by the selective μ opioid receptor antagonist, β-funaltrexamine. Conclusion and Implications In conclusion, a novel framework for the development of new antipruritic drugs derived from salvinorin A has been validated. PMID:26040667

  3. A Pyrazolo[3,4-d]pyrimidine compound inhibits Fyn phosphorylation and induces apoptosis in natural killer cell leukemia

    PubMed Central

    Laurenzana, Ilaria; Caivano, Antonella; Trino, Stefania; De Luca, Luciana; Rocca, Francesco La; Simeon, Vittorio; Tintori, Cristina; D'Alessio, Francesca; Teramo, Antonella; Zambello, Renato; Traficante, Antonio; Maietti, Maddalena; Semenzato, Gianpietro; Schenone, Silvia; Botta, Maurizio

    2016-01-01

    Natural killer (NK) cell neoplasms are characterized by clonal proliferation of cytotoxic NK cells. Since there is no standard treatment to date, new therapeutic options are needed, especially for NK aggressive tumors. Fyn tyrosine kinase has a key role in different biological processes, such as cell growth and differentiation, being also involved in the pathogenesis of hematologic malignancies. Our previous studies led us to identify 4c pyrazolo[3,4-d]pyrimidine compound capable of inhibiting Fyn activation and inducing apoptosis in different cancer cell lines. Here we investigated the presence of Fyn and the effect of its inhibitor in NK malignant cells. Firstly, we showed Fyn over-expression in NK leukemic cells compared to peripheral blood mononuclear cells from healthy donors. Subsequently, we demonstrated that 4c treatment reduced cell viability, induced caspase 3-mediate apoptosis and cell cycle arrest in NK cells. Moreover, by inhibiting Fyn phosphorylation, 4c compound reduced Akt and P70 S6 kinase activation and changed the expression of genes involved in cell death and survival in NK cells. Our study demonstrated that Fyn is involved in the pathogenesis of NK leukemia and that it could represent a potential target for this neoplasm. Moreover, we proved that Fyn inhibitor pyrazolo[3,4-d]pyrimidine compound, could be a started point to develop new therapeutic agents. PMID:27566560

  4. Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish.

    PubMed

    Willis, Alison M; Oris, James T

    2014-09-01

    The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms.

  5. Experimental investigation and planetary implications of the stability of clathrate hydrates in aqueous solution at icy satellite conditions

    NASA Astrophysics Data System (ADS)

    Dunham, M.; Choukroun, M.; Barmatz, M.; Hodyss, R. P.; Smythe, W. D.

    2012-12-01

    Clathrate hydrates consist of hydrogen-bonded water molecules forming cages in which gas molecules are trapped individually. They are among the favored volatile reservoirs in solar system bodies, and are expected to play an important role in many processes: accretion of volatiles in planetesimals, outgassing on Titan, Enceladus, and comets. Their insulating thermal properties and high mechanical strength also bear important implications for understanding the evolution of icy satellites like Europa. However, the conditions allowing for their formation and/or their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly understood. This is mainly because of a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We have developed a high-pressure cryogenic calorimeter to address this deficiency in the literature. This liquid nitrogen - cooled Setaram BT2.15 calorimeter is located at the JPL Ice Physics Laboratory. The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples) to measure the heat flow required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A gas handling system has been designed and fabricated in house to reach pressures up to 100 bars, corresponding to several km depth in icy satellites. The thermodynamic properties of CO2 and CH4 clathrates with ammonia are under investigation, and the results will be used to constrain a statistical thermodynamic model of clathrates for applications to planetary environments. Preliminary results will be shown at the meeting. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the Minnesota Space Grant Consortium, the NASA Outer Planets Research program, and government sponsorship are gratefully

  6. Computer-simulation studies of β-quinol clathrate with various gases. Molecular interactions and crystal structure

    NASA Astrophysics Data System (ADS)

    Zubkus, V. E.; Shamovsky, I. L.; Tornau, E. E.

    1992-12-01

    The crystal structure of β-quinol clathrate was investigated by empirical force-field calculations using two sets of potential functions—AMBER and CVFF. The crystal was approximated by the fragments containing 3402 and 15 750 quinol atoms. It was shown that the AMBER potentials are more precise when describing the experimental data on structure of β-quinol clathrate. The bond stretching, valence angle and out-of-plane bendings, dihedral torsion, van der Waals and electrostatic interactions, and hydrogen bonding were taken into account in the potential energy U. The contribution of each of these energies to the formation of structure was estimated. The energy U was minimized with respect to the independent coordinates of the lattice, unit-cell parameters, and both translation and orientation parameters of included molecules. The equilibrium states of encaged guest molecules, β-quinol lattice structure, and energy of clathrate formation were determined for 27 encaged guest molecules. It was shown that the β-quinol lattice can contract as well as expand depending on the type of an encaged molecule. The distribution of charges around the cage favors the positively charged atoms of the molecule to be located in the center of a cage, in contrast with those negatively charged which occupy the sites in the vicinity of peripheral hydroxyl hexagons. The electrostatic component of guest-guest interaction strongly affects the equilibrium position of guest molecules with large dipole moment. Quantitative estimates of various structural and energetic characteristics for β-quinol clathrate prove to be in good agreement with experimental data.

  7. Systematic Studies on Anharmonicity of Rattling Phonons in Type I Clathrates by Low Temperature Heat Capacity Measurements

    NASA Astrophysics Data System (ADS)

    Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration

    2014-03-01

    Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.

  8. Ionic Strength-Induced Formation of Smectite Quasicrystals Enhances Nitroaromatic Compound Sorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of ionic strength on nitroaromatic compound sorption from water by K+- and Ca2+-saturated smectite (SWy-2) was examined. The results indicated that sorption of 1,3-dinitrobenzene by K-SWy-2 increased up to 2.2 times as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorp...

  9. Magnetic field-induced changes of lattice parameters and thermal expansion behavior of the CoMnSi compound

    SciTech Connect

    Kou, R. H.; Gao, J.; Wang, G.; Liu, Y. D.; Wang, Y. D.; Ren, Y.; Brown, D. E.

    2016-02-01

    The crystal structure of the CoMnSi compound during zero-field cooling and field cooling from room temperature down to 200 K was studied using the synchrotron radiation X-ray diffraction technique. The results show that the lattice parameters and thermal expansion behavior of the sample are changed by the applied magnetic fields. The lattice contracts along the a axis, but expands along the b and c axes. Due to enlarged and anisotropic changes under a magnetic field of 6 T, the lattice shows an invar-like behavior along all three axes. Critical interatomic distances and bond angles also show large changes under the influence of such a high magnetic field. These magnetic field-induced changes of the lattice are discussed with respect to their contributions to the large magnetocaloric effect of the CoMnSi compound.

  10. Distinct influence of atypical 1,4-dihydropyridine compounds in azidothymidine-induced neuro- and cardiotoxicity in mice ex vivo.

    PubMed

    Pupure, Jolanta; Isajevs, Sergejs; Gordjushina, Valentina; Taivans, Immanuels; Rumaks, Juris; Svirskis, Simons; Kratovska, Aina; Dzirkale, Zane; Pilipenko, Jelena; Duburs, Gunars; Klusa, Vija

    2008-11-01

    This study demonstrates the effective protection by compounds of atypical 1,4-dihydropyridine (DHP) series cerebrocrast, glutapyrone and tauropyrone against neuro- and cardiotoxicity caused by the model compound azidothymidine, a well-known mitochondria-compromising anti-HIV drug. In previous in vitro experiments, we have demonstrated distinct effects of these DHP compounds to influence mitochondrial functioning. In the present in vivo experiments, DHP compounds were administered intraperitoneally in mice daily for 2 weeks, per se and in combinations with azidothymidine at doses: azidothymidine 50 mg/kg; cerebrocrast 0.1 mg/kg; glutapyrone 1 mg/kg; and tauropyrone 1 mg/kg. At the end of the experiment, mice were killed, heart and brain tissues were removed and examined ex vivo histopathologically and immunohistochemically. NF-kappaBp65 and caspase-3 were used as the markers indicating inflammatory and apoptotic events, respectively. Cerebrocrast (dicyclic structure) was the most potent DHP, which effectively reduced azidothymidine-induced overexpression of NF-kappaBp65 and caspase-3 in mouse myocardium and brain cortex. Glutapyrone per se increased the number of caspase-3-positive cells in the brain, whereas it reduced NF-kappaBp65 and caspase-3 expression in cardiac tissue caused by azidothymidine. Tauropyrone showed dual action: per se it increased caspase-3 in the brain and NF-kappaBp65 expression in the heart, but it considerably reduced these activations in azidothymidine-treated mice. This study provides the first demonstration of a distinct pharmacological action for atypical DHP compounds in cardiac and brain tissues. The dicyclic structure of cerebrocrast is considered beneficial for neuro- and cardioprotection at least in part via mitochondrial targeting and consequent regulation of inflammatory and apoptotic processes.

  11. Cross-nucleation between clathrate hydrate polymorphs: Assessing the role of stability, growth rate, and structure matching

    SciTech Connect

    Nguyen, Andrew H.; Molinero, Valeria

    2014-02-28

    Cross-nucleation is a phenomenon where a new crystal nucleates and grows upon the surface of a different polymorph. Previous studies indicate that faster growth rate of the new crystal is a necessary but not sufficient condition for cross-nucleation. The thermodynamic stability of the different polymorphs can also affect cross-nucleation by modulating the rates of crystal growth. The interplay between thermodynamic stability of the polymorphs involved, the growth rate of the crystals, and the need for creation of an interfacial transition layer that seamlessly connects the two structures has not yet been fully elucidated. Predicting cross-nucleation is particularly challenging for clathrate hydrates, for which there are sometimes several polymorphs with similar stability and for which growth rates are not known. In this work, we use molecular dynamics simulations to investigate which factor (stability, growth rate, or formation of interfacial transition layer) controls cross-nucleation between the four known Frank-Kasper clathrate hydrate polymorphs: sI, sII, TS, and HS-I. We investigate the growth and cross-nucleation of these four hydrates filled with a set of guest molecules that produce different order of stabilities for the four crystal structures. We determine that the growth rate of sII clathrate is the fastest, followed by TS, HS-I, and sI. We find that cross-nucleation into or from sII clathrates is preceded by the formation of an interfacial transition layer at the seed crystal/liquid interface because sII does not share a crystal plane with sI, HS-I, or TS. Cross-nucleation between the latter three can occur seamlessly and is determined only by their growth rates. Our results indicate that nucleation of an interfacial transition layer between non-matching polymorphs can control cross-nucleation or lack thereof under conditions of small driving force. Under conditions of sufficient supercooling clathrate hydrate polymorphs cross-nucleate into the fastest

  12. Cross-nucleation between clathrate hydrate polymorphs: assessing the role of stability, growth rate, and structure matching.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2014-02-28

    Cross-nucleation is a phenomenon where a new crystal nucleates and grows upon the surface of a different polymorph. Previous studies indicate that faster growth rate of the new crystal is a necessary but not sufficient condition for cross-nucleation. The thermodynamic stability of the different polymorphs can also affect cross-nucleation by modulating the rates of crystal growth. The interplay between thermodynamic stability of the polymorphs involved, the growth rate of the crystals, and the need for creation of an interfacial transition layer that seamlessly connects the two structures has not yet been fully elucidated. Predicting cross-nucleation is particularly challenging for clathrate hydrates, for which there are sometimes several polymorphs with similar stability and for which growth rates are not known. In this work, we use molecular dynamics simulations to investigate which factor (stability, growth rate, or formation of interfacial transition layer) controls cross-nucleation between the four known Frank-Kasper clathrate hydrate polymorphs: sI, sII, TS, and HS-I. We investigate the growth and cross-nucleation of these four hydrates filled with a set of guest molecules that produce different order of stabilities for the four crystal structures. We determine that the growth rate of sII clathrate is the fastest, followed by TS, HS-I, and sI. We find that cross-nucleation into or from sII clathrates is preceded by the formation of an interfacial transition layer at the seed crystal/liquid interface because sII does not share a crystal plane with sI, HS-I, or TS. Cross-nucleation between the latter three can occur seamlessly and is determined only by their growth rates. Our results indicate that nucleation of an interfacial transition layer between non-matching polymorphs can control cross-nucleation or lack thereof under conditions of small driving force. Under conditions of sufficient supercooling clathrate hydrate polymorphs cross-nucleate into the fastest

  13. Magnetic Precursor of the Pressure-Induced Superconductivity in Fe-Ladder Compounds

    NASA Astrophysics Data System (ADS)

    Chi, Songxue; Uwatoko, Yoshiya; Cao, Huibo; Hirata, Yasuyuki; Hashizume, Kazuki; Aoyama, Takuya; Ohgushi, Kenya

    2016-07-01

    The pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe2Se3 and BaFe2S3 have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe2Se3 the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change. In contrast, the stripe order in BaFe2S3 undergoes a quantum phase transition where an abrupt increase of Néel temperature by more than 50% occurs at about 1 GPa, accompanied by a jump in the ordered moment. With its spin structure unchanged, BaFe2S3 enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true neighbor of superconductivity emerging at higher pressures.

  14. Magnetic Precursor of the Pressure-Induced Superconductivity in Fe-Ladder Compounds.

    PubMed

    Chi, Songxue; Uwatoko, Yoshiya; Cao, Huibo; Hirata, Yasuyuki; Hashizume, Kazuki; Aoyama, Takuya; Ohgushi, Kenya

    2016-07-22

    The pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe_{2}Se_{3} and BaFe_{2}S_{3} have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe_{2}Se_{3} the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change. In contrast, the stripe order in BaFe_{2}S_{3} undergoes a quantum phase transition where an abrupt increase of Néel temperature by more than 50% occurs at about 1 GPa, accompanied by a jump in the ordered moment. With its spin structure unchanged, BaFe_{2}S_{3} enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true neighbor of superconductivity emerging at higher pressures.

  15. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  16. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential.

    PubMed Central

    Arcangeli, A; Carlà, M; Del Bene, M R; Becchetti, A; Wanke, E; Olivotto, M

    1993-01-01

    The mechanism of action of polar/apolar inducers of cell differentiation, such as dimethyl sulfoxide and hexamethylene-bisacetamide, is still obscure. In this paper evidence is provided that their effects on murine erythroleukemia cells are modulated by various extracellular cations as a precise function of the cation effects on membrane surface potential. The interfacial effects of the inducers were directly measured on the charged electrode, showing that both dimethyl sulfoxide and hexamethylene-bisacetamide, at the effective concentrations for cell differentiation and within the physiological range of charge density, adsorb at the charged surface and produce a potential shift. A linear correlation was found between this shift and the inducer effects on cell differentiation. Besides offering a different interpretation of the mechanism of action of the inducers, these findings indicate that surface potential has a signaling function. They may also be relevant to cancer treatments based on tumor-cell commitment to terminal differentiation. Images Fig. 1 PMID:8516337

  17. Kinetics of methane clathrate formation and dissociation under Mars relevant conditions

    NASA Astrophysics Data System (ADS)

    Gainey, S. R.; Elwood Madden, M. E.

    2012-03-01

    Spectral observations have detected methane within the martian atmosphere (Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. [2004]. Science 306, 1758-1761; Mumma, M.J. et al. [2009]. Science 323, 1041-1045), however, the origin of the methane has not been determined. Methane clathrate (also referred to as methane hydrate) has been suggested as a potential subsurface reservoir, storing and releasing biologic and/or abiogenic methane. In this study, rates of methane hydrate formation and dissociation were measured experimentally at 234-264 K and 1.4-4.7 MPa to test the clathrate reservoir hypothesis. Initial formation rates range from 4.3 × 10-6 to 8.1 × 10-5 mol m-2 s-1. Results show decreasing rates of formation over time in individual experiments, indicating initial rapid clathration, followed by diffusion-limited transport of methane into the ice through the previously formed hydrate. These experiments indicate increased pressure results in increased formation rates, likely the result of higher concentration gradients, enhancing the methane diffusion flux into the solid phase. Experiments conducted at elevated temperatures produced faster initial rates of formation, resulting from increased kinetic energy of methane molecules and/or thickening of the Quasi-Liquid Layer. Based on this temperature dependence, the activation energy for methane hydrate formation from ice was determined to be 35.9 kJ/mol. Hydrate dissociation experiments initiated by depressurization or warming at conditions between 222 K and 265 K and 0.1-2.0 MPa were conducted following each formation experiment, yielding methane hydrate dissociation rates from 3.01 × 10-6 to 9.92 × 10-5 mol m-2 s-1. While both hydrate dissociation and formation showed decreasing instantaneous rates over the course of each experiment, the transition between the initial rate of dissociation and the interpreted diffusion-limited period of continued dissociation was more abrupt than that observed

  18. Effects of Water in Synthetic Lubricant Systems and Clathrate Formation: A Literature Search and Review

    SciTech Connect

    Rohatgi, Ngoc Dung T.

