Sample records for clay aggregate leca

  1. Durability of Geopolymer Lightweight Concrete Infilled LECA in Seawater Exposure

    NASA Astrophysics Data System (ADS)

    Razak, R. A.; Abdullah, M. M. A. B.; Yahya, Z.; Hamid, M. S. A.

    2017-11-01

    This paper describes a development of lightweight concrete using lightweight expanded clay aggregate (LECA) in fly ash (FA) based geopolymer immersed in seawater. The objective of this research is to compare the performance of geopolymer concrete (GPC) with ordinary Portland cement (OPC) concrete infilled lightweight expanded clay aggregate (LECA) in seawater exposure. Geopolymer concrete is produced by using alkaline activator to activate the raw material, FA. The highest compressive strength of this study is 42.0 MPa at 28 days and 49.8 MPa at 60 days. The density for this concrete is in the range of 1580 kg/m3 to 1660 kg/m3. The result for water absorption is in the range of 6.82% to 14.72%. However, the test results of weight loss is in the range between 0.30% to 0.43%.

  2. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  3. Isolation of phage-display library-derived scFv antibody specific to Listeria monocytogenes by a novel immobilized method.

    PubMed

    Nguyen, X-H; Trinh, T-L; Vu, T-B-H; Le, Q-H; To, K-A

    2018-02-01

    To select Listeria monocytogenes-specific single-chain fragment variable (scFv) antibodies from a phage-display library by a novel simple and cost-effective immobilization method. Light expanded clay aggregate (LECA) was used as biomass support matrix for biopanning of a phage-display library to select L. monocytogenes-specific scFv antibody. Four rounds of positive selection against LECA-immobilized L. monocytogenes and an additional subtractive panning against Listeria innocua were performed. The phage clones selected using this panning scheme and LECA-based immobilization method exhibited the ability to bind L. monocytogenes without cross-reactivity toward 10 other non-L. monocytogenes bacteria. One of the selected phage clones was able to specifically recognize three major pathogenic serotypes (1/2a, 1/2b and 4b) of L. monocytogenes and 11 tested L. monocytogenes strains isolated from foods. The LECA-based immobilization method is applicable for isolating species-specific anti-L. monocytogenes scFv antibodies by phage display. The isolated scFv antibody has potential use in development of immunoassay-based methods for rapid detection of L. monocytogenes in food and environmental samples. In addition, the LECA immobilization method described here could feasibly be employed to isolate specific monoclonal antibodies against any given species of pathogenic bacteria from phage-display libraries. © 2017 The Society for Applied Microbiology.

  4. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  5. Mechanisms of removal of three widespread pharmaceuticals by two clay materials.

    PubMed

    Dordio, A V; Miranda, S; Prates Ramalho, J P; Carvalho, A J Palace

    2017-02-05

    Pharmaceutical residues presence in the environment is among nowadays top emergent environmental issues. For removal of such pollutants, adsorption is a generally efficient process that can be complementary to conventional treatment. Research of cheap, widely available adsorbents may make this process economically attractive. The aim of the present work was to evaluate the capacity of two clay materials (exfoliated vermiculite, LECA) to adsorb gemfibrozil, mefenamic acid and naproxen in lab-scale batch assays. Results show that both adsorbents are able to remove the pharmaceuticals from aqueous medium. Although vermiculite exhibited higher adsorption capacities per unit mass of adsorbent, LECA yielded higher absolute removals of the pharmaceuticals due to the larger mass of adsorbent. Quantum chemistry calculations predicted that the forms of binding of the three molecules to the vermiculite surface are essentially identical, but the adsorption isotherm of naproxen differs substantially from the other two's. The linear forms of the latter impose limits at lower concentrations to the removal efficiencies of these pharmaceuticals by vermiculite, thereby electing LECA as more efficient. Notwithstanding, vermiculite's high specific adsorption capacity and also its much faster adsorption kinetics suggest that there may be some benefits in combining both materials as a composite adsorbent solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN).

    PubMed

    Delnavaz, M; Ayati, B; Ganjidoust, H

    2010-07-15

    In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds. 2010 Elsevier B.V. All rights reserved.

  7. Postscript: Still in Search of a Good Theory of Reasoning--Rejoinder to Barrouillet, Gauffroy, and Lecas (2008)

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Oaksford, Mike

    2008-01-01

    In Barrouillet, Gauffroy, and Lecas's postscript to the current authors' original comment on Barrouillet, Gauffroy, and Lecas's original article, they made four clearly argued points. First, they argued that they had provided a clear rationale for truth value gaps. This misses the point of what a computational-level explanation means. Such an…

  8. Landing limb posture in volleyball athletes with patellar tendinopathy: a pilot study.

    PubMed

    Kulig, K; Joiner, D G; Chang, Y-J

    2015-05-01

    The aims of this pilot study were to investigate how a novel sagittal plane kinematic measurement - the lower extremity contact angle (LECA) - relates to the landing dynamics of elite male volleyball athletes with and without patellar tendinopathy. The LECA was defined as the angle between the ground and the line connecting the center of pressure to the L5S1 marker. 18 athletes (9 with patellar tendinopathy and 9 with asymptomatic tendons) completed simulated spike jumps while instrumented for kinetic and kinematic analysis using a force platform and 3D motion analysis system. The patellar tendinopathic group demonstrated a significantly more acute LECA compared to the asymptomatic group (65.3°±2.2° vs. 69.1°±4.5°) and was the only kinematic or kinetic variable measured to discriminate between the 2 groups. The LECA further demonstrated less variability between trials than sagittal plane hip, knee, and ankle kinematics. Additionally, the LECA's - and not individual joints' - high correlation with the braking impulse ensures its predictive value for landing dynamics (r=- 0.890). The LECA has the potential to be a valuable tool to help assess jumping athletes in both injury prevention screening and as a variable that, if modified, could help alter the maladaptive behavior observed in symptomatic athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation

    PubMed Central

    Walcher, Tessa; Xie, Qing; Sun, Jian; Irmler, Martin; Beckers, Johannes; Öztürk, Timucin; Niessing, Dierk; Stoykova, Anastassia; Cvekl, Ales; Ninkovic, Jovica; Götz, Magdalena

    2013-01-01

    To achieve adequate organ development and size, cell proliferation and differentiation have to be tightly regulated and coordinated. The transcription factor Pax6 regulates patterning, neurogenesis and proliferation in forebrain development. The molecular basis of this regulation is not well understood. As the bipartite DNA-binding paired domain of Pax6 regulates forebrain development, we examined mice with point mutations in its individual DNA-binding subdomains PAI (Pax6Leca4, N50K) and RED (Pax6Leca2, R128C). This revealed distinct roles in regulating proliferation in the developing cerebral cortex, with the PAI and RED subdomain mutations reducing and increasing, respectively, the number of mitoses. Conversely, neurogenesis was affected only by the PAI subdomain mutation, phenocopying the neurogenic defects observed in full Pax6 mutants. Genome-wide expression profiling identified molecularly discrete signatures of Pax6Leca4 and Pax6Leca2 mutations. Comparison to Pax6 targets identified by chromatin immunoprecipitation led to the identification and functional characterization of distinct DNA motifs in the promoters of target genes dysregulated in the Pax6Leca2 or Pax6Leca4 mutants, further supporting the distinct regulatory functions of the DNA-binding subdomains. Thus, Pax6 achieves its key roles in the developing forebrain by utilizing particular subdomains to coordinate patterning, neurogenesis and proliferation simultaneously. PMID:23404109

  10. Examination and Manipulation of Clay Aggregates - Initial Inquiry

    DTIC Science & Technology

    2011-06-06

    and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared

  11. Furosemide removal in constructed wetlands: Comparative efficiency of LECA and Cork granulates as support matrix.

    PubMed

    Machado, A I; Dordio, A; Fragoso, R; Leitão, A E; Duarte, E

    2017-12-01

    The removal efficiency of LECA and cork granulates as support matrix for pharmaceuticals active compounds in a constructed wetland system was investigated using the diuretic drug Furosemide. Kinetics studies were performed testing three different concentrations of Furosemide in an ultrapure water matrix, along seven days. LECA achieved higher removal values compared to cork granulates. However, cork granulates presented a higher removal in the first 24 h of contact time compared to the other adsorbent. The kinetic studies showed that LECA and cork granulates have different adsorption behaviours for Furosemide which is controlled by different adsorption mechanisms. Both materials showed good removal efficiencies and a combination of the two should be further explored in order to applied both materials as support matrix to cope with different furosemide concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1). This suggests that swelling phases promote their stability. Swelling phases and organic C decreased for greater intensities of disaggregation. These results and the SEM images taken at different disaggregation intensities indicate that when increasing disaggregation intensity above 5 J mL-1, the recovered material consists on sand particles covered by physical coatings of illite and kaolinite. Our results show that different clay minerals have different contribution to soil aggregation. Swelling phases are especially important for water-stable aggregates formation, whereas illite and kaolinite can either contribute to aggregation or been coated to sand grains in "mineral aggregates", without porosity and organic C protection capability. In conclusion, soils with large proportion of swelling clay minerals have greater potential for carbon storage by occlusion in aggregates and greater resistance to erosion. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 62: 141-163.

  13. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  14. Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices.

    PubMed

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar

    2012-01-01

    Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.

  15. Removal of Pharmaceutical Products in a Constructed Wetland

    PubMed Central

    Özengin, Nihan; Elmaci, Ayse

    2016-01-01

    Background There is growing interest in the natural and constructed wetlands for wastewater treatment. While nutrient removal in wetlands has been extensively investigated, information regarding the degradation of the pharmaceuticals and personal care products (PPCPs) has only recently been emerging. PPCPs are widely distributed in urban wastewaters and can be removed to some extent by the constructed wetlands. The medium-term (3-5 years) behavior of these systems regarding PPCP removal is still unknown. Objectives The efficiency of a Leca-based laboratory-scale constructed wetland planted with Phragmites australis (Cav.) Trin. Ex. Steudel in treating an aqueous solution of the pharmaceuticals, namely, carbamazepine, ibuprofen, and sulfadiazine, was to investigate. Materials and Methods The two pilot-scale constructed wetlands (CW) were operated in parallel; one as an experimental unit (a planted reactor with P. australis) and the other as a control (an unplanted reactor with Leca). Pretreatment and analyses of the carbamazepine, ibuprofen, sulfadiazine, and tissue samples (Leca, P. australis body and P.australis leaf) were conducted using HPLC. Results The carbamazepine, ibuprofen, and sulfadiazine removal efficiencies for the planted and unplanted reactors were 89.23% and 95.94%, 89.50% and 94.73%, and 67.20% and 93.68%, respectively. The Leca bed permitted an efficient removal. Leca has a high sorption capacity for these pharmaceuticals, with removal efficiencies of 93.68-95.94% in the unplanted reactors. Conclusions Sorption processes might be of a major importance in achieving efficient treatment of wastewater, particularly in the removal of organic material that are resistant to biodegradation, in which case the materials composing the support matrix may play an important role. The results obtained in the present study indicate that a constructed wetland with Leca as a substrate and planted with P. australis is effective in the treatment of wastewater contaminated with carbamazepine, ibuprofen, and sulfadiazine. PMID:28959339

  16. Clay induced aggregation of a tetra-cationic metalloporphyrin in Layer by Layer self assembled film

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Bhattacharjee, J.; Hussain, S. A.; Bhattacharjee, D.

    2015-12-01

    Porphyrins have a general tendency to form aggregates in ultrathin films. Also electrostatic adsorption of cationic porphyrins onto anionic nano clay platelets results in the flattening of porphyrin moieties. The flattening is evidenced by the red-shifting of Soret band with respect to the aqueous solution. In the present communication, we have studied the clay induced aggregation behaviour of a tetra-cationic metalloporphyrin Manganese (III) 5, 10, 15, 20-tetra (4 pyridyl)-21 H, 23 H-porphine chloride tetrakis (methochloride) (MnTMPyP) in Layer-by-Layer (LbL) self assembled film. The adsorption of dye molecules onto nano clay platelets resulted in the flattening of the meso substituent groups of the dye chromophore. In Layer-by-Layer ultrathin film, the flattened porphyrin molecules tagged nano clay platelets were further associated to form porphyrin aggregates. This has been clearly demonstrated from the UV-vis absorption spectroscopic studies. Atomic Force Microscopic (AFM) studies gave visual evidence of the association of organo-clay hybrid molecules in the LbL film.

  17. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    PubMed

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  18. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering

    DOE PAGES

    Ho, Tuan Anh; Greathouse, Jeffery A.; Wang, Yifeng; ...

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of themore » aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.« less

  19. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk.

    PubMed

    Limbu, Samwel M; Zhou, Li; Sun, Sheng-Xiang; Zhang, Mei-Ling; Du, Zhen-Yu

    2018-06-01

    Antibiotics used globally to treat human and animal diseases exist ubiquitously in the environment at low doses because of misuse, overdose and poor absorption after ingestion, coupled with their high-water solubility and degradation resistance. However, the systemic chronic effects of exposure to low environmental concentrations of antibiotics (LECAs) and legal aquaculture doses of antibiotics (LADAs) in fish and their human health risk are currently unknown. To investigate the in vivo chronic effects of exposure to LECAs and LADAs using oxytetracycline (OTC) and sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus) and their human health risk. Twenty O. niloticus weighing 27.73 ± 0.81 g were exposed to water containing LECAs (OTC at 420 ng/L and SMZ at 260 ng/L) and diets supplemented with LADAs (OTC 80 mg/kg/day and SMZ 100 mg/kg/day) for twelve weeks. General physiological functions, metabolic activities, intestinal and hepatic health were systemically evaluated. The possible human health risks of the consumption of the experimental Nile tilapia fillets in adults and children were assessed by using risk quotient. After exposure, we observed retarded growth performance accompanied by reduced nutrients digestibility, feed efficiency, organ indices, and lipid body composition in treated fish. Antibiotics distorted intestinal morphological features subsequently induced microbiota dysbiosis and suppressed intestinal tight junction proteins. Exposure of fish to LECAs and LADAs induced oxidative stress, suppressed innate immunity, stimulated inflammatory and detoxification responses, concomitantly inhibited antioxidant capacity and caused lipid peroxidation in intestine and liver organs. Both LECAs and LADAs enhanced gluconeogenesis, inhibited lipogenesis and fatty acid beta oxidation in intestine and liver organs. The exposure of fish to LECAs and LADAs induced anaerobic glycolytic pathway and affected intestinal fat catabolism in intestine while halted aerobic glycolysis, increased hepatic fat catabolism, and induced DNA damage in liver. The hazard risk quotient in children for fish treated with OTCD was >1 indicating human health risk. Overall, both LECAs and LADAs impair general physiological functions, nutritional metabolism, and compromise fish immune system. Consumption of fish fed with legal OTC provokes health risk in children. Global stringent prohibition policy for use of antibiotics in aquaculture production and strategies to limit their release into the environment are urgently required to protect human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    NASA Astrophysics Data System (ADS)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute differences in soil morphology, although this was not explored in this research.

  2. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of clays in the iberulites is suggested to be the result of higher efficiency for clay capture than for the capture of larger mineral grains. The high hygroscopicity of clay minerals probably causes retention of water in the evaporation stage and some secondary minerals (mainly gypsum) are associated with clays.

  3. To what extent clay mineralogy affect soil aggregation? Insights from fractionation analyses conducted on soils under different land-uses.

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Girardin, C.; Ferrage, E.; Caner, L.; Chenu, C.

    2012-04-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil C content or tillage on aggregation has been documented, much less is known about the role of soil mineralogy. The aim of this study is to determine quantitatively if different clay minerals of a temperate soil contribute differently to aggregation and if their contribution is modulated by soil management. We compared the aggregate-size distribution of three cropping systems in a silt loam soil in Versailles (France): organic cropping system (ORG, tilled yearly), direct seeding mulch-based cropping system (DMC, tilled every 4 years), both from a long-term trial, and a nearby grassland. Soil samples from 0-5 cm were wet-sieved to 5 mm and air-dried before aggregate-size separation. For each aggregate class, fraction <2 µm was separated and analysed using X-ray diffraction. Organic C content was determined both in aggregates and <2-µm fractions. C content was lower in ORG than in the two other treatments. The proportion of large-macroaggregates (500-5000 µm) was greater in DMC and grassland; while microaggregates (50-250 µm) showed greater proportions in ORG. In the three treatments, microaggregates had the greatest amount of clays, with preferential accumulation of smectitic phases. In grassland, clays from all aggregated fractions showed more smectitic phases than free-clay fraction. The results indicate that smectitic phases contributed particularly to the microaggregates dynamics. Their contribution to aggregation was lower for larger aggregate sizes where the influence of organic matter was preponderant. Moreover, it was observed that cultivation (ORG and DMC treatments) reduced the relative enrichment of smectitic phases in stable aggregates which makes them more vulnerable to slaking erosion and alters their physico-chemical functions.

  4. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  5. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  6. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Zhao; Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University; Ling, Tung-Chai

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However,more » the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.« less

  7. Radiocesium distribution in aggregate-size fractions of cropland and forest soils affected by the Fukushima nuclear accident.

    PubMed

    Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya

    2018-08-01

    The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (<2 μm); silt-sized (2-20 μm); sand-sized (20-212 μm); and macroaggregates (212-2000 μm). The fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica.

    PubMed

    Abhyankar, Mayuresh M; Orr, Mark T; Lin, Susan; Suraju, Mohammed O; Simpson, Adrian; Blust, Molly; Pham, Tiep; Guderian, Jeffrey A; Tomai, Mark A; Elvecrog, James; Pedersen, Karl; Petri, William A; Fox, Christopher B

    2018-01-01

    Amebiasis caused by Entamoeba histolytic a is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.

  9. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.

    PubMed

    Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C

    2005-04-01

    The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.

  10. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.

    PubMed

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César

    2013-09-10

    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Treatments for clays in aggregates used to produce cement concrete, bituminous materials, and chip seals : technical report.

    DOT National Transportation Integrated Search

    2013-07-01

    The clay contamination of coarse and fine aggregates and its effects on pavement performance of portland cement concrete, bituminous mixes and chip seals is a major concern for Texas Department of Transportation. We proposed (i) to determine what typ...

  12. Utilization of sewage sludge in the manufacture of lightweight aggregate.

    PubMed

    Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena

    2016-01-01

    This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports the swelling of the raw material, thereby causing an increase in the porosity of aggregates. The LWA2 has a lower value of bulk particle density (0.414 g/cm(3)), apparent particle density (0.87 g/cm(3)), and dry particle density (2.59 g/cm(3)) than it is in the case of LWA1 where these parameters were as follows: bulk particle density 0.685 g/cm(3), apparent particle density 1.05 g/cm(3), and dry particle density 2.69 g/cm(3). Water absorption and porosity of LWA1 (WA = 14.4 %, P = 60 %) are lower than the LWA2 (WA = 16.2 % and P = 66 %). This is due to the higher heating temperature of granules which make the waste gases, liberating them from the decomposition of organic sewage sludge. The compressive strength of LWA2 aggregate is 4.64 MPa and for LWA1 is 0.79 MPa. Results of leaching tests of heavy metals from examined aggregates have shown that insoluble metal compounds are placed in silicate and aluminosilicate structure of the starting materials (clays and sludges), whereas soluble substances formed crystalline skeleton of the aggregates. The thermal synthesis of lightweight aggregates from clay and sludge mixture is a waste-free method of their development.

  13. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Lee, D J; Hong, S Y

    2004-01-01

    The disposal of sludge from wastewater treatment presents highly complex problems to any municipality. Most of the sludge disposal methods have varying degrees of environmental impact. Hence, it is necessary to explore potential areas of reuse in order to alleviate sludge disposal problems and to conserve natural resources. Industrial sludge and marine clay are two forms of high-volume wastes. Using these wastes as a resource of raw materials to produce construction aggregates would enable large-scale sludge reuse. The aggregates were produced at various sludge-clay combinations containing 0, 20, 50, 80 and 100% clay contents, respectively. The pelletized aggregates displayed lower particle densities ranged between 1.48 and 2.25 g/cm3, compared to the density of granite at 2.56 g/cm3. Good 28-day concrete compressive strength of 38.5 N/mm2 achieved by the 100% sludge aggregate was comparable to the value of 38.0 N/mm2 achieved of the granite control specimens. The leachate contamination levels from the aggregates after 150 days were found acceptable when used in concrete, indicating insignificant environmental contamination. The heat flow study showed increases in heat flow at the temperatures of 480 degrees C and between 660 degrees C and 900 degrees C, indicating a need for the extension of heating time around these temperatures.

  14. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    PubMed

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the Tween-coated silver nanoparticles showed high stability in both single and binary systems. There were no significant differences in early stage aggregation kinetics observed inthe Na-clay-nanoparticle or Ca-clay-nanoparticle systems, which suggested that the CCC values of the single Na- or Ca-clay suspensions depend only on the electrolyte concentration, not the original cations on the clay surface. These results provide a basic idea for understanding the heteroaggregation of different silver nanoparticles and clays, which can be utilized in further study of fate and transport of engineered nanoparticles in natural aqueous system.

  16. Sediment composition for the assessment of water erosion and nonpoint source pollution in natural and fire-affected landscapes.

    PubMed

    Carkovic, Athena B; Pastén, Pablo A; Bonilla, Carlos A

    2015-04-15

    Water erosion is a leading cause of soil degradation and a major nonpoint source pollution problem. Many efforts have been undertaken to estimate the amount and size distribution of the sediment leaving the field. Multi-size class water erosion models subdivide eroded soil into different sizes and estimate the aggregate's composition based on empirical equations derived from agricultural soils. The objective of this study was to evaluate these equations on soil samples collected from natural landscapes (uncultivated) and fire-affected soils. Chemical, physical, and soil fractions and aggregate composition analyses were performed on samples collected in the Chilean Patagonia and later compared with the equations' estimates. The results showed that the empirical equations were not suitable for predicting the sediment fractions. Fine particles, including primary clay, primary silt, and small aggregates (<53 μm) were over-estimated, and large aggregates (>53 μm) and primary sand were under-estimated. The uncultivated and fire-affected soils showed a reduced fraction of fine particles in the sediment, as clay and silt were mostly in the form of large aggregates. Thus, a new set of equations was developed for these soils, where small aggregates were defined as particles with sizes between 53 μm and 250 μm and large aggregates as particles>250 μm. With r(2) values between 0.47 and 0.98, the new equations provided better estimates for primary sand and large aggregates. The aggregate's composition was also well predicted, especially the silt and clay fractions in the large aggregates from uncultivated soils (r(2)=0.63 and 0.83, respectively) and the fractions of silt in the small aggregates (r(2)=0.84) and clay in the large aggregates (r(2)=0.78) from fire-affected soils. Overall, these new equations proved to be better predictors for the sediment and aggregate's composition in uncultivated and fire-affected soils, and they reduce the error when estimating soil loss in natural landscapes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  18. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.

  19. Use of expanded clay aggregate in bituminous construction.

    DOT National Transportation Integrated Search

    1959-01-01

    In an effort to find a solution to the shortage of aggregate, for use in highway construction, Louisiana Department of Highways initiated a study. : In early 1955, we started experimenting with expanded aggregate or lightweight aggregate as commonly ...

  20. Reconstruction of the sialylation pathway in the ancestor of eukaryotes.

    PubMed

    Petit, Daniel; Teppa, Elin; Cenci, Ugo; Ball, Steven; Harduin-Lepers, Anne

    2018-02-13

    The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists. We conducted phylogenomic and protein sequence analyses to gain insights into the origin and ancient evolution of ST and sialic acid pathway in eukaryotes, Bacteria and Archaea. Our study uncovered the unreported occurrence of bacterial GT29 ST and evidenced the existence of 2 ST groups in the LECA, likely originating from the endosymbiotic event that generated mitochondria. Furthermore, distribution of the major actors of the sialic acid pathway in the different eukaryotic phyla indicated that these were already present in the LECA, which could also access to this essential monosaccharide either endogenously or via a sialin/sialidase uptake mechanism involving vesicles. This pathway was lost in several basal eukaryotic lineages including Archaeplastida despite the presence of two different ST groups likely assigned to other functions.

  1. Performance and durability of concrete made with demolition waste and artificial fly ash-clay aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakaria, M.; Cabrera, J.G.

    1996-12-31

    Demolition aggregates and artificial aggregates made with waste materials are two alternatives being studied for replacement of natural aggregates in the production of concrete. Natural aggregate sources in Europe are increasingly scarce and subject to restrictions based on environmental regulations. In many areas of the developing world sources of good quality aggregates are very limited or practically not available and therefore it has become necessary to study alternative materials. This paper presents a laboratory study on the use of demolition bricks and artificial aggregates made from fly ash-clay as coarse aggregates to make concrete. The concretes made either with demolitionmore » bricks or artificial aggregates are compared with a control mix made with natural gravel aggregates. The strength and durability characteristics of these concretes are evaluated using as a criteria compressive strength and transport properties, such as gas and water permeability. The results show clearly that concretes of good performance and durability can be produced using aggregates from demolition rubble or using artificial aggregates made with wastes such as fly ash.« less

  2. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs.

    PubMed

    Farías, Romina D; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-05-15

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  3. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    PubMed Central

    Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-01-01

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892

  4. Interactions between extracellular polymeric substances and clay minerals affect soil aggregation

    NASA Astrophysics Data System (ADS)

    Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten

    2017-04-01

    Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.

  5. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and trachytes (8.2%) with no significant differences between the last two. On the other hand, ditionithe extractable iron was significantly different among all soils with the following content: sandstone (13%) < trachytes (23%) < basalts (27%). Short-range order inorganic phases of Al and Fe were significantly higher in soils developed on volcanic parent materials. The distribution of organic C in soil aggregates revealed that as much as 50% of the organic C was concentrated in mega (20-10 mm and 10-5 mm) and large-(5-2 mm) aggregates in soils developed in sandstones, while 25% and 36% of the total organic C was found in theses aggregates in basaltic and trachytic soils respectively. Basaltic soils showed significantly higher proportion of organic C (>20%) in microaggregates (0.25-0.053 mm) and silt+clay size aggregates (< 0.053 mm) than the other two soils (<10%). The regression analysis revealed that short-range order minerals influence the amount of SOC via microaggregation and that chlorite-vermiculite mixed layer minerals had a significant influence on the amount of SOC relating this stabilization mechanism to macroagregation. This study highlights that dynamic models of SOC turnover in acid soils from temperate forest should include proxies for clay mineralogy and for the content of Fe and Al oxides and oxy-hydro-oxides.

  6. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems.

    PubMed

    Pinto, A P; Rodrigues, S C; Caldeira, A T; Teixeira, D M

    2016-01-15

    An approach to reduce the contamination of water sources with pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively.. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process, working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the early stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  8. Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants.

    PubMed

    Starodoubtsev, S G; Lavrentyeva, E K; Khokhlov, A R; Allegra, G; Famulari, A; Meille, S V

    2006-01-03

    Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.

  9. Detecting deleterious fine particles in concrete aggregates and defining their impact.

    DOT National Transportation Integrated Search

    2010-10-01

    This study examined the types of microfines in aggregates found in northern Wisconsin and their influence on : concrete prepared according to WisDOT specifications. Aggregates were collected from 28 sources and 69 : percent were found to contain clay...

  10. Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Buseck, Peter R.