    2001-08-08

    An extensive literature search and a confidential survey were critically analyzed to determine the effects of water on the stability of hydrofluorocarbon/synthetic lubricant systems and to identify key areas requiring further investigation. Following are highlights from the analysis: Clathrate hydrates are solid solutions formed when water molecules are linked through hydrogen bonding creating cavities that can enclose various guest molecules from hydrate formers, such as hydrofluorocarbons R-32, R-125, R-134a, R-407C and R-410A. The four methods for preventing clathrate formation were drying the gas, heating it, reducing its pressure, or using inhibitors. The hydrolysis of polyolester lubricants was mostly acid-catalyzed and its reaction rate constant typically followed the Arrhenius equation of an activated process. Hydrolytic stability improved with hindered molecular structures, and with the presence of acid catcher additives and desiccants. Water vapor can effect the adsorption of long-chain fatty acids and the chemistry of formation of protective oxide film. However, these effects on lubrication can be either positive or negative. Fifty to sixty percent of the moisture injected into an air-conditioning system remained in the refrigerant and the rest mixed with the compressor oil. In an automotive air-conditioning system using R-134a, ice would form at 0 C evaporating temperature when the water content in the vapor refrigerant on the low-pressure side was more than 350 ppm. Moisture would cause the embrittlement of polyethylene terephthalate and the hydrolysis of polyesters, but would reduce the effect of amine additives on fluoroelastomer rubbers. The reactions of water with refrigerants and lubricants would cause formicary and large-pit corrosion in copper tubes, as well as copper plating and sludge formation. Moreover, blockage of capillary tubes increased rapidly in the presence of water. Twenty-four companies responded to the survey. From the responses

  19. Investigation of T-2 Mycotoxin-Induced Cytotoxicity in vitro and Protective Effects of Flavonoid Compounds

    DTIC Science & Technology

    1986-01-01

    Quercetin , a flavonoid compound was able to decrease the effect of T-2 toxin when the drug was added within an hour of mixing the T-2 toxin with the...were examined microscopically using a Neubauer hemocytometer and viability of at least 200 cells was deter- mined. Quercetin or other flavonold... quercetin and additional OMSO had a cytotoxic effect on the thymocytes. RESULTS Figure 1 shows the results of 8 separate experiments performed at 2 week

  20. Synthetic organotelluride compounds induce the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Resistance to fluconazole, a commonly used azole antifungal, is a challenge for the treatment of fungal infections. Resistance can be mediated by overexpression of ABC transporters, which promote drug efflux that requires ATP hydrolysis. The Pdr5p ABC transporter of Saccharomyces cerevisiae is a well-known model used to study this mechanism of antifungal resistance. The present study investigated the effects of 13 synthetic compounds on Pdr5p. Results Among the tested compounds, four contained a tellurium-butane group and shared structural similarities that were absent in the other tested compounds: a lateral hydrocarbon chain and an amide group. These four compounds were capable of inhibiting Pdr5p ATPase activity by more than 90%, they demonstrated IC50 values less than 2 μM and had an uncompetitive pattern of Pdr5p ATPase activity inhibition. These organotellurides did not demonstrate cytotoxicity against human erythrocytes or S. cerevisiae mutant strains (a strain that overexpress Pdr5p and a null mutant strain) even in concentrations above 100 μM. When tested at 100 μM, they could reverse the fluconazole resistance expressed by both the S. cerevisiae mutant strain that overexpress Pdr5p and a clinical isolate of Candida albicans. Conclusions We have identified four organotellurides that are promising candidates for the reversal of drug resistance mediated by drug efflux pumps. These molecules will act as scaffolds for the development of more efficient and effective efflux pump inhibitors that can be used in combination therapy with available antifungals. PMID:25062749

  1. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance.

    PubMed

    Copolovici, Lucian; Niinemets, Ulo

    2010-09-01

    To gain insight into variations in waterlogging responsiveness, net assimilation rate, stomatal conductance, emissions of isoprene and marker compounds of anoxic metabolism ethanol and acetaldehyde, and stress marker compounds nitric oxide (NO), volatile products of lipoxygenase (LOX) pathway and methanol were studied in seedlings of temperate deciduous tree species Alnus glutinosa, Populus tremula and Quercus rubra (from highest to lowest waterlogging tolerance) throughout sustained root zone waterlogging of up to three weeks. In all species, waterlogging initially resulted in reductions in net assimilation and stomatal conductance and enhanced emissions of ethanol, acetaldehyde, NO, LOX products and methanol, followed by full or partial recovery depending on process and species. Strong negative correlations between g(s) and internal NO concentration and NO flux, valid within and across species, were observed throughout the experiment. Isoprene emission capacity was not related to waterlogging tolerance. Less waterlogging tolerant species had greater reduction and smaller acclimation capacity in foliage physiological potentials, and larger emission bursts of volatile stress marker compounds. These data collectively provide encouraging evidence that emissions of volatile organics and NO can be used as quantitative measures of stress tolerance and acclimation kinetics in temperate trees.

  2. Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of Salmonella typhimurium.

    PubMed

    Han, J S

    1992-04-01

    In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.

  3. Evaluation of hepatoprotective potential of HESA-A (a marine compound) pretreatment against thioacetamide-induced hepatic damage in rabbits.

    PubMed

    Ahmadi, A; Naderi, G; Asgary, S

    2005-01-01

    HESA-A, a marine compound, has been shown to exhibit antihepatic cancer, antitumor and anti-Parkinson effects. The hepatoprotective potential of HESA-A pretreatment at doses of 125 mg and 250 mg per day orally for a period of 40 days was evaluated against thioacetamide-induced liver damage in rabbits. Biochemical parameters such as serum glutamate oxaloacetate transaminase and lactate dehydrogenase in serum were estimated to assess liver function and lipid peroxidation products (malondialdehyde [MDA]) and the antierythrocyte lysis effect of plasma for measurement of antioxidant potential capacity. Data on the hepatic biochemical parameters revealed the hepatoprotective potential of HESA-A pretreatment against thioacetamide-induced hepatotoxicity in rabbits. There was an increase in total antioxidant and antierythrocyte lysis and a decrease in MDA in plasma after HESA-A treatment. These results strongly suggest that HESA-A has a protective action against preoperative damage to biomembranes.

  4. Inelastic neutron scattering study of hydrogen in d(8)-THFD(2)O ice clathrate.

    PubMed

    Tait, Kimberly T; Trouw, Frans; Zhao, Yusheng; Brown, Craig M; Downs, Robert T

    2007-10-07

    In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1-->0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1-->2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 5(12) cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell

  5. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.

    PubMed

    Zhao, Wen-Hui; Wang, Lu; Bai, Jaeil; Yuan, Lan-Feng; Yang, Jinlong; Zeng, Xiao Cheng

    2014-08-19

    Understanding phase behavior of highly confined water, ice, amorphous ice, and clathrate hydrates (or gas hydrates), not only enriches our view of phase transitions and structures of quasi-two-dimensional (Q2D) solids not seen in the bulk phases but also has important implications for diverse phenomena at the intersection between physical chemistry, cell biology, chemical engineering, and nanoscience. Relevant examples include, among others, boundary lubrication in nanofluidic and lab-on-a-chip devices, synthesis of antifreeze proteins for ice-growth inhibition, rapid cooling of biological suspensions or quenching emulsified water under high pressure, and storage of H2 and CO2 in gas hydrates. Classical molecular simulation (MD) is an indispensable tool to explore states and properties of highly confined water and ice. It also has the advantage of precisely monitoring the time and spatial domains in the sub-picosecond and sub-nanometer scales, which are difficult to control in laboratory experiments, and yet allows relatively long simulation at the 10(2) ns time scale that is impractical with ab initio molecular dynamics simulations. In this Account, we present an overview of our MD simulation studies of the structures and phase behaviors of highly confined water, ice, amorphous ice, and clathrate, in slit graphene nanopores. We survey six crystalline phases of monolayer (ML) ice revealed from MD simulations, including one low-density, one mid-density, and four high-density ML ices. We show additional supporting evidence on the structural stabilities of the four high-density ML ices in the vacuum (without the graphene confinement), for the first time, through quantum density-functional theory optimization of their free-standing structures at zero temperature. In addition, we summarize various low-density, high-density, and very-high-density Q2D bilayer (BL) ice and amorphous ice structures revealed from MD simulations. These simulations reinforce the notion that

  6. On the suitability of partially clathrated ice for analysis of concentration and δ 13C of palaeo-atmospheric CO 2

    NASA Astrophysics Data System (ADS)

    Schaefer, Hinrich; Lourantou, Anna; Chappellaz, Jérôme; Lüthi, Dieter; Bereiter, Bernhard; Barnola, Jean-Marc

    2011-07-01

    The stable carbon isotopic signature of carbon dioxide (δ 13CO 2) measured in the air occlusions of polar ice provides important constraints on the carbon cycle in past climates. In order to exploit this information for previous glacial periods, one must use deep, clathrated ice, where the occluded air is preserved not in bubbles but in the form of air hydrates. Therefore, it must be established whether the original atmospheric δ 13CO 2 signature can be reconstructed from clathrated ice. We present a comparative study using coeval bubbly ice from Berkner Island and ice from the bubble-clathrate transformation zone (BCTZ) of EPICA Dome C (EDC). In the EDC samples the gas is partitioned into clathrates and remaining bubbles as shown by erroneously low and scattered CO 2 concentration values, presenting a worst-case test for δ 13CO 2 reconstructions. Even so, the reconstructed atmospheric δ 13CO 2 values show only slightly larger scatter. The difference to data from coeval bubbly ice is statistically significant. However, the 0.16‰ magnitude of the offset is small for practical purposes, especially in light of uncertainty from non-uniform corrections for diffusion related fractionation that could contribute to the discrepancy. Our results are promising for palaeo-atmospheric studies of δ 13CO 2 using a ball mill dry extraction technique below the BCTZ of ice cores, where gas is not subject to fractionation into microfractures and between clathrate and bubble reservoirs.

  7. Characterization of the Apoptotic Response Induced by the Cyanine Dye D112: A Potentially Selective Anti-Cancer Compound

    PubMed Central

    Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie

    2015-01-01

    Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702

  8. Anti-fibrotic effects of a methylenedioxybenzene compound, CW209292 on dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Oh, Se-Woong; Kim, Dae-Hoon; Ha, Jong-Ryul; Kim, Dae-Yong

    2009-08-01

    A series of methylenedioxybenzene compounds were synthesized and found to have hepatoprotective effects in chemical-induced hepatotoxicity models. The purpose of the present study was to investigate the anti-fibrotic effects of a synthetic methylenedioxybenzene compound, CW209292, using the dimethylnitrosamine (DMN)-induced chronic liver injury model in rats. Liver injuries were induced in Sprague Dawley rats by injection of DMN (intraperitoneally, 10 microl/kg) 3 times per week for 4 weeks. The rats were treated with CW209292 (per os, 25 or 75 mg/kg/d) for 4 weeks. Treatment of rats with DMN for 4 weeks resulted in significant decreases in serum albumin levels, whereas concomitant treatment with CW209292 prevented these decreases. CW209292 treatment also shortened prothrombin time prolonged by DMN, providing evidence that the agent was active in preserving liver function against DMN insult. DMN treatment caused marked increases in plasma bilirubin, aspartate aminotransferase (AST), alanine transaminase (ALT), and hyaluronic acid levels; CW209292 treatment reversed these increases. CW209292 also significantly reduced hepatic hydroxyproline content as well as hepatic fibrosis and inflammation in histological examination. Additionally, immunochemically detectable hepatic collagen type IV and alpha-smooth muscle actin levels were decreased by CW209292 treatment. Proliferation of hepatic stellate cells isolated from DMN-treated rats was inhibited by CW209292. Furthermore, tumor growth factor (TGF)-beta1 mRNA expression was increased in DMN-treated rats, whereas CW209292 treatment prevented these increases. These results suggest that CW209292 exhibits anti-fibrotic effects in Sprague Dawley rats with DMN-induced hepatic fibrosis by blocking the mRNA expression of TGF-beta1 and subsequent inhibition of the proliferation of hepatic stellate cells.

  9. Time-Course of Changes in Choroidal Thickness after Complete Mydriasis Induced by Compound Tropicamide in Children

    PubMed Central

    Zeng, Junwen; Jin, Wei; Long, Wen; Lan, Weizhong; Yang, Xiao

    2016-01-01

    Purpose The aim of this study was to investigate the time-course of changes in choroidal thickness (ChT) following complete mydriasis induced by compound tropicamide. Methods ChT was measured by OCT with the enhanced-depth imaging technique (Spectralis HRA+OCT, Heidelberg Engineering, Germany) at nine locations of the fundus: subfoveal ChT (SFChT) and ChT at 1 mm and 3 mm from the fovea in four quadrants. Mydriasis was induced with compound tropicamide (0.5% tropicamide plus 0.5% phenylephrine hydrochloride, three doses at 5-minute intervals). Measurements were conducted prior to the instillation and at 0, 30, and 60 min following complete mydriasis. Results at different time-points were compared using repeated-measures ANOVA to investigate the time-course of the changes. Results Thirty-nine subjects (mean age 11.9±2 years; 16 males and 23 females) were enrolled in the study. Compound tropicamide resulted in a statistically significant decrease in SFChT at 0, 30, and 60 min after complete mydriasis, as compared to baseline (−5±4 μm, −12±4 μm, and −13±4 μm, respectively; all P<0.0001). No significant changes were detected in the parafoveal choroid except at 1 mm temporal (T1mm) and nasal (N1mm) to the fovea at 30 and 60 min (T1mm: −6±4 μm and −7±5 μm at 30 and 60 min; N1mm: −6±4 μm and −7±5 μm at 30 and 60 min, respectively; all P<0.0001). Repeated-measures ANOVA showed a significant interaction between the time after complete mydriasis and the effect of the mydriasis agent. Conclusions Complete mydriasis induced by compound tropicamide led to choroidal thinning, and the magnitude varied over time. PMID:27622495

  10. Tumor-specific cytotoxicity and type of cell death induced by beta-cyclodextrin benzaldehyde inclusion compound.

    PubMed

    Liu, Yu; Sakagami, Hiroshi; Hashimoto, Ken; Kikuchi, Hirotaka; Amano, Osamu; Ishihara, Mariko; Kanda, Yumiko; Kunii, Shiro; Kochi, Mutsuyuki; Zhang, Wei; Yu, Guangyan

    2008-01-01

    The cytotoxicity of beta-cyclodextrin benzaldehyde inclusion compound (CDBA) against human normal and cancer cell lines was investigated. CDBA showed slightly higher cytotoxicity against human tumor cell lines, as compared to normal cells, with a tumor-specificity index of 2.2. Human myelogenous leukemia cell lines (HL-60, ML-1, KG-1) were the most sensitive to CDBA, followed by human oral squamous cell carcinoma (HSC-2, HSC-3, HSC-4) and human glioblastoma (T98G, U87MG). Human normal cells (gingival fibroblasts, pulp cells, periodontal ligament fibroblasts) were the most resistant. CDBA induced internucleosomal DNA fragmentation in HL-60 cells and caspase-3, -8, -9 activation, but to a much lesser extent than that attained by UV irradiation or actinomycin D. On the other hand, CDBA did not induce DNA fragmentation, nor caspase activation in HSC-2, HSC-4 or T98G cells. Electron microscopy demonstrated that CDBA induced the destruction of mitochondrial structure and digestion of broken organelles by secondary lysosomes in all of these cells. CDBA also increased the number of acidic organelles as judged by acridine orange staining. The present study suggests that CDBA induces autophagic cell death in cancer cell lines.

  11. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity.

    PubMed

    Archana, P R; Nageshwar Rao, B; Ballal, Mamatha; Satish Rao, B S

    2009-01-01

    The effect of thymol (TOH), a dietary compound was investigated for its ability to protect against radiation-induced cytotoxicity in Chinese hamster lung fibroblast (V79) cells growing in vitro. Treatment of V79 cells with 25 microg/ml of TOH prior to 10 Gy gamma radiation resulted increase in the cell viability than that of radiation alone as evaluated by MTT assay. Similarly, there was a significant increase in the surviving fraction observed with 25 microg/ml of TOH administered 1h prior to graded doses of gamma radiation. Further, 25 microg/ml TOH treatment before irradiation significantly decreased the percentage of radiation-induced apoptotic cells (sub-G(1) population) analyzed by flow cytometry as well as DNA ladder assay. TOH was found to inhibit various free radicals generated in vitro, viz., DPPH, O(2), ABTS(+) and OH in a concentration dependent manner. TOH also inhibited the radiation-induced decrease in intracellular glutathione, superoxide dismutase and catalase enzyme levels in V79 cells accompanied by the reduction in lipid peroxides. Our study demonstrated antagonistic potential of TOH against radiation-induced oxidative stress, lipid peroxidation resulting in increased cell viability.

  12. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells.

    PubMed

    Zaman, Shadia; Wang, Rui; Gandhi, Varsha

    2015-11-01

    Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.

  13. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    SciTech Connect

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus).

  14. Wild Bitter Melon Leaf Extract Inhibits Porphyromonas gingivalis-Induced Inflammation: Identification of Active Compounds through Bioassay-Guided Isolation.

    PubMed

    Tsai, Tzung-Hsun; Huang, Wen-Cheng; Ying, How-Ting; Kuo, Yueh-Hsiung; Shen, Chien-Chang; Lin, Yin-Ku; Tsai, Po-Jung

    2016-04-06

    Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify the anti-inflammatory active compounds using heat-killed P. gingivalis-stimulated human monocytic THP-1 cells in vitro. Five major fractions were collected from the ethanol/ethyl acetate extract of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) leaves and evaluated for their anti-inflammatory activity against P. gingivalis. Among the test fractions, Fraction 5 effectively decreased heat-killed P. gingivalis-induced interleukin (IL)-8 and was subjected to separation and purification by using chromatographic techniques. Two cucurbitane triterpenoids were isolated from the active fraction and identified as 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol (1) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (2) by comparing spectral data. Treatments of both compounds in vitro potently suppressed P. gingivalis-induced IL-8, IL-6, and IL-1β levels and the activation of mitogen-activated protein kinase (MAPK) in THP-1 cells. Both compounds effectively inhibited the mRNA levels of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in P. gingivalis-stimulated gingival tissue of mice. These findings imply that 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al could be used for the development of novel therapeutic approaches against P. gingivalis infections.

  15. Competing analysis of α and 2p2n-emission from compound nuclei formed in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Sharma, Manoj K.