    Transmission electron microscopic (TEM) and electron energy-loss spectroscopic (EELS) study of the Ivuna and Orgueil (CI), and Tagish Lake (C2 ungrouped) carbonaceous chondrite meteorites shows two types of C-clay assemblages. The first is coarser-grained (to 1 μm) clay flakes that show an intense O K edge from the silicate together with a prominent C K edge, but without discrete C particles. Nitrogen is common in some clay flakes. Individual Orgueil and Tagish Lake meteorite clay flakes contain up to 6 and 8 at% C, respectively. The C K-edge spectra from the clays show fine structure revealing aromatic, aliphatic, carboxylic, and carbonate C. The EELS data shows that this C is intercalated with the clay flakes. The second C-clay association occurs as poorly crystalline to amorphous material occurring as nanometer aggregates of C, clay, and Fe-O-rich material. Some aggregates are dominated by carbonaceous particles that are structurally and chemically similar to the acid insoluble organic matter. The C K-edge shape from this C resembles that of amorphous C, but lacking the distinct peaks corresponding to aliphatic, carboxylic, and carbonate C groups. Nanodiamonds are locally abundant in some carbonaceous particles. The abundance of C in the clays suggest that molecular speciation in the carbonaceous chondrites is partly determined by the effects of aqueous processing on the meteorite parent bodies, and that clays played an important role. This intricate C-clay association lends credence to the proposal that minerals were important in the prebiotic chemical evolution of the early solar system.

  11. Effect of lightweight aggregates prepared from fly ash on lightweight concrete performances

    NASA Astrophysics Data System (ADS)

    Punlert, S.; Laoratanakul, P.; Kongdee, R.; Suntako, R.

    2017-09-01

    Lightweight aggregates were prepared from fly ash of by-products from the paper industry. The influence of the ratio of clay to fly ash and processing conditions on lightweight aggregates properties were investigated. It was found that the amount of fly ash directly affected to porosity of lightweight aggregates. Lightweight aggregates with the ratio of clay to fly ash at 80:20 wt% using the sintering temperature at 1210°C exhibits bulk density of 1.66 g cm-3, compressive strength of 25 MPa and water absorption of 0.55%. The replacement of coarse aggregates with lightweight aggregates at 100 wt% for concrete production showed the ultimate properties of concrete with density of 1780 g cm-3, water absorption of 3.55%, compressive strength of 40.94 MPa and thermal conductivity of 0.77 W m-1K-1. The concrete had more than 25% weight reduction while keeping a similar compressive strength to an ordinary concrete. This is revealed that lightweight aggregates could be applied into structural concrete because it was able to reduce work load and increase safety factor of construction.

  12. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    USGS Publications Warehouse

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram mixtures of kaolinite, illite, and mixed-layer clays by leaching in swamps to the deposition of the beds overlying the clay. The refractory properties of the clay vary directly with the purity of the kaolinite, and refractoriness decreases as the proportions of illite and mixed-layer clays increase. Certain nonclay minerals, chiefly siderite, pyrite, and iron oxide-bearing minerals, also act as fiuxes, reducing the refractory properties of the clay. The entire resources of clay in the Olive Hill clay bed are roughly and tentatively estimated to include 105,000,000 tons in the Haldeman quadrangle and 175,000,000 tons in the Wrigley quadrangle. Much of this clay is of poor quality and the amount that is better than the minimum requirements for use in refractories is probably about 30,000,000 tons. Only a fraction of this tonnage is suitable for superheat-duty products. Limestone is the only nonmetallic mineral resource other than refractory clay that has been developed in the two quadrangles, but 1arge amounts of shale suitable for use in making lightweight aggregate and structural clay products may also be present. Most of the limestone, which is quarried. in both quadrangles, is used for road-metal, concrete aggregate, and agriculture stone, but some of the limestone is of the quality that would be suitable for other uses. Virtually all the Mississippian Beech Creek limestone of Malott, 1919 which is as much as 18 feet thick, consists of high-calcium limestone. Shale beds that appear most favoralble for making lightweight aggregate are in the shale facies of the Lee formation of Pennsylvanian age. Shale that is probably suitable for structural clay products is present in the shale flacles of the Lee formation and in the Muldraugh formation of Mississippian age. Several dry holes have been drilled in search for oil and gas within the area of the two quadrangles. Though no commercial production was ever attained, one well furnished a supply of gas f

  13. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa.

    PubMed

    Hu, Yingxue; Beshr, Ghamdan; Garvey, Christopher J; Tabor, Rico F; Titz, Alexander; Wilkinson, Brendan L

    2017-11-01

    The first example of the self-assembly and lectin binding properties of photoswitchable glycodendrimer micelles is reported. Light-addressable micelles were assembled from a library of 12 amphiphilic Janus glycodendrimers composed of variable carbohydrate head groups and hydrophobic tail groups linked to an azobenzene core. Spontaneous association in water gave cylindrical micelles with uniform size distribution as determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). Trans-cis photoisomerization of the azobenzene dendrimer core was used to probe the self-assembly behaviour and lectin binding properties of cylindrical micelles, revealing moderate-to-potent inhibition of lectins LecA and LecB from Pseudomonas aeruginosa. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    USGS Publications Warehouse

    Jaisi, Deb P.; Ji, Shanshan; Dong, Hailiang; Blake, Ruth E.; Eberl, Dennis D.; Kim, Jinwook

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88–89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO42− and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ≤3.5 and their zeta potentials at the sediment-water interface pH (6.9–7.3) varied from −35 to −45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in native sediments and composite mixtures of biopolymer, bacteria, and clay minerals in the bioreduced sediments. However, a clear need remains for additional information on the conditions, if any, that favor the development of anoxia in deep- and bottom-water bodies supporting Fe(III) reduction and resulting in particle aggregation and sedimentation.

  15. Aggregation of Montmorillonite and Organic Matter in Aqueous Media Containing Artificial Seawater

    DTIC Science & Technology

    2009-01-23

    laboratory kaolinite and montmorillonite aggregation in which the dispersion-aggregation properties of pure clay suspensions were found to be primarily...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Aggregation of montmorillonite and organic matter in aqueous media containing...properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite , humic acid, and/or chitin at the

  16. The dynamics of soil aggregate breakdown in water in response to landuse as measured with laser diffraction technique

    NASA Astrophysics Data System (ADS)

    Oyedele, D. J.; Pini, R.; Sparvoli, E.; Scatena, M.

    2012-04-01

    The Mastersizer 2000G (Malvern Instruments) Diffraction Instrument was used to assess and quantify the breakdown of soil aggregates and compute wet aggregate stability indices. The study was aimed at evolving a novel rapid method of determining soil aggregate stability. Bulk surface (0-15 cm) soil samples were collected under 5 different land uses in the Teaching and Resrach Farm of Obafemi Awolowo University, Ile-Ife, Nigeria. About 0.5g of the soils aggregates (0.5 -1 mm diameter) were evaluated in the laser diffractometer with the stirrer operated at 500 rpm and the pump at 1800 rpm. The different size aggregates and particles of sand silt and clay were quantified periodically. Water stable aggregates greater than 250 µm (WSA>250), water stable aggregates less than 250 µm (WSA<250), water dispersible clay index (WDI), and mean volume diameter (MVD) among others were computed from the laser diffraction data. The values were compared with the classical Yoder wet sieving technique. The WSA>250 was significantly higher on the soils under Forest (FR), Cacao (CC), Teak (TK) and Oil Palm (OP) plantations, while it was significantly lowest under no-tillage (NT) and continuous cultivation (CT). The pasture (PD) was not significantly different from either the cultivated and the non-cultivated soils. Conversely, the WSA<250 and water dispersible clay index was highest in the cultivated soils (CT and NT) and lowest in the non-cultivated soils (FR, TK, CC and OP) while the PD was in-between. The MVD also followed a similar trend as the WSA>250. The wet sieving water stable aggregates index (WSI>250) was significantly correlated with WSA>250 (r = 0.75), MVD (r = 0.75), WDI (r = -0.68) and WSA<250 (r = - 0.73). All the laser diffraction measured aggregation indices were significantly correlated with the organic matter contents of the soils. Thus the laser diffraction promises a rapid and comprehensive method of evaluation of soil aggregate stability.

  17. Micro-structure and Swelling Behaviour of Compacted Clayey Soils: A Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Ferber, Valéry; Auriol, Jean-Claude; David, Jean-Pierre

    In this paper, the clay aggregate volume and inter-aggregate volume in compacted clayey soils are quantified, on the basis of simple hypothesis, using only their water content and dry density. Swelling tests on a highly plastic clay are then interpreted by describing the influence of the inter-aggregate volume before swelling on the total volume of samples after swelling. This approach leads to a linear relation between these latter parameters. Based on these results, a description of the evolution of the microstructure due to imbibition can be proposed. Moreover, this approach enables a general quantification of the influence of initial water content and dry density on the swelling behaviour of compacted clayey soils.

  18. Monitoring aggregate disintegration with laser diffraction: A tool for studying soils as sediments

    NASA Astrophysics Data System (ADS)

    Mason, Joseph; Kasmerchak, Chase; Liang, Mengyu

    2016-04-01

    One of the more important characteristics of soil that becomes hillslope, fluvial, or aeolian sediment is the presences of aggregates, which disintegrate at varying rates and to varying degrees during transport. Laser diffraction particle size analyzers allow monitoring of aggregate disintegration as a sample of soil or sediment suspended in water is circulated continuously through the measurement cell (Bieganowski et al., 2010, Clay Minerals 45-23-34; Mason et al., Catena 87:107-118). Mason et al. (2011) applied this approach to aeolian sedimentary aggregates (e.g. clay pellets eroded from dry lakebeds), immersing dry samples in DI water and circulating them through a Malvern Mastersizer 2000 particle size analyzer for three hours while repeated size distribution (SD) measurements were made. A final measurement was made after sonication and treatment with Na-metaphosphate. In that study, most samples approached a steady SD within three hours, which included both primary mineral grains and persistent aggregates. The disintegration process could be modeled with a first-order rate law representing the disintegration of a single population of aggregates. A wide range of model parameters were observed among the samples studied, and it was suggested that they could be useful in predicting the behavior of these aggregates, under rainfall impact and during slopewash or fluvial transport. Addition of Ca++ to the suspension altered aggregate behavior in some but not all cases. We applied the same method to dry, unground material from upper horizons of soils sampled along a bioclimatic gradient in northern Minnesota, USA, all formed in lithologically similar glacigenic sediment. These ranged from Alfisols (Luvisols) formed under forest since the last deglaciation, to Alfisols under forest that more recently replaced grassland, and Mollisols (Chernozems) that formed entirely under grassland vegetation. Few of these soil samples approached a steady SD within three hours, and modeling aggregate disintegration required the assumption of at least two aggregate populations. Upper horizons of soils formed under grassland displayed relatively slow disintegration throughout the procedure, with a large proportion of aggregates remaining after three hours. E horizons from forest soils, with low organic matter (OM) and clay content, displayed rapid early distintegration of a large portion of the aggregates, followed by much slower breakdown of the remainder (i.e. the two populations modeled had very different rate constants). OM content is clearly the overriding control on aggregate behavior, but we are also exploring effects of clay content and mineralogy, cation chemistry, and other factors. The differences in aggregate behavior are likely to be relevant to transport and deposition of sediment eroded from these soils, and possibly to the transport of OM or nutrients with eroded soil. We hope to incorporate this method into ongoing field studies of soil erosion with colleagues at UW-Madison.

  19. The effect of switchable water additives on clay settling.

    PubMed

    Chen, Chien-Shun; Lau, Ying Yin; Mercer, Sean M; Robert, Tobias; Horton, J Hugh; Jessop, Philip G

    2013-01-01

    The recycling of process water from strip mining extractions is a very relevant task both industrially and environmentally. The sedimentation of fine tailings during such processes, however, can often require long periods of time and/or the addition of flocculants which make later water recycling difficult. We propose the use of switchable water additives as reversible flocculants for clay/water suspensions. Switchable water additives are compounds such as diamines that make it possible to reversibly control the ionic strength of an aqueous solution. Addition of CO(2) to such an aqueous solution causes the ionic strength to rise dramatically, and the change is reversed upon removal of the CO(2). These additives, while in the presence of CO(2), promote the aggregation of clay tailings, reduce settling times, and greatly increase the clarity of the liberated water. The removal of CO(2) from the liberated water regenerates a low ionic strength solution that does not promote clay aggregation and settling until CO(2) is added again. Such reversible behavior would be useful in applications such as oil sands separations in which the recycled water must not promote aggregation. When added to kaolinite and montmorillonite clay suspensions, switchable water provided process waters of lower turbidity than those additives from inorganic salts or by CO(2)-treatment alone. When recollected, the switchable water supernatant was shown to be recyclable over three cycles for enhanced settling of kaolinite. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  1. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures

    PubMed Central

    Miličević, Ivana; Štirmer, Nina; Banjad Pečur, Ivana

    2016-01-01

    This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures. PMID:28773420

  2. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron.

    PubMed

    Yu, Kai; Gu, Cheng; Boyd, Stephen A; Liu, Cun; Sun, Cheng; Teppen, Brian J; Li, Hui

    2012-08-21

    Subnanoscale zerovalent iron (ZVI) synthesized using smectite clay as a template was utilized to investigate reduction of decabromodiphenyl ether (DBDE). The results revealed that DBDE was rapidly debrominated by the prepared smectite-templated ZVI with a reaction rate 10 times greater than that by conventionally prepared nanoscale ZVI. This enhanced reduction is plausibly attributed to the smaller-sized smectite-templated ZVI clusters (∼0.5 nm) vs that of the conventional nanoscale ZVI (∼40 nm). The degradation of DBDE occurred in a stepwise debromination manner. Pentabromodiphenyl ethers were the terminal products in an alkaline suspension (pH 9.6) of smectite-templated ZVI, whereas di-, tri-, and tetrabromodiphenyl ethers formed at the neutral pH. The presence of tetrahydrofuran (THF) as a cosolvent at large volume fractions (e.g., >70%) in water reduced the debromination rates due to enhanced aggregation of clay particles and/or diminished adsorption of DBDE to smectite surfaces. Modification of clay surfaces with tetramethylammonium (TMA) attenuated the colsovent effect on the aggregation of clay particles, resulting in enhanced debromination rates. Smectite clay provides an ideal template to form subnanoscale ZVI, which demonstrated superior debromination reactivity with DBDE compared with other known forms of ZVIs. The ability to modify the nature of smectite clay surface by cation exchange reaction utilizing organic cations can be harnessed to create surface properties compatible with various contaminated sites.

  3. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China.

    PubMed

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.

  4. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China

    PubMed Central

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S.

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  5. Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil

    NASA Astrophysics Data System (ADS)

    Farahani, Elham; Emami, Hojat; Keller, Thomas; Fotovat, Amir; Khorassani, Reza

    2018-01-01

    This study investigated the impact of monovalent cations on clay dispersion, aggregate stability, soil pore size distribution, and saturated hydraulic conductivity on agricultural soil in Iran. The soil was incubated with treatment solutions containing different concentrations (0-54.4 mmol l-1) of potassium and sodium cations. The treatment solutions included two levels of electrical conductivity (EC=3 or 6 dS m-1) and six K:Na ratios per electrical conductivity level. At both electrical conductivity levels, spontaneously dispersible clay increased with increasing K concentration, and with increasing K:Na ratio. A negative linear relationship between percentage of water-stable aggregates and spontaneously dispersible clay was observed. Clay dispersion generally reduced the mean pore size, presumably due to clogging of pores, resulting in increased water retention. At both electrical conductivity levels, hydraulic conductivity increased with increasing exchangeable potassium percentage at low exchangeable potassium percentage values, but decreased with further increases in exchangeable potassium percentage at higher exchangeable potassium percentage. This is in agreement with earlier studies, but seems in conflict with our data showing increasing spontaneously dispersible clay with increasing exchangeable potassium percentage. Our findings show that clay dispersion increased with increasing K concentration and increasing K:Na ratio, demonstrating that K can have negative impacts on soil structure.

  6. Influence of natural organic matter on the adsorption of metal ion onto clay particles

    USGS Publications Warehouse

    Schmitt, D.; Taylor, Howard E.; Aiken, G.R.; Roth, D.A.; Frimmel, F.H.

    2002-01-01

    The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 μm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.

  7. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  8. Evolution of centrosomes and the nuclear lamina: Amoebozoan assets.

    PubMed

    Gräf, Ralph; Batsios, Petros; Meyer, Irene

    2015-06-01

    The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina

    PubMed Central

    Field, Mark C.

    2016-01-01

    Abstract The emergence of the nucleus was a major event of eukaryogenesis. How the nuclear envelope (NE) arose and acquired functions governing chromatin organization and epigenetic control has direct bearing on origins of developmental/stage-specific expression programs. The configuration of the NE and the associated lamina in the last eukaryotic common ancestor (LECA) is of major significance and can provide insight into activities within the LECA nucleus. Subsequent lamina evolution, alterations, and adaptations inform on the variation and selection of distinct mechanisms that subtend gene expression in distinct taxa. Understanding lamina evolution has been difficult due to the diversity and limited taxonomic distributions of the three currently known highly distinct nuclear lamina. We rigorously searched available sequence data for an expanded view of the distribution of known lamina and lamina-associated proteins. While the lamina proteins of plants and trypanosomes are indeed taxonomically restricted, homologs of metazoan lamins and key lamin-binding proteins have significantly broader distributions, and a lamin gene tree supports vertical evolution from the LECA. Two protist lamins from highly divergent taxa target the nucleus in mammalian cells and polymerize into filamentous structures, suggesting functional conservation of distant lamin homologs. Significantly, a high level of divergence of lamin homologs within certain eukaryotic groups and the apparent absence of lamins and/or the presence of seemingly different lamina proteins in many eukaryotes suggests great evolutionary plasticity in structures at the NE, and hence mechanisms of chromatin tethering and epigenetic gene control. PMID:27189989

  10. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: A case study of clay loam soil from the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Wang, L.; Shi, Z. H.; Wang, J.; Fang, N. F.; Wu, G. L.; Zhang, H. Y.

    2014-05-01

    Rainfall kinetic energy (KE) can break down aggregates in the soil surface. A better understanding of sediment sorting associated with various KEs is essential for the development and verification of soil erosion models. A clay loam soil was used in the experiments. Six KEs were obtained (76, 90, 105, 160, 270, and 518 J m-2 h-1) by covering wire screens located above the soil surface with different apertures to change the size of raindrops falling on the soil surface, while maintaining the same rainfall intensity (90 ± 3.5 mm h-1). For each rainfall simulation, runoff and sediment were collected at 3-min intervals to investigate the temporal variation of the sediment particle size distribution (PSD). Comparison of the sediment effective PSD (undispersed) and ultimate PSD (dispersed) was used to investigate the detachment and transport mechanisms involved in sediment mobilization. The effective-ultimate ratios of clay-sized particles were less than 1, whereas that of sand-sized particles were greater than 1, suggesting that these particles were transported as aggregates. Under higher KE, the effective-ultimate ratios were much closer to 1, indicating that sediments were more likely transported as primary particles at higher KE owing to an increased severity of aggregate disaggregation for the clay loam soil. The percentage of clay-sized particles and the relative importance of suspension-saltation increased with increasing KE when KE was greater than 105 J m-2 h-1, while decreased with increasing KE when KE was less than 105 J m-2 h-1. A KE of 105 J m-2 h-1 appeared to be a threshold level beyond which the disintegration of aggregates was severe and the influence of KE on erosion processes and sediment sorting may change. Results of this study demonstrate the need for considering KE-influenced sediment transport when predicting erosion.

  11. Effects of slaking and mechanical breakdown on disaggregation and splash erosion

    USDA-ARS?s Scientific Manuscript database

    The contributions of different aggregate breakdown mechanisms to splash erosion are still obscure. This study was designed to investigate the effects of different soil disaggregation mechanisms on splash erosion. Loam clay soil, clay loam soil, and sandy loam soil were used in this study. Soil aggre...

  12. Lightweight aggregate production from claystone and shale in Bangladesh

    USGS Publications Warehouse

    Parker, Norbert A.; Khan, M.A.

    1976-01-01

    Muffle furnace tests were made on samples of clay, claystone, and shale collected in the Chittagong and Dacca areas of East Pakistan to determine their amenability to bloating for the commercial production of light-weight aggregate. Several areas, sampled in some detail, were selected for investigation because of their proximity to market, and accessibility to fuel and electricity. Muffle furnace tests show that the clay, claystone, and shale are natural bloaters at temperatures in the 1700? to 2200? F range, and do not require additives. The most desirable deposit, insofar as producing a strong aggregate is concerned, can be determined only by pilot-kiln testing and by crushing-strength tests made on concrete test cylinders. Reserves of suitable raw material are large in both the Chittagong and Dacca areas.

  13. Adsorption characteristics of a cationic porphyrin on nanoclay at various pH.

    PubMed

    Rice, Zachary; Bergkvist, Magnus

    2009-07-15

    Natural and synthetic porphyrin derivatives offer a range of applications including enzymatic catalysis, photosensitizers for light harvesting and chemical reactions, and molecular electronics. They exhibit unique optical spectra dominated by the presence of Soret and Q-band structures whose position and shape offer a straightforward method to characterize porphyrins in various surroundings. In many applications it is often beneficial to have porphyrins adsorbed onto a solid matrix. Applications of porphyrin-clay complexes extend to numerous biological applications including pharmaceutical drug delivery, cosmetics, and agricultural applications and thus a full understanding of porphyrin-clay surface interactions are essential. Here we investigated the adsorption behavior of meso-tetra(4-N,N,N-trimethylanilinium) porphine (TMAP) onto sodium containing, natural montmorillonite clay (Cloisite Na(+)) in characteristic biological buffers over a range of pHs (approximately 2-9). Spectroscopic analyses show a linear absorption response at acidic and basic pHs but a slight deviation at intermediate pHs. Absorption spectra for TMAP on clay showed distinct red shifts of the Soret and Q-bands compared to free TMAP for all buffer conditions indicating core pi-electron delocalization into the substituent rings. At intermediate pHs, a gradual transition between protonated/deprotonated states were seen, presumably due to higher H(+) concentration at the surface than in bulk. Results indicate TMAP adsorption to clay occurs in a monolayer fashion at low/high pH while slightly acidic/neutral pH possibly rearrange on the surface and/or form aggregates. AFM images of clay saturated with TMAP are reported and show single isolated clay sheets without aggregation, similar to clay without TMAP.

  14. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  15. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels

    NASA Astrophysics Data System (ADS)

    Kim, Han-Shin; Cha, Eunji; Kim, Yunhye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung

    2016-05-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.

  16. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  17. Influence of aggregate type and chemical admixtures on frost resistance of lightweight mortars

    NASA Astrophysics Data System (ADS)

    Klimek, Beata; Widomski, Marcin K.; Barnat-Hunek, Danuta

    2017-07-01

    The aim of studies presented in this paper covered analyses of type of lightweight aggregate as well as aeration and hydrophobic admixtures influence on absorbability and frost resistance of heat-insulating mortars applied in the energy-efficient construction. In the presented research, expanded perlite (EP) and expanded clay aggregate (ceramsite) were used as lightweight aggregates. The measurements of the basic mechanical and physical characteristics of tested mortars were performed, including, inter alia, compressive and flexural tensile strength, density, effective (open) and total porosity, absorbability, thermal conductivity as well as frost resistance after 25 cycles of freezing and thawing. Substitution of some part of sand fraction by the lightweight aggregates, expanded clay aggregate or perlite, resulted in changes in physical properties of the tested mortars. The observed decrease in density (specific weight), coefficient of heat transport and strength parameters were simultaneously accompanied by the increase in absorbability. Researches concerning frost resistance of mortars containing ceramsite and perlite showed the improved frost resistance of mortar utilizing perlite. Most of the tested mortars shoved satisfactory frost resistance, only samples of mortar containing ceramsite and aeration admixture were destroyed. The significant influence of aerating admixture on frost resistance of mortars was determined. Hydrophobic siloxanes addition failed to adequately protect the mortars against frost erosion, regardless the type of applied aggregate.

  18. Large scale structures in liquid crystal/clay colloids

    NASA Astrophysics Data System (ADS)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  19. Field evaluation of fly ash in aggregate shoulder materials : final report.

    DOT National Transportation Integrated Search

    1985-06-01

    This study consisted of an evaluation of self-hardening fly ash (Class C) used as an additive in the treatment of shoulders surfaced with sand clay gravel and/or shell (oyster). This was accomplished through construction of fly ash treated aggregate ...

  20. Field Demonstrations of Five Geophysical Methods that Could Be Used to Characterize Deposits of Alluvial Aggregate

    USGS Publications Warehouse

    Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.

    2007-01-01

    Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.

  1. Influence of Soil Organic Matter Stabilization Mechanisms on Temperature Sensitivity of Soil Respiration

    NASA Astrophysics Data System (ADS)

    Gillabel, J.; de Gryze, S.; Six, J.; Merckx, R.

    2007-12-01

    Knowledge on the sensitivity of soil organic matter (SOM) respiration to changes in temperature is crucial for predicting future impacts of climate change on soil C stocks. Temperature sensitivity of respiration is determined by the chemical structure of the compound to be decomposed and by the availability of the organic matter for decomposers. Biochemically recalcitrant SOM has a higher temperature sensitivity than biochemically labile SOM. However, it is hypothesized that the stabilization of SOM by interaction with the soil matrix could be an important attenuating control on temperature sensitivity. We investigated the effect of different SOM stabilization mechanisms on temperature sensitivity of SOM respiration. Two main mechanisms were considered: chemical interactions of SOM with clay and silt particles, and physical protection inside aggregates. Soil samples from an agricultural silt loam soil were fractionated by wet-sieving into macroaggregates, microaggregates and silt+clay fractions. SOM stabilization in the silt+clay fraction occurs mainly chemically, whereas in aggregates physical protection of SOM is more important. Samples of each fraction and of bulk soil were incubated at two temperatures (20°C and 30°C) for one month. After 2% of total soil carbon was respired, temperature sensitivity was determined for respiration of the next 0.5% of total soil carbon. This was done by calculating a Q10 value as the ratio of the times needed at each temperature to respire that fraction of the soil C. This method allows determination of temperature sensitivity independent of C quality. Calculated Q10 values decreased in the order bulk soil > macroaggregates > microaggregates > silt+clay, with the difference between macroaggregate Q10 and silt+clay Q10 being the only significant difference. These results indicate that protection of SOM attenuates temperature sensitivity, with chemical protection (silt+clay) having a larger effect than physical protection (aggregates).

  2. Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina.

    PubMed

    Koreny, Ludek; Field, Mark C

    2016-09-19

    The emergence of the nucleus was a major event of eukaryogenesis. How the nuclear envelope (NE) arose and acquired functions governing chromatin organization and epigenetic control has direct bearing on origins of developmental/stage-specific expression programs. The configuration of the NE and the associated lamina in the last eukaryotic common ancestor (LECA) is of major significance and can provide insight into activities within the LECA nucleus. Subsequent lamina evolution, alterations, and adaptations inform on the variation and selection of distinct mechanisms that subtend gene expression in distinct taxa. Understanding lamina evolution has been difficult due to the diversity and limited taxonomic distributions of the three currently known highly distinct nuclear lamina. We rigorously searched available sequence data for an expanded view of the distribution of known lamina and lamina-associated proteins. While the lamina proteins of plants and trypanosomes are indeed taxonomically restricted, homologs of metazoan lamins and key lamin-binding proteins have significantly broader distributions, and a lamin gene tree supports vertical evolution from the LECA. Two protist lamins from highly divergent taxa target the nucleus in mammalian cells and polymerize into filamentous structures, suggesting functional conservation of distant lamin homologs. Significantly, a high level of divergence of lamin homologs within certain eukaryotic groups and the apparent absence of lamins and/or the presence of seemingly different lamina proteins in many eukaryotes suggests great evolutionary plasticity in structures at the NE, and hence mechanisms of chromatin tethering and epigenetic gene control. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Study of Adsorption and Flocculation Properties of Natural Clays to Remove Prorocentrum lima

    PubMed Central

    Louzao, Maria Carmen; Abal, Paula; Fernández, Diego A.; Vieytes, Mercedes R.; Legido, José Luis; Gómez, Carmen P.; Pais, Jesus; Botana, Luis M.