    2017-01-01

    The decay mechanism of compound system 61Ni* formed in fast neutron induced reactions is explored within the collective clusterization approach of the Dynamical Cluster-decay Model (DCM) in reference to a recent experiment over an energy spread of En = 1- 100 MeV. The excitation functions for the decay of the compound nucleus 61Ni* formed in the n +60Ni reaction show a double humped variation with incident beam energy where the peak at lower energy corresponds to α-emission while the one at higher energy originates from 2 p 2 n-emission. The experimentally observed transmutation of α-emission at lower energy into 2 p 2 n-emission at higher incident energies is explained on the basis of temperature dependence of the binding energies used within the framework of DCM. The cross-sections for the formation of the daughter nucleus 57Fe after emission of α-cluster from the 61Ni* nucleus are addressed by employing the neck length parameter (ΔR), finding decent agreement with the available experimental data. The calculations are done for non-sticking choice of moment of inertia (INS) in the centrifugal potential term, which forms the essential ingredient in DCM based calculations. In addition to this, the effect of mass (and charge) of the compound nucleus is exercised in view of α and 2 p 2 n emission and comparative study of the decay profiles of compound systems with mass A = 17-93 is employed to get better description of decay patterns.

  16. Leaf rust induced volatile organic compounds signalling in willow during the infection.

    PubMed

    Toome, Merje; Randjärv, Pille; Copolovici, Lucian; Niinemets, Ulo; Heinsoo, Katrin; Luik, Anne; Noe, Steffen M

    2010-06-01

    Plants are known to emit volatile organic compounds (VOC) in response to various biotic or abiotic stresses. Although the VOC emission in the case of insect attacks is well described, there is only little known about the impact of pathogens on plant emission. In the present study, we used a willow-leaf rust system to describe the effects of a biotrophic fungal infection on the VOC emission pattern of willow leaves. We detected that isoprene emissions from rust-infected leaves decreased threefold compared to control. The total monoterpene emissions did not change although a stress-signalling compound (Z)-beta-ocimene showed an increase in infected plants on several days. The infection also increased the emission of sesquiterpenes and lipoxygenase products (LOX) by factors of 175-fold and 10-fold, respectively. The volatile emission signals showed two clear peaks during the experiment. At 6, 7 and 12 days post-infection (dpi), the relative volatile emission signal increased to about sixfold compared to uninfected plants. These time points are directly connected to rust infection since at 6 dpi the first rust pustules appeared on the leaves and at 12 dpi necrosis had developed around several pustules. We present correlations between LOX and sesquiterpene emission signals, which suggest at least two different steps in eliciting the volatile emission.

  17. Magnetic Precursor of the Pressure-Induced Superconductivity in Fe-Ladder Compounds

    SciTech Connect

    Chi, Songxue; Uwatoko, Yoshiya; Cao, Huibo; Hirata, Yasuyuki; Hashizume, Kazuki; Aoyama, Takuya; Ohgushi, Kenya

    2016-07-21

    We studied the pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe$_2$Se$_3$ and BaFe$_2$S$_3$ using single crytal neutron diffraction technique. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe$_2$Se$_3$ the ladders are brought much closer to each other by pressure, but the stripe-type of magnetic order shows no observable change. Furthermore, the stripe order in BaFe$_2$S$_3$, undergoes a quantum phase transition where an abrupt increase of $N\\acute{e}el$ temperature by more than 50$\\%$ occurs at about 1 GPa, accompanied by a jump in ordered moment. Finally, with its spin structure unchanged, BaFe$_2$S$_3$ enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true herald for superconductivity emerging at higher pressures.

  18. Magnetic Precursor of the Pressure-Induced Superconductivity in Fe-Ladder Compounds

    DOE PAGES

    Chi, Songxue; Uwatoko, Yoshiya; Cao, Huibo; ...

    2016-07-21

    We studied the pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFemore » $$_2$$Se$$_3$$ and BaFe$$_2$$S$$_3$$ using single crytal neutron diffraction technique. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe$$_2$$Se$$_3$$ the ladders are brought much closer to each other by pressure, but the stripe-type of magnetic order shows no observable change. Furthermore, the stripe order in BaFe$$_2$$S$$_3$$, undergoes a quantum phase transition where an abrupt increase of $$N\\acute{e}el$$ temperature by more than 50$$\\%$$ occurs at about 1 GPa, accompanied by a jump in ordered moment. Finally, with its spin structure unchanged, BaFe$$_2$$S$$_3$$ enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true herald for superconductivity emerging at higher pressures.« less

  19. Induced production of brominated aromatic compounds in the alga Ceramium tenuicorne.

    PubMed

    Dahlgren, Elin; Enhus, Carolina; Lindqvist, Dennis; Eklund, Britta; Asplund, Lillemor

    2015-11-01

    In the Baltic Sea, high concentrations of toxic brominated aromatic compounds have been detected in all compartments of the marine food web. A growing body of evidence points towards filamentous algae as a natural producer of these chemicals. However, little is known about the effects of environmental factors and life history on algal production of brominated compounds. In this study, several congeners of methoxylated polybrominated diphenyl ethers (MeO-PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and brominated phenols (BPs) were identified in a naturally growing filamentous red algal species (Ceramium tenuicorne) in the Baltic Sea. The identified substances displayed large seasonal variations in the alga with a concentration peak in July. Production of MeO-/OH-PBDEs and BPs by C. tenuicorne was also established in isolated clonal material grown in a controlled laboratory setting. Based on three replicates, herbivory, as well as elevated levels of light and salinity in the culture medium, significantly increased the production of 2,4,6-tribromophenol (2,4,6-TBP). Investigation of differences in production between the isomorphic female, male and diploid clonal life stages of the alga grown in the laboratory revealed a significantly higher production of 2,4,6-TBP in the brackish water female gametophytes, compared to the corresponding marine gametophytes. Even higher concentrations of 2,4,6-TBP were produced by marine male gametophytes and sporophytes.

  20. Flavonoid-induced conversion of catalase to its inactive form--Compound II.

    PubMed

    Krych, J; Gebicki, J L; Gebicka, L

    2014-11-01

    Flavonoids (FlaOHs), plant polyphenols, are ubiquitous components of human diet and are known as antioxidants. However, their prooxidant activity has also been reported. We have recently found that FlaOHs inhibit catalase, the heme enzyme which catalyzes the decomposition of hydrogen peroxide (H2O2) into water and molecular oxygen. The catalytic cycle proceeds with the formation of the intermediate, Compound I (Cpd I), an oxoferryl porphyrin π-cation radical, the two-electron oxidation product of a heme group. Under conditions of low H2O2 fluxes and in the presence of an appropriate substrate, Cpd I can undergo one-electron reduction to inactive Compound II (Cpd II), oxoferryl derivative without radical site. Here we show that in vitro, under low fluxes of H2O2, FlaOHs reduce Cpd I to inactive Cpd II. Measurable amounts of Cpd II can be formed even in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) at concentration comparable with the investigated FlaOHs. Possible mechanisms of electron transfer from FlaOH molecule to the heme are discussed.

  1. Clathrate eustasy: Methane hydrate melting as a mechanism for geologically rapid sea-level fall

    USGS Publications Warehouse

    Bratton, J.F.

    1999-01-01

    Although submarine methane hydrates or clathrates have been highlighted as potential amplifiers of modern global climate change and associated glacio-eustatic sea-level rise, their potential role in sea-level fall has not been appreciated Recent estimates of the total volume occupied by gas hydrates in marine sediments vary 20-fold, from 1.2 ?? 1014 to 2.4 ?? 1015 m3. Using a specific volume change on melting of-21%, dissociation of the current global inventory of hydrate would result in a decrease of submarine hydrate volume of 2.4 ?? 1013 to 5.0??1014 m3. Release of free gas bubbles present beneath hydrates would increase these volumes by 1.1-2.0 ?? 1013 m3. The combined effects of hydrate melting and subhydrate gas release would result conservatively in a global sea-level fall of 10-146 cm. Such a mechanism may offset some future sea-level rise associated with thermal expansion of the oceans. It could also explain anomalous sea-level drops during ice-free periods such as the early Eocene, the Cretaceous, and the Devonian.

  2. Constraints on sea to air emissions from methane clathrates in the vicinity of Svalbard

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Vadakkepuliyambatta, Sunil; Platt, Stephen Matthew; Eckhardt, Sabine; Allen, Grant; Pitt, Joseph; Silyakova, Anna; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Myhre, Cathrine Lund; Stohl, Andreas

    2016-04-01

    Methane stored in the seabed in the form of clathrates has the potential to be released into the atmosphere due to ongoing ocean warming. The Methane Emissions from Arctic Ocean to Atmosphere (MOCA, http://moca.nilu.no/) proje sct conducted measurement campaigns in the vicinity of Svalbard during the summers of 2014 and 2015 in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/) and the MAMM (https://arcticmethane.wordpress.com) project . The extensive set of measurements includes air (BAe 146) and ship (RV Helmer Hansen) borne methane concentrations, complemented with the nearby monitoring site at Zeppelin mountain. In order to assess the atmospheric impact of emissions from seabed methane hydrates, we characterised the local and long range atmospheric transport during the aircraft campaign and different scenarios for the emission sources. We present a range of upper bounds for the CH4 emissions during the campaign period as well as the methodologies used to obtain them. The methodologies include a box model, Lagrangian transport and elementary inverse modelling. We emphasise the analysis of the aircraft data. We discuss in detail the different methodologies used for determining the upper flux bounds as well as its uncertainties and limitations. The additional information provided by the ship and station observations will be briefly mentioned.

  3. Major occurrences and reservoir concepts of marine clathrate hydrates: implications of field evidence

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  4. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    USGS Publications Warehouse

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  5. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.

    PubMed

    Smith, J David; Meuler, Adam J; Bralower, Harrison L; Venkatesan, Rama; Subramanian, Sivakumar; Cohen, Robert E; McKinley, Gareth H; Varanasi, Kripa K

    2012-05-07

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.

  6. Clathrate eustasy: Methane hydrate melting as a mechanism for geologically rapid sea-level fall

    SciTech Connect

    Bratton, J.F.

    1999-10-01

    Although submarine methane hydrates or clathrates have been highlighted as potential amplifiers of modern global climate change and associated glacio-eustatic sea-level rise, their potential role in sea-level fall has not been appreciated. Recent estimates of the total volume occupied by gas hydrates in marine sediments vary 20-fold, from 1.2 x 10{sup 14} to 2.4 x 10{sup 15} m{sup 3}. Using a specific volume change on melting of {minus}21%, dissociation of the current global inventory of hydrate would result in a decrease of submarine hydrate volume of 2.4 x 10{sup 13} to 5.0 x 10{sup 14} m{sup 3}. Release of free gas bubbles present beneath hydrates would increase these volumes by 1.1 --2.0 x 10{sup 13} m{sup 3}. The combined effects of hydrate melting and subhydrate gas release would result conservatively in a global sea-level fall of 10--146 cm. Such a mechanism may offset some future sea-level rise associated with thermal expansion of the oceans. It could also explain anomalous sea-level drops during ice-free periods such as the early Eocene, the Cretaceous, and the Devonian.

  7. Influence of combining rules on the cavity occupancy of clathrate hydrates by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Nikolaos I.; Tsimpanogiannis, Ioannis N.; Economou, Ioannis G.; Stubos, Athanassios K.

    2014-09-01

    Assessing the exact amount of gas stored in clathrate-hydrate structures can be addressed by either molecular-level simulations (e.g. Monte Carlo) or continuum-level modelling (e.g. van der Waals-Platteeuw-theory-based models). In either case, the Lorentz-Berthelot (LB) combining rules are by far the most common approach for the evaluation of the parameters between the different types of atoms that form the hydrate structure. The effect of combining rules on the calculations has not been addressed adequately in the hydrate-related literature. Only recently the use of the LB combining rules in hydrate studies has been questioned. In the current study, we report an extensive series of Grand Canonical Monte Carlo simulations along the three-phase (H-Lw-V) equilibrium curve. The exact geometry of hydrate crystals is known from diffraction experiments and, therefore, the formation of hydrates can be simulated as a process of gas adsorption in a solid porous material. We examine the effect of deviations from the LB combining rules on the cavity occupancy of argon hydrates and work towards quantifying it. The specific system is selected as a result of the characteristic behaviour of argon to form hydrates of different structures depending on the prevailing pressure. In particular, an sII hydrate is formed at lower pressures, while an sI hydrate is formed at intermediate pressures, and finally an sH hydrate is formed at higher pressures.

  8. Impedance of Sn24P19.3BrxI8-x semiconducting clathrates

    NASA Astrophysics Data System (ADS)

    Yakimchuk, A. V.; Zaikina, J. V.; Reshetova, L. N.; Ryabova, L. I.; Khokhlov, D. R.; Shevelkov, A. V.

    2007-02-01

    The temperature and frequency dependences of the real and imaginary parts of the complex impedance of ceramic samples of the clathrates of variable composition Sn24P19.3BrxI8-x are investigated in the frequency range from 20 to 106Hz at temperatures from 4.2 to 200K. The conductivity of the samples is measured in the dc regime at temperatures from 4.2 to 300K; it is characterized by the presence of an activation part, with energy increasing monotonically from 18 to 77meV as the bromine concentration increases. The impedance spectra are investigated by a graphoanalytical method. As an approximating equivalent circuit, an RC circuit with a frequency-dependent capacitance is considered. It is shown that the capacitive contribution to the admittance falls off sharply with decreasing temperature below 75K and with increasing frequency above 150kHz. The observed dielectric anomalies are attributed to a substantial contribution to the complex impedance from the grain boundaries.

  9. Weak interactions between water and clathrate-forming gases at low pressures

    DOE PAGES

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; ...

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence ofmore » the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  10. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; Kay, Bruce D.; Smith, R. Scott

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10–1 mbar methane or 10–5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10–5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.

  11. Weak interactions between water and clathrate-forming gases at low pressures

    SciTech Connect

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  12. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.

    2016-10-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.

  13. Vascular relaxation induced by Eucommiae Ulmoides Oliv. and its compounds Oroxylin A and wogonin: implications on their cytoprotection action

    PubMed Central

    Akinyi, Mary; Gao, Xiu Mei; Li, Yu Hong; Wang, Bing Yao; Liu, Er Wei; Chai, Li Juan; JawoBah, Abdulai; Fan, Guan Wei

    2014-01-01

    The vascular relaxation action of Eucommiae Ulmoides Oliv. also known as Duzhong has been seen on arteries of the heart such as the aorta and the coronary artery which are elastic in nature. Duzhong is historically an active ingredient commonly used in hypertensive herbal prescriptions in China. This work investigated the vasodilating effect of Duzhong and its compounds (wogonin 10 μM and oroxylin-A) in the isolated intact rat heart, perfused retrograde according the method of Langendorff and the cytoprotective effect in EA.hy926 cell lines Coronary perfusion pressure was monitored with a pressure transducer connected to a side-arm of the aortic perfusion cannula. Duzhong induced vasorelaxation in a dose dependent manner, on precontracting the vessels with endothelin-1, Duzhong 10 mg/ml, wogonin 10 μM and oroxylin-A 10 μM could significantly lower the perfusion pressure in reference to positive control SNP, Duzhong induced vasodilation was not inhibited by L-NAME (nitric oxide inhibitor), but was significantly inhibited by Tetraethyl ammonium (TEA, a K+ channel blocker and almost abolished by potassium chloride. The underlying mechanism was carried out in EA.hy926 cell lines. When these cells were treated with H2O2, there was higher expression of NOX-4, TNF-α and COX-2 mRNA. However, wogonin treatment attenuated the mRNA of NOX-4, TNF-α and COX-2. Wogonin also upregulated the mRNA expression of CAT, SOD-1 and GSR in oxidative stress induced by H2O2 EA.hy926 cells. Duzhong and compounds can exert an in vitro relaxation effect of the coronary artery and improve the heart function in Langendorff apparatus. This action appears to be endothelium dependent but not NO mediated. Cell culture findings indicated that wogonin can exert vascular and cellular protection by scavenging Reactive Oxygen Species. PMID:25419347

  14. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue.

    PubMed

    García-Sánchez, Mercedes; Garrido, Inmaculada; Casimiro, Ilda de Jesús; Casero, Pedro Joaquín; Espinosa, Francisco; García-Romera, Inmaculada; Aranda, Elisabet

    2012-10-01

    ADOR is an aqueous extract obtained from the dry olive mill residue (DOR) which contains the majority of its soluble phenolic compounds, which are responsible for its phytotoxic properties. Some studies have shown that ADOR negatively affects seed germination. However, to date, few studies have been carried out on the effect of ADOR on the oxidative stress of the plant. It is well known that saprobe fungi can detoxify these phenolic compounds and reduce the potential negative effects of ADOR on plants. To gain a better understanding of the phytotoxic effects and oxidative stress caused by this residue, tomato seeds were germinated in the presence of ADOR, treated and untreated with Coriolopsis rigida, Trametes versicolor, Pycnoporus cinnabarinus and Penicillium chrysogenum-10 saprobe fungi. ADOR sharply reduced tomato seed germination and also generated high levels of malondialdehyde (MDA), O(2)(-) and H(2)O(2). However, bioremediated ADOR did not negatively affect germination and reduced MDA, O(2)(-) and H(2)O(2) content in different ways depending on the fungus used. In addition, the induced defense response was studied by analyzing the activity of both antioxidant enzymes (superoxide dismutase (SOD), catalase, ascorbate peroxidasa, glutathione reductase (GR), peroxidases and coniferil alcohol peroxidasa) and detoxification enzymes (glutathione-S-transferase (GST)). Our findings suggest that, because ADOR is capable of inducing oxidative stress, tomato seedlings trigger a defense response through SOD, GR, and GST activity and through antioxidant and lignification processes. On the other hand, the bioremediation of ADOR plays an important role in counteracting the oxidative stress induced by the untreated residue.

  15. Prediction of a new ice clathrate with record low density: A potential candidate as ice XIX in guest-free form

    NASA Astrophysics Data System (ADS)

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Zhao, Jijun; Zeng, Xiao Cheng

    2017-03-01

    Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a new cubic crystalline phase of ice clathrate, named as s-IV, which is composed of eight large icosihexahedral cavities (12464418), eight intermediate dodecahedral cavities (6646), and sixteen small octahedral cavities (6246) per unit cell. Based on DFT calculations, we find that the s-IV ice clathrate with an extremely low mass density of 0.506 g/cm3. In the P-T phase diagram of water described by the TIP4P/2005 water model, the s-IV ice clathrate becomes a more stable ice polymorph in the negative-pressure region, e.g., below -3830 bar at 0 K, below -4882 bar at 115 K, and below -7292 bar at 200 K.