    2015-01-01

    High accumulations of phytoplankton species that produce toxins are referred to as harmful algal blooms (HABs). HABs represent one of the most important sources of contamination in marine environments, as well as a serious threat to public health, fisheries, aquaculture-based industries, and tourism. Therefore, methods effectively controlling HABs with minimal impact on marine ecology are required. Marine dinoflagellates of the genera Dinophysis and Prorocentrum are representative producers of okadaic acid (OA) and dinophysistoxins responsible for the diarrhetic shellfish poisoning (DSP) which is a human intoxication caused by the consumption of shellfish that bioaccumulate those toxins. In this work we explore the use of natural clay for removing Prorocentrum lima. We evaluate the adsorption properties of clays in seawater containing the dinoflagellates. The experimental results confirmed the cell removal through the flocculation of algal and mineral particles leading to the formation of aggregates, which rapidly settle and further entrain cells during their descent. Moreover, the microscopy images of the samples enable one to observe the clays in aggregates of two or more cells where the mineral particles were bound to the outer membranes of the dinoflagellates. Therefore, this preliminary data offers promising results to use these clays for the mitigation of HABs. PMID:26426051

  4. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  5. Marine Synechococcus Aggregation

    NASA Astrophysics Data System (ADS)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  6. Changes in soil aggregate dynamics following 18 years of experimentally increased precipitation in a cold desert ecosystem

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; vanderVeen, J.; Germino, M. J.

    2011-12-01

    Climate change is expected to alter the amount and timing of precipitation in semiarid ecosystems of the intermountain west, which can alter soil carbon dynamics. Specifically, an increase in precipitation in arid ecosystems promotes microbial activity, which can increase soil aggregate formation and enhance sequestration of soil organic carbon within stable aggregates. This study was conducted to assess: (1) how precipitation shifts affect soil aggregate formation and associated soil organic carbon contents in semi arid ecosystems, and (2) how plants mediate precipitation impacts on soil aggregate dynamics. Soil samples were collected from a long-term ecohydrology study located in the cold desert of the Idaho National Lab, USA. Precipitation treatments delivered during the previous 18 years consist of three regimes: (1) a control (ambient precipitation), (2) 200 mm irrigation added during the growing season, and (3) 200 mm irrigation added during the cold dormant season. Experimental plots were planted with a diverse native mix of big sagebrush (Artemisia tridentate) and associated shrubs, grasses, and forbs, but had also become invaded by crested wheatgrass (Agropyron cristatum). Soils were collected in February (2011) with a 4.8 cm diameter soil corer to a depth of 15 cm. Across all precipitation treatments we sampled both directly beneath sagebrush and crested wheatgrass and from relatively bare plant-interspaces. Subsamples (100 g) were sieved (4.75 mm) and air dried. Then, the soils were fractionated into (1) macro aggregates (> 250 μm), (2) free micro aggregates (53-250 μm) and (3) free silt and clay fractions (<53 μm), using a wet sieving protocol. Further, macro aggregates were separated into particulate organic matter (POM), micro aggregates and silt and clay fractions using a micro aggregate isolator. Soil fractions were analyzed for soil organic carbon contents after removal of soil carbonates using sulfurous acid. Our preliminary results indicate that supplemental precipitation enhanced macro aggregate formation by 20% under plants and by 70% in plant interspaces. In contrast, free silt and clay fractions decreased in response to supplemental precipitation. These preliminary findings suggest that increased precipitation in a cold desert ecosystem may significantly enhance soil structure, particularly in the interspaces separating plants where surface crusting, poor infiltration and reduced fertility otherwise prevail.

  7. Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Davoud; Whittle, Andrew J.; Pellenq, Roland J.-M.

    2014-04-01

    Face-to-face and edge-to-edge free energy interactions of Wyoming Na-montmorillonite platelets were studied by calculating potential of mean force along their center to center reaction coordinate using explicit solvent (i.e., water) molecular dynamics and free energy perturbation methods. Using a series of configurations, the Gay-Berne potential was parametrized and used to examine the meso-scale aggregation and properties of platelets that are initially random oriented under isothermal-isobaric conditions. Aggregates of clay were defined by geometrical analysis of face-to-face proximity of platelets with size distribution described by a log-normal function. The isotropy of the microstructure was assessed by computing a scalar order parameter. The number of platelets per aggregate and anisotropy of the microstructure both increases with platelet plan area. The system becomes more ordered and aggregate size increases with increasing pressure until maximum ordered state at confining pressure of 50 atm. Further increase of pressure slides platelets relative to each other leading to smaller aggregate size. The results show aggregate size of (3-8) platelets for sodium-smectite in agreement with experiments (3-10). The geometrical arrangement of aggregates affects mechanical properties of the system. The elastic properties of the meso-scale aggregate assembly are reported and compared with nanoindentation experiments. It is found that the elastic properties at this scale are close to the cubic systems. The elastic stiffness and anisotropy of the assembly increases with the size of the platelets and the level of external pressure.

  8. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    PubMed

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  9. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    PubMed

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  10. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Influence of smectite suspension structure on sheet orientation in dry sediments: XRD and AFM applications.

    PubMed

    Zbik, Marek S; Frost, Ray L

    2010-06-15

    The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.

  12. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?

    PubMed Central

    Koonin, Eugene V.

    2015-01-01

    The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently. PMID:26323764

  13. Late acquisition of mitochondria by a host with chimeric prokaryotic ancestry

    PubMed Central

    Pittis, Alexandros A.; Gabaldón, Toni

    2016-01-01

    The origin of eukaryotes stands as a major conundrum in biology1. Current evidence indicates that the Last Eukaryotic Common Ancestor (LECA) already possessed many eukaryotic hallmarks, including a complex subcellular organization1–3. In addition, the lack of evolutionary intermediates challenges the elucidation of the relative order of emergence of eukaryotic traits. Mitochondria are ubiquitous organelles derived from an alpha-proteobacterial endosymbiont4. Different hypotheses disagree on whether mitochondria were acquired early or late during eukaryogenesis5. Similarly, the nature and complexity of the receiving host are debated, with models ranging from a simple prokaryotic host to an already complex proto-eukaryote1,3,6,7. Most competing scenarios can be roughly grouped into either mito-early, which consider the driving force of eukaryogenesis to be mitochondrial endosymbiosis into a simple host, or mito-late, which postulate that a significant complexity predated mitochondrial endosymbiosis3. Here we provide evidence for late mitochondrial endosymbiosis. We used phylogenomics to directly test whether proto-mitochondrial proteins were acquired earlier or later than other LECA proteins. We found that LECA protein families of alpha-proteobacterial ancestry and of mitochondrial localization show the shortest phylogenetic distances to their closest prokaryotic relatives, when compared to proteins of different prokaryotic origin or cellular localization. Altogether, our results shed new light on a long-standing question and provide compelling support for the late acquisition of mitochondria into a host that already had a proteome of chimeric phylogenetic origin. We argue that mitochondrial endosymbiosis was one of the ultimate steps in eukaryogenesis and that it provided the definitive selective advantage to mitochondria-bearing eukaryotes over less complex forms. PMID:26840490

  14. Dispersion and reaggregation of nanoparticles in the polypropylene copolymer foamed by supercritical carbon dioxide.

    PubMed

    Oh, Kyunghwan; Seo, Youngwook P; Hong, Soon Man; Takahara, Atsushi; Lee, Kyoung Hwan; Seo, Yongsok

    2013-07-14

    For the preparation of nanocomposites, we conducted environmentally benign foaming processing on polypropylene (PP) copolymer/clay nanocomposites via a batch process in an autoclave. We investigated the dispersion and the exfoliation of the nanoclay particles. Full exfoliation was achieved by the foamability of the matrix PP copolymer using supercritical carbon dioxide (sc CO2) and subcritical carbon dioxide (sub CO2). More and smaller cells were observed when the clay was blended as heterogeneous nuclei and sc CO2 was used. Small angle X-ray scattering showed that highly dispersed states (exfoliation) of the clay particles were obtained by the foaming process. Since the clay particles provided more nucleating sites for the foaming of the polymer, a well dispersed (or fully exfoliated) nanocomposite exhibited a higher cell density and a smaller cell size at the same clay particle concentration. Expansion of the adsorbed CO2 facilitated the exfoliation of the clay platelets; thus, sc CO2 at lower temperature was more efficient for uniform foaming-cell production. Fully dispersed clay platelets were, however, re-aggregated when subjected to a further melting processing. The reprocessed nanocomposites still had some exfoliated platelets as well as some aggregated intercalates. The dual role of the nanoclay particles as foaming nucleus and a crystallization nucleus was confirmed by cell growth observation and nonisothermal crystallization kinetics analysis. A low foaming temperature and a high saturation pressure were more favorable for obtaining a uniform foam. The PP copolymer was found to be foamed more easily than polypropylene. A small amount of other olefin moieties in the backbone of the polymer facilitated better foamability than the neat polypropylene.

  15. Valorisation of different types of boron-containing wastes for the production of lightweight aggregates.

    PubMed

    Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N

    2011-01-30

    Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Electric alignment of plate shaped clay aggregates in oils

    NASA Astrophysics Data System (ADS)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  17. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  18. Study of shale reservoir nanometer-sized pores in Member 1 of Shahejie Formation in JX area, Liaozhong sag

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Zhang, Yu; Wen, Yiming

    2018-02-01

    The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.

  19. Role of organic matter on aggregate stability and related mechanisms through organic amendments

    NASA Astrophysics Data System (ADS)

    Zaher, Hafida

    2010-05-01

    To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter

  20. Nonlinear Propagation of Sound in Recently Settled Flocculated Sediments

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Sanders, W. M.

    2016-12-01

    Cohesive sediments undergo changes in a whirlwind. Dumped out of the river and into the estuary, they get bathed in salty water and subject to turbulent motion. During this sequence of events, the clay particles form clay aggregates of larger size with higher settling rates than the clay particles. Once the flocs have settled, cohesive sediments may form a sediment deposit of mud. Our interest is in the factors that control the development of soundspeed within these muds. This paper addresses organic matter influences on floc aggregation and settling rates. In laboratory studies, organic matter type differed in mixtures with either bentonite or kaolinite clays. The organic matter types used were guar gum, a net positive biopolymer, and xanthan gum, a net negative biopolymer derived from bacterial exudates, similar to those commonly found in estuaries. These biopolymers were dissolved into low salinity water (0-10 ppt). The biopolymer mixture was degassed and during the degassing process, either bentonite or kaolinite clay was added to the vessel. Surprisingly, different settling rates occurred in the clay-biopolymer mixtures. The settling rates of the clay-guar mixtures was more rapid (1-2 days) than the settling rate for the clay-xanthan mixtures. While clay-guar consolidated further, clay-xanthan maintained consistency for more than 2 weeks with density slowly increasing during that period. Compressional soundspeed (Vp) measurements were made with depth through the vessel using 0.5 mHz piezoelectric transducers. It was found that Vp in water was similar to that of the clay-xanthan. Vp was the same in the upper 6 cm of mud as it was in the overlying water and Vp decreased to become slower with increasing depth. Compressional wave velocity (Vp) also changed slightly with the guar complexes below the sediment water interface to the depth of the vessel. Vp was slightly slower in the mud than in the water column. Vp of the water was 1480-1495 m/s whereas Vp within the clay-biopolymer was below the minimum Vp in the water column. This slight decrease in Vp with depth is consistent for that of naturally occurring surficial mud deposits. This work suggests that organic matter type can play a critical role in the rate of consolidation within a mud deposit, which has implications for mud strength development and transport potential.

  1. Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Nussbaum, Christophe

    2017-01-01

    The Main Fault in the shaly facies of Opalinus Clay is a small reverse fault formed in slightly overconsolidated claystone at around 1 km depth. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite and celestite veins, scaly clay and clay gouge. Scaly clay occurs in up to 1.5 m wide lenses, providing hand specimens for this study. We mapped the scaly clay fabric at 1 m-10 nm scale, examining scaly clay for the first time using broad-ion beam polishing combined with scanning electron microscopy (BIB-SEM). Results show a network of thin shear zones and microveins, separating angular to lensoid microlithons between 10 cm and 10 µm in diameter, with slickensided surfaces. Our results show that microlithons are only weakly deformed and that strain is accumulated by fragmentation of microlithons by newly formed shear zones, by shearing in the micron-thick zones and by rearrangement of the microlithons.The scaly clay aggregates can be easily disintegrated into individual microlithons because of the very low tensile strength of the thin shear zones. Analyses of the microlithon size by sieving indicate a power-law distribution model with exponents just above 2. From this, we estimate that only 1 vol % of the scaly clay aggregate is in the shear zones.After a literature review of the hypotheses for scaly clay generation, we present a new model to explain the progressive formation of a self-similar network of anastomosing thin shear zones in a fault relay. The relay provides the necessary boundary conditions for macroscopically continuous deformation. Localization of strain in thin shear zones which are locally dilatant, and precipitation of calcite veins in dilatant shear fractures, evolve into complex microscale re-partitioning of shear, forming new shear zones while the microlithons remain much less deformed internally and the volume proportion of the µm-thick shear zones slowly increases. Grain-scale deformation mechanisms are microfracturing, boudinage and rotation of mica grains, pressure solution of carbonate fossils and pore collapse during ductile flow of the clay matrix. This study provides a microphysical basis to relate microstructures to macroscopic observations of strength and permeability of the Main Fault, and extrapolating fault properties in long-term deformation.

  2. Nontronite Particle Aggregation Induced by Microbial Fe(III) Reduction and Exopolysaccharide Production

    DTIC Science & Technology

    2007-01-01

    polymers to achieve desired properties (such Chenu el al., 1979; Kimn el al., 2005). Among these as aggregation. dispersion ) without any structural...performed with and without Na pyrophosphate as a term ’aggregation’ broadly to include all processes that dispersant (25 mM) with shaking in a water...coagulation, at 25 mM was found to be optimal to disperse individual flocculation, agglutination, etc.). The results of this clay particles without

  3. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth

    DOE PAGES

    Werner, Florian; Mueller, Carsten W.; Thieme, Jurgen; ...

    2017-06-09

    Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soilmore » depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Lastly, our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.« less

  4. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Florian; Mueller, Carsten W.; Thieme, Jurgen

    Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soilmore » depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Lastly, our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.« less

  5. Influences of composted hazelnut husk on some physical properties of soils.

    PubMed

    Zeytin, Serhat; Baran, Abdullah

    2003-07-01

    Some physical properties of clay loam and sandy loam soils amended with hazelnut husk (HH) were investigated. HH collected from hazelnut trees were dried, ground and composted for four months. Before use the composted material obtained was separated to three different aggregate sizes, smaller than 0.84 mm, 0.84-2.38 mm and bigger than 2.38 mm. Then these fractions were mixed with soil samples, at 0%, 1%, 2%, 4% and 8% by weight. Huzelnut husk compost-soil mixtures were placed to plastic pots and kept in an incubator at 25+/-5 degrees C for 45 and 90 days. At the end of incubation periods, water stable aggregate (WSA), hydraulic conductivity, total porosity, aeration porosity and macro- and micro-pore percentages of the mixtures were determined. Results obtained showed that composted HH increased the WSA, hydraulic conductivity, total porosity and macro-pore percentage in both clay loam and sandy loam soils depending on the incubation time and aggregate sizes.

  6. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    PubMed Central

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  7. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  8. Biological and physical factors controlling aggregate stability under different climatic conditions in Southern Spain.

    NASA Astrophysics Data System (ADS)

    Ángel Gabarrón-Galeote, Miguel; Damián Ruiz-Sinoga, Jose; Francisco Martinez-Murillo, Juan; Lavee, Hanoch

    2013-04-01

    Soil aggregation is a key factor determining the soil structure. The presence of stable aggregates is essential to maintain a good soil structure, that in turn plays an important role in sustaining agricultural productivity and preserving environmental quality. A wide range of physical and biological soil components are involved in the aggregate formation and stabilization, namely clay mineral content; the quantity and quality of organic matter, that can be derived from plants, fungal hyphae, microorganism and soil animals; and the soil water content. Climatic conditions, through their effect on soil water content, vegetation cover and organic matter content, are supposed to affect soil aggregation. Thus the main objective of this research is to analyse the effect of organic matter, clay content and soil water content on aggregate stability along a climatic transect in Southern Spain. This study was conducted in four catchments along a pluviometric gradient in the South of Spain (rainfall depth decreases from west to east from more than 1000 mm year-1 to less than 300 mm year-1) and was based on a methodology approximating the climatic gradient in Mediterranean conditions. The selected sites shared similar conditions of geology, topography and soil use, which allowed making comparisons among them and relating the differences to the pluviometric conditions. In February 2007, 250 disturbed and undisturbed samples from the first 5cm of the soil were collected along the transect. We measured the aggregate stability, organic matter, clay content and bulk density of every sample. In the field we measured rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, potential evapotranspiration, soil water content, vegetation cover and presence of litter. Our results suggest that aggregate stability is a property determined by a great number of highly variable factors, which can make extremely difficult to predict its behavior taking in account only a few of them. The climate exerted a great influence in aggregate stability and could determine by itself the soil structure along the climate transect. As a result, properties unrelated in a specific point of the climate transect became highly associated if we took it into account completely. Along the climate transect analyzed could be defined two areas, separated by a threshold located between 573.6 mm y-1 and 335.9 mm y-1. In the wettest part soil structure was mainly determined by biotic factors and in the driest part was highly probable that abiotic factors play a key role determining aggregate stability.

  9. Effect of Mineral and Microbe Interactions on Biomass Yield

    NASA Astrophysics Data System (ADS)

    Pena, S. A.; Block, K. A.; Katz, A.; Gottlieb, P.

    2016-12-01

    The ecological feedback of microbes (bacteria and viruses) in association with minerals is virtually unexplored in the context of characterizing how carbon cycles in the terrestrial ecosystem. These interactions include the ability for bacteriophage to control bacteria populations, the ability of minerals to provide a substrate for bacteria growth, and the effect of minerals on bacteriophage viability. We investigate bacteriophage aggregation with minerals in the clay size fraction (< 0.2 µm) as well as the interaction between bacteriophage and mineral biofilms. In our virus experiments, bacteriophage Φ6 was suspended with the minerals smectite, illite, kaolinite, and goethite at low divalent cation concentrations so aggregation was in the reaction limited colloidal aggregation (RLCA) regime, at neutral pH and room temperature conditions. Virus remained viable at a 1:1 virus-clay ratio for clays, and at an approximate 100:1 ratio for goethite. However, the number of plaque forming units was reduced by 99%. Electron micrographs show viable as well as partially disassembled virus, similar to the results found by Block et al. 2014. We found that inactivation of a 4 x 1011 cm-3 concentration of bacteriophage Φ6 by smectite, illite, kaolinite, and goethite, required a minimum sediment concentration of 1.5 x 1011 cm-3, 1.4 x 1011 cm-3, 2.5 x 1011 cm-3, and 1.1 x 109 cm-3, respectively. Mineral biofilms were generated by suspension of tropical soil clays with gram-positive and gram-negative microbes and characterized by x-ray diffraction and imaged by electron microscopy (SEM and TEM). Mineral biomass produced by gram negative organisms were subjected to virus infection to determine influence of minerals on community resilience. Lastly, we report biomass yield in each instance to quantify the influence of mineral composition on total biomass production.

  10. Dust deposits on Mars: The 'parna' analog

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Williams, Steven H.

    1994-01-01

    Parna is an Autralian aboriginal word meaning 'sandy dust'. It has been applied to deposits of clay, silt, and sand which were initially transported by the wind as aggregates, or pellets, of sand size. Parna is distinguished by its silt and clay content, which in some cases exceeds 85% of the total volume of the deposit. Much of the fine-grained playa silt and clay is incorporated into the parna as sand-sized aggregates, which greatly facilitate their transportation and reworking by the wind. Rain following aggregate emplacement can cause their disintegration, rendering the parna immobile by the wind, yet some pellets can survive several wetting/drying episodes. Parna deposits on Earth occur both as dune forms and as sheet deposits which mantle older terrains. In both cases the deposits are typically derived from lacustrine (lake) beds, such as playas. There is substantial evidence to suggest that bodies of water existed on Mars in the past. Thus, the potential is high for lacustrine deposits and the formation of parna on Mars. Although no parna dunes have been identified, it is suggested that the deposits derived from White Rock (-8 deg, 335 deg W), near Mamers Valles (34 deg, 343 deg W), and elsewhere on Mars may represent sheet parna. Data obtained from Mars-94/96 missions and potential landed spacecraft may provide additional evidence for the existence of parna on Mars.

  11. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  12. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  13. [Effects of Land Use Type on Soil Microbial Biomass Carbon and Nitrogen in Water-Stable Aggregates in Jinyun Mountain].

    PubMed

    Li, Zeng-quan; Jiang, Chang-sheng; Hao, Qing-ju

    2015-11-01

    In this study, four land use types including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude in Jinyun Mountain. Four sizes of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (0.053-0.25 mm) and silt + clay (< 0.053 mm) were achieved by wet sieving method and the contents of microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in each aggregate fraction were measured to study the impacts of the different land use types on MBC and MBN in soil aggregates. The results showed that the contents of MBC and MBN in all aggregates in the four land use types decreased with the increasing soil depth. Except large macroaggregetes, the contents of MBC and MBN in the other three soil aggregates decreased when the forest was reclamated into orchard and sloping farmland. MBC and MBN contents in large macroaggregates, small macroaggregates and microaggregates all increased when the sloping farmland was abandoned. The storages of organic carbon and nitrogen in soil depth of 0-60 cm in the four proportions were calculated by the equivalent soil mass method. The results revealed that MBC storages in the other three sizes except silt + clay were higher in the forest than those in orchard and sloping land. And MBC storages in the all aggregates were higher in the abandoned land than those in the sloping land. MBN storages in small macroaggregates and microaggregates were higher in the forest than those in orchard and sloping land. And MBN storages in the other three aggregates except silt + clay were higher in the abandoned land than those in the sloping land. Generally speaking, the storages of MBC in soil aggregates of forest and abandoned land were higher than in orchard and sloping land, MBN storage in soil aggregates of forest was nearly equal to the storage in orchard. However, the storages of MBN in soil aggregates of forest and abandoned land were higher than those in sloping land. The results showed that the reclamation of the forest resulted in the loss of MBC and MBN in soil aggregates of sloping land. However, the abandon of the sloping land contributed to the acumulation of MBC and MBN in soil aggregates. In the process of land use change, the direction and quantity of change in MBC in the soil aggregates were not consistent with those of the total soil organic carbon, which meant the microbial quotient in soil aggregates was not suitable for using to evaluate the impact of land use change on soil quality, using the total organic carbon as an index to express the sensitivity of the land use change may be better.

  14. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies

    PubMed Central

    Ito, Akihiko; Wagai, Rota

    2017-01-01

    Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Buendia, A.M.; Climent, V.; Verdu, P.

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestonemore » with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR (dedolomitization degree) and ASR.« less

  16. Influence of calcium carbonate and charcoal application on aggregation processes and organic matter retention at the silt-size scale

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, Asmeret; Kaiser, Michael; Ghezzehei, Teamrat; Myrold, David; Kleber, Markus

    2013-04-01

    The effectiveness of charcoal and calcium carbonate applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition is still largely unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-53 µm) are of particularly large importance because they store up to 60% of soil organic carbon with mean residence times between 70 and 400 years. The objectives are i) to analyze the ability of CaCO3 and/or charcoal application to increase the amount of silt-sized aggregates and associated OM, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation processes, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (HR, clay: 40%, sand: 57%, OM: 3%) and low reactive soils (LR, clay: 10%, sand: 89%, OM: 1%) and mixed them with charcoal (CC, 1%) and/or calcium carbonate (Ca, 0.2%). The samples were adjusted to a water potential of 0.3 bar and sub samples were incubated with microbial inoculum (MO). After a 16-weeks aggregation experiment, size fractions were separated by wet-sieving and sedimentation. Since we did not use mineral compounds in the artificial mixtures within the size range of 2 to 53 µm, we consider material recovered in this fraction as silt-sized aggregates, which was confirmed by SEM analyses. For the LR mixtures, we detected increasing N concentrations within the 2-53 µm fractions of the charcoal amended samples (CC, CC+Ca, and CC+Ca+MO) as compared to the Control sample with the strongest effect for the CC+Ca+MO sample. This indicates an association of N-containing microbial derived OM with silt-sized aggregates. For the charcoal amended LR and HR mixtures, the C concentrations of the 2-53 µm fractions are larger than those of the respective fractions of the Control samples but the effect is several times stronger for the LR mixtures. The C concentrations of the 2-53 µm fractions relative to the total C amount of the LR and HR mixtures are between 30 and 50%. The charcoal amended samples show generally larger relative C amounts associated with the 2-53 µm fractions than the Control samples. Benefits for aggregate formation and OM storage were larger for sand (LR) than for clay soil (HR). The gained data are similar to respective data for natural soils. Consequently, the suggested microcosm experiments are suitable to analyze mechanisms within soil aggregation processes.

  17. Radiological risk of building materials using homemade airtight radon chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan

    Soil based building materials known to contain various amounts of natural radionuclide mainly {sup 238}U and {sup 232}Th series and {sup 40}K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived {sup 222}Radon and its progenies which arise from the decay of {sup 226}Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samplesmore » were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m{sup −3}, 192 Bq m{sup −3}, 176 Bq m{sup −3} and 28 Bq m{sup −3}, respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m{sup −3} i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y{sup −1}, 4.85 mSv y{sup −1}, 4.44 mSv y{sup −1} and 0.72 mSv y{sup −1}, respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y{sup −1}. As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively.« less

  18. Deformation mechanisms and resealing of damage zones in experimentally deformed cemented and un-cemented clay-rich geomaterials, at low bulk strain

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Urai, Janos L.; Schuck, Bernhardt; Hoehne, Nadine; Oelker, Anne; Bésuelle, Pierre; Viggiani, Gioacchino; Schmatz, Joyce; Klaver, Jop

    2017-04-01

    A microphysics-based understanding of mechanical and fluid flow properties in clay-rich geomaterials is required for extrapolating better constitutive equations beyond the laboratory's time scales, so that predictions over the long term can be made less uncertain. In this contribution, we present microstructural investigations of rocks specimens sheared in triaxial compression at low bulk strain, by using the combination of broad-ion-beam (BIB) milling and scanning electron microscopy (SEM) to infer deformation mechanisms based on microstructures imaged at sub-micron resolution. Two end-member clay-rich geomaterials from European Underground Laboratories (URL) were analysed: (i) the poorly cemented Boom Clay sediment (BC from URL at Mol/Dessel, Belgium; confining pressure [CP] = 0.375 & 1.5 MPa) and (ii) the Callovo-Oxfordian claystone (COx from the URL at Bure, France; CP = 2 & 10 MPa). Although as a first approximation the inelastic bahvior of cemented and uncemented clay-rich geomaterials can be described by similar pressure-dependent hardening plasticity models, deformed samples in this contribution show very contrasting micro-scale behaviour: microstructures reveal brittle-ductile transitional behaviour in BC, whereas deformation in COx is dominantly cataclastic. In Boom Clay, at meso-scale, shear bands exhibit characteristics that are typical of uncemented small-grained clay-rich materials deformed at high shear strains, consisting of anastomosing shears interpreted as Y- and B-shears, which bound the passively deformed microlithons. At micro- down to nano-scale, the strong shape preferential orientation of clay aggregates in the anastomosing shears is interpreted to be responsible of the shear weakness. More over, the reworking of clay aggregates during deformation contributes to the collapsing of porosity in the shear band. Ductile deformation mechanisms represented by grain-rotation, grain-sliding, bending and granular flow mechanisms are strongly involved for the development of the shear band. At the same time, evidence for dilatancy at low confining pressure indicates that deformation involves also brittle deformation. Our observations strongly suggest that the deformation mostly localizes in those regions of the specimen, where the original grain sizes are smaller. In COx, microstructures show evidence for dominantly cataclastic deformation involving intergranular - transgranular - and - intragranular micro fracturing, grain rotation and clay particle bending mechanisms, down to nm- scale. Micro fracturing of the original fabric results in fragments at a range of scales, which are reworked into a clay-rich cataclastic gouge during frictional flow. Intergranular and minor intragranular micro fracturing occur in regions of non localized deformation, whereas transgranular micro fracturing occurs at regions of localized deformation. These processes are accompanied by dilatancy, but also by progressive decrease of porosity and pore size in the gouge with the non-clay particles embedded in reworked clay. The mechanism of this compaction during shearing is interpreted to be a combination of cataclasis of the cemented clay matrix, and shear-induced rearrangement of clay particles around the fragments of non-clay particles.