  16. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    DOE PAGES

    Geron, Chris; Gu, Lianhong; Daly, Ryan; ...

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for themore » species in the red oak subgenus (Erythrobalanus).« less

  17. Disorder-induced structural transitions in topological insulating Ge-Sb-Te compounds

    SciTech Connect

    Kim, Jeongwoo; Jhi, Seung-Hoon

    2015-05-21

    The mechanism for the fast switching between amorphous, metastable, and crystalline structures in chalcogenide phase-change materials has been a long-standing puzzle. Based on first-principles calculations, we study the atomic and electronic properties of metastable Ge{sub 2}Sb{sub 2}Te{sub 5} and investigate the atomic disorder to understand the transition between crystalline hexagonal and cubic structures. In addition, we study the topological insulating property embedded in these compounds and its evolution upon structural changes and atomic disorder. We also discuss the role of the surface-like states arising from the topological insulating property in the metal-insulator transition observed in the hexagonal structure.

  18. Strain induced topological phase transitions in monolayer honeycomb structures of group-V binary compounds

    PubMed Central

    Nie, Yaozhuang; Rahman, Mavlanjan; Wang, Daowei; Wang, Can; Guo, Guanghua

    2015-01-01

    We present first-principles calculations of electronic structures of a class of two-dimensional (2D) honeycomb structures of group-V binary compounds. Our results show these new 2D materials are stable semiconductors with direct or indirect band gaps. The band gap can be tuned by applying lattice strain. During their stretchable regime, they all exhibit metal-indirect gap semiconductor-direct gap semiconductor-topological insulator (TI) transitions with increasing strain from negative (compressive) to positive (tensile) values. The topological phase transition results from the band inversion at the Γ point which is due to the evolution of bonding and anti-bonding states under lattice strain. PMID:26656257

  19. Development of Novel Bifunctional Compounds That Induce Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2009-03-01

    Agilent 6410 triple quadrupole electrospray ionization mass spectrometer. Doubly protonated forms of 11β adducts are selected for collision induced...expression of p21 in tissue sections after treatment with 11β. These techniques proved not to be sensitive enough to determine their responses in the...radiolabeled analog that incorporated one 14C atom into the linker of our molecule we have used the technique of Accelerator Mass Spectrometry (AMS) to

  20. The anthracenedione compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae.

    PubMed

    Xu, Chunling; Wang, Jiafeng; Gao, Ye; Lin, Huangyu; Du, Lin; Yang, Shanshan; Long, Simei; She, Zhigang; Cai, Xiaoling; Zhou, Shining; Lu, Yongjun

    2010-05-01

    Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.

  1. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Okinaga, Toshinori; Ariyoshi, Wataru; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  2. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice.

    PubMed

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-02-01

    Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control

  3. Protective Effect of Artemisia asiatica Extract and Its Active Compound Eupatilin against Cisplatin-Induced Renal Damage

    PubMed Central

    Park, Jun Yeon; Lee, Dahae; Jang, Hyuk-Jai; Jang, Dae Sik; Kwon, Hak Cheol; Kim, Ki Hyun; Kim, Su-Nam; Hwang, Gwi Seo; Kang, Ki Sung; Eom, Dae-Woon

    2015-01-01

    The present study investigated the renoprotective effect of an Artemisia asiatica extract and eupatilin in kidney epithelial (LLC-PK1) cells. Although cisplatin is effective against several cancers, its use is limited due to severe nephrotoxicity. Eupatilin is a flavonoid compound isolated from the Artemisia plant and possesses antioxidant as well as potent anticancer properties. In the LLC-PK1 cellular model, the decline in cell viability induced by oxidative stress, such as that induced by cisplatin, was significantly and dose-dependently inhibited by the A. asiatica extract and eupatilin. The increased protein expressions of phosphorylated JNK and p38 by cisplatin in cells were markedly reduced after A. asiatica extract or eupatilin cotreatment. The elevated expression of cleaved caspase-3 was significantly reduced by A. asiatica extract and eupatilin, and the elevated percentage of apoptotic cells after cisplatin treatment in LLC-PK1 cells was markedly decreased by cotreatment with A. asiatica extract or eupatilin. Taken together, these results suggest that A. asiatica extract and eupatilin could cure or prevent cisplatin-induced renal toxicity without any adverse effect; thus, it can be used in combination with cisplatin to prevent nephrotoxicity. PMID:26539226

  4. Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) clathrates prepared by combining arc melting and spark plasma sintering methods

    SciTech Connect

    Anno, Hiroaki; Yamada, Hiroki; Nakabayashi, Takahiro; Hokazono, Masahiro; Shirataki, Ritsuko

    2012-09-15

    The gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) compounds with the type-I clathrate structure is presented. Samples were prepared by combining arc melting and spark plasma sintering methods. Powder x-ray diffraction, Rietveld analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy show that the solubility limit of gallium in the type-I clathrate phase is close to x=15, which is slightly higher than that for a single crystal. The carrier concentration at room temperature decreases from 2 Multiplication-Sign 10{sup 21} cm{sup -3} to 4 Multiplication-Sign 10{sup 20} cm{sup -3} as the Ga content x increases. The Seebeck coefficient, the electrical conductivity, and the thermal conductivity vary systematically with the carrier concentration when the Ga content x varies. The effective mass (2.0m{sub 0}), the carrier mobility (10 cm{sup 2} V{sup -1} s{sup -1}), and the lattice thermal conductivity (1.1 W m{sup -1} K{sup -1}) are determined for the Ga content x=14.51. The dimensionless thermoelectric figure of merit ZT is about 0.55 at 900 K for the Ga content x=14.51. The calculation of ZT using the experimentally determined material parameters predicts ZT=0.8 (900 K) at the optimum carrier concentration of about 2 Multiplication-Sign 10{sup 20} cm{sup -3}. - Graphical abstract: The gallium composition dependence of crystallographic and thermoelectric properties is presented on polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} with the type-I clathrate structure prepared by combining arc melting and spark plasma sintering methods. The thermoelectric figure of merit ZT reaches 0.55 at 900 K due to the increase in the Ga content (close to x=15), and a calculation predicts further improvement of ZT at the optimized carrier concentration. Highlights: Black-Right-Pointing-Pointer Crystallographic properties of Ba{sub 8}Ga{sub x}Si{sub 46

  5. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells

    PubMed Central

    Wang, J.; Zhao, Y. M.; Zhang, B.; Guo, C. Y.

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration. PMID:26009648

  6. Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: a possible involvement of reactive oxygen species.

    PubMed

    Schiar, Viviane Patrícia P; Dos Santos, Danúbia B; Paixão, Márcio W; Nogueira, Cristina Wayne; Rocha, João Batista T; Zeni, Gilson

    2009-01-15

    Oxidative stress can induce complex alterations of membrane proteins in red blood cells (RBCs) eventually leading to hemolysis. RBCs represent a good model to investigate the damage induced by oxidizing agents. Literature data have reported that chalcogen compounds can present pro-oxidant properties with potent inhibitory effects on cell growth, causing tissue damage and inhibit a variety of enzymes. In this study, human erythrocytes were incubated in vitro with various chalcogen compounds at 37 degrees C: diphenyl ditelluride (1), dinaphthalen diteluride (2), diphenyl diselenide (3), (S)-tert-butyl 1-diselenide-3-methylbutan-2-ylcarbamate (4), (S)-tert-butyl 1-diselenide-3-phenylpropan-2-ylcarbamate (5), selenium dioxide (6) and sodium selenite (7) in order to investigate their potential in vitro toxicity. After 6h of incubation, all the tested compounds increased the hemolysis rate, when compared to control and compound (2) had the most potent hemolytic effect. The addition of reduced glutathione (GSH) or glucose to the incubation medium enhanced hemolysis caused by chalcogen compounds. The thiol oxidase activity of these compounds was evaluated by measuring the rate of cysteine (CYS) and dithiotreitol (DTT) oxidation. DTT and cysteine oxidation was increased by all the compounds tested. The results suggest a relationship between the oxidation of intracellular GSH and subsequent generation of free radicals with the hemolysis by chalcogen compounds.

  7. Inhibition of Oral Streptococci Growth Induced by the Complementary Action of Berberine Chloride and Antibacterial Compounds.

    PubMed

    Dziedzic, Arkadiusz; Wojtyczka, Robert D; Kubina, Robert

    2015-07-28

    Synergistic interactions between natural bioactive compounds from medicinal plants and antibiotics may exhibit therapeutic benefits, acting against oral cariogenic and opportunistic pathogens. The aim of the presented work was to assess the antibacterial activity of berberine chloride (BECl) in light of the effect exerted by common antibiotics on selected reference strains of oral streptococci (OST), and to evaluate the magnitude of interactions. Three representative oral microorganisms were investigated: Streptococcus mutans ATCC 25175 (SM), S. sanguinis ATCC 10556 (SS), S. oralis ATCC 9811 (SO) and microdilution tests, along with disc diffusion assays were applied. Here, we report that growth (viability) of all oral streptococci was reduced by exposure to BECl and was dependent primarily on exposure/ incubation time. A minimum inhibitory concentrations (MIC) of BECl against OST ranged from 512 µg/mL (SS) to 1024 µg/mL (SM, SO). The most noticeable antibacterial effects were observed for S. sanguinis (MIC 512 µg/mL) and the most significant synergistic action was found for the combinations BECl-penicillin, BECl-clindamycin and BECl-erythromycin. The S. oralis reflects the highest MBC value as assessed by the AlamarBlue assay (2058 µg/mL). The synergy between berberine and common antibiotics demonstrates its potential use as a novel antibacterial tool for opportunistic infections and also provides a rational basis for the use of berberine as an oral hygiene measure.

  8. Radiation-induced modifications of PVC compounds stabilized with non-lead systems

    NASA Astrophysics Data System (ADS)

    Castañeda Facio, A.; Benavides Cantú, R.; Martínez Pardo, M. E.; Carrasco Abrego, H.

    2004-09-01

    The radiation crosslinking of polyvinyl chloride (PVC) formulated with two different stabilizer systems (Ca/Zn and dibasic lead phthalate) and trimethylolpropane trimethacrylate, a polyfunctional monomer, has been studied with the purpose of observing their behaviour and with the idea of replacing the lead stabilizer used in the typical wire and cable formulation for Ca/Zn systems. The compounds of PVC were irradiated by 60Co γ radiation at doses of 50, 75 and 100 kGy and two different atmospheres (argon and air). The dosimetry used to establish the irradiation times was carried out by both theoretical and experimental methods. The tensile test and gel measurements showed the highest values at 100 kGy although Young's Modulus showed that 75 kGy and argon atmosphere are optimum conditions for wire and cable formulations. The formulation with Ca/Zn stabiliser showed a very similar behaviour to the one made of lead, which, incidentally, produces high concentration of polyenes, in contrast to the Ca/Zn system.

  9. Protein differential expression induced by endocrine disrupting compounds in a terrestrial isopod.

    PubMed

    Lemos, Marco F L; Esteves, Ana Cristina; Samyn, Bart; Timperman, Isaak; van Beeumen, Jozef; Correia, António; van Gestel, Cornelis A M; Soares, Amadeu M V M

    2010-04-01

    Endocrine disrupting compounds (EDCs) have been studied due to their impact on human health and increasing awareness of their impact on wildlife species. Studies concerning the organ-specific molecular effects of EDC in invertebrates are important to understand the mechanisms of action of this class of toxicants but are scarce in the literature. We have used a dose/response approach to unravel the protein expression in different organs of isopods exposed to bisphenol A (BPA) and vinclozolin (Vz) and assess their potential use as surrogate species. Male isopods were exposed to a range of Vz or of BPA concentrations. After animal dissection, proteins were extracted from gut, hepatopancreas and testes. Protein profiles were analysed by electrophoresis and differentially expressed proteins were identified by MALDI mass spectrometry. EDCs affected proteins involved in the energy metabolism (arginine kinase), proteins of the heat shock protein family (Hsp70 and GRP78) and most likely microtubule dynamics (tubulin). Different proteins expressed at different concentrations in different organs are indicative of the organ-specific effects of BPA and Vz. Additionally, several proteins were up-regulated at lower but not higher BPA or Vz concentrations, bringing new data to the non-monotonic response curve controversy. Furthermore, our findings suggest that some common responses to EDCs in both vertebrates and invertebrates may exist.

  10. Protection of Erwinia amylovora bacteriophage Y2 from UV-induced damage by natural compounds

    PubMed Central

    Born, Yannick; Bosshard, Lars; Duffy, Brion; Loessner, Martin J.; Fieseler, Lars

    2015-01-01

    Bacteriophages have regained much attention as biocontrol agents against bacterial pathogens. However, with respect to stability, phages are biomolecules and are therefore sensitive to a number of environmental influences. UV-irradiation can readily inactivate phage infectivity, which impedes their potential application in the plant phyllosphere. Therefore, phages for control of Erwinia amylovora, the causative agent of fire blight, need to be protected from UV-damage by adequate measures. We investigated the protective effect of different light-absorbing substances on phage particles exposed to UV-light. For this, natural extracts from carrot, red pepper, and beetroot, casein and soy peptone in solution, and purified substances such as astaxanthin, aromatic amino acids, and Tween 80 were prepared and tested as natural sunscreens for phage. All compounds were found to significantly increase half-life of UV-irradiated phage particles and they did not negatively affect phage viability or infectivity. Altogether, a range of readily available, natural substances are suitable as UV-protectants to prevent phage particles from UV-light damage. PMID:26904378

  11. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  12. Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound

    NASA Astrophysics Data System (ADS)

    Zhang, Hu; Li, Yawei; Liu, Enke; Ke, Yajiao; Jin, Jinling; Long, Yi; Shen, Baogen

    2015-07-01

    Large rotating magnetocaloric effect (MCE) has been observed in some single crystals due to strong magnetocrystalline anisotropy. By utilizing the rotating MCE, a new type of rotary magnetic refrigerator can be constructed, which could be more simplified and efficient than the conventional one. However, compared with polycrystalline materials, the high cost and complexity of preparation for single crystals hinder the development of this novel magnetic refrigeration technology. For the first time, here we observe giant rotating MCE in textured DyNiSi polycrystalline material, which is larger than those of most rotating magnetic refrigerants reported so far. This result suggests that DyNiSi compound could be attractive candidate of magnetic refrigerants for novel rotary magnetic refrigerator. By considering the influence of demagnetization effect on MCE, the origin of large rotating MCE in textured DyNiSi is attributed to the coexistence of strong magnetocrystalline anisotropy and highly preferred orientation. Our study on textured DyNiSi not only provides a new magnetic refrigerant with large rotating MCE for low temperature magnetic refrigeration, but also opens a new way to exploit magnetic refrigeration materials with large rotating MCE, which will be highly beneficial to the development of rotating magnetic refrigeration technology.

  13. Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound.

    PubMed

    Zhang, Hu; Li, YaWei; Liu, Enke; Ke, YaJiao; Jin, JinLing; Long, Yi; Shen, BaoGen

    2015-07-10

    Large rotating magnetocaloric effect (MCE) has been observed in some single crystals due to strong magnetocrystalline anisotropy. By utilizing the rotating MCE, a new type of rotary magnetic refrigerator can be constructed, which could be more simplified and efficient than the conventional one. However, compared with polycrystalline materials, the high cost and complexity of preparation for single crystals hinder the development of this novel magnetic refrigeration technology. For the first time, here we observe giant rotating MCE in textured DyNiSi polycrystalline material, which is larger than those of most rotating magnetic refrigerants reported so far. This result suggests that DyNiSi compound could be attractive candidate of magnetic refrigerants for novel rotary magnetic refrigerator. By considering the influence of demagnetization effect on MCE, the origin of large rotating MCE in textured DyNiSi is attributed to the coexistence of strong magnetocrystalline anisotropy and highly preferred orientation. Our study on textured DyNiSi not only provides a new magnetic refrigerant with large rotating MCE for low temperature magnetic refrigeration, but also opens a new way to exploit magnetic refrigeration materials with large rotating MCE, which will be highly beneficial to the development of rotating magnetic refrigeration technology.

  14. Ordering-induced direct-to-indirect band gap transition in multication semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Yang, Ji-Hui; Kanevce, Ana; Choi, Sukgeun; Repins, Ingrid L.; Wei, Su-Huai

    2015-02-01

    Using first-principles calculations and symmetry analysis, we show that as cation atoms in a zinc blende-based semiconductor are replaced through atomic mutation (e.g., evolve from ZnSe to CuGaS e2 to C u2ZnGeS e4 ), the band gaps of the semiconductors will become more and more indirect because of the band splitting at the zone boundary, and in some cases will even form the segregating states. For example, although ZnSe is a direct band gap semiconductor, quaternary compounds C u2ZnGeS e4 and C u2ZnSnS e4 can be indirect band gap semiconductors if they form the primitive mixed CuAu ordered structures. We also find that the stability and the electronic structure of the quaternary polytypes with different atomic ordering are almost negative-linearly correlated. We suggest that these intrinsic properties of the multication semiconductors can have a large influence on the design and device performance of these materials.

  15. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis

    PubMed Central

    Craig, Daniel M.; Ashcroft, Stephen P.; Belew, Micah Y.; Stocks, Ben; Currell, Kevin; Baar, Keith; Philp, Andrew

    2015-01-01

    Endurance exercise, when performed regularly as part of a training program, leads to increases in whole-body and skeletal muscle-specific oxidative capacity. At the cellular level, this adaptive response is manifested by an increased number of oxidative fibers (Type I and IIA myosin heavy chain), an increase in capillarity and an increase in mitochondrial biogenesis. The increase in mitochondrial biogenesis (increased volume and functional capacity) is fundamentally important as it leads to greater rates of oxidative phosphorylation and an improved capacity to utilize fatty acids during sub-maximal exercise. Given the importance of mitochondrial biogenesis for skeletal muscle performance, considerable attention has been given to understanding the molecular cues stimulated by endurance exercise that culminate in this adaptive response. In turn, this research has led to the identification of pharmaceutical compounds and small nutritional bioactive ingredients that appear able to amplify exercise-responsive signaling pathways in skeletal muscle. The aim of this review is to discuss these purported exercise mimetics and bioactive ingredients in the context of mitochondrial biogenesis in skeletal muscle. We will examine proposed modes of action, discuss evidence of application in skeletal muscle in vivo and finally comment on the feasibility of such approaches to support endurance-training applications in humans. PMID:26578969

  16. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    PubMed

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016.

  17. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds.

    PubMed

    Kostrzynska, Magdalena; Leung, Kam T; Lee, Hung; Trevors, Jack T

    2002-01-01

    Increasing levels of environmental pollution demand specific and sensitive methods for detection of genotoxic agents in water, food products and environmental samples. Tests for genotoxicity assessment are often based on biosensor strains that respond to DNA damage induced by chemicals. In the present study, fluorescent reporter Escherichia coli strains have been developed, which contain a plasmid-borne transcriptional fusion between the DNA-damage inducible recA promoter and the green fluorescent protein gene (gfp) or a gene encoding a red-shifted, higher intensity GFP variant (mutant 3). GFP-based biosensors allowed the detection of a dose-dependent response to genotoxic agents such as mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and nalidixic acid (NA). A reporter strain carrying recA'-gfp mutant 3 fusion gave more dramatic and sensitive response than a strain containing the wild-type gfp. These results indicate that recA'-gfp mutant 3-based biosensor is potentially useful for detection of genotoxins.

  18. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    PubMed Central

    Ishihara, Yasuhiro; Takemoto, Takuya; Yamazaki, Takeshi

    2015-01-01

    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury. PMID:25815107

  19. High-pressure induced modifications in the hybridization gap of the intermediate-valence compound SmB6

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Mito, T.; Pristáš, G.; Koyama, T.; Ueda, K.; Kohara, T.; Gabáni, S.; Flachbart, K.; Fukazawa, H.; Kohori, Y.; Takeshita, N.; Shitsevalova, N.; Ikeda, H.

    2016-03-01

    We have carried out the measurements of high-pressure 11B -nuclear magnetic resonance on the intermediate-valence compound SmB6 to investigate the effects of pressure on Sm 4 f states and the quasiparticle band. From the measurements of spin-lattice relaxation time, just below the critical pressure Pc of nonmagnetic-magnetic phase transition, we find that quasiparticle bandwidth clearly decreases with pressure, while the insulating gap is almost constant or slightly increases. The latter is consistent with the result of a band-structure calculation. These pressure induced modifications in the band structure indicate the enhancement of the density of states of the quasiparticles when approaching Pc. The pressure dependence of the Sm 4 f states and the origin of the insulating gap are well explained in terms of exchange interactions between conduction and 4 f electrons.

  20. Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor albus Induces Bacterial Cell Death through DNA Damage

    PubMed Central

    Alpha, Cambria J.; Campos, Manuel; Jacobs-Wagner, Christine

    2014-01-01

    Muscodor albus belongs to a genus of endophytic fungi that inhibit and kill other fungi, bacteria, and insects through production of a complex mixture of volatile organic compounds (VOCs). This process of mycofumigation has found commercial application for control of human and plant pathogens, but the mechanism of the VOC toxicity is unknown. Here, the mode of action of these volatiles was investigated through a series of genetic screens and biochemical assays. A single-gene knockout screen revealed high sensitivity for Escherichia coli lacking enzymes in the pathways of DNA repair, DNA metabolic process, and response to stress when exposed to the VOCs of M. albus. Furthermore, the sensitivity of knockouts involved in the repair of specific DNA alkyl adducts suggests that the VOCs may induce alkylation. Evidence of DNA damage suggests that these adducts lead to breaks during DNA replication or transcription if not properly repaired. Additional cytotoxicity profiling indicated that during VOC exposure, E. coli became filamentous and demonstrated an increase in cellular membrane fluidity. The volatile nature of the toxic compounds produced by M. albus and their broad range of inhibition make this fungus an attractive biological agent. Understanding the antimicrobial effects and the VOC mode of action will inform the utility and safety of potential mycofumigation applications for M. albus. PMID:25452287

  1. NMR investigation of the pressure induced Mott transition to superconductivity in Cs3C60 isomeric compounds

    NASA Astrophysics Data System (ADS)

    Alloul, H.; Ihara, Y.; Mito, T.; Wzietek, P.; Aramini, M.; Pontiroli, D.; Ricco, M.

    2013-07-01

    The discovery in 1991 of high temperature superconductivity (SC) in A3C60 compounds, where A is an alkali ion, has been initially ascribed to a BCS mechanism, with a weak incidence of electron correlations. However various experimental evidences taken for compounds with distinct alkali content established the interplay of strong correlations and Jahn Teller distortions of the C60 ball. The importance of electronic correlations even in A3C60 has been highlighted by the recent discovery of two expanded fulleride Cs3C60 isomeric phases that are Mott insulators at ambient pressure. Both phases undergo a pressure induced first order Mott transition to SC with a (p, T) phase diagram displaying a dome shaped SC, a common situation encountered nowadays in correlated electron systems. NMR experiments allowed us to establish that the bipartite A15 phase displays Néel order at 47K, while magnetic freezing only occurs at lower temperature in the fcc phase. NMR data do permit us to conclude that well above the critical pressure, the singlet superconductivity found for light alkalis is recovered. However deviations from BCS expectations linked with electronic correlations are found near the Mott transition. So, although SC involves an electron-phonon mechanism, correlations have a significant incidence on the electronic properties, as had been anticipated from DMFT calculations.

  2. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  3. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells.

    PubMed

    Turkson, James; Zhang, Shumin; Mora, Linda B; Burns, Audrey; Sebti, Said; Jove, Richard

    2005-09-23

    Previous studies have established constitutive activation of Stat3 protein as one of the molecular changes required for tumorigenesis. To develop novel therapeutics for tumors harboring constitutively active Stat3, compounds from the NCI 2000 diversity set were evaluated for inhibition of Stat3 DNA-binding activity in vitro. Of these, a novel platinum (IV) compound, IS3 295, interacted with Stat3 and inhibited its binding to specific DNA-response elements. Further analysis suggested noncompetitive-type kinetics for the inhibition of Stat3 binding to DNA. In human and mouse tumor cell lines with constitutively active Stat3, IS3 295 selectively attenuated Stat3 signaling, thereby inducing cell growth arrest at G0/G1 phase and apoptosis. Moreover, in transformed cells, IS3 295 repressed expression of cyclin D1 and bcl-xL, two of the known Stat3-regulated genes that are overexpressed in malignant cells, suggesting that IS3 295 mediates anti-tumor cell activity in part by blocking Stat3-mediated sub-version of cell growth and apoptotic signals. Together, our findings provide evidence for the inhibition of Stat3 activity and biological functions by IS3 295 through interaction with Stat3 protein. This study represents a significant advance in small molecule-based approaches to target Stat3 and suggests potential new applications for platinum (IV) complexes as modulators of the Stat3 pathway for cancer therapy.

  4. A Pyrazolo[3,4-d]pyrimidine Compound Reduces Cell Viability and Induces Apoptosis in Different Hematological Malignancies

    PubMed Central

    Laurenzana, Ilaria; Caivano, Antonella; La Rocca, Francesco; Trino, Stefania; De Luca, Luciana; D’Alessio, Francesca; Schenone, Silvia; Falco, Geppino; Botta, Maurizio; Del Vecchio, Luigi; Musto, Pellegrino

    2016-01-01

    Molecular targeted therapies are based upon drugs acting on tumors by interfering with specific targets involved in growth and spread of cancer. Many targeted therapies were approved by Food and Drug Administration as standard treatment, others were introduced into preclinical or clinical studies on hematological malignancies (HMs). The development of drug-resistance in some HMs and the lack of effective treatments in other ones emphasized the need for searching new molecular targets and therapeutic agents. The aim of this study was to evaluate the effects of 4c pyrazolo[3,4-d]pyrimidine compound, a Src inhibitor, on lymphoid and myeloid neoplasms. Here, we demonstrated its ability to reduce cell viability, induce apoptosis and cell cycle arrest in lymphoid cell lines such as Jurkat, SKMM1, Derl-2/7, and myeloid cell lines, such as Jurl-MK1. Moreover, we reported a high expression of a Src kinase, Fyn, in these cell lines compared to healthy subjects. This study was a starting point to investigate 4c pyrazolo[3,4-d]pyrimidine compound as a drug for HMs and Src kinases as its potential molecular targets. PMID:27872592

  5. A New High-pressure System to Investigate Clathrate Hydrates Stability and Role in Volatile Outgassing on Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Smythe, W. D.; Choukroun, M.; Elliott, J.; Barmatz, M.; Hodyss, R. P.

    2011-12-01

    The origin of Titan's atmospheric methane and of the volatiles measured in Enceladus' south pole plumes remain, to this day, unresolved. Clathrate hydrates are among the favored deep-seated reservoir candidates. However, the conditions allowing for their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly constrained. This is mainly because there is a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We present a new high-pressure system, a high-pressure cryogenic calorimeter, currently being developed at JPL that is designed to address this deficiency in the literature. We use a liquid nitrogen - cooled Setaram BT2.15 calorimeter, located at the Ice Physics Laboratory, JPL (see Figure 1). The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples), to measure the heat flux required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A high-pressure system is being implemented in order to develop the capability of investigating the pressure range 0-100 bars. This system includes: high-pressure cells with a gas flow system (from Setaram), a gas handling system to deliver the gas from 1K bottles of CH4, CO2, and N2, a vacuum system, and a vent system. With the calorimeter, clathrate hydrates will be synthesized within the cells from an H2O-NH3 aqueous solution. Then, cooling and heating tests will be conducted for several gas pressures in order to measure simultaneously the dissociation curve and thermodynamic properties (heat capacity, latent heat). Similarly, clathrate hydrates will be synthesized from the solution of interest within the fluid pressure cell. Dissociation curves will be measured by varying temperature, and following optically and via Raman and diffuse reflectance infrared spectroscopy the samples

  6. Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds

    PubMed Central

    Cerezo, Ana B.; Hornedo-Ortega, Ruth; Álvarez-Fernández, M. Antonia; Troncoso, Ana M.; García-Parrilla, M. Carmen

    2017-01-01

    Excessive concentrations of vascular endothelial growth factor (VEGF) trigger angiogenesis, which causes complications such as the destabilization of atherosclerotic plaques and increased growth of tumors. This work focuses on the determination of the inhibitory activity of melatonin and other indolic related compounds on VEGF-induced VEGF receptor-2 (VEGFR-2) activation and an approximation to the molecular mechanism underlying the inhibition. Quantification of phosphorylated VEGFR-2 was measured by ELISA. Migration wound-healing assay was used to determine cell migration of human umbilical vein endothelial cells (HUVECs). This is the first time that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin are proved to significantly inhibit VEGF-induced VEGFR-2 activation in human umbilical vein endothelial cells and subsequent angiogenesis. 3-Indolacetic acid showed the highest inhibitory effect (IC50 value of 0.9704 mM), followed by 5-hydroxytryptophol (35% of inhibition at 0.1 mM), melatonin (30% of inhibition at 1 mM), and serotonin (24% of inhibition at 1 mM). An approximation to the molecular mechanism of the inhibition has been proposed, suggesting that indolic compounds might interact with the cell surface components of the endothelial membrane in a way that prevents VEGF from activating the receptor. Additionally, wound-healing assay revealed that exposure of HUVECs to melatonin and 3-indolacetic acid in the presence of VEGF significantly inhibited cell migration by 87% and 99%, respectively, after 24 h. These data demonstrate that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin would be good molecules for future exploitation as anti-VEGF signaling agents. PMID:28282869

  7. Inhibition of VEGF-Induced VEGFR-2 Activation and HUVEC Migration by Melatonin and Other Bioactive Indolic Compounds.

    PubMed

    Cerezo, Ana B; Hornedo-Ortega, Ruth; Álvarez-Fernández, M Antonia; Troncoso, Ana M; García-Parrilla, M Carmen

    2017-03-08

    Excessive concentrations of vascular endothelial growth factor (VEGF) trigger angiogenesis, which causes complications such as the destabilization of atherosclerotic plaques and increased growth of tumors. This work focuses on the determination of the inhibitory activity of melatonin and other indolic related compounds on VEGF-induced VEGF receptor-2 (VEGFR-2) activation and an approximation to the molecular mechanism underlying the inhibition. Quantification of phosphorylated VEGFR-2 was measured by ELISA. Migration wound-healing assay was used to determine cell migration of human umbilical vein endothelial cells (HUVECs). This is the first time that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin are proved to significantly inhibit VEGF-induced VEGFR-2 activation in human umbilical vein endothelial cells and subsequent angiogenesis. 3-Indolacetic acid showed the highest inhibitory effect (IC50 value of 0.9704 mM), followed by 5-hydroxytryptophol (35% of inhibition at 0.1 mM), melatonin (30% of inhibition at 1 mM), and serotonin (24% of inhibition at 1 mM). An approximation to the molecular mechanism of the inhibition has been proposed, suggesting that indolic compounds might interact with the cell surface components of the endothelial membrane in a way that prevents VEGF from activating the receptor. Additionally, wound-healing assay revealed that exposure of HUVECs to melatonin and 3-indolacetic acid in the presence of VEGF significantly inhibited cell migration by 87% and 99%, respectively, after 24 h. These data demonstrate that melatonin, 3-indolacetic acid, 5-hydroxytryptophol, and serotonin would be good molecules for future exploitation as anti-VEGF signaling agents.

  8. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases.

    PubMed

    Mundy, William R; Freudenrich, Theresa M

    2006-01-01

    Mono- and dialkyl organotin compounds are used primarily as heat stabilizers in polyvinyl chloride (PVC) plastics. Recently, monomethyltin (MMT), dimethyltin (DMT), monobutyltin (MBT), and dibutyltin (DBT) have been detected in water from homes and businesses served by PVC pipes. While trialkyl organotins such as trimethyltin (TMT) and triethyltin (TET) are well known neurotoxicants, the toxicity of the mono- and dialkyl organotins is not well described. The present study compared the cytotoxicity of organotins found in drinking water with the known neurotoxicant TMT in primary cultures of cerebellar granule cells, and examined the role of MAP kinase signaling in organotin-induced cell death. Twenty-four hour exposure to TMT resulted in a concentration-dependent decrease in cell viability with an EC(50) of 3 microM. Exposure to MMT, DMT, and MBT at concentrations up to 10 microM had no effect. DBT, however, was very potent, and decreased cell viability with an EC(50) of 0.3 microM. Staining of organotin-treated cerebellar granule cells with the nuclear dye Syto-13 revealed that TMT and DBT, but not MMT, DMT, or MBT, produced condensation and fragmentation of chromatin characteristic of apoptosis. TMT- and DBT-induced apoptosis was confirmed using TUNEL staining and measurement of PARP cleavage. Activation of MAP kinase pathways was examined after 6 h of exposure to the organotins which induced apoptosis. Both TMT and DBT activated ERK1/2, but only TMT activated the JNK/c-Jun and p38 pathways. Pharmacologic blockade of JNK/c-Jun and p38 activation significantly decreased apoptosis produced by TMT, but not by DBT. These results show that DBT is a potent neurotoxicant in vitro, but unlike TMT, does not induce cell death via activation of MAP kinase signaling.

  9. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    PubMed Central

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60–75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas. PMID:28356992

  10. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    PubMed

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G0/G1 phase and reduced the number of cells in the S phase, as compared with the control group (P<0.05). Western blot analysis demonstrated that arctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G0/G1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  11. Adsorbate induced enhancement of secondary electron emission from the layered compound VSe 2

    NASA Astrophysics Data System (ADS)

    Starnberg, H. I.; Nilsson, P. O.; Hughes, H. P.

    1993-05-01

    It is demonstrated how adsorbates may drastically enhance the photoemission yield at low kinetic energies from VSe 2 surfaces. The reason for this enhancement seems to be that the adsorbate by reducing the work function φ creates a condition closely resembling negative electron affinity (NBA), i.e. the vacuum level is pulled down into an absolute band-gap. In contrast to true NBA systems, there are empty states (predominantly of V3d character) available below the vacuum level, but due to low probability for scattering into these states, the NEA-like behaviour prevails. Since the involved band minimum is located close to the K symmetry point of the Brillouin zone, adsorbate induced diffuse scattering is vital to the observed enhancement.

  12. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    PubMed

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  13. The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells.

    PubMed

    Chen, JinYan; Sun, MengRu; Wang, XingHua; Lu, Jing; Wei, Yan; Tan, Yan; Liu, Ying; Götz, Jürgen; He, RongQiao; Hua, Qian

    2014-04-01

    The herbal medicine Tong Luo Jiu Nao (TLJN) contains geniposide (GP) and ginsenoside Rg1 at a molar ratio of 10:1. Rg1 is the major component of another herbal medicine, panax notoginseng saponin (PNS). TLJN has been shown to strengthen brain function in humans, and in animals it improves learning and memory. We have previously shown that TLJN reduces amyloidogenic processing in Alzheimer's disease (AD) mouse models. Together this suggests TLJN may be a potential treatment for patients with dementia. Because chronic damage of the central nervous system by formaldehyde (FA) has been presented as a risk factor for age-associated cognitive dysfunction, in the present study we investigated the protective effect of both TLJN and GP in neuron-like cells exposed to FA. FA-exposed murine N2a neuroblastoma cells were incubated with TLJN, its main ingredient GP, as well as PNS, to measure cell viability and morphology, the rate of apoptosis and expression of genes encoding Akt, FOXO3, Bcl2 and p53. The CCK-8 assay, cytoskeletal staining and flow cytometry were used to test cell viability, morphology and apoptosis, respectively. Fluorescent quantitative real-time PCR (qRT-PCR) was used to monitor changes in gene expression, and HPLC to determine the rate of FA clearance. Treatment of N2a cells with 0.09 mmol L(-1) FA for 24 h significantly reduced cell viability, changed cell morphology and promoted apoptosis. Both TLJN and GP conferred neuroprotection to FA-treated N2a cells, whereas PNS, which had to be used at lower concentrations because of its toxicity, did not. Our data demonstrate that TLJN can rescue neuronal damage caused by FA and that its main ingredient, GP, has a major role in this efficacy. This presents purified GP as a drug or lead compound for the treatment of AD.