  19. Microbial Ecology of Soil Aggregation in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences in the abundance of chemical classes in clay loams compared to sandy loams. Together our data demonstrate that the potential for aggregation and C storage is strongly influenced by soil mineralogy with important implications for plant-microbe interactions that mediate C biogeochemistry.

  20. The influence of aggregates type on W/C ratio on the strength and other properties of concrete

    NASA Astrophysics Data System (ADS)

    Malaiskiene, J.; Skripkiunas, G.; Vaiciene, M.; Karpova, E.

    2017-10-01

    The influence of different types of aggregates and W/C ratio on concrete properties is analysed. In order to achieve this aim, lightweight (with expanded clay aggregate) and normal concrete (with gravel aggregate) mixtures are prepared with different W/C ratios. Different W/C ratios are selected by reducing the amount of cement when the amount of water is constant. The following properties of concrete have been determined: density, compressive strength and water absorption. Additionally, the statistical data analysis is performed and influence of aggregate type and W/C ratio on concrete properties is determined. The empirical equations indicating dependence between concrete strength and W/C and strength of aggregate are obtained for normal concrete and light-weight concrete.

  1. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-23

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  2. A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis

    USGS Publications Warehouse

    Barbanti, A.; Bothner, Michael H.

    1993-01-01

    A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20–44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18–33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms.

  3. Mineral resource of the month: perlite

    USGS Publications Warehouse

    ,

    2010-01-01

    The article talks about perlite, which is a mineral used as an aggregate for lightweight construction products, filler for paints and horticultural soil blends. Perlite comes from viscous lava, mined and processed to produce lightweight material that competes with pumice, exfoliated vermiculite and expanded clay and shale. It is mined in about 35 countries that include Greece, Japan and the U.S. Other uses include insulation, concrete and plaster aggregate, and stonewashing.

  4. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    PubMed

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  5. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  6. Oil biodegradation: Interactions of artificial marine snow, clay particles, oil and Corexit.

    PubMed

    Rahsepar, Shokouh; Langenhoff, Alette A M; Smit, Martijn P J; van Eenennaam, Justine S; Murk, Albertinka J; Rijnaarts, Huub H M

    2017-12-15

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study is to explore the effect of these interactions on biodegradation of oil in the water. Laboratory experiments were performed, analyzing respiration and n-alkane and BTEX biodegradation in multiple conditions containing Corexit, alginate particles as marine snow, and kaolin clay. Two oil degrading bacterial pure cultures were added, Pseudomonas putida F1 and Rhodococcus qingshengii TUHH-12. Results show that the presence of alginate particles enhances oil biodegradation. The presence of Corexit alone or in combination with alginate particles and/or kaolin clay, hampers oil biodegradation. Kaolin clay and Corexit have a synergistic effect in increasing BTEX concentrations in the water and cause delay in oil biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films.

    PubMed

    Müller, Péter; Kapin, Éva; Fekete, Erika

    2014-11-26

    TPS/Na-montmorillonite nanocomposite films were prepared by solution and melt blending. Clay content changed between 0 and 25 wt% based on the amount of dry starch. Structure, tensile properties, and water content of wet conditioned films were determined as a function of clay content. Intercalated structure and VH-type crystallinity of starch were found for all the nanocomposites independently of clay and plasticizer content or preparation method, but at larger than 10 wt% clay content nanocomposites prepared by melt intercalation contained aggregated particles as well. In spite of the incomplete exfoliation clay reinforces TPS considerably. Preparation method has a strong influence on mechanical properties of wet conditioned films. Mechanical properties of the conditioned samples prepared by solution homogenization are much better than those of nanocomposites prepared by melt blending. Water, which was either adsorbed or bonded in the composites in conditioning or solution mixing process, respectively, has different effect on mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain].

    PubMed

    Li, Jian-Lin; Jiang, Chang-Sheng; Hao, Qing-Ju

    2014-12-01

    Soil aggregates have the important effect on soil fertility, soil quality and the sustainable utilization of soil, and they are the mass bases of water and fertilizer retention ability of soil and the supply or release of soil nutrients. In this paper, in order to study the impact of land use type on stability and organic carbon of soil aggregates in Jinyun Mountain, we separated four land use types of soil, which are woodland, abandoned land, orchard and sloping farmland by wet sieving method, then we got the proportion of large macroaggregates (> 2 mm), small macroaggregates (0.25-2 mm), microaggregates (53 μm-0.25 mm) and silt + clay (< 53 μm) and measured the content of organic carbon in each aggregate fraction in soil depth of 0-60 cm and calculated the total content of organic carbon of all aggregates fraction in each soil. The results showed that reclamation of woodland will lead to fragmentation of macroaggregates and deterioration of soil structure, and the proportion of macroaggrgates (> 0.25 mm) were 44.62% and 32.28% respectively in the soils of orchard and sloping farmland, which reduced 38.58% (P < 0.05) and 91.52% (P < 0.05) compared with woodland. While after changing the sloping farmland to abandoned land, which lead to the conversion of soil fraction from silt + clay to large macroaggregates and small macroaggregates, so it will improve the soil structure. MWD (mean weight diameter) and GMD (geometric mean diameter) are important indicators of evaluating the stability of soil aggregates. We found the MWD and GWD in soil depth of 0-60 cm in orchards and sloping farmland were significantly lower than those in woodland (P < 0.05), while after changing the sloping farmland to abandoned land, the MWD and GWD increased significantly (P < 0.05), which indicated that reclamation of woodland will lead to the decrease of stability of soil aggregates, and they will be separated more easily by water. However, after changing the sloping farmland to abandoned land will enhance the stability of soil aggregates, and improve the ability of soil to resist external damage. The organic carbon content in each soil aggregate of four land use types decreased with the increase of soil depth. In soil depth of 0-60 cm, the storage of organic carbon of large macroaggregates in each soil are in orders of woodland (14.98 Mg x hm(-2)) > abandoned land (8.71 Mg x hm(-2)) > orchard (5.82 Mg x hm(-2)) > sloping farmland (2.13 Mg x hm(-2)), and abandoned land (35.61 Mg x hm(-2)) > woodland (20.38 Mg x hm-(-2)) > orchard (13.83 Mg x hm(-2)) > sloping farmland (6.77 Mg x hm(-2)) in small macroaggregates, and abandoned land (22.44 Mg x hm(-2)) > woodland (10.20 Mg x hm(-2)) > orchard (6.80 Mg x hm(-2)) > sloping farmland (5. 60 Mg x hm(-2)) in microaggregates, and abandoned land (22.21 Mg x hm(-2)) > woodland (17.01 Mg x hm(-2)) > orchard (16.70 Mg x hm(-2)) > sloping farmland (9.85 Mg x hm(-2)) in silt and clay fraction. Storage of organic carbon in each aggregate in the soils of woodland and abandoned land were higher than those in the soils of orchard and sloping farmland, which indicated that reclamation of woodland will lead to a loss of organic carbon in each soil aggregate fraction, while after changing the sloping farmland to abandoned land will contribute to restore and sequestrate the soil organic carbon. In addition, it showed that most organic carbon accumulated in small macroaggregate in soils of woodland and abandoned land, while they are in silt and clay in soils of orchard and sloping farmland, indicating that organic carbon in larger aggregates is unstable and is easier to convert during the land use change.

  9. Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil.

    PubMed

    Angulo, S C; Ulsen, C; John, V M; Kahn, H; Cincotto, M A

    2009-02-01

    This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the São Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry.

  10. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  11. Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment.

    PubMed

    Singh, Pooja; Heikkinen, Jaakko; Ketoja, Elise; Nuutinen, Visa; Palojärvi, Ansa; Sheehy, Jatta; Esala, Martti; Mitra, Sudip; Alakukku, Laura; Regina, Kristiina

    2015-06-15

    We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and aggregate turnover in the winter with topsoil frost. Copyright © 2015. Published by Elsevier B.V.

  12. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China

    USGS Publications Warehouse

    Yu, Bingsong; Dong, Hailiang; Jiang, Hongchen; Lv, Guo; Eberl, Dennis D.; Li, Shanying; Kim, Jinwook

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our understanding of mechanisms of organic matter preservation in saline lake sediments.

  13. Application of Chromophoric Dissolved Organic Matter Absorbance and Excitation-Emission Matrix Fluorescence Spectra (EEMS) to Investigate Clay-Organic Matter Flocculation Processes in Riverine-Estuarine Systems

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Reed, A. H.; Boyd, T. J.

    2016-12-01

    Changes in hydrodynamic shear, variations in ionic strength (salinity), and to a lesser degree pH, along the salinity gradient influences clay-organic matter (OM) flocculation, disaggregation and particle size distributions with depth in natural river-estuarine waters. The scale and rate of aggregation and disaggregation of specific clay-OM flocs assemblages under different hydrodynamic and physiochemical conditions in estuaries or coastal river systems is an area of ongoing research. Chromophoric dissolved organic matter (CDOM) is the fraction of the DOM pool that absorbs and/or emits light at discrete wavelengths when excited. The CDOM absorbance and Excitation Emission Matrix (EEM) fluorescence spectra in natural waters can potentially be used to investigate clay-OM interactions and implications for formation kinetics, size, strength, and settling velocities of cohesive particulate aggregates (flocs and suspended sediments) as they respond to hydrodynamic shear under different physiochemical conditions. Size characteristics of particulate matter and sediment samples collected from the Misa River in Italy in 2014 were compared to the optical properties of the water column to identify potential OM components/constituents influencing flocculation processes in riverine-estuarine systems. The EEMs results were coupled with a parallel factor analysis (PARAFAC) model to associate previously identified EEMS regions of CDOM components to those found in the waters of this study and identify the main OM components/constituents influencing the multi-way variance of the EEMS data. Initial results from the Misa River and subsequent studies show a difference in dominant DOM types by salinity, clay-OM composition, and flow conditions that may be indicative of system specific particle flocculation and disaggregation under different hydrodynamic regimes. These results suggest that the CDOM absorbance and EEMS fluorescence spectra in natural waters can potentially be used to qualify the influence of OM on the flocculation and sedimentation of clay particulates in river-estuarine systems under different physiochemical and hydrodynamic conditions.

  14. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions.

    PubMed

    Jézéquel, Ronan; Receveur, Justine; Nedwed, Tim; Le Floch, Stéphane

    2018-02-01

    A test program was conducted at laboratory and pilot scale to assess the ability of clays used in drilling mud (calcite, bentonite and barite) to create oil-mineral aggregates and disperse crude oil under arctic conditions. Laboratory tests were performed in order to determine the most efficient conditions (type of clay, MOR (Mineral/Oil Ratio), mixing energy) for OMA (Oil Mineral Aggregate) formation. The dispersion rates of four crude oils were assessed at two salinities. Dispersion was characterized in terms of oil concentration in the water column and median OMA size. Calcite appeared to be the best candidate at a MOR of 2:5. High mixing energy was required to initiate OMA formation and low energy was then necessary to prevent the OMAs from resurfacing. Oil dispersion using Corexit 9500 was compared with oil dispersion using mineral fines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    NASA Astrophysics Data System (ADS)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  16. Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol-ene and SN2 reactions.

    PubMed

    Kottari, Naresh; Chabre, Yoann M; Shiao, Tze Chieh; Rej, Rabindra; Roy, René

    2014-02-25

    An orthogonal coupling strategy was developed by combining thiol-ene and SN2 reactions, which was subsequently applied to the accelerated synthesis of multifunctional dendrimers using carbohydrate building blocks. In surface plasmon resonance (SPR) studies, the β-d-galactopyranoside-coated dendrimer exhibited nM binding affinity with the bacterial LecA lectin extracted from Pseudomonas aeruginosa.

  17. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  18. Snowball gouge-aggregates formed in experimental fault gouges at seismic slip rates

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Ree, J. H.; Hirose, T.; Yang, K.; Kim, J. W.

    2015-12-01

    Clay-clast aggregates (CCA) have commonly been reported from experimental and natural fault gouges, but their formation process and mechanical meaning are not so clear. We call CCA snowball gouge aggregate (SGA) since its formation process is similar to that of snowball (see below) and CCA-like structure has been reported also from pure quartz and pure calcite gouges. Here, we discuss the formation process of SGA and its implication for faulting from experimental results of simulated gouges. We conducted high-velocity rotary shear experiments on Ca-bentonite gouges at a normal stress of 1 MPa, slip rate of 1.31 m/s, room temperature and room humidity conditions. Ca-bentonite gouge consists of montmorillonite (>95%) and other minor minerals including quartz and plagioclase. Upon displacement, the friction abruptly increases to the 1st peak (friction coefficient μ≈ 0.7) followed by slip weakening to reach a steady state (μ≈ 0.25~0.3). The simulated fault zone can be divided into slip-localization zone (SLZ) and low-slip-rate zone (LSZ) based on grain size. Spherical SGAs with their size ranging from 1 to 100 μm occur only in LSZ, and their proportion is more than 90%. Two types of SGA occur; SGA with and without a central clast. Both types of SGA show a concentric layering defined by the alternation of pore-rich (1-1.5 μm thick) and pore-poor layers (1.5-2 μm thick). Clay minerals locally exhibit a preferred orientation with their basal plane parallel to the layer boundary. We interpret that the pore-poor layers are clay-accumulated layers formed by rolling of SGA nuclei, and pore-rich layers correspond to the boundary between accumulated clay layers. Water produced from dehydration of clays due to frictional heating presumably acts as an adhesion agent of clay minerals during rolling of SGA. Since the number of layers within each SGA represents the number of rolling, the minimum displacement estimated from the number of layers and layer thickness of the largest SGA (with a diameter of 100 μm) is about 2.7 mm (slip rate≈ 170 μm/s) which is much less than the total displacement of 20 m, suggesting that most of the displacement occurred along the SLZ. Our results imply that SGA can be formed only in subseismic slip-rate zones and that minimum displacement and slip rate can be estimated from SGA.

  19. Effect of clay in controlling the non-fluorescence H-dimeric states of a cationic dye Nile Blue Chloride (NBC) in hybrid Langmuir-Blodgett (LB) film

    NASA Astrophysics Data System (ADS)

    Debnath, Chandan; Shil, Ashis; Hussain, S. A.; Bhattacharjee, D.

    2018-01-01

    Present communication reports the effect of amphiphilic matrices and nano-clay platelets on the aggregation properties of a water soluble cationic fluorescent dye Nile Blue Chloride (NBC) in Langmuir-Blodgett (LB) films. In-situ Brewster Angle Microscopic (BAM) studies showed distinct domain structures of complex and hybrid Langmuir monolayer at the air-water interface. UV-vis absorption spectra showed non-fluorescent H-dimeric band in concentrated aqueous solution of NBC and in complex LB film of NBC with stearic acid. By changing various parameters, a great control over H-dimeric states has been achieved in clay incorporated hybrid LB films. These films can act as efficient fluorescence probe.

  20. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    PubMed

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  1. Role of CaCO3 and Charcoal Application on Organic Matter Retention in Silt-sized Aggregates

    NASA Astrophysics Data System (ADS)

    Berhe, A. A.; Kaiser, M.; Ghezzehei, T.; Myrold, D.; Kleber, M.

    2011-12-01

    The effectiveness of charcoal and calcium carbonate (CaCO3) applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition under differing soil mineralogical and microbiological conditions are still unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-50 μm) are of particularly large importance because they store up to 60% of soil organic carbon and with mean residence times between 70 and 400 years. The objectives of this study are i) to analyze the ability of soil amendments (CaCO3, charcoal and their combined application) to increase the amount of silt-sized aggregates and associated organic matter, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation process, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (clay: 40%, sand: 57%, SOM: 3%) and low reactive soils (clay: 10%, sand: 89%, SOM: 1%) and mixed them with charcoal (1%) and/or CaCO3 (0.2%). The samples were adjusted to a water potential of 0.3 bar using a nutrient solution and sub samples were incubated with microbial innoculum. After four months, silt-sized aggregates are separated by a combination of wet-sieving and sedimentation. We hypothesize that the relative increase in amount of silt-sized aggregates and associated OM is larger for less reactive soils than for high reactive soils because of a relative larger increase in binding agents by addition of charcoal and/or CaCO3 in less reactive soils. The effect of charcoal and/or CaCO3 application on the amount of silt-sized aggregates and associated OM is expected to increases with an increase in microbial activity. Between different treatments, we expect the incubated 'charcoal+CaCO3' combination to have the largest effect on silt-size scale aggregation processes because the amount of microbial derived cementing agents, charcoal derived functional groups containing OM, and Ca2+ ions are enhanced at the same time.

  2. Glyphosate and AMPA content in the PM10 emitted by a soil of the central semiarid region of Argentine (CSRA)

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano; Aimar, Silvia; Aparicio, Virginia; Buschiazzo, Daniel; De Geronimo, Eduardo; Costa, Jose Luis

    2017-04-01

    Particle matter with aerodynamic diameter lesser than 10 um (PM10) has shown adverse effects on health even at low concentrations. Entic Haplustoll dominates central semiarid region of Argentine (CSRA) and PM10 are emitted from the soil by tillage and wind erosion. The aim of study was measure glyphosate concentration in the PM10 emitted by a soil fine-sandy loam Entic Haplustoll. The study was carried in Santa Rosa La Pampa (S36° 46´; W64° 16´; 210 m a.s.l.) in a plot where 3.7 kg ha-1 active ingredient of glyphosate was used in the last two year and glyphosate was not used in the last 12 months. Soil samples were air dried and sieved with a rotary sieve to separate the following aggregate fractions: <0.42 mm, 0.42 to 0.84 mm, 0.84 to 2 mm, 2 to 6.4 mm, 6.4 to 19.2 mm, and > 19.2 mm. The Easy Dust Generator (EDG) was used to generate dust from the soil and its aggregate fractions. The PM10 emitted by EDG was collected using an electrostatic precipitator (C&L model number GH-939). The following determinations were carried out in the soil, aggregates and PM10 emitted by them: organic matter contents (OM) (Walkley & Black, 1934), particle size composition (Malvern martersizer2000) and the Glyphosate and AMPA content. Results showed that mean geometric diameter (MGD) of the material collected in the electrostatic precipitator and emitted by the aggregate fraction and the soil was between 4.6 and 5.3 µm. OM content in the aggregates fraction and soil ranged between 1.4% and 2.9% while than in the PM10 emitted by them ranged between 3.5% and 3.7 %. Clay content in aggregates and soil ranged between 6.5% and 8.5% while than in PM10 emitted by them ranged between 17.5% and 19.0%. Glyphosate content in aggregates fraction and soil ranged between 1 and 3 ppb. Glyphosate in PM10 emitted by aggregates and soil did not show differences in despite of it ranged between 11.0 ppb and 19.5 ppb. OM and clay in aggregate fractions and PM10 do not explained glyphosate content in PM10. AMPA concentration in aggregates and soil ranged between 80 ppb and 150 ppb, while than in PM10 emitted by them ranged between 520 ppb and 750 ppb. The enrichment ratio (ER, quotient between concentration or content in PM10 and aggregates) of glyphosate and AMPA (between 4 and 17) were higher than ER of clay and OM (between 1 and 3). ERglyphosate and ERAMPA were different among aggregate fractions (p< 0.05) and the highest ER was found in the fraction >19.2 (ERglyphosate = 17 and ERAMPA = 10). Our results showed contents variable of glyphosate and AMPA in the soil and its aggregate fractions after 12 month from the last glyphosate application in a haplustoll soil of the CSRA. High glyphosate content were also found in PM10 emitted by the soil and its aggregate fractions. More studies are necessary to evaluate the glyphosate content in PM10 and its potential impact in the heath.

  3. [Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China].

    PubMed

    Ge, Nan Nan; Shi, Yun; Yang, Xian Long; Zhang, Qing Yin; Li, Xue Zhang; Jia, Xiao Xu; Shao, Ming An; Wei, Xiao Rong

    2017-05-18

    In this study, combined with field investigation and laboratory analyses, we assessed the distribution of soil organic carbon, nitrogen, phosphorous contents and their stoichiometric ratios, and the distribution of soil water stable aggregates along a soil texture gradient in the cropland of the Loess Plateau to understand the effect of soil texture and the regulation of soil aggregates on soil fertility in cropland. The results showed that, with the change from fine soils to coarse soils along the texture gradient (loam clay→ clay loam→ sandy loam), the contents of macroaggregates, organic carbon, nitrogen, phosphorous and their stoichiometric ratios decreased, while pH value and microaggregates content showed an opposite changing pattern. The contents of macroaggregates, organic carbon, nitrogen, phosphorous, and C/P and N/P were significantly increased, but pH value and microaggregates content were significantly decreased with increasing the soil clay content. Furthermore, the contents of organic carbon, nitrogen, phosphorous, and C/P and N/P increased with the increase of macroaggregates content. These results indicated that soil fertility in croplands at a regional scale was mainly determined by soil texture, and was regulated by soil macroaggregates.

  4. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    PubMed

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and <2 μm aggregate sizes. Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (<20 μm) aggregates of sandier soil, and for clayed soils, retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  5. Chemical-mineralogical characterization of C and D waste recycled aggregates from Sao Paulo, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angulo, S.C.; Ulsen, C.; John, V.M.

    2009-02-15

    This study presents a methodology for the characterization of construction and demolition (C and D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C and D samples taken from the Sao Paulo region in Brazil are discussed.more » Chemical compositions of mixed C and D aggregate samples have mostly been influenced by particle size rather than the visual classification of C and D into red or grey and geographical origin. The amount of measured soluble salts in C and D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C and D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C and D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C and D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO{sub 2}, the powders have potential use as raw materials for the cement industry.« less

  6. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and <0.02mm) in Musick soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil. Our findings provide mechanistic understanding of how pedogenic Fe oxides play important role in carbon stabilization in different aggregate-size fractions in soil.

  7. Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China

    PubMed Central

    Zhang, Jiaoyang; Sun, Caili; Xue, Sha

    2018-01-01

    Background Long-term fertilisation has a large influence on soil physical and chemical properties in agro-ecosystems. The effects on the distribution of aggregates, however, are not fully understood. We determined the dynamic change of the distribution of aggregates and soil organic carbon (SOC) content over time in a long-term field experiment established in 1998 on the Loess Plateau of China and illustrated the relationship between them. Methods We determined SOC content and the distribution of aggregates in nine fertiliser treatments: manure (M); nitrogen (N); phosphorus (P); M and N; M, N, and P; M and P; N and P; bare land; and an unfertilised control. These parameters were then used for a path analysis and to analyse the fractal dimension (Dv). Results The organic fertiliser increased SOC content. The proportions of 0.1–0.25 mm microaggregates and 0.25–0.5 mm macroaggregates were higher and the proportion of the 0.01–0.05 mm size class of the silt + clay fraction was lower in the treatments receiving organic fertiliser (M, MN, MNP, and MP) than that in the control, indicating that the addition of organic fertiliser promoted aggregation. The distribution of aggregates characterised by their fractal dimension (Dv), however, did not differ among the treatments. Discussion Dv was strongly correlated with the proportion of the <0.002 mm size class of the silt + clay fraction that did not differ significantly among the treatments. The change in the distribution of aggregates was strongly correlated with SOC content, which could produce organic polymer binding agents to increase the proportion of larger particles. Long-term application of organic fertiliser is thus necessary for the improvement and maintenance of soil quality in semi-arid agricultural land when residues are removed. PMID:29844955

  8. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    PubMed

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less

  10. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    NASA Astrophysics Data System (ADS)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  11. Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites.

    PubMed Central

    Flemming, C A; Ferris, F G; Beveridge, T J; Bailey, G W

    1990-01-01

    Significant quantities of Ag(I), Cu(II), and Cr(III) were bound to isolated Bacillus subtilis 168 walls, Escherichia coli K-12 envelopes, kaolinite and smectite clays, and the corresponding organic material-clay aggregates (1:1, wt/wt). These sorbed metals were leached with HNO3, Ca(NO3)2, EDTA, fulvic acid, and lysozyme at several concentrations over 48 h at room temperature. The remobilization of the sorbed metals depended on the physical properties of the organic and clay surfaces and on the character and concentration of the leaching agents. In general, the order of remobilization of metals was Cr much less than Ag less than Cu. Cr was very stable in the wall, clay, and composite systems; pH 3.0, 500 microM EDTA, 120-ppm [mg liter-1] fulvic acid, and 160-ppm Ca remobilized less than 32% (wt/wt) of sorbed Cr. Ag (45 to 87%) and Cu (up to 100%) were readily removed by these agents. Although each leaching agent was effective at mobilizing certain metals, elevated Ca or acidic pH produced the greatest overall mobility. The organic chelators were less effective. Lysozyme digestion of Bacillus walls remobilized Cu from walls and Cu-wall-kaolinite composites, but Ag, Cr, and smectite partially inhibited enzyme activity, and the metals remained insoluble. The extent of metal remobilization was not always dependent on increasing concentrations of leaching agents; for example, Ag mobility decreased with some clays and some composites treated with high fulvic acid, EDTA, and lysozyme concentrations. Sometimes the organic material-clay composites reacted in a manner distinctly different from that of their individual counterparts; e.g., 25% less Cu was remobilized from wall- and envelope-smectite composites than from walls, envelopes, or smectite individually in 500 microM EDTA. Alternatively, treatment with 160-ppm Ca removed 1.5 to 10 times more Ag from envelope-kaolinite composites than from the individual components. The particle size of the deposited metal may account for some of the stability changes; those metals that formed large, compact aggregates (Cr and Ag) as seen by transmission electron microscopy were less likely to be remobilized. In summary, it is apparent that remobilization of toxic heavy metals in sediments, soils, and the vadose zone is a complicated issue. Predictions based on single inorganic or organic component systems are too simplistic. Images PMID:2126702

  12. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and, hence, providing physical protection of C. Oxalate extractable amorphous and poorly crystalline minerals are correlated to C, especially for the more recalcitrant C fractions, but only at the depositional site. However, decreasing contents of oxalate extractable elements with depth indicate a temporal limitation of this stabilization mechanism and this is also supported by the results of our lignin extraction. Non-expandable clay minerals experience a relative enrichment at the depositional site while expandable clay minerals experience the same at the eroding site. These changes in clay mineralogy along the slope are partly responsible for the abundance of silt and clay associated C. The changes in soil mineralogy and micro-scale environmental conditions led to an adaptation of the microbial community in comparison to sites not affected by soil redistribution.

  13. Scratching technique for the study and analysis of soil surface abrasion mechanism

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan

    2007-11-01

    Aeolian abrasion is the most fundamental and active surface process that takes place in arid and semi-arid environments. Its nature is a wear process for wind blown grains impinging on a soil or sediment surface, which causes particles and aggregates to fracture from the soil surface through a series of plastic and brittle cracking deformation such as cutting, ploughing and brittle fracturing. Using a Universal Micro-Tribometer (UMT), a scratching test was carried out on six soil surfaces (sandy soil, sand loam, silt loam, loam, silt clay loam, and silt clay). The results indicate that traces of normal and tangential force vs. time show a jagged curve, which can reflect the plastic deformation and brittle fracturing of aggregates and particles of various sizes fractured from the soil surfaces. The jagged curve peaks, and the area enclosed underneath, may represent the bonding forces and bonding energies of some aggregates and grains on the soil surface, respectively. Connecting the scratching test with an impact abrasion experiment furthermore demonstrates that soil surface abrasion rates are proportional to the square of speeds of impacting particles and to the 2.6 power of mean soil grain size, and inversely proportional to the 1.5 power of specific surface abrasive energy or to the 1.7 power of specific surface hardness.

  14. Physical and chemical effects of grain aggregates on the Palos Verdes margin, southern California

    USGS Publications Warehouse

    Drake, D.E.; Eganhouse, R.; McArthur, W.

    2002-01-01

    Large discharges of wastewater and particulate matter from the outfalls of the Los Angeles County Sanitation Districts onto the Palos Verdes shelf since 1937 have produced an effluent-affected sediment deposit characterized by low bulk density, elevated organic matter content, and a high percentage of fine silt and clay particles relative to underlying native sands and sandy silts. Comparison of the results of grain-size analyses using a gentle wet-sieving technique that preserves certain grain aggregates to the results of standard size analyses of disaggregated particles shows that high percentages (up to 50%) of the silt and clay fractions of the effluent-affected mud are incorporated in aggregates having intermediate diameters in the fine-to-medium sand size range (63-500 ??m), Scanning electron microscope images of the aggregates show that they are predominantly oval fecal pellets or irregularly shaped fragments of pellets. Deposit-feeding polychaete worms such as Capitella sp. and Mediomastus sp., abundant in the mud-rich effluent-affected sediment on Palos Verdes shelf, are probably responsible for most of the grain aggregates through fecal pellet production. Particle settling rates and densities, and the concentrations of organic carbon and p,p???-DDE, a metabolite of the hydrophobic pesticide DDT, were determined for seven grain-size fractions in the effluent-affected sediment. Fecal pellet grain densities ranged from about 1.2 to 1.5 g/cc, and their average settling rates were reduced to the equivalent of about one phi size relative to spherical quartz grains of the same diameter. However, repackaging of fine silt and clay grains into the sand-sized fecal pellets causes an effective settling rate increase of up to 3 orders of magnitude for the smallest particles incorporated in the pellets. Moreover, organic carbon and p,p???-DDE exhibit a bimodal distribution with relatively high concentrations in the finest size fraction (0-20 ??m), as expected, and a second concentration peak associated with the sand-sized fecal pellets. The repackaging of fine-grained particles along with their adsorbed chemical compounds into relatively fast-settling pellets has important implications for the mobilization and transport of the sediment and the desorption of chemicals from grain surfaces. ?? 2002 Published by Elsevier Science Ltd.

  15. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    USDA-ARS?s Scientific Manuscript database

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  16. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.

  17. Relationships between slope erosion processes and aggregate stability of Ultisols from subtropical China during rainstorms

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xiao, Hai; Liu, Puling

    2017-04-01

    Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the subtropical Ultisols by using REE tracing method.

  18. Nanoparticle-Reinforced Associative Network Hydrogels

    PubMed Central

    Agrawal, Sarvesh K.; Sanabria-DeLong, Naomi; Tew, Gregory N.; Bhatia, Surita R.

    2009-01-01

    ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using SAXS and DLS confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles. PMID:18947244

  19. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    NASA Astrophysics Data System (ADS)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  20. Glowing clay: Real time tracing using a suite of novel clay based fluorescent tracers

    NASA Astrophysics Data System (ADS)

    Hardy, Robert; Quinton, John; Pates, Jackie; Coogan, Mike

    2015-04-01

    Clay is one of the most mobile fractions of soil due to its small particle size. It is also known to sorb many chemicals, such as nutrients (notably phosphorus), agrochemicals and heavy metals. The movement of clay is therefore linked with the transport and fate of these substances. A novel fluorescent clay tracing suite has been produced, together with an imaging technique. This suite consists of qualitative clay tracers, using rhodamine based fluorophores, and quantitative clay tracers, using metal based fluorophores. Efforts have also been made to allow integration of commercially available tracers, which are silt and sand sized. The clay tracers exploit the high affinity that montmorillonite has for Rhodamine B and Ru(bpy)3. This allows for an extremely thin layer of the fluorophore to be sorbed onto the clay's surface, in much that same way as materials in the natural environment will bind to clay. The tracer that is produced retains key chemical and physical properties of clay, such as size, shape and density. The retention of these micro-properties results in the retention of macro-properties, such as tendency to aggregate and cracking on drying. Imaging techniques have been developed to analyse these tracers. The imaging system uses diffused laser light to excite the tracer and a modified DSLR camera to image the soil surface. The images have been compiled into a time lapse video showing the movement of clay over the course of a rainfall event. This is the first time that the quantitative movement of clay has been recorded over a soil surface in real time. 4D data can be extracted from the images allowing the spatial location and intensity of tracer to be monitored over time, with mm precision and on the timescale of seconds. As the system can also work with a commercial tracer it is possible to investigate the movement of particles of almost any size and over a range of scales from soil box to hillside. This allows users to access this technique without the need to produce the tracer themselves.

  1. Mitochondria and the evolutionary roots of cancer

    NASA Astrophysics Data System (ADS)

    Davila, Alfonso F.; Zamorano, Pedro

    2013-04-01

    Cancer disease is inherent to, and widespread among, metazoans. Yet, some of the hallmarks of cancer such as uncontrolled cell proliferation, lack of apoptosis, hypoxia, fermentative metabolism and free cell motility (metastasis) are akin to a prokaryotic lifestyle, suggesting a link between cancer disease and evolution. In this hypothesis paper, we propose that cancer cells represent a phenotypic reversion to the earliest stage of eukaryotic evolution. This reversion is triggered by the dysregulation of the mitochondria due to cumulative oxidative damage to mitochondrial and nuclear DNA. As a result, the phenotype of normal, differentiated cells gradually reverts to the phenotype of a facultative anaerobic, heterotrophic cell optimized for survival and proliferation in hypoxic environments. This phenotype matches the phenotype of the last eukaryotic common ancestor (LECA) that resulted from the endosymbiosis between an α-proteobacteria (which later became the mitochondria) and an archaebacteria. As such, the evolution of cancer within one individual can be viewed as a recapitulation of the evolution of the eukaryotic cell from fully differentiated cells to LECA. This evolutionary model of cancer is compatible with the current understanding of the disease, and explains the evolutionary basis for most of the hallmarks of cancer, as well as the link between the disease and aging. It could also open new avenues for treatment directed at reestablishing the synergy between the mitochondria and the cancerous cell.

  2. Preliminary results of dust emission data from Yellow Lake Playa, West Texas, USA

    USDA-ARS?s Scientific Manuscript database

    We investigated the relationship between groundwater and dust emission rates at Yellow Lake, a saline “wet” playa in West Texas with a long history of wind erosion. Deflation of the playa surface has generated lunettes composed of silt-clay aggregates and gypsum. Saltation sensors indicate that most...

  3. Modification of Lightweight Aggregates' Microstructure by Used Motor Oil Addition.

    PubMed

    Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech

    2016-10-18

    An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %-8 wt %) caused marked changes in the aggregates' microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%-2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates' bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms.

  4. Influence of Compositional Variations on Floc Size and Strength

    NASA Astrophysics Data System (ADS)

    Yin, H.; Tan, X.; Reed, A. H.; Furukawa, Y.; Zhang, G.

    2010-12-01

    Clay-biopolymer micro aggregates or flocs are abundant in waters, including rivers, lakes, and oceans. Owing to their small size and charged surfaces, fine-grained inorganic sediment particles, mainly clays, interact actively with organic substances, such as organic matter and biogenic polymers, to form aggregates or flocs, typically in the size of 10-1000 μm. The flocs in ocean waters are also termed “marine snow”. These flocs are typically porous, tenuous, and soft in nature. During transport in suspension, they may breakdown and decrease in size if the turbulent shear stress exceeds their strength. They may also collide and form larger ones if the shear stress is relatively small. Since flocs of different size and structure settle at different velocities, understanding their strength is also of essential importance for sediment hydrodynamics, transport, and management. Our study focuses on investigating the influence of compositional variations on floc size and strength so that a better understanding of floc dynamics can be achieved. A laser diffraction-based Cilas® particle size and shape analyzer with controllable fluid circulation velocity was employed to conduct floc size measurements and shape imaging, the latter achieved by a high resolution inverted optical microscope, which is also installed with the size analyzer. Totally two clay minerals, kaolinite and illite, were tested as the model inorganic solid skeleton minerals for floc formation, and two biopolymers, anionic xanthan gum and neutral guar gum, were chosen as analogs of naturally occurring organic matter or biopolymers to simulate clay-biopolymer floc formation. Moreover, the concentration of both organic and inorganic phases was varied. The floc breakage or tensile strength was indirectly estimated by the varied fluid flow velocity in the particle size analyzer’s circulation system. For each individual composition, stable flocs were formed by three different fluid circulating velocities, resulting in different shearing stress in the fluid. Experimental results show that organic biopolymers can have profound influences on clay flocculation process and the resultant floc size and strength. Anionic xanthan gum tends to form smaller and weaker clay-biopolymer flocs than neutral guar gum, because the Coulombic repulsion forces develop between the two negatively charged constituents. Illite results in stronger clay-guar flocs than kaolinite, probably due to the relatively higher negative charges on illite surface. Generally, a bimodal distribution of floc size frequency was observed for all types of flocs. The maxim floc sizes range from 10-30 μm for kaolinite-xanthan flocs to 250-300 μm for kaolinite-guar flocs at a weight ratio of 1:1.

  5. Clay illuviation provides a long-term sink for C sequestration in subsoils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier P. O.; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Simó, Iolanda; Six, Johan; Creamer, Rachel E.

    2017-04-01

    Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.

  6. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    PubMed

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were easier to accumulate or lose labile organic carbon. Allocation ratios of labile organic carbon to soil organic carbon under four land uses were decreased as the soil depth added. Allocation ratios of orchard and sloping farmland were a bit higher than forest and abandoned land, which indicated that organic carbon of forest and abandoned land were more steady and available for soil as a carbon sink, meanwhile, the forest and abandoned land would avoid more CO2 diffusing to the atmosphere from the decomposition of soil organic carbon.

  7. Stabilities of ant nests and their adjacent soils

    NASA Astrophysics Data System (ADS)

    Echezona, B. C.; Igwe, C. A.

    2012-10-01

    Nests habour ants and termites and protect them from harsh environmental conditions. The structural stabilities of nests were studied to ascertain their relative vulnerability to environmental stresses. Arboreal-ant nests were pried from different trees, while epigeous-termite nests were excavated from soil surface within the sample area. Soils without any visible sign of ant or termite activity were also sampled 6 m away from the nests as control. Laboratory analysis result showed that irrespective of the tree hosts, the aggregate stabilities of the ant nests were lower than those of the ground termite, with nests formed on Cola nitida significantly showing lower aggregate stability (19.7%) than other antnest structures. Clay dispersion ratio, moisture content, water stable aggregate class <0.25mm and sand mass were each negatively correlated with aggregate stability, while water stable aggregate class1.00-0.50 mm gave a positive correlation. Nest structures were dominated more by water stable aggregate class >2.00 mm but path analysis demonstrated that water stable aggregate class <0.25 mm contributed most to the higher aggregate stability of the termite nest than the other nest. Nest aggregates had greater structural stability compared to the control soil. The higher structural stability of termite nests over other nest and soil was considered a better adaptive mechanism against body desiccation.

  8. Organic matter and the geotechnical properties of submarine sediments

    NASA Astrophysics Data System (ADS)

    Keller, George H.

    1982-09-01

    Continental slope deposits off Peru and Oregon where coastal upwelling is a pronounced oceanographic process possess significant concentrations of organic carbon. Geotechnical properties are altered to varying degrees by the organic matter. Organic matter absorbs water and causes clay-size particles to aggregate forming an open fabric. This causes unusually high water contents and plasticity and exceptionally low wet bulk densities. Some of these deposits show notable increases in shear strength, sensitivity and degree of apparent overconsolidation. Owing to the unique geotechnical properties, sediment stability characteristics are considered to be poor in situations of excess pore pressures. Failure appears to take the form of a fluidized flow somewhat similar to the quick clays of Scandinavia.

  9. United Nations Intervention for Humanitarian Relief in Bosnia- Herzegovina

    DTIC Science & Technology

    1993-02-22

    govinan Corps I i~leca) 5th Mixed A.dr Peql ath Motorized Ode 149ithIME-dium AA Arty Regt’ (SA-6) 13th Motor- zeC Mde 5th Light A-A Arty Regt `145th...34 1. Carl Von Clausewitz, On War, Translated and Edited by Michael Howard and Peter Paret, (Princeton: Princeton University Press), p. 579. 2...Michael Howard and Peter Paret, Princeton: Princeton University Press, 1976. Cohen, Leonard J. "The Disintegration of Yugoslavia", Current History

  10. Multiscale description of mercury intrusion curves from an Oxisol and the residual saprolite left after deep profile excavation

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Kitamura, Aline E.; Alves, Marlene C.; Miranda, José G. V.; Paz Ferreiro, Jorge

    2010-05-01

    Oxisols are highly weathered soils with a thick profile that are found primarily in the intertropical regions of the world. Brazilian Oxisols are characterized by 1:1 low activity clays a weak macrostructure and a strong microgranular structure, which results in very stable aggregates (pseudosand) at the

  11. Feasibility of Using Unbound Mixed Recycled Aggregates from CDW over Expansive Clay Subgrade in Unpaved Rural Roads

    PubMed Central

    Del Rey, Isaac; Ayuso, Jesús; Galvín, Adela P.; Jiménez, José R.; Barbudo, Auxi

    2016-01-01

    Social awareness aims to increase practical skills, such as sustainable development, which seeks to increase the use of different types of waste in construction activities. Although insufficient attention is sometimes given to these actions, it is essential to spread information regarding new studies in the field of waste recycling, which encourages and promotes waste use. Reusing and recycling construction waste in the creation of buildings and infrastructure are fundamental strategies to achieving sustainability in the construction and engineering sectors. In this context, the concept of waste would no longer exist, as waste would become a material resource. Therefore, this study analyses the behaviours of two unbound mixed recycled aggregates (MRA) in the structural layers of an unpaved rural road with low traffic (category T43). The sections were built on inappropriate soil (A-7-6) with a high degree of free swelling. The experimental road consisted of three sections: the first was made with natural aggregates (NA) that were used as a control, the second was composed of MRA in the subbase and NA in the base, and the third section was completely composed of MRA. The materials were characterised in the laboratory. The behaviours of the structural layers in the experimental road were determined by controlling compaction (“in situ” density and moisture) and measuring the deflections and load capacity (deflectometer) during the 18 months after construction. The results show that the sections made with recycled aggregates meet the technical specifications required by General Technical Specifications for Road and Bridge Works (PG-3). Therefore, the water-soluble sulphate content and Los Angeles abrasion coefficient limits can be increased for recycled aggregates without compromising the quality of this type of road with low traffic. To the best of our knowledge, this is the first study regarding the use of unbound MRA made from construction and demolition waste (CDW) in the construction of an unpaved rural road with low traffic on an expansive clay subgrade. PMID:28774053

  12. Investigation on the cohesive silt/clay-particle sediment via the coupled CFD-DEM simulations

    NASA Astrophysics Data System (ADS)

    Xu, S.; Sun, H.; Sun, R.

    2017-12-01

    Sedimentation of silt/clay particles happens ubiquitously in nature and engineering field. There have been abundant studies focusing on the settling velocity of the cohesive particles, while studies on the sediment deposited from silt/clay irregular particles, including the vertical concentration profile of sediment and the various forces among the deposited particles are still lacking. This paper aims to investigate the above topics by employing the CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) simulations. In this work, we simulate the settling of the mono- and poly- dispersed silt/clay particles and mainly study the characteristics of the deposited cohesive sediment. We use the bonded particles to simulate the irregular silt/clay aggregates at the initial state and utilize the van der Waals force for all micro-particles to consider the cohesive force among silt/clay particles. The interparticle collision force and the fluid-particle interaction forces are also considered in our numerical model. The value of the mean structural density of cohesive sediment obtained from simulations is in good agreement with the previous research, and it is obviously smaller than no-cohesive sediment because of the existence of the silt/clay flocs. Moreover, the solid concentration of sediment increases with the growth of the depth. It is because the silt/clay flocs are more easily to break up due to the gradually increased submerged gravity of the deposited particles along the depth. We also obtain the noncontacted cohesive force and contact force profiles during the sedimentation and the self-weight consolidation process. The study of the concentration profile and the forces among silt/clay sediment will help to give an accurate initial condition for calculating the speed of the reconsolidation process by employing the artificial loads, which is necessary for practical designs of the land reclamation projects.

  13. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    NASA Astrophysics Data System (ADS)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay particle lengths and aspect ratios, which was attributed to the growth of skewed aggregates during concentration. The melt induced clay concentration and increased clay particle dimensions caused significant decreases in the permeability of the nanocomposite microlayers and reduced the overall permeability of the multilayered films. Morphology and transport behavior of these microlayered films were compared to a series of bulk nanocomposites using a second LLDPE-g-MA containing M 2(HT)2 with varying clay content.

  14. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  15. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater.

    PubMed

    Furukawa, Yoko; Watkins, Janet L; Kim, Jinwook; Curry, Kenneth J; Bennett, Richard H

    2009-01-23

    The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 - 7.2 psu). The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans.

  16. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.

    PubMed

    Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnès

    2015-01-01

    Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sampling Outdoor, Resting Anopheles gambiae and Other Mosquitoes (Diptera: Culicidae) in Western Kenya with Clay Pots

    PubMed Central

    Odiere, M.; Bayoh, M. N.; Gimnig, J.; Vulule, J.; Irungu, L.; Walker, E.

    2014-01-01

    Clay pots were analyzed as devices for sampling the outdoor resting fraction of Anopheles gambiae Giles (Diptera: Culicidae) and other mosquito species in a rural, western Kenya. Clay pots (Anopheles gambiae resting pots, herein AgREPOTs), outdoor pit shelters, indoor pyrethrum spray collections (PSC), and Colombian curtain exit traps were compared in collections done biweekly for nine intervals from April to June 2005 in 20 housing compounds. Of 10,517 mosquitoes sampled, 4,668 An. gambiae s.l. were sampled in total of which 63% were An. gambiae s.s. (46% female) and 37% were An. arabiensis (66% female). The clay pots were useful and practical for sampling both sexes of An. gambiae s.l. Additionally, 617 An. funestus (58% female) and 5,232 Culex spp. (males and females together) were collected. Temporal changes in abundance of An. gambiae s.l. were similarly revealed by all four sampling methods, indicating that the clay pots could be used as devices to quantify variation in mosquito population density. Dispersion patterns of the different species and sexes fit well the negative binomial distribution, indicating that the mosquitoes were aggregated in distribution. Aside from providing a useful sampling tool, the AgREPOT also may be useful as a delivery vehicle for insecticides or pathogens to males and females that enter and rest in them. PMID:17294916

  18. A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes

    PubMed Central

    Csuros, Miklos; Rogozin, Igor B.; Koonin, Eugene V.

    2011-01-01

    Protein-coding genes in eukaryotes are interrupted by introns, but intron densities widely differ between eukaryotic lineages. Vertebrates, some invertebrates and green plants have intron-rich genes, with 6–7 introns per kilobase of coding sequence, whereas most of the other eukaryotes have intron-poor genes. We reconstructed the history of intron gain and loss using a probabilistic Markov model (Markov Chain Monte Carlo, MCMC) on 245 orthologous genes from 99 genomes representing the three of the five supergroups of eukaryotes for which multiple genome sequences are available. Intron-rich ancestors are confidently reconstructed for each major group, with 53 to 74% of the human intron density inferred with 95% confidence for the Last Eukaryotic Common Ancestor (LECA). The results of the MCMC reconstruction are compared with the reconstructions obtained using Maximum Likelihood (ML) and Dollo parsimony methods. An excellent agreement between the MCMC and ML inferences is demonstrated whereas Dollo parsimony introduces a noticeable bias in the estimations, typically yielding lower ancestral intron densities than MCMC and ML. Evolution of eukaryotic genes was dominated by intron loss, with substantial gain only at the bases of several major branches including plants and animals. The highest intron density, 120 to 130% of the human value, is inferred for the last common ancestor of animals. The reconstruction shows that the entire line of descent from LECA to mammals was intron-rich, a state conducive to the evolution of alternative splicing. PMID:21935348

  19. Euglena gracilis and Trypanosomatids possess common patterns in predicted mitochondrial targeting presequences.

    PubMed

    Krnáčová, Katarína; Vesteg, Matej; Hampl, Vladimír; Vlček, Čestmír; Horváth, Anton

    2012-10-01

    Euglena gracilis possessing chloroplasts of secondary green algal origin and parasitic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania major belong to the protist phylum Euglenozoa. Euglenozoa might be among the earliest eukaryotic branches bearing ancestral traits reminiscent of the last eukaryotic common ancestor (LECA) or missing features present in other eukaryotes. LECA most likely possessed mitochondria of endosymbiotic α-proteobacterial origin. In this study, we searched for the presence of homologs of mitochondria-targeted proteins from other organisms in the currently available EST dataset of E. gracilis. The common motifs in predicted N-terminal presequences and corresponding homologs from T. brucei, T. cruzi and L. major (if found) were analyzed. Other trypanosomatid mitochondrial protein precursor (e.g., those involved in RNA editing) were also included in the analysis. Mitochondrial presequences of E. gracilis and these trypanosomatids seem to be highly variable in sequence length (5-118 aa), but apparently share statistically significant similarities. In most cases, the common (M/L)RR motif is present at the N-terminus and it is probably responsible for recognition via import apparatus of mitochondrial outer membrane. Interestingly, this motif is present inside the predicted presequence region in some cases. In most presequences, this motif is followed by a hydrophobic region rich in alanine, leucine, and valine. In conclusion, either RR motif or arginine-rich region within hydrophobic aa-s present at the N-terminus of a preprotein can be sufficient signals for mitochondrial import irrespective of presequence length in Euglenozoa.

  20. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  1. Turnover of intra- and extra-aggregate organic matter at the silt-size scale

    Treesearch

    I. Virto; C. Moni; C. Swanston; C. Chenu

    2010-01-01

    Temperate silty soils are especially sensitive to organic matter losses associated to some agricultural management systems. Long-term preservation of organic C in these soils has been demonstrated to occur mainly in the silt- and clay-size fractions, although our knowledge about the mechanisms through which it happens remains unclear. Although organic matter in such...

  2. Effect of cover crops management in aggregate stability of a vineyard in Central Spain.

    NASA Astrophysics Data System (ADS)

    Ruiz-Colmenero, Marta; Bienes, Ramon; Marques, Maria-Jose

    2010-05-01

    Our research focuses in cover crop treatments used to avoid soil degradation in hillsides. The soil-plant interaction can influence the soil structure. In this study we pay special attention to the soil aggregates in a hillside vineyard (average slope of 14%), under Mediterranean semiarid climatic conditions (average annual temperature 14°C, annual rainfall around 400 mm), in the South East of Madrid located at an altitude of 800 masl. The soil classification according to USDA (2006) is Calcic Haploxeralf. Its particle size yields 58% sand, 18% silt and 24% clay, so that according to USDA classification it is a sandy clay loam soil. The bulk density of the first 10 cm of topsoil is 1.2 g cm-3 and its real density is 2.4 g cm-3. It has low organic matter content: 1.3 ± 0.1% (Walkley and Black, 1934). Three treatments were tested: i) traditional tillage ii) soil covered by Brachypodium distachyon allowing self-sowing, and iii) soil covered by Secale cereale, mown in early spring. In each treatment the aggregate stability was measured. These cover crops were established in a 2m wide strip at the center of the rows. We have collected samples of soil for each treatment along 2 years and we analyzed the aggregates, trying to find changes in their stability. Aggregates of 4 to 4.75 mm diameter were selected by dry sieving. The stability was measured with Drop-test: CND and TDI (Imeson and Vis, 1984). An improvement in the stability of aggregates was observed after two years of cover crop treatment. There are significant differences among the treatments analyzed with Kolmogorov-Smirnov test, being Brachypodium distachyon the treatment with more stable aggregates, it is necessary a mean higher than 8 drops to disintegrate every aggregate completely. Organic carbon was also measured by Loss on Ignition method (Schulte and Hopkins, 1996). This method can lead to an overestimation of the organic matter in soil samples but is considered suitable for aggregates. Again, those aggregates from treatments with cover crops had more organic carbon than the aggregates from traditional tillage treatment (Brachypodium distachyon 26.35, Secale cereale 18.83 and traditional tillage 17.04 g Kg-1). Lastly, the oxidable soil organic matter was also analyzed (Walkley-Black, 1934) and these results also indicated an increase in cover crop treatments, especially after the second year of treatment when the percentage of oxidable organic matter in the treatments with vegetable covers is approximately 1.5 times higher than this content in tillage treatment (1.015 %). The results support the conclusion that treatments with cover crops increased or at least maintained the stability of aggregates which is linked to the organic matter in the aggregates, on the contrary, the traditional tillage treatment showed less stable aggregates along the time. Keywords: aggregates stability, LOI, organic matter, vineyard, vegetable cover Aknowledgements: Projects FP06-DR3 IMIDRA, RTA2007-0086 INIA. Predoctoral INIA. Bodegas-Viñedos Gosálbez-Ortí.

  3. Predicting the mineral composition of dust aerosols: Insights from elemental composition measured at the Izaña Observatory

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, Carlos; Miller, Ron L.; Perlwitz, Jan P.; Rodríguez, Sergio; Prospero, Joseph M.

    2016-10-01

    Regional variations of dust mineral composition are fundamental to climate impacts but generally neglected in climate models. A challenge for models is that atlases of soil composition are derived from measurements following wet sieving, which destroys the aggregates potentially emitted from the soil. Aggregates are crucial to simulating the observed size distribution of emitted soil particles. We use an extension of brittle fragmentation theory in a global dust model to account for these aggregates. Our method reproduces the size-resolved dust concentration along with the approximately size-invariant fractional abundance of elements like Fe and Al in the decade-long aerosol record from the Izaña Observatory, off the coast of West Africa. By distinguishing between Fe in structural and free forms, we can attribute improved model behavior to aggregation of Fe and Al-rich clay particles. We also demonstrate the importance of size-resolved measurements along with elemental composition analysis to constrain models.

  4. WSA index as an indicator of soil degradation due to erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Schmidtova, Zuzana; Kubis, Adam; Fer, Miroslav; Klement, Ales; Nikodem, Antonin

    2014-05-01

    Knowledge of spatial distribution of soil aggregate stability as an indicator of soil degradation vulnerability is required for many scientific and practical environmental studies. The goal of our study was to assess predisposition of different soil types to change aggregate stability due to erosion. Five agriculture arable lands with different soil types were chosen. The common feature of these sites is relatively large slope and thus soils are impacted by water erosion. The first studied area was in Brumovice. The original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been described at other four locations Vidim, Sedlcany, Zelezna and Hostoun, where the original soil types were Haplic Luvisol on loess and Haplic Cambisol on gneiss, Haplic Cambisol on shales, and Calcaric Cambisol on marlstone, respectively. The regular and semi-regular soil sampling grids were set at all five sites. The basic soil properties were measured and stability of soil aggregates (WSA index) was evaluated. In all cases, the higher aggregates stability was observed in soils, which were not (or only slightly) affected by water erosion and at base slope and the tributary valley (eroded soil particle accumulation). The lowest aggregate stability was measured at the steepest parts. When comparing individual sites, the highest WSA index, e.g. aggregate stability, was found in Sedlcany (Cambisol). Lower WSA indexes were measured on aggregates from Hostoun (Cambisol), Zelezna (Cambisol), Vidim (Luvisol) and the lowest values were obtained in Brumovice (Chernozem). The largest WSA indexes for Cambisols in comparison to Luvisols and Chernozem could be attributed to higher organic matter content and presence of iron oxides. Slightly higher aggregate stability of Luvisols in comparison to Chernozem, could be explained by the positive influence of clay (especially in form of clay coatings) and organic matter, and negative impact of pH. The largest range of WSA values were found for Sedlcany (WSA = 0.41 to 0.93), followed by Vidim (WSA = 0.32 to 0.78) and Brumovice (0.20 to 0.67), Zelezna (WSA = 0.35 to 0.78) and Hostoun (WSA = 0.53 to 0.85). This indicates that the largest impact of erosion on aggregate stability was measured for Cambisol in Sedlcany. Similar impact of soil erosion was observed for both soils on loess and Cambisol in Zelezna. The lowest impact of erosion on aggregate stability was measured for Cambisol in Hostoun. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  5. Geochemical control on uranium(IV) mobility in a mining-impacted wetland.