  14. Functional inhibition of aquaporin-3 with a gold-based compound induces blockage of cell proliferation.

    PubMed

    Serna, Ana; Galán-Cobo, Ana; Rodrigues, Claudia; Sánchez-Gomar, Ismael; Toledo-Aral, Juan José; Moura, Teresa F; Casini, Angela; Soveral, Graça; Echevarría, Miriam

    2014-11-01

    AQP3 has been correlated with higher transport of glycerol, increment of ATP content, and larger proliferation capacity. Recently, we described the gold(III) complex Auphen as a very selective and potent inhibitor of AQP3's glycerol permeability (Pgly ). Here we evaluated Auphen effect on the proliferation of various mammalian cell lines differing in AQP3 expression level: no expression (PC12), moderate (NIH/3T3) or high (A431) endogenous expression, cells stably expressing AQP3 (PC12-AQP3), and human HEK293T cells transiently transfected (HEK-AQP3) for AQP3 expression. Proliferation was evaluated in the absence or presence of Auphen (5 μM) by counting number of viable cells and analyzing 5-bromo-2'-deoxyuridine (BrdU) incorporation. Auphen reduced ≈50% the proliferation in A431 and PC12-AQP3, ≈15% in HEK-AQP3 and had no effect in PC12-wt and NIH/3T3. Strong arrest in the S-G2/M phases of the cell cycle, supported by analysis of cyclins (A, B1, D1, E) levels, was observed in AQP3-expressing cells treated with Auphen. Flow-cytometry of propidium iodide incorporation and measurements of mitochondrial dehydrogenases activity confirmed absence of cytotoxic effect of the drug. Functional studies evidenced ≈50% inhibition of A431 Pgly by Auphen, showing that the compound's antiproliferative effect correlates with its ability to inhibit AQP3 Pgly . Role of Cys-40 on AQP3 permeability blockage by Auphen was confirmed by analyzing the mutated protein (AQP3-Ser-40). Accordingly, cells transfected with mutated AQP3 gained resistance to the antiproliferative effect of Auphen. These results highlight an Auphen inhibitory effect on proliferation of cells expressing AQP3 and suggest a targeted therapeutic effect on carcinomas with large AQP3 expression.

  15. High-pressure/low-temperature neutron scattering of gas inclusion compounds: Progress and prospects

    PubMed Central

    Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L.; Lokshin, Konstantin; Tait, Kimberly T.; Mao, Wendy L.; Luo, Junhua; Currier, Robert P.; Hickmott, Donald D.

    2007-01-01

    Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H2O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H2–H2 distance of only 2.93 Å. This distance is much shorter than that in the solid/metallic hydrogen (3.78 Å), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu3[Co(CN)6]2 and Cu3(BTC)2 (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387

  16. Synthesis and structural characterization of the new clathrates K8Cd4Ge42, Rb8Cd4Ge42, and Cs8Cd4Ge42

    SciTech Connect

    Schafer, Marion; Bobev, Svilen

    2016-03-25

    This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K8Cd3.77(7)Ge42.23, Rb8Cd3.65(7)Ge42.35, and Cs7.80(1)Cd3.65(6)Ge42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. Furthermore, this and several other details of the crystal chemistry are elaborated.

  17. Pretreatment with Evans blue, a stimulator of BK(Ca) channels, inhibits compound 48/80-induced shock, systemic inflammation, and mast cell degranulation in the rat.

    PubMed

    Fu, Yaw-Syan; Kuo, Su-Yu; Lin, Hsuan-Yea; Chen, Chun-Lin; Huang, Shi-Ying; Wen, Zhi-Hong; Lee, Kun-Zer; Huang, Hung-Tu

    2015-09-01

    The present study demonstrated that intravenous injection of a high dose of compound 48/80 to the rat induced 50% drop, within a few min, in the mean arterial pressure and pulse pressure as well as systemic inflammatory plasma leakage that might lead to circulatory and respiratory failure. We also investigated whether pretreatment with Evans blue, a stimulator of BK(Ca) channels, could exert inhibitory effect against compound C48/80-induced allergic circulatory shock and systemic inflammation. Different groups of Sprague-Dawley rats received an intravenous injection of a dose of Evans blue (0, 5, 10, or 50 mg/kg) just 20 s prior to injection of compound 48/80 (200 μg/kg, over 2 min). The present study found that pretreatment with Evans blue in a dose of 10 or 50 mg/kg exerted acute inhibitory effect on compound 48/80-induced sudden drop in mean arterial and pulse pressures. We also showed that pretreatment with Evans blue in a dose of 5, 10, or 50 mg/kg significantly inhibited compound 48/80-induced extensive plasma extravasation, mast cell degranulation, and edema formation in various organs including the airways, esophagus, and skin. Pretreatment with Evans blue 50 mg/kg 1 h earlier exhibited longer-term inhibitory effect on compound 48/80-induced arterial hypotension and systemic inflammation. We concluded that Evans blue pretreatment prevented rats from compound 48/80-triggered allergic shock and systemic inflammation, possibly mainly through inhibition of mast cell degranulation. Evans blue might be potentially useful in elucidating the mechanism and acting as a therapeutic agent of allergic shock and systemic inflammation.

  18. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.

    PubMed

    Geron, Chris; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas; Gu, Lianhong

    2016-03-01

    Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower - NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus). Quercus stellata (in the white oak subgenus Leucobalanus), on the other hand, increased its isoprene emission rate during August, and showed no decline at high temperatures during June or August, consistent with its high tolerance to drought and adaptation to xeric sites at the prairie-deciduous forest interface. Mid-late October measurements were conducted after soil moisture recharge, but were affected by senescence and cooler temperatures. Isoprene emission rates were considerably lower from all species compared to June and August data. The large differences between the oaks in response to drought emphasizes the need to consider BVOC emissions at the species level instead of just the whole canopy. Monoterpene emissions from Quercus rubra in limited data were highest among the oaks studied, while monoterpene emissions from the other oak species were 80-95% lower and less than assumed in current BVOC emission models. Major monoterpenes from Q. rubra (and in ambient air) were p-cymene, α-pinene, β-pinene, d-limonene, γ-terpinene, β-ocimene (predominantly1,3,7-trans-β-ocimene, but also 1,3,6-trans-β-ocimene), tricyclene, α-terpinene, sabinene, terpinolene, and myrcene. Results are discussed in the context of canopy flux studies

  19. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOEpatents

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  20. Raman spectra of vibrational and librational modes in methane clathrate hydrates using density functional theory

    NASA Astrophysics Data System (ADS)

    Ramya, K. R.; Pavan Kumar, G. V.; Venkatnathan, Arun

    2012-05-01

    The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (512CH4) and tetrakaidecahedron (51262CH4) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH4 in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH4 and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 512CH4 cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH4 molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 512CH4 and 51262CH4 cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH4 molecules. The CH4 bending modes in the 512CH4 and 51262CH4 cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH4. The low frequency librational modes which are collective motion of the water molecules and CH4 in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.

  1. Novel piperazine core compound induces death in human liver cancer cells: possible pharmacological properties

    PubMed Central

    Samie, Nima; Muniandy, Sekaran; Kanthimathi, M. S.; Haerian, Batoul Sadat; Raja Azudin, Raja Elina

    2016-01-01

    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines. PMID:27072064

  2. Gene expression profiling in rat liver treated with compounds inducing phospholipidosis

    SciTech Connect

    Hirode, Mitsuhiro |; Ono, Atsushi |; Miyagishima, Toshikazu; Nagao, Taku; Ohno, Yasuo; Urushidani, Tetsuro |

    2008-06-15

    We have constructed a large-scale transcriptome database of rat liver treated with various drugs. In an effort to identify a biomarker for diagnosis of hepatic phospholipidosis, we extracted 78 probe sets of rat hepatic genes from data of 5 drugs, amiodarone, amitriptyline, clomipramine, imipramine, and ketoconazole, which actually induced this phenotype. Principal component analysis (PCA) using these probes clearly separated dose- and time-dependent clusters of treated groups from their controls. Moreover, 6 drugs (chloramphenicol, chlorpromazine, gentamicin, perhexiline, promethazine, and tamoxifen), which were reported to cause phospholipidosis but judged as negative by histopathological examination, were designated as positive by PCA using these probe sets. Eight drugs (carbon tetrachloride, coumarin, tetracycline, metformin, hydroxyzine, diltiazem, 2-bromoethylamine, and ethionamide), which showed phospholipidosis-like vacuolar formation in the histopathology, could be distinguished from the typical drugs causing phospholipidosis. Moreover, the possible induction of phospholipidosis was predictable by the expression of these genes 24 h after single administration in some of the drugs. We conclude that these identified 78 probe sets could be useful for diagnosis of phospholipidosis, and that toxicogenomics would be a promising approach for prediction of this type of toxicity.

  3. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism.

    PubMed

    Sasaki, Minoru; Kondo, Masatoshi; Sato, Kohji; Umeda, Mai; Kawabata, Keigo; Takahashi, Yoshito; Suzuki, Tamio; Matsunaga, Kayoko; Inoue, Shintaro

    2014-09-01

    Rhododendrol, an inhibitor of melanin synthesis developed for lightening/whitening cosmetics, was recently reported to induce a depigmentary disorder principally at the sites of repeated chemical contact. Rhododendrol competitively inhibited mushroom tyrosinase and served as a good substrate, while it also showed cytotoxicity against cultured human melanocytes at high concentrations sufficient for inhibiting tyrosinase. The cytotoxicity was abolished by phenylthiourea, a chelator of the copper ions at the active site, and by specific knockdown of tyrosinase with siRNA. Hence, the cytotoxicity appeared to be triggered by the enzymatic conversion of rhododendrol to active product(s). No reactive oxygen species were detected in the treated melanocytes, but up-regulation of the CCAAT-enhancer-binding protein homologous protein gene responsible for apoptosis and/or autophagy and caspase-3 activation were found to be tyrosinase dependent. These results suggest that a tyrosinase-dependent accumulation of ER stress and/or activation of the apoptotic pathway may contribute to the melanocyte cytotoxicity.

  4. Field-induced density wave in the heavy-fermion compound CeRhIn₅.

    PubMed

    Moll, Philip J W; Zeng, Bin; Balicas, Luis; Galeski, Stanislaw; Balakirev, Fedor F; Bauer, Eric D; Ronning, Filip

    2015-03-23

    Strong electron correlations lead to a variety of distinct ground states, such as magnetism, charge order or superconductivity. Understanding the competitive or cooperative interplay between neighbouring phases is an outstanding challenge in physics. CeRhIn₅ is a prototypical example of a heavy-fermion superconductor: it orders anti-ferromagnetically below 3.8 K, and moderate hydrostatic pressure suppresses the anti-ferromagnetic order inducing unconventional superconductivity. Here we show evidence for a phase transition to a state akin to a density wave (DW) under high magnetic fields (>27 T) in high-quality single crystal microstructures of CeRhIn₅. The DW is signalled by a hysteretic anomaly in the in-plane resistivity accompanied by non-linear electrical transport, yet remarkably thermodynamic measurements suggest that the phase transition involves only small portions of the Fermi surface. Such a subtle order might be a common feature among correlated electron systems, reminiscent of the similarly subtle charge DW state in the cuprates.

  5. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana

    PubMed Central

    Kegge, Wouter; Weldegergis, Berhane T; Soler, Roxina; Eijk, Marleen Vergeer-Van; Dicke, Marcel; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-01-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography–mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase–quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant–plant and plant–insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions. PMID:23845065

  6. Fuling Granule, a Traditional Chinese Medicine Compound, Suppresses Cell Proliferation and TGFβ-Induced EMT in Ovarian Cancer

    PubMed Central

    Ruan, Shanming; Liu, Wenhong; Wang, Libin; Xiong, Yang; Shen, Minhe

    2016-01-01

    The compound fuling granule (CFG) is a traditional Chinese drug which has been used to treat ovarian cancer in China for over twenty years. Nevertheless, the underlying molecular mechanism of its anti-cancer effect remains unclear. In this study, microarray data analysis was performed to search differentially expressed genes in CFG-treated ovarian cancer cells. Several cell cycle and epithelial-mesenchymal transition (EMT) related genes were identified. The microarray analyses also revealed that CFG potentially regulates EMT in ovarian cancer. We also found that, functionally, CFG significantly suppresses ovarian cancer cell proliferation by cell cycle arrest, apoptosis and senescence and the AKT/GSK-3β pathway is possibly involved. Additionally, the invasion and migration ability of ovarian cancer induced by TGFβ is significantly suppressed by CFG. In conclusion, our results demonstrated that CFG suppresses ovarian cancer cell proliferation as well as TGFβ1-induced EMT in vitro. Finally, we discovered that CFG suppresses tumor growth and distant metastasis in vivo. Overall, these findings provide helpful clues to design novel clinical treatments against cancer. PMID:28036353

  7. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Nataraj, Jagatheesan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed

    2015-01-01

    Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5-200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5-200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD.

  8. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Nataraj, Jagatheesan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed

    2015-01-01

    Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5–200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5–200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD. PMID:26664453

  9. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5.

    PubMed

    Zhang, Fengge; Yang, Xingming; Ran, Wei; Shen, Qirong

    2014-10-01

    Trichoderma species have been used widely as biocontrol agents for the suppression of soil-borne pathogens. However, some antagonistic mechanisms of Trichoderma are not well characterized. In this study, a series of laboratory experiments were designed to characterize the importance of mycoparasitism, exoenzymes, and volatile organic compounds (VOCs) by Trichoderma harzianum T-E5 for the control of Fusarium oxysporum f. sp. cucumerinum (FOC). We further tested whether these mechanisms were inducible and upregulated in presence of FOC. The results were as follows: T-E5 heavily parasitized FOC by coiling and twisting the entire mycelium of the pathogen in dual cultures. T-E5 growing medium conditioned with deactivated FOC (T2) showed more proteins and higher cell wall-degrading enzyme activities than T1, suggesting that FOC could induce the upregulation of exoenzymes. The presence of deactivated FOC (T2') also resulted in the upregulation of VOCs that five and eight different types T-E5-derived VOCs were identified from T1' and T2', respectively. Further, the excreted VOCs in T2' showed significantly higher antifungal activities against FOC than T1'. In conclusion, mycoparasitism of T-E5 against FOC involved mycelium contact and the production of complex extracellular substances. Together, these data provide clues to help further clarify the interactions between these fungi.

  10. The chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells.

    PubMed

    Sakai, Yumiko; Sugano, Shigeo S; Kawase, Takashi; Shirakawa, Makoto; Imai, Yu; Kawamoto, Yusuke; Sugiyama, Hiroshi; Nakagawa, Tsuyoshi; Hara-Nishimura, Ikuko; Shimada, Tomoo

    2017-02-01

    Stem cell polarization is a crucial step in asymmetric cell division, which is a universal system for generating cellular diversity in multicellular organisms. Several conventional genetics studies have attempted to elucidate the mechanisms underlying cell polarization in plants, but it remains largely unknown. In plants, stomata, which are valves for gas exchange, are generated through several rounds of asymmetric divisions. In this study, we identified and characterized a chemical compound that affects stomatal stem cell polarity. High-throughput screening for bioactive molecules identified a pyridine-thiazole derivative, named bubblin, which induced stomatal clustering in Arabidopsis epidermis. Bubblin perturbed stomatal asymmetric division, resulting in the generation of two identical daughter cells. Both cells continued to express the stomatal fate determinant SPEECHLESS, and then differentiated into mispatterned stomata. Bubblin-treated cells had a defect in the polarized localization of BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), which is required for asymmetric cell fate determination. Our results suggest that bubblin induces stomatal lineage cells to divide without BASL-dependent pre-mitotic establishment of polarity. Bubblin is a potentially valuable tool for investigating cell polarity establishment in stomatal asymmetric division.

  11. Low-temperature laser-induced selective area growth of compound semiconductor

    SciTech Connect

    Uppili, S.

    1990-01-01

    Laser induced epitaxial growth of gallium phosphide was investigated as a low temperature, spatially selective process using both pyrolytic and photolytic reaction. A focussed beam from an argon ion laser operating at 514.5 nm was used to direct-write epitaxial microstructures of homoepitaxial GaP using a pyrolytic process. The precursors were trimethyl gallium (TMG) and tertiary butylphosphine (TBP). Dependence of the epitaxial growth on several deposition parameters was examined. An ArF excimer laser was also used to achieve homoepitaxy and heteroepitaxy of gallium phosphide on gallium arsenide at 500 C using TMG and TBP as the precusor gases. Dependence of homoepitaxial growth of GaP on several parameters is examined. The crystalline properties of the film were determined using transmission electron microscopy (TEM). Electrical properties of p-n diodes fabricated via Zn doping were also examined. Defect structures in excimer laser-assisted epitaxial GaP on (100) GaP and (100) GaAs were examined using TEM. Periodic structures were obtained using nominally unpolarized excimer laser radiation, during heteroepitaxial growth of GaP on GaAs. Both crystalline properties and chemical composition of these structures were examined. Microanalysis showed modulation in composition in the ripple structure resulting from the thermal variation caused by the optical interference during growth. Electrical conductivity measurements of GaP during pulsed lasers irradiation indicated that in the absence of gases, there was appreciable heating of the semiconductor. However, a very small quantity of hydrogen or helium cooled the substrate appreciably. This suggested that the average temperature rise of the substrate was not an important factor in the temperature calculations used in the present investigation.

  12. Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis.

    PubMed

    Halpert, Gilad; Eitan, Tom; Voronov, Elena; Apte, Ron N; Rath-Wolfson, Lea; Albeck, Michael; Kalechman, Yona; Sredni, Benjamin

    2014-06-13

    Inflammatory bowel diseases (IBDs) are a group of idiopathic, chronic immune-mediated diseases characterized by an aberrant immune response, including imbalances of inflammatory cytokine production and activated innate and adaptive immunity. Selective blockade of leukocyte migration into the gut is a promising strategy for the treatment of IBD. This study explored the effect of the immunomodulating tellurium compound ammonium trichloro (dioxoethylene-o,o') tellurate (AS101) on dextran sodium sulfate (DSS)-induced murine colitis. Both oral and intraperitoneal administration of AS101 significantly reduced clinical manifestations of IBD. Colonic inflammatory cytokine levels (IL-17 and IL-1β) were significantly down-regulated by AS101 treatment, whereas IFN-γ was not affected. Neutrophil and α4β7(+) macrophage migration into the tissue was inhibited by AS101 treatment. Adhesion of mesenteric lymph node cells to mucosal addressin cell adhesion molecule (MAdCAM-1), the ligand for α4β7 integrin, was blocked by AS101 treatment both in vitro and in vivo. DSS-induced destruction of colonic epithelial barrier/integrity was prevented by AS101, via up-regulation of colonic glial-derived neurotrophic factor, which was found previously to regulate the intestinal epithelial barrier through activation of the PI3K/AKT pathway. Indeed, the up-regulation of glial-derived neurotrophic factor by AS101 was associated with increased levels of colonic pAKT and BCL-2 and decreased levels of BAX. Furthermore, AS101 treatment reduced colonic permeability to Evans blue and decreased colonic TUNEL(+) cells. Our data revealed multifunctional activities of AS101 in the DSS-induced colitis model via anti-inflammatory and anti-apoptotic properties. We suggest that treatment with the small, nontoxic molecule AS101 may be an effective early therapeutic approach for controlling human IBD.

  13. Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo.

    PubMed

    Sidahmed, Heyam M A; Hashim, Najihah Mohd; Amir, Junaidah; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Abdelwahab, Siddig Ibrahim; Taha, Manal Mohamed Elhassan; Hassandarvish, Pouya; Teh, Xinsheng; Loke, Mun Fai; Vadivelu, Jamuna; Rahmani, Mawardi; Mohan, Syam

    2013-07-15

    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.

  14. FGF receptors 1 and 2 control chemically-induced injury and compound detoxification in regenerating livers of mice

    PubMed Central

    Böhm, Friederike; Speicher, Tobias; Hellerbrand, Claus; Dickson, Clive; Partanen, Juha M.; Ornitz, David M.; Werner, Sabine

    2010-01-01

    Background & Aims Fibroblast growth factor receptor (FGFR) 4 controls bile acid metabolism and protects the liver from fibrosis, but the roles of FGFR1 and FGFR2 in the adult liver are largely unknown. We investigated the functions and mechanisms of action of these receptors in liver homeostasis, regeneration, and fibrosis. Methods We generated mice with hepatocytes that lack FGFR1 and FGFR2 and subjected them to acute and chronic carbon tetrachloride-induced liver injury and partial hepatectomy; mice were also injected with FGF7. We performed histology, histomorphometry, real-time reverse transcription PCR, and immunoblot analyses. Results In hepatocytes, loss of FGFR1 and FGFR2 eliminated responsiveness to FGF7 and related FGF family members, but did not affect toxin-induced liver injury and fibrosis. However, mortality after partial hepatectomy increased because of severe hepatocyte necrosis. These effects appeared to be mediated by a failure of hepatocyes to induce the expression of the transcriptional regulators Dbp and Tef upon liver surgery; this affected expression of their target genes, which encode detoxifying cytochrome P450 enzymes. We found that Dbp and Tef expression was directly controlled by FGFR signalling in hepatocytes. As a consequence of the reduced expression of genes that control detoxification, the liver tissue that remained after partial hepatectomy failed to efficiently metabolize endogenous compounds and the drugs applied for anaesthesia/analgesia. Conclusions We identified a new, cytoprotective effect of FGFR1 and FGFR2 in the regenerating liver and suggest the use of recombinant FGF7 to increase survival of patients after surgical resection of large amounts of liver tissue. PMID:20603121

  15. Far-Infrared Spectroscopy of Carbon Dioxide Clathrate Hydrate with Applications to the Martian Northern Polar Region.

    NASA Astrophysics Data System (ADS)

    Landry, Joseph Carl

    1995-01-01

    Water ice in the Martian polar regions is believed to convert to CO_2 clathrate hydrate in winter. Surface temperatures are thought to drop to 148 K, while CO_2 hydrate should be stable below about 155 K. The thermal conductivity of structure I clathrate hydrates is much lower than that of water ice, and the latent heat of dissociation of the CO_2 hydrate is nearly half the latent heat of sublimation of water ice and nearly equal to that of CO_2 ice. A large deposit of hydrate would therefore affect the energy budgets of the polar regions. To confirm its presence with a remote sensing experiment, the dielectric properties of the hydrate must be significantly different from those of water ice, CO_2 ice and CO_2 gas. In this study we present the far-infrared spectrum of CO_2 hydrate at 150K and compare it to water ice spectra reported in the literature. The hydrate spectrum exhibits a broad absorption centered at 17 cm^{-1}, which is probably due to a rattling mode. Our dense medium radiative transfer model indicates that the absorption can give rise to a distinctive far-infrared emission spectral gradient that is not present in the ice spectrum. Our model of atmospheric transmission indicates that the spectral gradient should be clearly observable through windows in the Martian atmospheric absorption spectrum.

  16. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.

    PubMed

    Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-11-30

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H2 and D2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H2 and D2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H2 and D2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.

  17. Characterization of Free Radicals in Clathrate Hydrates of Furan, 2,3-Dihydrofuran, and 2,5-Dihydrofuran by Muon Spin Spectroscopy.

    PubMed

    Mozafari, Mina; Brodovitch, Jean-Claude; Chandrasena, Lalangi; Percival, Paul W

    2016-11-03

    In addition to their importance as abundant hydrocarbon deposits in nature, clathrate hydrates are being studied as potential media for hydrogen and carbon dioxide storage and as "nano-reactors" for small molecules. However, little is known about the behavior of reactive species in such materials. We have employed muon spin spectroscopy to characterize various organic free radicals that reside as isolated guests in structure II clathrates. The radicals are formed by reaction of atomic muonium (Mu) with the guest molecules furan and two isomeric dihydrofurans. Muonium is essentially a light isotope of hydrogen and adds to unsaturated molecules in the same manner as H. We have determined muon and proton hyperfine coupling constants for the muoniated radicals formed in the clathrates and also in neat liquids at the same temperature. DFT calculations were used to guide the spectral assignments and distinguish between competing radical products for Mu addition to furan and 2,3-dihydrofuran. Relative signal amplitudes provide yields and thus the relative reactivities of the C4 and C5 addition sites in these molecules. Spectral features, hyperfine constants, and reactivities all indicate that the radicals do not tumble freely in the clathrate cages in the same way that they do in liquids.

  18. Effect of water content on the solid-state stability in two isomorphic clathrates of cephalosporin: cefazolin sodium pentahydrate (alpha form) and FK041 hydrate.

    PubMed

    Mimura, Hisashi; Gato, Katsuhiko; Kitamura, Satoshi; Kitagawa, Teruyuki; Kohda, Shigetaka

    2002-06-01

    This study clearly demonstrates that clathrated water molecules can contribute to both chemical stabilization and destabilization of clathrates. The solid-state stabilities for two isomorphic clathrates of cephalosporin, cefazolin sodium and FK041, were investigated in terms of the effects of water content. The isomorphic ranges of water content were estimated to be 3.5-5 mol/mol for alpha-form cefazolin sodium and 2-4 mol/mol for FK041 hydrate. Upon the isomorphic dehydration, alpha-form cefazolin sodium was destabilized as the water content decreased below 4.25 mol/mol owing to the disruption of hydrogen bonding network in lattice channels. In this case, the hydration of clathrated water up to 4.25 mol/mol contributed to the physical and chemical stability of the crystals. On the contrary, the isomorphic hydration in FK041 hydrate contributed to the chemical destabilization owing to the high water activity. The difference in water activity between alpha-form cefazolin sodium and FK041 hydrate could be attributed to the size of water channels.

  19. The clathrate Ba{sub 8}Cu{sub x}Ge{sub 46-x-y}square{sub y}: Phase equilibria and crystal structure

    SciTech Connect

    Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Schmid, Harald; Giester, Gerald

    2009-07-15

    Phase relations at 700 deg. C, 800 deg. C and solidus temperatures have been derived for the clathrate system Ba{sub 8}Cu{sub x}Ge{sub 46-x-y}square{sub y} via X-ray single crystal and powder diffractometry combined with electron probe micro analysis and differential thermal analysis. The ternary clathrate phase derives from binary Ba{sub 8}Ge{sub 43}square{sub 3} and extends up to x=6. Structure investigations define cubic primitive symmetry with the space group type Pm3-barn consistent with a clathrate type I structure throughout the entire homogeneity region 0=5.5. - Graphical Abstract: Cages and atom thermal displacement parameters in clathrate Ba{sub 8}Cu{sub x}Ge{sub 46-x-y}square{sub y} for Ba{sub 8}Cu{sub 2}Ge{sub 42}square{sub 2} and Ba{sub 8}Cu{sub 6}Ge{sub 40}.

  20. Exploring the possibility to store the mixed oxygen-hydrogen cluster in clathrate hydrate in molar ratio 1:2 (O2+2H2).

    PubMed

    Qin, Yan; Du, Qi-Shi; Xie, Neng-Zhong; Li, Jian-Xiu; Huang, Ri-Bo

    2017-02-01

    An interesting possibility is explored: storing the mixture of oxygen and hydrogen in clathrate hydrate in molar ratio 1:2. The interaction energies between oxygen, hydrogen, and clathrate hydrate are calculated using high level quantum chemical methods. The useful conclusion points from this study are summarized as follows. (1) The interaction energies of oxygen-hydrogen mixed cluster are larger than the energies of pure hydrogen molecular cluster. (2) The affinity of oxygen molecules with water molecules is larger than that of the hydrogen molecules with water molecules. (3) The dimension of O2-2H2 interaction structure is smaller than the dimension of CO2-2H2 interaction structure. (4) The escaping energy of oxygen molecules from the hydrate cell is larger than that of the hydrogen molecules. (5) The high affinity of the oxygen molecules with both the water molecules and the hydrogen molecules may promote the stability of oxygen-hydrogen mixture in the clathrate hydrate. Therefore it is possible to store the mixed (O2+2H2) cluster in clathrate hydrate.

  1. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    PubMed

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  2. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair

    PubMed Central

    He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  3. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    PubMed

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  4. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    SciTech Connect

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  5. Light-Induced Bistability in Iron(III) Spin-Transition Compounds of 5 X-Salicylaldehyde Thiosemicarbazone (X=H, Cl, Br).

    PubMed

    Yemeli, Eddy W T; Blake, Graeme R; Douvalis, Alexios P; Bakas, Thomas; Alberda van Ekenstein, Gert O R; van Koningsbruggen, Petra J

    2010-10-19

    The iron(III) spin-crossover compounds [Fe(Hthsa)(thsa)]⋅H2 O (1), [Fe(Hth5Clsa)(th5Clsa)2 ]⋅H2 O (2), and [Fe(Hth5Brsa)(th5Brsa)2 ]⋅H2 O (3) (H2 thsa=salicylaldehyde thiosemicarbazone, H2 th5Clsa=5-chlorosalicylaldehyde thiosemicarbazone, and H2 th5Brsa=5-bromosalicylaldehyde thiosemicarbazone) have been synthesized and their spin-transition properties investigated by magnetic susceptibility, Mössbauer spectroscopy, and differential scanning calorimetry measurements. The three compounds exhibit an abrupt spin transition with a thermal hysteresis effect. The more polarizable the substituent on the salicylaldehyde moiety, the more complete is the transition at room temperature with an increased degree of cooperativity. The molecular structures of 1 and 2 in the high-spin state are revealed. The occurrence of the light-induced excited-spin-state trapping phenomenon appears to be dependent on the substituent incorporated into the 5-position of the salicylaldehyde subunit. Whereas the compounds with an electron-withdrawing group (-Br or -Cl) exhibit light-induced trapped excited high-spin states with great longevity of metastability, the halogen-free compound does not, even though strong intermolecular interactions (such as hydrogen-bonding networks and π stacking) operate in the system. For compound 2, the surface level of photoconversion is less than 35 %. In contrast, compound 3 displays full photoexcitation.

  6. Bowman-Birk inhibitor and genistein among soy compounds that synergistically inhibit nitric oxide and prostaglandin E2 pathways in lipopolysaccharide-induced macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation has an important role in the development of chronic diseases. In this study, we evaluated the anti-inflammatory properties of eight soybean bioactive compounds using lipopolysaccharide-induced RAW 264.7 macrophages. Genistein, daidzein, mix isoflavone glucosides, saponin A group glyco...

  7. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.

    PubMed

    Lamy, Sylvie; Ben Saad, Aroua; Zgheib, Alain; Annabi, Borhane

    2016-01-01

    The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.

  8. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats.

    PubMed

    Chandramohan, Ramasamy; Pari, Leelavinothan; Rathinam, Ayyasamy; Sheikh, Bashir Ahmad

    2015-03-05

    The present study was designed to evaluate the effects of tyrosol, a phenolic compound, on the activities of key enzymes of carbohydrate metabolism in the control and streptozotocin-induced diabetic rats. Diabetes mellitus was induced in rats by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight). Experimental rats were administered tyrosol 1 ml intra gastrically at the doses of 5, 10 and 20mg/kg body weight and glibenclamide 1 ml at a dose of 600 μg/kg body weight once a day for 45 days. At the end of the experimental period, diabetic control rats exhibited significant (p<0.05) increase in plasma glucose, glycosylated hemoglobin with significant (p<0.05) decrease in plasma insulin, total hemoglobin and body weight. The activities of key enzymes of carbohydrate metabolism such as phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase were significantly (p<0.05) increased and the activities of hexokinase and glucose-6-phosphate dehydrogenase were significantly (p<0.05) decreased in the liver and kidney of diabetic control rats. Further, antioxidants were lowered in diabetic control rats. A significant (p<0.05) decline in glycogen level in the liver and muscle and glycogen synthase activity in the liver and a significant (p<0.05) increase in the activity of liver glycogen phosphorylase were observed in diabetic control rats compared to normal control rats. Oral administration of tyrosol to diabetic rats reversed all the above mentioned biochemical parameters to near normal in a dose dependent manner. Tyrosol at a dose of 20mg/kg body weight showed the highest significant effect than the other two doses. Immunohistochemical staining of pancreas revealed that tyrosol treated diabetic rats showed increased insulin immunoreactive β-cells, which confirmed the biochemical findings. The observed results were compared with glibenclamide, a standard oral hypoglycemic drug. The results of the present study suggest

  9. Models of a partially hydrated Titan interior with a clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.

    2012-04-01

    We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.:

  10. Experimental Studies of the Growth Kinetics of Methane Clathrate Hydrates & Superfluid Hydrodynamics on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey David

    This thesis details the experimental findings of three distinct research projects. The first studies the growth kinetics of methane clathrate hydrates grown under the influence of multiple factors including surfactants, porous media, substrate wetting properties, and salt content. The second investigates the flow behaviors of superfluid helium through single, high aspect ratio nanopipes. The third models the frequency response of a quartz tuning fork in high pressure normal and superfluid helium and demonstrates how quartz tuning forks can be used as cheap, small, in situ, cryogenic pressure gauges. The first project reports studies of the kinetics of growth of methane hydrates from liquid water containing small amounts of surfactant (<500 ppm of sodium dodecyl sulfate, SDS). The kinetics are monitored using simultaneous measurements of the uptake of methane detected by a pressure drop in the gas phase, and either visual observations of the amount of liquid water and solid phase in the reaction vessel, or in situ micro-Raman measurements or in situ NMR measurements. These diagnostics show that the uptake of methane and the conversion of liquid water to a solid phase do not occur simultaneously; the uptake of gas always lags the visual and spectroscopic signatures of the disappearance of liquid water and the formation of solid. The evidence suggests that the SDS causes water to form an intermediate immobile solid-like state before combining with the methane to form hydrate. The growth mechanism is related to the surfactant and disappears for low SDS concentrations (<25 ppm). Also reported are studies of the growth rates of methane hydrates as a function of substrate wetting properties, driving force, and growth media. The second project studies pressure driven flow of superfluid helium through single high aspect ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0--30 atm), reservoir temperature (0.8--2.5K), pipe lengths (1-30mm

  11. Effects of a candidate antifouling compound (medetomidine) on pheromone induced mate search in the amphipod Corophium volutator.

    PubMed

    Krång, Anna-Sara; Dahlström, Mia

    2006-12-01

    Environmental hazards associated with traditional, toxic antifouling coatings based on heavy metals calls for the development of alternative, environmentally acceptable antifouling compounds. Medetomidine ((+/-)-4-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole) is a candidate antifouling biocide which impedes settlement of barnacles in the nanomolar range. Prior to introducing novel biocides it is of great importance to consider potential effects on non-target organisms. This study is the first to investigate the effects of medetomidine on the amphipod Corophium volutator, specifically effects on male mate search behaviour. In a laboratory, Y-maze bioassay, C. volutator males were allowed to follow female pheromones after 24 h exposure to 0 (control), 0.01 and 0.1 microg mL(-1) medetomidine. We found that exposure to medetomidine at both concentrations significantly reduced pheromone induced mate search (by 42-71%), with fewer males crawling towards female odour. The results obtained indicate that medetomidine may impair the reproductive fitness of non-target crustaceans, an aspect that needs to be considered before further commercialisation.