    PubMed

    Wang, Yuheng; Bagnoud, Alexandre; Suvorova, Elena; McGivney, Eric; Chesaux, Lydie; Phrommavanh, Vannapha; Descostes, Michael; Bernier-Latmani, Rizlan

    2014-09-02

    Wetlands often act as sinks for uranium and other trace elements. Our previous work at a mining-impacted wetland in France showed that a labile noncrystalline U(IV) species consisting of U(IV) bound to Al-P-Fe-Si aggregates was predominant in the soil at locations exhibiting a U-containing clay-rich layer within the top 30 cm. Additionally, in the porewater, the association of U(IV) with Fe(II) and organic matter colloids significantly increased U(IV) mobility in the wetland. In the present study, within the same wetland, we further demonstrate that the speciation of U at a location not impacted by the clay-rich layer is a different noncrystalline U(IV) species, consisting of U(IV) bound to organic matter in soil. We also show that the clay-poor location includes an abundant sulfate supply and active microbial sulfate reduction that induce substantial pyrite (FeS2) precipitation. As a result, Fe(II) concentrations in the porewater are much lower than those at clay-impacted zones. U porewater concentrations (0.02-0.26 μM) are also considerably lower than those at the clay-impacted locations (0.21-3.4 μM) resulting in minimal U mobility. In both cases, soil-associated U represents more than 99% of U in the wetland. We conclude that the low U mobility reported at clay-poor locations is due to the limited association of Fe(II) with organic matter colloids in porewater and/or higher stability of the noncrystalline U(IV) species in soil at those locations.

  6. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt.

    PubMed

    Ali, Samim; Bandyopadhyay, Ranjini

    2016-01-01

    Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand and river deltas.

  7. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    NASA Astrophysics Data System (ADS)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic matter), slow (carbon associated to clay and silt or stabilized in aggregates) and passive (oxidation-resistant OC). In addition, the potential mineralized C (incubation method) in each deposit and soil was determined. Preliminary results indicate a higher OC content in the suspended sediments in transit and in the reservoir deposited sediments than in the alluvial bars, being in all sediments the total OC content lower than in the source soils. Slow and passive pools prevailed in suspended sediments and in reservoir sediments compared to alluvial bars, indicating different OC stabilization mechanisms. In addition, in the alluvial bars, mineralization rates were higher in bars located in channels with ephemeral flow conditions and vegetated areas than in bars located in channels with perennial flow conditions.

  8. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    PubMed Central

    2009-01-01

    Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu). Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans. PMID:19166595

  9. Interface Modeling for Electro-Osmosis in Subgrade Structures

    DTIC Science & Technology

    2004-12-01

    aggregate and different clays ( kaolinite , montmorillonite , limestone and quartz sands) created to simulate below grade structures. A direct current 30...Quartz Sand 100 Sieve Ca Montmorillonite Na Montmorillonite Kaolinite The test setup used a 0.45 water to cement ratio concrete cylinder... Kaolinite cell Figure 4. Measured pH for Concrete and Na Montmorillonite cell 4 Scaling occurred at the interface between the anode

  10. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  11. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis. Copyright © 2016. Published by Elsevier Ltd.

  12. Interlamellar adsorption of carbon dioxide by smectites

    USGS Publications Warehouse

    Fripiat, J.J.; Cruz, M.I.; Bohor, B.F.; Thomas, J.

    1974-01-01

    The adsorption of CO2 at low temperature (∼ −70°C) on thin films of homoionic smectites was studied by X-ray diffraction and by i.r. absorption. An increase in the d001 spacings of these clay films upon adsorption of CO2 was observed. In addition, a dichroic effect was readily discernible by comparing the i.r. spectra at two different orientations of the smectite films; i.e. with the film normal and tilted 35° with respect to the i.r. beam. The CO2 stretching vibration at 2350 cm−1 was used for the i.r. study. These observations conclusively show that CO2 intercalates the smectite structure rather than being adsorbed only in pores between clay tactoids—the limiting process proposed by other investigators.Adsorption isotherm data from earlier surface area studies are re-examined here through application of the Dubinin equation. Again, intercalation is demonstrated by convergence of the plotted experimental data for smectites containing large monovalent interlayer cations toward a pore volume that is near the calculated theoretical value for a monolayer of intercalated CO2.Scanning electron photomicrographs of Li- and Cs- smectites provide additional evidence that aggregation differences are not responsible for the large observed difference in BET surface areas obtained for these smectites with CO2 as the adsorbate. At low magnification, visual differences in macro-aggregates are apparent, but at high magnification no significant differences are observed in the micro-structure of individual aggregates where the major amount of gas adsorption really occurs.

  13. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separation by continuous- flow centrifugation

    USGS Publications Warehouse

    Moody, J.A.; Meade, R.H.

    1994-01-01

    The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors

  14. Unified scaling behavior of physical properties of clays in alcohol solutions.

    PubMed

    Pujala, Ravi Kumar; Pawar, Nisha; Bohidar, H B

    2011-12-15

    This paper reports observation of universal scaling of physical properties of clay particles, Laponite (aspect ratio=30) (L) and Na Montmorillonite (MMT, aspect ratio=200), in aqueous alcohol solutions (methanol, ethanol and 1-propanol) with solvent polarity, defined through reaction field factor f(OH)(ɛ(0),n)=[(ɛ(0) - 1/ɛ(0) + 2) - (n(2) - 1/n(2) + 2)], at room temperature (20°C). Here, ɛ(0) and n are the static dielectric constant and refractive index of the solvent concerned. Physical properties (Z) such as zeta potential, effective aggregate size, viscosity and surface tension scaled with the relative solvent polarity as Z∼δf(α); δf=(f(w)(ɛ(0),n) - f(OH)(ɛ(0),n)), where f(w)(ɛ(0),n) is the reaction field factor for water, Z is the normalized physical property, and α is its characteristic scaling exponent. The value of this exponent was found to be invariant of aspect ratio of the clay but dependent on the solvent polarity only. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Formation and Coloring Mechanism of Typical Aluminosilicate Clay Minerals for CoAl2O4 Hybrid Pigment Preparation

    PubMed Central

    Zhang, Anjie; Mu, Bin; Wang, Xiaowen; Wen, Lixin; Wang, Aiqin

    2018-01-01

    Different kinds of aluminosilicate minerals were employed to fabricate CoAl2O4 hybrid pigment for studying its formation and coloring mechanism. It revealed that the color of the obtained hybrid pigments was determined by the content of Al2O3 and lightness of clay minerals. The higher the Al2O3 content and the lightness of clay minerals, the better the color parameters of hybrid pigments. During the preparation of hybrid pigments, CoAl2O4 nanoparticles were confined to be loaded on the surface of the aluminosilicate minerals, which effectively prevented from the aggregation and the size increase of CoAl2O4 nanoparticles. What's more, aluminosilicate mineral might be an ideal natural aluminum source to compensate the aluminum loss due to the dissolution of Al(OH)3 at alkaline medium during precursor preparation, keeping an optimum molar ratio of Co2+/Al3+ for formation of spinel CoAl2O4 pigments in the process of high-temperature crystallization. PMID:29725589

  16. Formation and Coloring Mechanism of Typical Aluminosilicate Clay Minerals for CoAl2O4 Hybrid Pigment Preparation.

    PubMed

    Zhang, Anjie; Mu, Bin; Wang, Xiaowen; Wen, Lixin; Wang, Aiqin

    2018-01-01

    Different kinds of aluminosilicate minerals were employed to fabricate CoAl 2 O 4 hybrid pigment for studying its formation and coloring mechanism. It revealed that the color of the obtained hybrid pigments was determined by the content of Al 2 O 3 and lightness of clay minerals. The higher the Al 2 O 3 content and the lightness of clay minerals, the better the color parameters of hybrid pigments. During the preparation of hybrid pigments, CoAl 2 O 4 nanoparticles were confined to be loaded on the surface of the aluminosilicate minerals, which effectively prevented from the aggregation and the size increase of CoAl 2 O 4 nanoparticles. What's more, aluminosilicate mineral might be an ideal natural aluminum source to compensate the aluminum loss due to the dissolution of Al(OH) 3 at alkaline medium during precursor preparation, keeping an optimum molar ratio of Co 2+ /Al 3+ for formation of spinel CoAl 2 O 4 pigments in the process of high-temperature crystallization.

  17. Effect of volatile metabolites of dill, radish and garlic on growth of bacteria

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Borodina, E. V.; Ushakova, S. A.; Rygalov, V. Ye; Gitelson, J. I.

    2001-07-01

    In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m 2 PAR and the temperature of 24°C. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effect of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically.

  18. Clay-clast aggregates: A new textural evidence for seismic fault sliding?

    NASA Astrophysics Data System (ADS)

    Boutareaud, Sébastien; Calugaru, Dan-Gabriel; Han, Raehee; Fabbri, Olivier; Mizoguchi, Kazuo; Tsutsumi, Akito; Shimamoto, Toshihiko

    2008-03-01

    To determine the processes responsible for slip-weakening in clayey gouge zones, rotary-shear experiments were conducted at seismic slip rates (equivalent to 0.9 and 1.3 m/s) at 0.6 MPa normal stress on a natural clayey gouge for saturated and non-saturated initial conditions. The mechanical behavior of the simulated faults shows a reproducible slip-weakening behavior, whatever initial moisture conditions. Examination of gouge obtained at the residual friction stage in saturated and non-saturated initial conditions allows the definition of two types of microstructures: a foliated type reflecting strain localization, and a non-foliated type composed of spherical aggregates. Friction experiments demonstrate that liquid-vapor transition of water within gouge due to frictional heating has a high capacity to explain the formation of spherical aggregates in the first meters of displacement. This result suggests that the occurrence of spherical aggregates in natural clayey fault gouges can constitute a new textural evidence for shallow depth pore water phase transition at seismic slip velocity and consequently for past seismic fault sliding.

  19. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Kluitenberg, Gerard J.; Jones, Scott B.; Daidzic, Nihad E.; Reddi, Lakshmi N.; Xiao, Ming; Tuller, Markus; Newman, Rebecca M.; Or, Dani; Alexander, J. Iwan. D.

    2005-01-01

    Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was approximately 65%, substantially lower than total porosity of approximately 74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of approximately 36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a approximately 10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth.

  20. Strength and Stiffness Development in Soft Soils: A FESEM aided Soil Microstructure Viewpoint

    NASA Astrophysics Data System (ADS)

    Wijeyesekera, D. C.; Ho, M. H.; Bai, X.; Bakar, I.

    2016-07-01

    This paper opens with an overview of the debatable definition of soft soil that goes beyond a (CH) organic / inorganic clay and OH peat to include weakly cemented periglacial deposits of loess and alike. It then outlines the findings obtained from stiffness test on cement-stabilised soft clay. The findings are complemented with a microstructure viewpoint obtained using field emission scanning electron microscope (FESEM). Research also comprised of making cylindrical stabilised clay samples, prepared in the laboratory with various rubber chips contents and cement, and then aged for 28 days. The samples were then subjected to unconfined compressive strength (UCS) test and observations were also made of its microstructure using the FESEM. The impact of the soil microstructure on the stiffness result was studied both with the stabilized soil and also of some of the natural undisturbed loess soils. Sustainability aspect and the potential of the use of rubber chips and sand as additives to cement stabilisation are also discussed. The overall test results indicated that rubber chips and sand contributed to the improvement in unconfined compressive strength (qu). The derogatory influence of moisture on the stiffness of the stabilised clay was studied simultaneously. SEM micrographs are presented that show bonding of cement, rubber chips/ sand and soft clay, granular units and aggregated / agglomerated units in loess. The paper concludes with observations on the dependence of soil microstructure on the soil strength and deformability and even collapsibility of the loess. Current practices adopted as engineering solutions to these challenging soils are outlined.

  1. Nanoporous clay with carbon sink and pesticide trapping properties

    NASA Astrophysics Data System (ADS)

    Woignier, T.; Duffours, L.; Colombel, P.; Dieudonné, P.

    2015-07-01

    A thorough understanding of the mechanisms and factors involved in the dynamics of organic carbon in soils is required to identify and enhance natural sinks for greenhouse gases. Some tropical soils, such as Andosols, have 3-6 fold higher concentrations of organic carbon than other kinds of soils containing classical clays. In the tropics, toxic pesticides permanently pollute soils and contaminate crops, water resources, and ecosystems. However, not all soils are equal in terms of pesticide contamination or in their ability to transfer pollution to the ecosystem. Andosols are generally more polluted than the other kinds of soils but, surprisingly, they retain and trap more pesticides, thereby reducing the transfer of pesticides to ecosystems, water resources, and crops. Andosols thus have interesting environmental properties in terms of soil carbon sequestration and pesticide retention. Andosols contain a nano porous clay (allophane) with unique structures and physical properties compared to more common clays; these are large pore volume, specific surface area, and a tortuous and fractal porous arrangement. The purpose of this mini review is to discuss the importance of the allophane fractal microstructure for carbon sequestration and pesticide trapping in the soil. We suggest that the tortuous microstructure (which resembles a labyrinths) of allophane aggregates and the associated low accessibility partly explain the poor availability of soil organic matter and of any pesticides trapped in andosols.

  2. Physical and mechanical properties of quarry dust waste incorporated into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Sarani, N. A.; Rahim, A. S. Abdul; Ismail, N.

    2017-04-01

    A large amount of quarry dust waste is dispose into landfills every year. This waste was obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. The increasing value of waste will have significant impact towards health and environment. Recycling such wastes by incorporating them into building materials is a practical solution for pollution problem. Therefore, this research was to examine the possibility of quarry dust to be incorporated in fired clay bricks. In this research, the composition and concentration of heavy metals were determined by using X-Ray Fluorescence Spectrometer (XRF). The research also consists of physical and mechanical properties of the fired clay bricks by utilizing quarry dust waste. Brick was manufactured by incorporating different percentages of quarry dust waste which are 0%, 10%, 20% and 30%. All bricks sample was tested with physical and mechanical properties which were density, shrinkage, initial rate of suction (IRS) and compressive strength of the fired bricks. Furthermore, the density and shrinkage were also in standard range. All physical and mechanical results were complied with the BS 3921:1985 standard. The comprehensive experimental work described in this research investigated the possibility of incorporating quarry dust into fired clay bricks. These materials could be an alternative low cost material for brick and at the same time provide a new disposal method for the waste.

  3. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    PubMed

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was <1.5% relative to the solubility in pure water. This decrease of solubility is insufficient to account for the observed increase of sorption by K-smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  4. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    NASA Astrophysics Data System (ADS)

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into regions of low clay content, high-porosity and regions of low-porosity, high clay content. It appears from our data that shear localization in the gouge involves pressure solution as well as cataclastic flow assisted by alteration-softening. While the porous bands are potential conduits for fluid flow and could be sites for pressure solution creep, the clay-rich bands could serve as sites of shear localization due to their lower dilatancy rate. A better understanding of interaction between the two deformation mechanisms might shed light on the nature of microearthquake activity in the creeping segment of the SAF.

  5. A proposed mechanism for the formation of spherical vivianite crystal aggregates in sediments

    USGS Publications Warehouse

    Zelibor, J.L.; Senftle, F.E.; Reinhardt, J.L.

    1988-01-01

    Vivianite [Fe3(PO4)2??8H2O] is often found in the form of nodules composed of spherical aggregates of crystals. Crystallization of vivianite in agar gels of various concentrations yield crystal aggregates (nodules) that have spherical morphology and a bimodal size distribution. The aggregates were formed under both biotic and abiotic conditions. When special redox cells fitted with electrodes were used, more perfect spherical structures were formed when the electrodes were shorted than when they were on open circuit. In nature, vivianite nodules generally are found in sediments or clays that are gelatinous, often caused by the presence of organic debris. A model consistent with experimental observations and based on the dynamics of gels is proposed to explain a possible origin of nodular vivianite. To maintain iron and phosphate concentrations in sedimentary pore spaces filled with gel-like organic debris, the electric field spanning the aerobic-anerobic zones in the upper sediments may be an important driving force in addition to diffusion. It is suggested that the combination of the gel medium in the pore spaces and the natural electric field in the upper sediments could be contributing causes to explain the spherical aggregates of vivianite crystals found in nature. ?? 1988.

  6. Influenza-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Block, K. A.; Katz, A.; Gottlieb, P.; Alimova, A.; Galarza, J.; Wei, H.; Steiner, J. C.

    2013-12-01

    A typical water fowl can secrete 1012 influenza virions per day. Therefore it is not unexpected that influenza virions interact with sediments in the water column. The influence of sediments on avian influenza virions is not known. With the threat of avian influenza emerging into the human population, it is crucial to understand virus survivability and residence time in a body of water. Influenza and clay sediments are colloidal particles and thus aggregate as explained by DLVO (Derjaguin & Landau, Verwey & Overbeek) theory. Of great importance is an understanding of the types of particulate or macromolecular components that bind the virus particles, and whether the virus remains biologically active. We present results of hetero-aggregation and transmission electron microscopy experiments performed with influenza A/PR8/38. Influenza particles are suspended with sediment and minimal nutrients for several days, after which the components are evaluated to determine influenza concentration and survivability. Transmission electron microscopy results are reported on the influenza-sediment aggregates to elucidate structure and morphology of the components.

  7. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis

    PubMed Central

    2012-01-01

    Background Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. Results Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. Conclusions Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types. PMID:22873208

  8. Evolution of the Karyopherin-β Family of Nucleocytoplasmic Transport Factors; Ancient Origins and Continued Specialization

    PubMed Central

    O'Reilly, Amanda J.; Dacks, Joel B.; Field, Mark C.

    2011-01-01

    Background Macromolecular transport across the nuclear envelope (NE) is achieved through nuclear pore complexes (NPCs) and requires karyopherin-βs (KAP-βs), a family of soluble receptors, for recognition of embedded transport signals within cargo. We recently demonstrated, through proteomic analysis of trypanosomes, that NPC architecture is likely highly conserved across the Eukaryota, which in turn suggests conservation of the transport mechanisms. To determine if KAP-β diversity was similarly established early in eukaryotic evolution or if it was subsequently layered onto a conserved NPC, we chose to identify KAP-β sequences in a diverse range of eukaryotes and to investigate their evolutionary history. Results Thirty six predicted proteomes were scanned for candidate KAP-β family members. These resulting sequences were resolved into fifteen KAP-β subfamilies which, due to broad supergroup representation, were most likely represented in the last eukaryotic common ancestor (LECA). Candidate members of each KAP-β subfamily were found in all eukaryotic supergroups, except XPO6, which is absent from Archaeplastida. Phylogenetic reconstruction revealed the likely evolutionary relationships between these different subfamilies. Many species contain more than one representative of each KAP-β subfamily; many duplications are apparently taxon-specific but others result from duplications occurring earlier in eukaryotic history. Conclusions At least fifteen KAP-β subfamilies were established early in eukaryote evolution and likely before the LECA. In addition we identified expansions at multiple stages within eukaryote evolution, including a multicellular plant-specific KAP-β, together with frequent secondary losses. Taken with evidence for early establishment of NPC architecture, these data demonstrate that multiple pathways for nucleocytoplasmic transport were established prior to the radiation of modern eukaryotes but that selective pressure continues to sculpt the KAP-β family. PMID:21556326

  9. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    PubMed

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  10. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    PubMed

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  11. Influence of 20–Year Organic and Inorganic Fertilization on Organic Carbon Accumulation and Microbial Community Structure of Aggregates in an Intensively Cultivated Sandy Loam Soil

    PubMed Central

    Zhang, Huanjun; Ding, Weixin; He, Xinhua; Yu, Hongyan; Fan, Jianling; Liu, Deyan

    2014-01-01

    To evaluate the long–term effect of compost (CM) and inorganic fertilizer (NPK) application on microbial community structure and organic carbon (OC) accumulation at aggregate scale, soils from plots amended with CM, NPK and no fertilizer (control) for 20 years (1989–2009) were collected. Soil was separated into large macroaggregate (>2,000 μm), small macroaggregate (250–2,000 μm), microaggregate (53–250 μm), silt (2–53 μm) and clay fraction (<2 μm) by wet-sieving, and their OC concentration and phospholipid fatty acids (PLFA) were measured. The 20-year application of compost significantly (P<0.05) increased OC by 123–134% and accelerated the formation of macroaggregates, but decreased soil oxygen diffusion coefficient. NPK mainly increased OC in macroaggregates and displayed weaker influence on aggregation. Bacteria distributed in all aggregates, while fungi and actinobacteria were mainly in macroaggregates and microaggregates. The ratio of monounsaturated to branched (M/B) PLFAs, as an indicator for the ratio of aerobic to anaerobic microorganisms, increased inversely with aggregate size. Both NPK and especially CM significantly (P<0.05) decreased M/B ratios in all aggregates except the silt fraction compared with the control. The increased organic C in aggregates significantly (P<0.05) negatively correlated with M/B ratios under CM and NPK. Our study suggested that more efficient OC accumulations in aggregates under CM–treated than under NPK–treated soil was not only due to a more effective decrease of actinobacteria, but also a decrease of monounsaturated PLFAs and an increase of branched PLFAs. Aggregations under CM appear to alter micro-habitats to those more suitable for anaerobes, which in turn boosts OC accumulation. PMID:24667543

  12. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions.

    PubMed

    Egan, Gary; Crawley, Michael J; Fornara, Dario A

    2018-02-01

    Common grassland management practices include animal grazing and the repeated addition of lime and nutrient fertilizers to soils. These practices can greatly influence the size and distribution of different soil aggregate fractions, thus altering the cycling and storage of carbon (C) and nitrogen (N) in grassland soils. So far, very few studies have simultaneously addressed the potential long-term effect that multiple management practices might have on soil physical aggregation. Here we specifically ask whether and how grazing, liming and nutrient fertilization might influence C and N content (%) as well as C and N pools of different soil aggregate fractions in a long-term grassland experiment established in 1991 at Silwood Park, Berkshire, UK. We found that repeated liming applications over 23years significantly decreased the C pool (i.e. gCKg -1 soil) of Large Macro Aggregate (LMA>2mm) fractions and increased C pools within three smaller soil aggregate fractions: Small Macro Aggregate (SMA, 250μm-2mm), Micro Aggregate (MiA, 53-250μm), and Silt Clay Aggregate (SCA<53μm). Soil C (and N) accrual in smaller fractions was mainly caused by positive liming effects on aggregate fraction mass rather than on changes in soil C (and N) content (%). Liming effects could be explained by increases in soil pH, as this factor was significantly positively related to greater soil C and N pools of smaller aggregate fractions. Long-term grazing and inorganic nutrient fertilization had much weaker effects on both soil aggregate-fraction mass and on soil C and N concentrations, however, our evidence is that these practices could also contribute to greater C and N pools of smaller soil fractions. Overall our study demonstrates how agricultural liming can contribute to increase C pools of small (more stable) soil fractions with potential significant benefits for the long-term C balance of human-managed grassland soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    PubMed

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field theory of colloidal interactions that accurately predicts clay swelling in a narrow range of conditions (low salinity, low compaction, Na + counterion). An important feature of clay swelling that is not predicted by these models is the coexistence, in most conditions of aqueous chemistry and dry bulk density, of two types of pores between parallel smectite particles: mesopores with a pore width of >3 nm that are controlled by long-range interactions (the osmotic swelling regime) and nanopores with a pore width <1 nm that are controlled by short-range interactions (the crystalline swelling regime). Nanogeochemical characterization and simulation techniques, including coarse-grained and all-atom molecular dynamics simulations, hold significant promise for the development of advanced constitutive relations that predict this coexistence and its dependence on aqueous chemistry.

  14. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanismsmore » of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly in the form of sub-nanometer Cr2O3 in association with residual clay minerals as micro-aggregates. This textural association was expected to minimize the chance of Cr(III) reoxidation upon exposure to oxidants. These results are important for our understanding of how various clay minerals may be used to reductively immobilize the heavy metal contaminant Cr in the environment.« less

  15. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    PubMed Central

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  16. Mineral resources and land use in Stanislaus County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, C.T.; Dupras, D.L.; Chapman, R.H.

    1993-04-01

    Stanislaus County covers portions of 3 geologic provinces: Coast Ranges, Great Valley, and Sierra Nevada. Each has been exploited for a distinct set of mineral resources, which include sand and gravel, ball and fire clay, placer gold, manganese, chromite, magnesite, mercury, diatomite, building stone, and mineral pigment. Of these, sand and gravel, clay, and diatomite have been the most important commodities produced recently. Sand and gravel, particularly that along the Tuolumne River, is and will continue to be the county's main mineral product; other potentially important areas include alluvial fans along the west side of the Great Valley. Clay andmore » diatomite could resume importance in the future. There is also potential for quartz-rich specialty sands. Although the county is largely rural, it is undergoing one of the highest growth rates in California. Several new residential communities are being proposed in the county, which would have two major effects on mineral resources: (1) large sources of aggregate will be required for construction, and (2) development of residential areas may preclude mining of resources in those areas. Maps of mineral resources produced by this study, will assist decisions on such potential conflicts in land use.« less

  17. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    PubMed

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  18. Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia’s Housing Sector

    PubMed Central

    Lawania, Krishna; Sarker, Prabir; Biswas, Wahidul

    2015-01-01

    Western Australia’s housing sector is growing rapidly and around half a million houses are expected to be built by 2030, which not only will result in increased energy and resources demand but will have socio-economic impacts. Majority of Western Australians live in detached houses made of energy intensive clay bricks, which have a high potential to generate construction and demolition (C&D) waste. Therefore, there is a need to look into the use of alternative materials and construction methods. Due to Western Australia’s temperate climate, concrete could not only offer a comfortable living space but an operational energy saving also can be achieved. This paper has assessed the global warming implications of cast in-situ concrete sandwich wall system as an alternative to clay brick walls (CBW) with partial replacement of cement in concrete with by-products such as fly ash (FA) and ground granulated blast furnace slag (GGBFS), natural aggregate (NA) with recycled crushed aggregate (RCA), natural sand (NS) with manufactured sand (MS) and, polyethylene terephthalate (PET) foam core as a replacement to polystyrene core for construction of a typical 4 × 2 × 2 detached house in Perth. Life cycle management (LCM) approach has been used to determine global warming reduction benefits due to the use of available by-products and recycled materials in Western Australian houses.

  19. Use of Reinforced Lightweight Clay Aggregates for Landslide Stabilisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herle, Vitezslav

    2008-07-08

    In spring 2006 a large landslide combined with rock fall closed a highway tunnel near Svitavy in NE part of Czech Republic and cut the main highway connecting Bohemia with Moravia regions. Stabilisation work was complicated by steep mountainous terrain and large inflow of surface and underground water. The solution was based on formation of a stabilisation fill made of reinforced free draining aggregates at the toe of the slope with overlying lightweight fill up to 10 m high reinforced with PET geogrid and steel mesh protecting soft easily degrading sandstone against weathering. Extensive monitoring made possible to compare themore » FEM analysis with real values. The finished work fits very well in the environment and was awarded a special prize in the 2007 transport structures contest.« less

  20. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    PubMed

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  1. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Zarsky, Jakub D.; Stibal, Marek; Hodson, Andy; Sattler, Birgit; Schostag, Morten; Hansen, Lars H.; Jacobsen, Carsten S.; Psenner, Roland

    2013-09-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.