  12. Volatile organic compounds from fungi isolated after hurricane katrina induce developmental defects and apoptosis in a Drosophila melanogaster model.

    PubMed

    Inamdar, Arati A; Bennett, Joan W

    2015-05-01

    In previous work, our laboratory developed a Drosophila model for studying the adverse effects of fungal volatile organic compounds (VOCs) emitted by growing cultures of molds. In this report, we have extended these studies and compared the toxic effects of fungal VOCs emitted from living cultures of four molds isolated after Hurricane Katrina from a flooded home in New Orleans. Strains of Aspergillus, Mucor, Penicillium, and Trichoderma were grown with wild-type larvae and the toxic effects of volatile products on the developmental stages of Drosophila larvae were evaluated. Furthermore, heterozygous mutants of Drosophila carrying the apoptotic genes, reaper and dronc, were used to assess the role of apoptosis in fungal VOCs mediated toxicity. Third-instar larvae of Drosophila carrying these apoptotic genes were exposed to fungal VOCs emitted from growing mold cultures for 10 days. The larval strains carrying apoptopic genes survived longer than the control wild type larvae; moreover, of those that survived, heterozygous reaper and dronc strains progressed to pupae and adult phases more rapidly, suggesting that fungal VOCs may induce apoptotic changes in flies. These data lend support to the use of Drosophila as an inexpensive and genetically versatile toxicological model to investigate the mechanistic basis for some of the human illnesses/symptoms associated with exposure to mold-contaminated indoor air, especially after hurricanes.

  13. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  14. Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound

    PubMed Central

    Alberto Rodríguez-Velamazán, José; Fabelo, Óscar; Millán, Ángel; Campo, Javier; Johnson, Roger D.; Chapon, Laurent

    2015-01-01

    The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2 K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism. PMID:26417890

  15. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  16. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells.

    PubMed

    Lai, H; Singh, N P

    1997-01-01

    Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 microseconds pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2 W/kg) caused an increase in DNA single- and double-strand breaks in brain cells of the rat when assayed 4 hours post exposure using a microgel electrophoresis assay. In the present study, we found that treatment of rats immediately before and after RFR exposure with either melatonin (1 mg/kg/injection, SC) or the spin-trap compound N-tert-butyl-alpha-phenylnitrone (PBN) (100 mg/kg/injection, i.p.) blocks this effects of RFR. Since both melatonin and PBN are efficient free radical scavengers it is hypothesized that free radicals are involved in RFR-induced DNA damage in the brain cells of rats. Since cumulated DNA strand breaks in brain cells can lead to neurodegenerative diseases and cancer and an excess of free radicals in cells has been suggested to be the cause of various human diseases, data from this study could have important implications for the health effects of RFR exposure.

  17. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity.

    PubMed

    Zhao, Xiaoping; Xiaoli; Zong, Haihong; Abdulla, Arian; Yang, Ellen S T; Wang, Qun; Ji, Jun-Yuan; Pessin, Jeffrey E; Das, Bhaskar C; Yang, Fajun

    2014-07-01

    Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis.

  18. An Unusually Delocalized Mixed-Valence State of a Cyanidometal-Bridged Compound Induced by Thermal Electron Transfer.

    PubMed

    Ma, Xiao; Lin, Chen-Sheng; Zhu, Xiao-Quan; Hu, Sheng-Min; Sheng, Tian-Lu; Wu, Xin-Tao

    2017-02-01

    The heterometallic complexes trans-[Cp(dppe)FeNCRu(o-bpy)CNFe(dppe)Cp][PF6 ]n (1[PF6 ]n , n=2, 3, 4; o-bpy=1,2-bis(2,2'-bipyridyl-6-yl)ethane, dppe=1,2-bis(diphenylphosphino)ethane, Cp=1,3-cyclopentadiene) in three distinct states have been synthesized and fully characterized. 1(3+) [PF6 ]3 and 1(4+) [PF6 ]4 are the one- and two-electron oxidation products of 1(2+) [PF6 ]2 , respectively. The investigated results suggest that 1[PF6 ]3 is a Class II mixed valence compound. 1[PF6 ]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [Fe(III) -NC-Ru(III) -CN-Fe(II) ], which is induced by electron transfer from the central Ru(II) to the terminal Fe(III) in 1[PF6 ]4 , which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.

  19. Antiferroquadrupolar ordering and magnetic-field-induced phase transition in the cage compound PrRh2Zn20

    NASA Astrophysics Data System (ADS)

    Ishii, Isao; Muneshige, Hitoshi; Kamikawa, Shuhei; Fujita, Takahiro K.; Onimaru, Takahiro; Nagasawa, Naohiro; Takabatake, Toshiro; Suzuki, Takashi; Ano, Genki; Akatsu, Mitsuhiro; Nemoto, Yuichi; Goto, Terutaka

    2013-05-01

    To investigate the origin of a phase transition at TQ=0.06 K simultaneously occurring with a superconducting transition in a cage compound PrRh2Zn20, we carried out ultrasonic measurements on a single-crystalline sample. The transverse modulus (C11-C12)/2 is intimately coupled to the non-Kramers ground doublet Γ3, and elastic softening is observed at low temperatures. Below TQ, the softening stops, suggesting the disappearance of quadrupole degrees of freedom. We clarified the negative quadrupole-quadrupole coupling constant and reentrant behavior of TQ(H) in a magnetic field H. These results reveal that the phase transition at TQ is antiferroquadrupolar ordering. The anisotropic magnetic field-temperature phase diagram is determined for H∥[100], [110], and [111]. A magnetic-field-induced phase transition is newly found at high fields in all three field directions. We also observed ultrasonic dispersion at around 50 K owing to the rattling motion of Zn atoms at the 16c site, and pointed out the strong electron-phonon coupling in PrRh2Zn20.

  20. Cysteamine protects gastric epithelial cell monolayers against drug induced damage: evidence for direct cellular protection by sulphydryl compounds.

    PubMed Central

    Romano, M; Razandi, M; Raza, A; Szabo, S; Ivey, J

    1992-01-01

    The sulphydryl containing drug cysteamine protects gastric mucosa in vivo against acute injury. It is not known whether this protection includes a direct effect on gastric cells. Using gastric epithelial cell monolayers derived from a well differentiated human cell line, we evaluated whether cysteamine protects against taurocholate or indomethacin induced damage in conditions which completely exclude the influence of vascular, hormonal, and neural factors. The effect of cysteamine on prostaglandin production by monolayer cells in vitro was also assessed. Cysteamine decreased damage brought about by sodium taurocholate and indomethacin by 40% (p less than 0.01) and 50% (p less than 0.01) respectively. The sulphydryl blocker iodoacetamide prevented the protective effect of cysteamine. Pretreatment with indomethacin, which inhibited prostaglandin E2 output by 60%, did not prevent protection by cysteamine; incubation with cysteamine decreased prostaglandin E2 production by cultured cells. We conclude that (i) cysteamine directly protected gastric epithelial cells in vitro (ii) this protection occurred with indomethacin, which interferes with cellular metabolism of prostaglandins, and taurocholate, whose damaging action at neutral pH is unrelated to interference with prostanoid metabolism, (iii) cysteamine protection in vitro is unrelated to endogenous prostaglandins and is probably mediated by endogenous sulphydryl compounds. Images Figure 1A-1B Figure 1C-1E PMID:1740273

  1. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

    PubMed Central

    Kim, Hyuck; Roh, Hyo Sun; Kim, Jai Eun; Park, Sun Dong; Park, Won Hwan

    2016-01-01

    BACKGROUND/OBJECTIVES Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C (PKC)α and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS CK significantly reduced the phosphorylation of PKCα and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including PKCα, ERK1/2, and MMPs. PMID:27247721

  2. Solvatochromism, Reversible Chromism and Self-Assembly Effects of Heteroatom-Assisted Aggregation-Induced Enhanced Emission (AIEE) Compounds.

    PubMed

    Niu, Caixia; You, Ying; Zhao, Liu; He, Dacheng; Na, Na; Ouyang, Jin

    2015-09-28

    Two compounds, 9,10-bis[2-(quinolyl)vinyl]anthracene (BQVA) and 9,10-bis[2-(naphthalen-2-yl)vinyl]anthracene (BNVA), have been synthesised and investigated. Both of them have aggregation-induced enhanced emission (AIEE) properties. Heteroatom-assisted BQVA shows solvatochromism, reversible chromism properties and self-assembly effects. When increasing the solvent polarities, the green solution of BQVA turns to orange with a redshift of the fluorescence emission wavelengths from λ=527 to 565 nm. Notably, BQVA exhibits reversible chromism properties, including mechano- and thermochromism. The as-prepared BQVA powders show green fluorescence (λem=525 nm) and the colour can turn into orange (λem=573 nm) after grinding. Interestingly, the orange colour can return at high temperature. Based on these reversible chromism properties, a simple and convenient erasable board has been designed. Different from BQVA, non-heteroatom-assisted BNVA has no clear chromic processes. The results obtained from XRD, differential scanning calorimetry, single-crystal analysis and theoretical calculations indicate that the chromic processes depend on the heteroatoms in BQVA. Additionally, BQVA also exhibits excellent self-assembly effects in different solvents. Homogeneous nanospheres are formed in mixtures of tetrahydrofuran and water, which are then doped into silica nanoparticles and treated with 3-aminopropyltriethoxysilane to give amino-functionalised nanoparticles (BQVA-AFNPs). The BQVAAFNPs could be used to stain protein markers in polyacrylamide gel electrophoresis.

  3. Anti-Inflammatory Effects of the Bioactive Compound Ferulic Acid Contained in Oldenlandia diffusa on Collagen-Induced Arthritis in Rats

    PubMed Central

    Zhu, Hao; Liang, Qing-Hua; Xiong, Xin-Gui; Chen, Jiang; Wu, Dan; Yang, Bo; Zhang, Yang; Zhang, Yong; Huang, Xi

    2014-01-01

    Objectives. This study aimed to identify the active compounds in Oldenlandia diffusa (OD) decoction and the compounds absorbed into plasma, and to determine whether the absorbed compounds derived from OD exerted any anti-inflammatory effects in rats with collagen induced arthritis (CIA). Methods. The UPLC-PDA (Ultra Performance Liquid Chromatography Photo-Diode Array) method was applied to identify the active compounds both in the decoction and rat plasma. The absorbable compound was administered to the CIA rats, and the effects were dynamically observed. X-ray films of the joints and HE stain of synovial tissues were analyzed. The levels of IL-1β and TNF-α in the rats from each group were measured by means of ELISA. The absorbed compound in the plasma of CIA rats was identified as ferulic acid (FA), following OD decoction administration. Two weeks after the administration of FA solution or OD decoction, the general conditions improved compared to the model group. The anti-inflammatory effect of FA was inferior to that of the OD decoction (P < 0.05), based on a comparison of IL-1β TNF-α levels. FA from the OD decoction was absorbed into the body of CIA rats, where it elicited anti-inflammatory responses in rats with CIA. Conclusions. These results suggest that FA is the bioactive compound in OD decoction, and FA exerts its effects through anti-inflammatory pathways. PMID:24883069

  4. Thermoelectric Performance of Yb-Doped Ba8Ni0.1Zn0.54Ga13.8Ge31.56 Type-I Clathrate Synthesized by High-Pressure Technique

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Long; Dong, Jianying; Xu, Bo

    2016-10-01

    Type I clathrates are a promising thermoelectric (TE) material for waste heat recovery applications. However, the TE figure-of-merit of type I clathrates still needs further improvement. In this study, Yb-doped Ba8-x Yb x Ni0.1Zn0.54 Ga13.8Ge31.56 (0 ≤ x ≤ 0.5) type I clathrates were synthesized using a high-pressure technique. Energy dispersive spectrometry confirmed successful Yb doping. An increased Yb doping level reduces electrical resistivity and suppresses lattice thermal conductivity while keeping the Seebeck coefficient almost unchanged. TE figure-of-merit of Ba7.7Yb0.3Ni0.1Zn0.54Ga13.8Ge31.56 type I clathrate was improved by 15% (0.91) at the highest measured temperature (900 K) compared with a Yb-free sample.

  5. Chemically Homogenous Compounds with Antagonistic Properties at All α1-Adrenoceptor Subtypes but not β1-Adrenoceptor Attenuate Adrenaline-Induced Arrhythmia in Rats

    PubMed Central

    Pytka, Karolina; Lustyk, Klaudia; Żmudzka, Elżbieta; Kotańska, Magdalena; Siwek, Agata; Zygmunt, Małgorzata; Dziedziczak, Agnieszka; Śniecikowska, Joanna; Olczyk, Adrian; Gałuszka, Adam; Śmieja, Jarosław; Waszkielewicz, Anna M.; Marona, Henryk; Filipek, Barbara; Sapa, Jacek; Mogilski, Szczepan

    2016-01-01

    Studies proved that among all α1-adrenoceptors, cardiac myocytes functionally express only α1A- and α1B-subtype. Scientists indicated that α1A-subtype blockade might be beneficial in restoring normal heart rhythm. Therefore, we aimed to determine the role of α1-adrenoceptors subtypes (i.e., α1A and α1B) in antiarrhythmic effect of six structurally similar derivatives of 2-methoxyphenylpiperazine. We compared the activity of studied compounds with carvedilol, which is β1- and α1-adrenoceptors blocker with antioxidant properties. To evaluate the affinity for adrenergic receptors, we used radioligand methods. We investigated selectivity at α1-adrenoceptors subtypes using functional bioassays. We tested antiarrhythmic activity in adrenaline-induced (20 μg/kg i.v.), calcium chloride-induced (140 and 25 mg/kg i.v.) and barium chloride-induced (32 and 10 mg/kg i.v.) arrhythmia models in rats. We also evaluated the influence of studied compounds on blood pressure in rats, as well as lipid peroxidation. All studied compounds showed high affinity toward α1-adrenoceptors but no affinity for β1 receptors. Biofunctional studies revealed that the tested compounds blocked α1A-stronger than α1B-adrenoceptors, but except for HBK-19 they antagonized α1A-adrenoceptor weaker than α1D-subtype. HBK-19 showed the greatest difference in pA2 values—it blocked α1A-adrenoceptors around seven-fold stronger than α1B subtype. All compounds showed prophylactic antiarrhythmic properties in adrenaline-induced arrhythmia, but only the activity of HBK-16, HBK-17, HBK-18, and HBK-19 (ED50 = 0.18–0.21) was comparable to that of carvedilol (ED50 = 0.36). All compounds reduced mortality in adrenaline-induced arrhythmia. HBK-16, HBK-17, HBK-18, and HBK-19 showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia. None of the compounds showed activity in calcium chloride- or barium chloride-induced arrhythmias. HBK-16, HBK-17, HBK-18, and HBK-19 decreased heart

  6. Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Martin, Joshua

    The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides. The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 < x < 14) is reported. Substitution of Si within the Ga-Ge lattice framework of the type I clathrate Ba8Ga16Ge30 results in thermoelectric performance enhancement. The unique dependences of carrier concentration, electrical resistivity, Seebeck coefficient, and carrier effective mass on Si substitution level, may imply a modified band structure with Si substitution. These materials were then further optimized by adjusting the Ga-to-group IV element ratios. Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for

  7. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    PubMed Central

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  8. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates.

    PubMed

    Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition.

  9. Thermoelectric and transport properties of sintered n-type K{sub 8}Ba{sub 16}Ga{sub 40}Sn{sub 96} with type-II clathrate structure

    SciTech Connect

    Koda, Shota; Kishimoto, Kengo Asada, Hironori; Koyanagi, Tsuyoshi; Akai, Koji

    2014-07-14

    This clathrate had a maximum dimensionless figure-of-merit, ZT, of 0.93 at 637 K, which was slightly higher than that of 0.83 for the sintered type-VIII clathrate Ba{sub 8}Ga{sub 16}Sn{sub 30}. We investigated the high-temperature thermoelectric properties, transport properties, electronic structures, and thermal stabilities of the clathrates. The type-II clathrate was found to be superior to the type-VIII clathrate as a thermoelectric material; it had a high thermal stability and melting point, 859 K, high mobility, 141 cm{sup 2}V{sup −1}s{sup −1} at 300 K, because of its low inertial mass, and low high-temperature lattice thermal conductivity, approximately 4 mW cm{sup −1}K{sup −1}, resulting from a larger unit cell and weaker bipolar thermal conduction. We discuss these properties in terms of the electronic structure and the differences between the two types of clathrate.

  10. Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba{sub 8-y}Sr{sub y}Al{sub 14}Si{sub 32} (0.6{<=}y{<=}1.3) prepared by aluminum flux

    SciTech Connect

    Roudebush, John H.; Toberer, Eric S.; Hope, Hakon; Jeffrey Snyder, G.; Kauzlarich, Susan M.

    2011-05-15

    The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3-bar n. Electron microprobe characterization indicates the composition to be Ba{sub 8-y}Sr{sub y}Al{sub 14.2(2)}Si{sub 31.8(2)} (0.77clathrate phase with nominal composition Ba{sub 7}Sr{sub 1}Al{sub 14}Si{sub 32} has been prepared by Al flux. Single crystal diffraction at 90 and 12 K reveal that the framework is fully occupied with the cation sites nearly fully occupied. The lattice thermal conductivity is low thereby suggesting further optimization of the carrier concentration will lead to a high zT. Display Omitted Highlights: {yields} Ba{sub 7}Sr{sub 1}Al{sub 14}Si{sub 32} is a light element phase ideal for thermoelectric power generation. {yields} Ba{sub 7}Sr{sub 1}Al{sub 14}Si{sub 32} is a high melting point cubic

  11. Observations of CO{sub 2} clathrate hydrate formation and dissolution under deep-ocean disposal conditions

    SciTech Connect