  2. Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays.

    PubMed

    Revault, M; Quiquampoix, H; Baron, M H; Noinville, S

    2005-08-05

    Studying the mechanism of retention of ovine prion protein in soils will tackle the environmental aspect of potential dissemination of scrapie infectious agent. We consider the surface-induced conformational changes that the recombinant ovine prion protein (ovPrP) may undergo under different pH conditions when interacting with soil minerals of highly adsorptive capacities such as montmorillonite. The conformational states of the full-length ovine prion protein adsorbed on the electronegative clay surface are compared to its solvated state in deuterated buffer in the pD range 3.5-9, using FTIR spectroscopy. The in vitro pH-induced conversion of the alpha-helical monomer of ovPrP into oligomers of beta-like structure prone to self-aggregation does not occur when the protein is adsorbed on the clay surface. The conformation of the trapped ovPrP molecules on montmorillonite is pH-independent and looks like that of the ovPrP solvated state at pD higher than 7, suggesting the major role of Arg and Lys residues in the electrostatic origin of adsorption. The uneven distribution of positively and negatively charged residues of the ovPrP protein would promote a favored orientation of the protein towards the clay, so that not only the basic residues embedded in the N-terminal flexible part but also external basic residues in the globular part of the protein might participate to the attractive interaction. From these results, it appears unlikely that the interaction of normal prions (PrP(C)) with soil clay surfaces could induce a change of conformation leading to the pathogenic form of prions (PrP(Sc)).

  3. Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study.

    PubMed

    Kang, Fuxing; Ge, Yangyang; Hu, Xiaojie; Goikavi, Caspar; Waigi, Michael Gatheru; Gao, Yanzheng; Ling, Wanting

    2016-12-15

    In current adsorption studies of biotoxins to phyllosilicate clays, multiply weak bonding types regarding these adsorptions are not well known; the major attractive forces, especially for kaolinite and illite, are difficult to be identified as compared to smectite with exchangeable cations. Here, we discriminated the bonding types of aflatoxin B1 (AFB1) contaminant to these clays by combined batch experiment with model computation, expounded their bonding mechanisms which have been not quantitatively described by researchers. The observed adsorbent-to-solution distribution coefficients (K d ) of AFB1 presented in increasing order of 18.5-37.1, 141.6-158.3, and 354.6-484.7L/kg for kaolinite, illite, and smectite, respectively. Normalization of adsorbent-specific surface areas showed that adsorption affinity of AFB1 is mainly dependent on the outside surfaces of clay aggregates. The model computation and test of ionic effect further suggested that weakly electrostatic attractions ((Si/Al-OH) 2 ⋯(OC) 2 ) are responsible for AFB1-kaolinite adsorption (K d , 18.5-37.1L/kg); a moderate electron-donor-acceptor attraction ((CO) 2 ⋯K + ⋯(O-Al) 3 ) is related to AFB1-illite adsorption (K d , 141.6-158.3L/kg); a strong calcium-bridging linkage ((CO) 2 ⋯Ca 2+ ⋯(O-Si) 4 ) is involved in AFB1-smectite adsorption (K d , 354.6-484.7L/kg). Changes in Gibbs free energy (ΔG°) suggested that the computed result is reliable, providing a good reproduction of AFB1-clay interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies

    NASA Astrophysics Data System (ADS)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.

    2017-08-01

    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that control the enhanced trapping of water molecules and solutes within sugar-enriched clay nanopores.

  5. Development of photopolymerizable clay nanocomposites utilizing reactive dispersants

    NASA Astrophysics Data System (ADS)

    Owusu-Adom, Kwame

    Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation in polymerizable organoclay systems. The polymer cross-link density dictates the magnitude of change in both modulus and glass transition temperature of the nanocomposite. Substantial increases in modulus and Tg occur in elastomeric and low cross-link density polymers, while decreases occur in the modulus and Tg of highly cross-linked polymer networks. Finally, these parameters have formed a basis for developing nanocomposites with higher moduli and lower volumetric shrinkage. The photopolymerization rates of these systems are controllable and increase substantially with addition of polymerizable organoclays. Such properties occur in traditional multifunctional acrylate photopolymer systems as well as new binary thiol-(meth)acrylate and ternary thiol-ene-(meth)acrylate photopolymers.

  6. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry.

    PubMed

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  7. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    USGS Publications Warehouse

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  8. Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae).

    PubMed

    Cornelius, Mary L; Osbrink, Weste L A

    2010-06-01

    This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.

  9. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    PubMed Central

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  10. An analysis of carbon and radiocarbon profiles across a range ecosystems types

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; Strahm, B. D.; Sanclements, M.

    2016-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of mineralogical parameters on soil C stocks and turnover and their relative importance in comparison to climatic variables. Results are presented for a total of 11 NEON sites, spanning Alfisols, Entisols, Mollisols and Spodosols. Soils were sampled by genetic horizon, density separated according to density fractionation: light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon concentrations of the heavy fraction (mineral adsorbed) were significantly, though weakly, correlated with pH (r2 = 0.35, p = 0.02), though C concentrations were not. Data suggest an important role for both aggregation and soil chemistry in regulating soil C cycling across a diversity of soil orders. The current presented results serve as a preliminary report on a project spanning 40 NEON sites and a range of physiochemical analyses.

  11. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    NASA Astrophysics Data System (ADS)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of attractive forces between particles for bivalent ions for particular ranges of bulk concentrations. The three-scale model is applied to numerically simulate ion diffusion in a compacted clay liner underneath a sanitary landfill. Owing to the distinct constitutive behavior of the swelling pressure and partition coefficient for each ionic species, different compaction regimes and diffusion/adsorption patterns, with totally different characteristic time scales, are observed for sodium and calcium migration in the clay liner.

  12. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags ), volcanic glass , fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...solidified with alkali- activated glass slag US Army Corps of Engineers 4 Pohakuloa Training Area (PTA) as a Test Site • Serious dust problem at site...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass ( slag , fly ash) can be used • More alkaline solution is

  13. Assessing the strength of soil aggregates produced by two types of organic matter amendments using the ultrasonic energy

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaolong; minasny, Budiman; Field, Damien; Angers, Denis

    2017-04-01

    The presence of organic matter (OM) is known to stimulate the formation of soil aggregates, but the aggregation strength may vary with different amount and type/quality of OM. Conventionally wet sieving method was used to assess the aggregates' strength. In this study, we wish to get insight of the effects of different types of C inputs on aggregate dynamics using quantifiable energy via ultrasonic agitation. A clay soil with an inherently low soil organic carbon (SOC) content, was amended with two different sources of organic matter (alfalfa, C:N = 16.7 and barley straw, C:N = 95.6) at different input levels (0, 10, 20, & 30 g C kg-1 soil). The soil's inherent macro aggregates were first destroyed via puddling. The soils were incubated in pots at moisture content 70% of field capacity for a period of 3 months. The pots were housed in a 1.2L sealed opaque plastic container. The CO2 generated during the incubation was captured by a vial of NaOH which was placed in each of the sealed containers and sampled per week. At 14, 28, 56, and 84 days, soil samples were collected and the change in aggregation was assessed using a combination of wet sieving and ultrasonic agitation. The relative strength of aggregates exposed to ultrasonic agitation was modelled using the aggregate disruption characteristic curve (ADCC) and soil dispersion characteristic curve (SDCC). Both residue quality and quantity of organic matter input influenced the amount of aggregates formed and their relative strength. The MWD of soils amended with alfalfa residues was greater than that of barley straw at lower input rates and early in the incubation. In the longer term, the use of ultrasonic energy revealed that barley straw resulted in stronger aggregates, especially at higher input rates despite showing similar MWD as alfalfa. The use of ultrasonic agitation, where we quantify the energy required to liberate and disperse aggregates allowed us to differentiate the effects of C inputs on the size of stable aggregates and their relative strength.

  14. The applicability of different waste materials for the production of lightweight aggregates.

    PubMed

    Ducman, V; Mirtic, B

    2009-08-01

    The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO(2) were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 degrees C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy. With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 degrees C homogeneously porous granules with a density down to 0.42 g/cm(3) were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 degrees C densities from 0.57 to 0.82 g/cm(3) were obtained.

  15. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface

    USGS Publications Warehouse

    Doveton, J.H.; Merriam, D.F.

    2004-01-01

    Pennsylvanian black shales in Kansas have been studied on outcrop for decades as the core unit of the classic Midcontinent cyclothem. These shales appear to be highstand condensed sections in the sequence stratigraphic paradigm. Nuclear log suites provide several petrophysical measurements of rock chemistry that are a useful data source for chemostratigraphic studies of Pennsylvanian black shales in the subsurface. Spectral gamma-ray logs partition natural radioactivity between contributions by U, Th, and K sources. Elevated U contents in black shales can be related to reducing depositional environments, whereas the K and Th contents are indicators of clay-mineral abundance and composition. The photoelectric factor log measurement is a direct function of aggregate atomic number and so is affected by clay-mineral volume, clay-mineral iron content, and other black shale compositional elements. Neutron porosity curves are primarily a response to hydrogen content. Although good quality logs are available for many black shales, borehole washout features invalidate readings from the nuclear contact devices, whereas black shales thinner than tool resolution will be averaged with adjacent beds. Statistical analysis of nuclear log data between black shales in successive cyclothems allows systematic patterns of their chemical and petrophysical properties to be discriminated in both space and time. ?? 2004 Elsevier B.V. All rights reserved.

  16. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.

    PubMed

    McLaughlin, Stephen J; Kalita, Prasanta K; Kuhlenschmidt, Mark S

    2013-12-15

    Vegetative Filter Strips (VFS) have long been used to control the movement of agricultural nutrients and prevent them from reaching receiving waters. Earlier studies have shown that VFS also dramatically reduce both the kinetics and extent of Cryptosporidium parvum (C. parvum) oocysts overland transport. In this study, we investigated possible mechanisms responsible for the ability of VFS to reduce oocyst overland transport. Measurement of the kinetics of C. parvum adhesion to individual sand, silt, and clay soil particles revealed that oocysts associate over time, albeit relatively slow, with clay but not silt or sand particles. Measurement of oocyst overland transport kinetics, soil infiltration depth, distance of travel, and adhesion to vegetation on bare and vegetated soil surfaces indicate that oocysts move more slowly, and penetrate the soil profile to a greater extent on a vegetated surface than on a bare soil surface. Furthermore, we demonstrate a small fraction of the oocysts become attached to vegetation at the soil-vegetation interface on VFS. These results suggest VFS function to reduce oocyst overland transport by primarily decreasing oocyst surface flow enough to allow penetration within the soil profile followed by subsequent adhesion to or entrapment within clay particle aggregates, and to a lesser extent, adhesion to the surface vegetation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Stability of aggregates in the environment: role of solid bridging

    NASA Astrophysics Data System (ADS)

    Seiphoori, A.; Jerolmack, D. J.; Arratia, P. E.

    2017-12-01

    Colloids in suspension may form larger flocs under favorable conditions, via diffusion- or reaction-limited aggregation. In addition, the process of drying colloidal suspensions drives colloids together via hydrodynamic forces to form aggregates, that may be stable or unstable when subject to re-wetting and transport. Channel banks, shorelines and hillslopes are examples where the periodic wetting and drying results in the aggregation of muds. If aggregates disperse, the mud structure is unstable to subsequent wetting or fluid shear and can easily be detached and transported to rivers and coasts. The effective friction that governs hillslope and channel-bank soil creep rates also depends on the stability of the soil aggregates. Yet, few studies probe the particle-scale assembly or stability of aggregates subject to environmental loads, and the effects of shape or size heterogeneity have not been examined in detail. Here we investigate the formation and stability of aggregates subject to passive re-wetting (by misting) and shearing using a simple Poiseuille flow in a microfluidic device. We study the kinetics of a wide range of silicate colloids of different size and surface charge properties using in situ microscopy and particle tracking. We find that negatively charged silica microspheres are dragged by the retreating edge of an evaporating drop and are resuspended easily on re-wetting, showing that aggregates are unstable. In contrast, a bi-disperse suspension created by the addition of silica nanoparticles forms stable deposits, where nanoparticles bind larger particles by bridging the interparticle space, a mechanism similar to capillary bridging that we refer to as "solid bridging." Although aggregate structure and dynamics of the bi-disperse system changes quantitatively with surface-charge of the nanoparticles, smaller particles always conferred stability on the aggregates. Investigation of other colloids, including asbestos fibers and various clays, reveals that this solid bridging effect is robust across variations in particle shape and material composition. These experiments suggest that natural mud and soil may form more stable aggregates than would naively be expected by considering the charge effects alone, because their inherent size heterogeneity is conducive to solid bridging.

  18. Smectite flocculation structure modified by Al13 macro-molecules--as revealed by the transmission X-ray microscopy (TXM).

    PubMed

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2010-05-01

    The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+). Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation. In case of smectite sample prepared in Methods 1 and 3 particles fall into the primary minimum where Van der Waals forces act between FF oriented smectite flakes and aggregates become approach irreversible flocculation. In case of sample prepared using Method 2, particles contacting by edges (EE) and edge to face (EF) orientation fell into secondary minimum and weak flocculation resulted in severe gelation and formation of the micelle-like texture in fringe superstructure, which was first time observed in smectite based gel. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Accumulation of organic C components in soil and aggregates

    PubMed Central

    Yu, Hongyan; Ding, Weixin; Chen, Zengming; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-01-01

    To explore soil organic carbon (SOC) accumulation mechanisms, the dynamics of C functional groups and macroaggregation were studied synchronously through aggregate fractionation and 13C NMR spectroscopy in sandy loam soil following an 18-year application of compost and fertilizer in China. Compared with no fertilizer control, both compost and fertilizer improved SOC content, while the application of compost increased macroaggregation. Fertilizer application mainly increased the levels of recalcitrant organic C components characterized by methoxyl/N-alkyl C and alkyl C, whereas compost application mainly promoted the accumulation of methoxyl/N-alkyl C, phenolic C, carboxyl C, O-alkyl C and di-O-alkyl C in bulk soil. The preferential accumulation of organic C functional groups in aggregates depended on aggregate size rather than nutrient amendments. These groups were characterized by phenolic C and di-O-alkyl C in the silt + clay fraction, carboxyl C in microaggregates and phenolic C, carboxyl C and methoxyl/N-alkyl C in macroaggregates. Thus, the differences in accumulated organic C components in compost- and fertilizer-amended soils were primarily attributable to macroaggregation. The accumulation of methoxyl/N-alkyl C in microaggregates effectively promoted macroaggregation. Our results suggest that organic amendment rich in methoxyl/N-alkyl C effectively improved SOC content and accelerated macroaggregation in the test soil. PMID:26358660

  20. Assessing Soil Organic C Stability at the Continental Scale: An Analysis of Soil C and Radiocarbon Profiles Across the NEON Sites

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; McKnight, D. M.; Strahm, B. D.; Sanclements, M.

    2017-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of physicochemical parameters on soil C stocks and turnover, and their relative importance in comparison to climatic variables. Soils were cored at NEON sites, sampled by genetic horizon, and density separated into light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon abundance was correlated with pH, with variance also grouping by dominate vegetation type. Soil order was also identified as an important proxy variable for C and radiocarbon abundance. Preliminary results suggest that both integrative proxies as well as physicochemical properties may be needed to account for variation in soil C abundance and stability at the continental scale.

  1. Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.

    1992-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and minor silver, uranium occurrences, as well as important industrial commodities, including caliche, limestone and dolomite, and aggregate (sand). Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  2. Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico

    USGS Publications Warehouse

    Bartsch-Winkler, Susan B.; Donatich, Alessandro J.

    1995-01-01

    The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial commodities include caliche, limestone and dolomite, and aggregate. Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.

  3. Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner

    2010-05-01

    The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of lignin monomers, hydroxyl acids, n-alkanols and n-fatty acid methyl esters measured by GC MS before and after the incubation indicated selective degradation and preservation patterns at the molecular scale.

  4. Factors of soil diversity in the Batumi delta (Georgia)

    NASA Astrophysics Data System (ADS)

    Turgut, Bülent; Ateş, Merve

    2017-01-01

    The aim of this study was to determine certain basic properties of soils in the Batumi delta (southwestern Georgia) to determine the relationships of studied properties and to identify differences with regards to these properties between different sampling sites in the delta that were selected based on the delta morphology. In this context, a total of 125 soil samples were collected from five different sampling sites, and the clay, silt and sand content of the samples were determined along with their mean weight diameter (MWD) values, aggregate stability (AS) values, amount of water retained under -33 (FC) and -1500 kPa (WP) pressure and organic matter (OM) content. Correlation analysis indicated that clay content and OM were positively correlated with MWD, and OM was positively correlated with AS. However, the sand content was found to be negatively correlated with MWD. In addition, clay, silt and OM content were positive correlated with FC and WP. Variance analysis results determined statistically significant differences between the sampling sites with respect to all of the evaluated properties. The active delta section of the study area was characterized by high sand content, while the lower delta plain was characterized by high OM and AS values, and the upper delta plain was characterized by high MWD values, high FC and WP moisture content levels and high clay and silt content. In conclusion, it was demonstrated that the examined properties were significantly affected by the different morphological positions and usages of these different areas. These results may help with the management of agricultural lands in the Batumi delta, which has never been studied before.

  5. Water stability of aggregates in subtropical and tropical soils (Georgia and China) and its relationships with the mineralogy and chemical properties

    NASA Astrophysics Data System (ADS)

    Alekseeva, T. V.; Sokolowska, Z.; Hajnos, M.; Alekseev, A. O.; Kalinin, P. I.

    2009-04-01

    Water-stable aggregates isolated from three subtropical and one tropical soil (Western Georgia and China) were studied for their organic carbon, cation exchange capacity (CEC), specific surface area, magnetic susceptibility, and total chemical elements. The soils were also studied for their particle-size distribution, mineralogy, and nonsilicate Fe and Al oxides. Describe the water stability, three indices have been used: the content of water-stable macroaggregates (>0.25 mm), the mean weighted diameter of the aggregates, and the numerical aggregation index. The yellow-cinnamonic soil (China) was neutral, and the three other soils were acid. The soils were degraded with a low content of organic matter. The yellow-cinnamonic soil was characterized by the lowest water stability due to the predominantly vermiculite composition of the clay. The high water stability of the Oxisol structure was determined by the kaolinites and high content of oxides. In three out of the four soils studied, the hierarchical levels of the soil structure organization were defined; they were identified by the content of organic matter and the Ca + Mg (in Oxisols). Iron oxides mainly participated in the formation of micro-aggregates; Al and Mn contributed to the formation of macroaggregates. The water-stable aggregates acted as sorption geochemical barriers and accumulated Pb, Zn, Cd, Cs, and other trace elements up to concentrations exceeding their levels in the soil by 5 times and more. The highest correlations were obtained with CEC, Mn, and P rather than with organic carbon and Fe.

  6. Effect of compost supplies on soil bulk density and aggregate stability. Results from a six years trial in two experimental fields in Northern Italy

    NASA Astrophysics Data System (ADS)

    Calzolari, C.; Ungaro, F.; Salvador, P.; Torri, D.

    2009-04-01

    Results of a long term trial (2002-2007) on the effect of different organic amendments on topsoil structural properties at the end of the 6th year are presented. Two soils located in two experimental farms of the Emilia-Romagna region (Northern Italy), namely a silty clay loam Haplic Calcisol under sorghum (Sorghum bicolor, L.) continuous cropping, and a silty Calcaric Cambisols under peach (Persica vulgaris, Mill.), have been treated with a different amount of organic amendments. Four different treatments were tested plus control: manure (10 Mg ha-1 y-1), low input compost (5 and 10 Mg ha-1 y-1), high input compost (10 and 40 Mg ha-1 y-1), and no-tillage. In all the plots soil samples were collected three times every year: at the beginning of the growing season, at full crop coverage and after harvest. At each time, samples were collected in three replicates and soil bulk density and aggregate stability were measured. At the end of the 6 years trial 930 bulk density and 405 aggregate stability measurements were made available. The influence of organic amendments on soil physical properties is different according to the considered soil property and to the different soils. Soil bulk density (BD) shows clear and statistically significant differences among the tested theses, all with a marked seasonality and distinct temporal trends. The overall trends observed in the two soils are coherent with the amount of organic matter distributed in the different theses and with the field operations (tillage mainly), but with a short term effect. More important, over the period of observation and within each year, the treatments exhibit cyclical variations due to climate seasonality. Among the treatments, that with distribution of manure exhibits the weakest seasonal variations and a substantially stable general trend, with BD values slightly lower than those observed for the control. Different effects are also observed on soil aggregates stability, but also in this case a temporal trend is not clearly detectable, suggesting that the amendments have no cumulative effect at least during the 6 years of observations, and the responses are different in the two trials: slightly positive for the low compost supply in the silty clay loam Haplic Calcisol and negative for both low and high compost supply in the silty Calcaric Cambisols. The dominant issue is the seasonal variability of aggregate resistance which is well shown at the site where more data are available. Data also hints an ambiguous behavior of the compost: increasing the amount of applied compost leads to a slight increase in aggregate stability which is then followed by a decrease, as if the aggregation capability of the compost is counteracted by a dispersion effect.

  7. Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.

    2009-04-01

    We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and <2 μm (clay associated SOC). Other authors had shown that the RPM pool of the model corresponds well to SOC measured in the soil size fraction > 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction < 50 μm. Default model applications show that the model underestimates the fast drop in forest C stocks in the first 20 years after land-use change and overestimates the C accumulation of maize C. Several hypotheses were tested to evaluate the simulations. Input data and internal model parameter uncertainties had minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and repeated cultivation of the soil. The underestimation of SOC loss by the model can be mainly attributed to the slow turnover of the humus pool. This pool was shown to represent mainly the SOC associated with the silt and clay soil fraction. Here, the clay associated SOC shows as similar turnover time as the humus pool in the model. We split the humus pool into a clay and a silt associated pool. The clay pool now corresponds to the clay associated SOC with the turnover time of the humus pool. The silt pool now corresponds to the silt associated SOC. From the measurements, the latter has a turnover time similar to the turnover time of the particulate organic matter. We therefore use the turnover time of the RPM pool for the silt pool. These modifications improve the simulations of the forest derived C significantly and improve the simulations of the maize derived C. Future work will further evaluate and refine this approach to eventually capture the SOC dynamics associated with physical protection, including the effect of tillage/no-tillage, in a simple approach.

  8. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Peng, Chenliang; Min, Fanfei; Liu, Lingyun

    2017-12-01

    The hydrophobic aggregation in cationic surfactant suspension is an effective method to enhance the dewatering of clay-rich tailing. The solution pH can affect the adsorption behavior of cationic surfactant on clay mineral. The effect of pH on the adsorption of dodecylamine (DDA) on montmorillonite was investigated by the sedimentation test and the characterization of flocs images, contact angle, adsorption quantity, and fourier transform infrared (FTIR) spectroscopy, as well as molecular dynamics (MD) simulation. It was found that DDA ions were adsorbed on montmorillonite basal surfaces mainly by physical adsorption, including the electrostatic attraction and hydrogen bonding. A certain number of neutral DDA molecules can favor the adsorption of DDA. At pH around 8, the effect of hydrophobic modification was the best because DDA molecules and ions form compact and well-organized monolayer. The MD simulation results were in good agreement with that of contact angle, adsorption quantity and FTIR.

  9. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be connected with the TC content of this fraction, but more research is needed. In agricultural areas micro aggregate fraction plays important role in nutrient supply thus understanding the erosion process is necessary because of the better protection in the future.

  10. Micro-fabric damages in Boom Clay inferred from cryo-BIB-SEM experiment: recent results

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schmatz, Joyce; Klaver, Jop; Urai, Janos L.

    2017-04-01

    The Boom Clay is considered as a potential host rock in Belgium for nuclear waste disposal in a deep geological formation. One of the keys to understand the long-term performance of such a host rock is the fundamental understanding of coupling between microstructural evolution, poromechanical behaviour and the state of hydration of the system. At in situ conditions, Boom Clay is a nearly water-saturated (>94%) clay-rich geomaterial. Subsequently, for measurement of mechanical and transport properties in laboratory, cores of Boom Clay are vacuum-packed in Al-coated-poly-ethylene barrier foil to be best preserved at original hydric state. Because clay microstructures are very sensitive to dehydration, the validity of investigations done on such preserved or/and dried samples is often questionable. Desbois et al. (2009, 2013, 2014) showed the possibility to image fluid-filled porosity in Boom Clay, by using the FIB-cryo-SEM (FIB: Focussed Ion Beam) and FIB-cryo-SEM (BIB: Broad Ion Beam) techniques. However, surprisingly in Desbois et al. (2014), BIB-cryo-SEM experiments on Boom Clay, shown that the majority of the pores were fluid-free, contrasting with result in Desbois et al. (2009). In Desbois et al. (2014), several reasons were discussed to explain such discrepancies. The likely ones are the sealing efficiency of the Al-barrier foil at long term and the volume expansion due to the release of in-situ stress after core extraction, contributing both to dehydration and microfabric damage. This contribution presents the newest results based on cryo-BIB-SEM. Small pieces (30 mm3) of Boom Clay were preserved in liquid nitrogen after the core extraction at the MOL/Dessel Underground Research Laboratory in Belgium. A maximum of ten minutes time span was achieved between opening the core, the sub-sample extraction and the quenching of sub-samples in liquid nitrogen. First results show that all pores visible at cryo-SEM resolution are water saturated. However, water-filled micro-cracks are also present and they are interpreted to result from the releasing of in-situ stress after the core extraction. Moreover, the comparison of the clay micro-fabrics in the same preserved and dried sample suggests collapsing of the clay aggregates' pores in dried sample. These newest results are still preliminary and they need to be analysed in more details. However, if they are confirmed they may be important input to discuss about the validity of measurement of mechanical and transport properties done in laboratory. Desbois G., Urai J.L. and Kukla P.A. (2009). Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. E-Earth, 4 :15-22. Desbois G., J.L. Urai, F. Pérez-Willard, Z. Radi, S. van Offern, I. Burkart, P.A. Kukla, U. Wollenberg (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. Journal of Microscopy, 249(3): 215-235. Desbois G., Urai J.L., Hemes S., Brassinnes S., De Craen M., Sillen X. (2014). Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM. Engineering Geology, 170:117-131.

  11. Thoracic corpectomy for neoplastic vertebral bodies using a navigated lateral extracavitary approach-a single-center consecutive case series: technique and analysis.

    PubMed

    Hartmann, Sebastian; Wipplinger, Christoph; Tschugg, Anja; Kavakebi, Pujan; Örley, Alexander; Girod, Pierre Pascal; Thomé, Claudius

    2018-04-01

    Thoracic myelopathy is often caused by vertebral body fractures resulting from neoplastic conditions, traumatic events, or infectious diseases. One of the preferred procedures for treating it is the lateral extracavitary approach (LECA) with single-level or multilevel decompressive corpectomy and reconstruction. The aim of this retrospective study was to analyze the thoracic lateral extracavitary approach with corpectomy using vertebral body replacement systems (VBR-S) and dorsal reconstruction. Twenty-four patients with metastatic or primary lesions of thoracic vertebrae T2-T12 underwent spinal decompression and ventral column reconstruction with correction of spinal deformity via a LECA. One-level to four-level corpectomies were performed with additional navigated dorsal pedicle screw fixation at an average of two levels above and below the corpectomy lesion. None of the patients received preoperative spinal embolization, and the majority of the patients were admitted to radiotherapy postoperatively. Their mean age was 56 years (± 15), with a female-to-male sex ratio of 8 to 16. Patients with a minimum follow-up period of 16 months were included. The Karnofsky index, preoperative and postoperative numeric rating scale (NRS), and Frankel scale were measured. In addition, intraoperative loss of blood (LOB), units of packed red blood cell (PRBC) transfusions, the duration of the operation, and the hospitalization period were evaluated and correlated with preoperative and postoperative values. The majority of the patients were suffering from metastatic lesions and were treated with a 1 level corpectomy (median 1 level, range 1 to 4). The mean duration of surgery was 288 min (± 121) and the mean LOB was 1626 mL (± 1486 mL), with approximately two PRBC units per patient used. All patients were transferred to the intensive care unit (ICU) postoperatively, with a mean ICU stay of 2.0 days (± 1 day). The mean hospitalization period was 13 days (± 7 days). No implant-related failures or procedure-related deaths were observed. Significant differences were noted between the preoperative and postoperative Karnofsky index (74 vs. 84%) and NRS (4 vs. 2). One patient required revision surgery due to a superficial wound infection, and another needed revision surgery due to a dural tear. In another patient, an iatrogenic dural tear was repaired during the same surgical procedure and did not lead to postoperative complications. Four pleural effusions and one pneumothorax were observed, so that the overall complication rate was approximately 33%. Four of the patients died within 2 years of the operation due to progression of the primary disease. Lateral corpectomy and sagittal reconstruction of the thoracic spine using VBR-S conducted via a navigated LECA approach yields favorable results, despite the burden of neoplastic disease. These challenging procedures are accompanied by increased LOB and hospitalization periods, with moderate transfusion requirements. Surgery-related complications are low and local tumor control is satisfactory, despite the progression of the underlying neoplastic disease. However, optimal surgical therapy does not ensure long-term survival.Study design Retrospective analysis of thoracic corpectomiesLevel of evidence 4.

  12. Soil Aggregates and Associated Organic Matter under Conventional Tillage, No-Tillage, and Forest Succession after Three Decades

    PubMed Central

    Devine, Scott; Markewitz, Daniel; Hendrix, Paul; Coleman, David

    2014-01-01

    Impacts of land use on soil organic C (SOC) are of interest relative to SOC sequestration and soil sustainability. The role of aggregate stability in SOC storage under contrasting land uses has been of particular interest relative to conventional tillage (CT) and no-till (NT) agriculture. This study compares soil structure and SOC fractions at the 30-yr-old Horseshoe Bend Agroecosystem Experiment (HSB). This research is unique in comparing NT and CT with adjacent land concurrently undergoing forest succession (FS) and in sampling to depths (15–28 cm) previously not studied at HSB. A soil moving experiment (SME) was also undertaken to monitor 1-yr changes in SOC and aggregation. After 30 years, enhanced aggregate stability under NT compared to CT was limited to a depth of 5 cm, while enhanced aggregate stability under FS compared to CT occurred to a depth of 28 cm and FS exceeded NT from 5–28 cm. Increases in SOC concentrations generally followed the increases in stability, except that no differences in SOC concentration were observed from 15–28 cm despite greater aggregate stability. Land use differences in SOC were explained equally by differences in particulate organic carbon (POC) and in silt-clay associated fine C. Enhanced structural stability of the SME soil was observed under FS and was linked to an increase of 1 Mg SOC ha−1 in 0–5 cm, of which 90% could be attributed to a POC increase. The crushing of macroaggregates in the SME soil also induced a 10% reduction in SOC over 1 yr that occurred under all three land uses from 5–15 cm. The majority of this loss was in the fine C fraction. NT and FS ecosystems had greater aggregation and carbon storage at the soil surface but only FS increased aggregation below the surface, although in the absence of increased carbon storage. PMID:24465460

  13. Volcanic Aggregates from Azores and Madeira Archipelagos (Portugal): An Overview Regarding the Alkali Silica Reactions

    NASA Astrophysics Data System (ADS)

    Medeiros, Sara; Ramos, Violeta; Fernandes, Isabel; Nunes, João Carlos; Fournier, Benoit; Santos Silva, António; Soares, Dora

    2017-12-01

    Alkali-silica reaction (ASR) is a type of deterioration that has been causing serious expansion, cracking and durability/operational issues in concrete structures worldwide. The presence of sufficient moisture, high alkali content in the cement paste and reactive forms of silica in the aggregates are the required conditions for this reaction to occur. Reactive aggregates of volcanic nature have been reported in different countries such as Japan, Iceland and Turkey, among others. The presence of silica minerals and SiO2-rich volcanic glass is regarded as the main cause for the reactivity of volcanic rocks. In Portugal, volcanic aggregates are mainly present in Azores and Madeira Archipelagos and, for several years, there was no information regarding the potential alkali-reactivity of these rocks. Since the beginning of this decade some data was obtained by the work of Medeiros (2011) and Ramos (2013) and by the national research projects ReAVA, (Characterization of potential reactivity of the volcanic aggregates from the Azores Archipelago: implications on the durability of concrete structures) and IMPROVE (Improvement of performance of aggregates in the inhibition of alkali-aggregate reactions in concrete), respectively. In order to investigate the potential alkali-reactivity of aggregates from both archipelagos, a total of sixteen aggregates were examined under the optical microscope and, some of them, also under the Scanning Electron Microscope with Energy Dispersive X-ray Spectroscopy. A set of geochemical analyses and laboratory expansion tests were also performed on those volcanic aggregates. The main results showed that the presence of volcanic glass is rare in both archipelagos and that the samples of Madeira Archipelago contain clay minerals (mainly from scoria/tuff formations inter-layered with the lava flows), which can play a role in concrete expansion. The results of the laboratory tests showed that one of the samples performed as potentially reactive in the accelerated mortar-bar test (ASTM C 1260) and that the majority of the Azores samples started to show some expansion just after one year of testing in the concrete prism test (CPT) at 38°C.

  14. Production of lightweight aggregates from washing aggregate sludge and fly ash

    NASA Astrophysics Data System (ADS)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs manufactured with 75%:25% and 50%:50% proportions of washing aggregate sludge:fly ash, heated at different temperatures and dwell times, were expanded LWAs (BI > 0). They showed the lowest loose bulk density, the lowest dry and apparent particle density, the lowest water absorption and the highest compressive strength. The possible applications of sintered pellets, taking into consideration compressive strength and water absorption values, could be similar to those of Arlita G3 (insulation, geotechnical applications, gardening and/or horticulture) and/or Arlita F3 (prefabricated lightweight structures and insulation lightweight concretes), two varieties of the most widely marketed LWAs in Spain. References - Benbow, J., September 1987. Mineral in fire protection construction support market. Industrial Minerals, 61-73. - Bethanis, S., Cheeseman, C.R., Sollars, C.J., 2004. Effect of sintering temperature on the properties and leaching of incinerator bottom ash. Waste Management and Research 22 (4), 255-264. - De' Gennaro, R., Cappelletti, P., Cerri, G., De' Gennaro, M., Dondi, M., Langella, A., 2004. Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science 25 (1-2), 71-81. - Fakhfakh, E., Hajjaji, W., Medhioub, M., Rocha, F., López-Galindo, A., Setti, M.,Kooli, F., Zargouni, F., Jamoussi, F., 2007. Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Applied Clay Science 35, 228-237. - UNE-EN-13055-1, 2003. Lightweight aggregates - lightweight aggregates for concrete, mortar and grout. - Yasuda, Y., 1991. Sewage-sludge utilization in Tokyo. Water Science and Technology 23 (10-12), 1743-1752.

  15. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  16. Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.

    PubMed

    Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R

    2010-02-01

    Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.

  17. A new attraction-disseverance model for explaining landsliding in clay-rich tephras

    NASA Astrophysics Data System (ADS)

    Kluger, M. O.; Moon, V.; Kreiter, S.; Lowe, D.; Churchman, J.; Hepp, D. A.; Seibel, D.; Jorat, E.; Mörz, T.

    2016-12-01

    Altered tephras are highly susceptible to landsliding and account for fatalities and property damage every year. The clay mineral halloysite is often associated with landslide-prone layers within weathered tephra successions, especially in deposits with high sensitivity, which describes the post-failure strength loss. However, the precise role of halloysite on the development of sensitivity and thus sudden and unpredictable landsliding is unknown. Here we show that an abundance of halloysite, dominated by a distinctive ovate mushroom-cap-shaped (MCS) spherical morphology, governs the development of sensitivity, and hence proneness to landsliding, in weathered rhyolitic tephras in eastern North Island, New Zealand. We found that a highly sensitive layer, which was involved in a retrogressive landslide, has an extraordinarily high content of aggregated MCS spheres with imperfectly-closed exterior surfaces, i.e., the MCS spheres have substantial openings on one side. We suggest that short-range electrostatic and van der Waals' interactions enabled the MCS spheres to form interconnected aggregates by attraction between numerous paired silanol and aluminol layers with a weakly positive, or neutral, charge exposed in the openings and the negatively-charged convex silanol faces on the curved exterior surfaces of the spheres. However, if these weak attractions are overcome during slope failure, the prevailing repulsion between two exterior surfaces result in a low remolded shear strength, i.e., a high sensitivity, and thus a high propensity for flow-like landsliding. Our results indicate that this novel electrostatic attraction-disseverance model explains the high sensitivity and therefore contributes to a general understanding of the mechanisms of landsliding in sensitive altered tephras rich in spherical halloysite.

  18. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2011-08-15

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.

  19. Composition and structure of aggregates from compacted soil horizons in the southern steppe zone of European Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, A. S.; Abrosimov, K. N.; Lebedeva, M. P.; Kust, G. S.

    2016-03-01

    The composition and structure of aggregates from different agrogenic soils in the southern steppe zone of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1-2 and 3-5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus-clay plasma in the intraped zone)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.

  20. Benthic impacts of intertidal oyster culture, with consideration of taxonomic sufficiency.

    PubMed

    Forrest, Barrie M; Creese, Robert G

    2006-01-01

    An investigation of the impacts from elevated intertidal Pacific oyster culture in a New Zealand estuary showed enhanced sedimentation beneath culture racks compared with other sites. Seabed elevation beneath racks was generally lower than between them, suggesting that topographic patterns more likely result from a local effect of rack structures on hydrodynamic processes than from enhanced deposition. Compared with control sites, seabed sediments within the farm had a greater silt/clay and organic content, and a lower redox potential and shear strength. While a marked trend in macrofaunal species richness was not evident, species composition and dominance patterns were consistent with a disturbance gradient, with farm effects not evident 35 m from the perimeter of the racks. Of the environmental variables measured, sediment shear strength was most closely associated with the distribution and density of macrofauna, suggesting that human-induced disturbance from farming operations may have contributed to the biological patterns. To evaluate the taxonomic sufficiency needed to document impacts, aggregation to the family level based on Linnean classification was compared with an aggregation scheme based on ;general groups' identifiable with limited taxonomic expertise. Compared with species-level analyses, spatial patterns of impact were equally discernible at both aggregation levels used, provided density rather than presence/absence data were used. Once baseline conditions are established and the efficacy of taxonomic aggregation demonstrated, a ;general group' scheme provides an appropriate and increasingly relevant tool for routine monitoring.

  1. Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography.

    PubMed

    Altman, Susan J; Rivers, Mark L; Reno, Marissa D; Cygan, Randall T; McLain, Angela A

    2005-04-15

    Synchrotron-source X-ray computerized microtomography (CMT) was used to evaluate the adsorptive properties of aggregate soil samples. A linear relationship between measured mean mass attenuation coefficient (sigma) and mass fraction iron was generated by imaging mineral standards with known iron contents. On the basis of reported stoichiometries of the clay minerals and identifications of iron oxyhydroxides (1), we calculated the mass fraction iron and iron oxyhydroxide in the intergranular material. The mass fractions of iron were estimated to range from 0.17 to 0.22 for measurements made at 18 keV and from 0.18 to 0.21 for measurements made at 26 keV. One aggregate sample also contained regions within the intergranular material with mass fraction iron ranging from 0.29 to 0.31 and from 0.33 to 0.36 for the 18 and 26 keV measurements, respectively. The mass fraction iron oxyhydroxide ranged from 0.18 to 0.35 for the low-iron intergranular material and from 0.40 to 0.59 for the high-iron intergranular material. Using absorption edge difference imaging with CMT, we visualized cesium on the intergranular material, presumably because of adsorption and possible exchange reactions. By characterizing the mass fraction iron, the mass fraction iron oxyhydroxide, and the adsorptive capacity of these soil mineral aggregates, we provide information useful for conceptualization, development, and parametrization of transport models.

  2. Mineral resource potential map of the James River Face Wilderness, Bedford and Rockbridge counties, Virginia

    USGS Publications Warehouse

    Brown, C. Erwin; Gazdik, Gertrude C.

    1982-01-01

    The rocks in the James River Face Wilderness are shales and quartzites that overlie a meta-igneous basement. They are folded into a large southwestward-plunging anticline that is cut off on the east and south by an extensive thrust fault that brings old basement rocks over the younger sedimentary rocks. Geochemical studies of stream sediments, soils, and rocks do not reveal any unusually high metal concentrations, but a large resource of metallurgical-grade quartzite and shale suitable for structural clay products and lightweight aggregate is in the wilderness. Antietam (Erwin) Quartzite has been quarried at three sites in the wilderness as raw material for silicon used in the manufacture of ferrosilicon. Other uses included crushed rock for concrete aggregate, road metal, and railroad ballast, and sand for cement and mortar. Potential uses include ganister for silica brick and specialty sands such as filter and furnace sand. Firing tests on samples of shale from the Harpers (Hampton) Formation show that it could be used for the manufacture of brick and as lightweight aggregate. Of marginal economic interest are heavy-mineral layers in the basal Unicoi (Weverton) Formation.

  3. Marine floc strength and breakup response in turbulent flow

    NASA Astrophysics Data System (ADS)

    Rau, Matthew; Ackleson, Steven; Smith, Geoffrey

    2017-11-01

    The effect of turbulence on marine floc formation and breakup is studied experimentally using a recirculating breakup facility. Flocs of bentonite clay particles are grown in a large, stirred aggregation tank of salt water (salinity of 10 ppt) before being subjected to fully-developed pipe flow. Pipe flow conditions range from laminar to turbulent with dissipation rates up to 2.1 m2/s3. Particle size distributions are measured through in-situ sampling of the small-angle forward volume scattering function and through microscopic imaging. Floc size is compared before and after exposure to turbulence and found to be a strong function of the dissipation rate of turbulent kinetic energy. Hydrodynamic conditions within the aggregation tank have a large influence on overall floc strength; flocs formed with stirred aggregation resist breakup compared to flocs formed without stirring. Floc shape and structure statistics are quantified through image analysis and the results are discussed in relation to the measured floc breakup response. Finally, the relevance of these findings to quantifying and predicting marine floc dynamics and the eventual fate of particles in the ocean is presented. The authors thank the National Research Council Postdoctoral Program for their support of this work.

  4. Artificial lightweight aggregates as utilization for future ashes - A case study.

    PubMed

    Sarabèr, Angelo; Overhof, Robert; Green, Terry; Pels, Jan

    2012-01-01

    In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Using Layer-by-Layer Coating and Nanocomposite Technologies to Improve the Barrier Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Soltani, Iman

    Means for improving barrier properties of polymers against gases, particularly for promoting their applications as packaging materials, are divided into surface coating and embedding nanoparticles in the bulk of the polymeric membranes. In this research, we mainly investigated improvement in barrier properties of polymers against oxygen and carbon dioxide, through layer-by-layer (LBL) coating and bulk nanocomposite methods. Initially, we studied the morphology of layer-by-layer assemblies comprising alternating layers of polyelectrolyte (PE) and natural montmorillonite (MMT) platelets, where polyethyleneterephthalate ionomer was used as our proposed alternative PE, to be compared with already examined polyethyleneimine. For both investigated PEs, while microscopic images showed the formation of tortuous networks of galleries between subsequent layers of oriented clay platelets parallel to the substrate surface, x-ray diffractometry (XRD) traces pointed to the intercalation of PE layers between clay platelets. As a confirmation of forming tortuous networks between oriented and high aspect ratio clay platelets to increase the path length of diffusing gas species dramatically, LBL-coated polystyrene-based membranes demonstrated pronounced decreases in permeability of oxygen and carbon dioxide (e.g. about the scale of 500 times decrease in permeability, with only five cycles of bilayer deposition). Before LBL deposition, the surface of the hydrophobic polymeric substrate was pretreated with oxygen plasma to improve its interaction with the coating. In the next study, previously LBL-coated samples were melt pressed in a cyclic manner to embed and to crush the coating inside the polystyrene-based matrix, aiming the exfoliated polymer-clay nanocomposites. The morphological investigations by transmission electron microscopy (TEM) revealed the tortuous internal structure of crushed LBL assemblies' portions, mainly comprising swollen intercalated stacks of clay, as well as flocculated exfoliated tactoids of a few clay platelets, down to about 2nm thickness. Moreover, XRD traces confirmed this increase in intercalation and exfoliation of clay platelets. Following ahead, dynamic mechanical thermal analysis (DMA) revealed significant increases in the storage and loss moduli values for our PNCs over those of pristine polystyrenebased matrix, hypothesizing the occurrence of substantial interactions between clay and the polymeric matrix, induced by intervening effect of PE interlayers. Also, permeation experiments showed noticeable improvement in gas barrier properties of processed PNCs. Considering the low content of clay particles and their limited level of global dispersions throughout the matrix, it may theorize the significant efficiency of high aspect ratio and tortuous LBL assemblies portions, oriented (induced by cycling pressing into thin films) perpendicular to the permeants' path routes. Thus, it might act almost as scavenging hubs against transport of diffusing gases. Finally, using PVAc, as the matrix, with this novel two-step approach of preparing PNCs, showed relatively higher clay content, when prepared with similar coating conditions. Also, DMA and permeation experiments pointed to significant improvements in mechanical and gas barrier properties of the PNCs, prepared by only 25 times melt pressing steps. Additionally, XRD traces postulated occurrence of noticeable irregularities in the interdistance of clay platelets. So, it is conjectured that semi-hydrophilic PVAc matrix promotes stronger interactions with clay particles, compared with those of polystyrene-based PNCs. However, moderate global dispersion of clay throughout the matrix points to the insufficient efficiency of repetitive melt pressing procedure to apply intensive enough stresses on samples, in order to overcome internal cohesion in LBL assemblies, which established initial intercalation and exfoliation in the otherwise aggregately clustered natural clay platelets. In addition, it is postulated that possibly occurring slight thermal degradations induce adverse results on the dispersion level and aforementioned properties of PNCs, processed over extended times.

  6. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.

  7. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond energy (Pb; input energy used in aggregate breakdown) can be calculated by the following equation: ΣPi - Ph = Pb The novel technique was tested by comparing the bond energies measured from a series of soil aggregates sampled from different land management histories, to the samples corresponding stability measurement obtained from standard modern stability tests. The effectiveness of the heavy liquid as a suspension (as opposed to water) was evaluated by comparing the bond energies of samples measured in both suspensions. Our results determine i) how disruptive water is in aggregate stability tests, ii) how accurate and representative standard aggregate stability tests are, and iii) how bond strength varies depending on land use. Keywords: Aggregate; Bond; Fragmentation; Soil; Sonication; Stability References: Zhu, Z. L., Minasny, B. & Field D. J. 2009. Measurement of aggregate bond energy using ultrasonic dispersion. European Journal of Soil Science, 60, 695-705

  8. Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Krekeler, Mark P. S.; Probst, Pete; Samsonov, Misha; Tselepis, Cynthia M.; Bates, William; Kearns, Lance E.; Maynard, J. Barry

    2007-12-01

    Subsurface flow constructed wetlands in the village of Akumal, Quintana Roo, Mexico were surveyed to determine the general status of the wetland systems and provide baseline information for long term monitoring and further study. Twenty subsurface flow wetlands were surveyed and common problems observed in the systems were overloading, poor plant cover, odor, and no secondary containment. Bulk mineral composition of aggregate from two subsurface flow constructed wetlands was determined to consist solely of calcite using bulk powder X-ray diffraction. Some soil structure is developed in the aggregate and aggregate levels in wetlands drop at an estimated rate between 3 and 10 cm/year for overloaded wetlands owing to dissolution. Mineral composition from fresh aggregate samples commonly is a mixture of calcite and aragonite. Trace amounts of Pb, Zn, Co, and Cr were observed in fresh aggregate. Coefficients of permeability ( k) varied from 0.006 to 0.027 cm/s with an average values being 0.016 cm/s. Grain size analysis of fresh aggregate samples indicates there are unimodal and multimodal size distributions in the samples with modes in the coarse and fine sand being common. Investigations of other geologic media from the Reforma region indicate that a dolomite with minor amounts of Fe-oxide and palygorskite is abundant and may be a better aggregate source that the current materials used. A Ca-montmorillonite bed was identified in the Reforma region as well and this unit is suitable to serve as a clay liner to prevent leaks for new and existing wetland systems. These newly discovered geologic resources should aid in the improvement of subsurface flow constructed wetlands in the region. Although problems do exist in these wetlands with respect to design, these systems represent a successful implementation of constructed wetlands at a community level in developing regions.

  9. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about cations in exchangeable positions. Both methods, methylene blue test and ammonium acetate method, have advantages and disadvantages and differ in their requirements for the sample preparations but in general method selection is depending on the specific application of the given sample. References: - Yukselen, Y. and Kaya, A., Engineering Geology 102 (2008) 38-45 - Czimerova, A., Bujdak, J. and Dohrmann, R., Applied Clay Science 34 (2006) 2-13

  10. Pedogenesis of a catena of the Farmdale-Sangamon Geosol complex in the north central United States

    USGS Publications Warehouse

    Jacobs, P.M.; Konen, M.E.; Curry, B. Brandon

    2009-01-01

    The Farmdale-Sangamon Geosol pedocomplex consists of the Sangamon Geosol and the overlying Farmdale Geosol, which form the most extensive terrestrial record of the last interglacial to glacial transition in the Midwest United States. The geosol complex formed for upwards of 100??ka, extending from the end of MIS 6 through 4 for the Sangamon Geosol, then the Farmdale Geosol for during a brief episode at the end of MIS 3 following slow accumulation and pedogenic modification of eolian silt deposited on top of the Sangamon Geosol. Our study site consists of a buried paleo-hillslope transect that forms a catena, enabling evaluation of slope effects on interglacial-scale soil formation. The Sangamon Geosol is formed in calcareous and illitic glaciogenic sediment. Along the catena the Sangamon Geosol profiles display some morphological changes, namely in terms of colors that we interpret as indicators of differences in drainage. Most thickness and horizonation characteristics are similar all along the transect, with intact upper sola horizons (AE and E horizons) that overlie clay-enriched Bt horizons. The Bt horizons contain abundant clay that exists as illuvial clay coatings, matrix infills, and as mosaic-speckled domains. The clay originated both by in situ weathering and through illuviation from the clay depleted upper sola. Slope does not appear to affect Bt characteristics beyond redder hues of the matrix and clay coatings in the upper slope position. With depth, effects of carbonate leaching and infilling of clay in the matrix decrease and clay coatings are restricted to walls of voids adjacent to aggregates. Clay mineralogy shows illite depletion, but no interstratified kaolinite-expandable minerals, indicating the degree of weathering is not as great as is typical of Sangamon Geosol profiles formed in loess or in glaciogenic sediment of the central Illinois type area. Clay mineralogy is also stratified with depth, coincident with particle size, which probably indicates sorting of layers of illitic dolomite and shale. Variation of horizon and profile characteristics appears to largely be a function of particle size variability and stratification than topographic position in the catena. The influence of hillslope position on soil redistribution during formation of the Sangamon Geosol appears negligible given the uniformity of upper solum horizon thickness and sandy particle size characteristics, so we conclude that a bioturbation and rainwash origin of the upper solum and the texture contrast in these profiles is not the best process model explanation. We suggest that the base-rich nature of these soils led to ecosystem characteristics that discouraged erosion and encouraged infiltration and a lessivage-type origin of the texture contrast. No convincing evidence of MIS 6 through MIS 4 loess occurs at this site. The Farmdale Geosol formed in the Robein Silt, which is Roxana Silt (MIS 3 loess) that was redistributed downslope. The Robein Silt is thicker and finer in the topographic low and indicates the cooler and forested environmental conditions during MIS 3 were conducive to downslope movement of soil and also produced greater differences in drainage-induced soil morphological changes in the Farmdale Geosol. ?? 2009 Elsevier B.V. All rights reserved.

  11. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.

    2015-03-01

    Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (<5 at.%). Iron-enriched Al-silicates or illite-smectites (Fe >10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long-range order. Adsorption of U and nucleation of metazeunerite and cuprosklodowskite are strongly controlled by the presence of the adsorbed oxy-anion species arsenate and silica on the Fe-enriched silicates. Heterogeneous nucleation of nano-crystals of the uranyl minerals occurs most likely on adsorption sites of binary uranyl-, arsenate- and silica-complexes as well as on ternary uranyl-arsenate or uranyl-silicate complexes. The uranyl minerals occur as aggregates of misoriented nano-size crystals and are the result of supersaturated solutions and a high number of nucleation sites that prevented the formation of larger crystals through Oswald ripening. The results of this study provide an understanding of interfacial nano-scale processes between uranyl species and altered clay buffers in a potential Nuclear Waste repository as similar alteration conditions of clays may occur in a multi-barrier system.

  12. Linking plants, fungi and soil mechanics

    NASA Astrophysics Data System (ADS)

    Yildiz, Anil; Graf, Frank

    2017-04-01

    Plants provide important functions in respect soil strength and are increasingly considered for slope stabilisation within eco-engineering methods, particularly to prevent superficial soil failure. The protective functions include hydrological regulation through interception and evapo-transpiration as well as mechanical stabilisation through root reinforcement and, to a certain extent, chemical stabilisation through sticky metabolites. The ever-growing application of plants in slope stabilisation demanded more precise information of the vegetation effects and, concomitant, led the models for quantifying the reinforcement shoot up like mushrooms. However, so far, the framework and interrelationships for both the role of plants and the quantification concepts have not been thoroughly analysed and comprehensively considered, respectively, often resulting in unsatisfactory results. Although it seems obvious and is implicitly presupposed that the plant specific functions related to slope stability require growth and development, this is anything but given, particularly under the often hostile conditions dominating on bare and steep slopes. There, the superficial soil layer is often characterised by a lack of fines and missing medium-sized and fine pores due to an unstable soil matrix, predominantly formed by coarse grains. Low water retention capacity and substantial leaching of nutrients are the adverse consequences. Given this general set-up, sustainable plant growth and, particularly, root development is virtually unachievable. At exactly this point mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, come into play. Though, they are probably well-known within the eco-engineering community, mycorrhizal fungi lead a humble existence. This is in spite of the fact that they supply their hosts with water and nutrients, improving the plant's ability to master otherwise unbridgeable environmental conditions. However, in order to support their plant partners, the fungi themselves need to have access to water and nutrients. For this purpose, a resilient soil matrix consisting of stable micro- and macro-aggregates is an indispensable prerequisite. Luckily, the fungi are among the pioneers in assembling stable aggregates. The fungal hyphae intensively penetrate the unstructured soil body, enmeshing small organic and inorganic soil particles and form and cement them to micro- and macro-aggregates. On the one hand, growing hyphae are able to align primary particles and, on the other hand, exert pressure on surrounding particles and compounds forcing them together, such as clay and organic matter. Under physiological (or neutral) pH values, the fungal mycelia have a net negative charge. It is suggested that negatively charged fungal polysaccharides are bound to negatively charged clay minerals by bridges of polyvalent cations which have been proven to be stronger than some direct bonds between clay and organic matter. The formation of aggregates up to a size of 2 mm is associated with hyphal length of fungi. With regard to the assemblage of aggregates >2 mm both fungal mycelia and roots are involved. Indirectly, the mycorrhizal fungi affect the aggregate establishment through their host plants, particularly by accelerating the development of their root network and by serving as a distribution vector for associated micro-organisms, mainly bacteria and archaea, additionally contributing to cementation. Therefore, root-reinforcement as addressed for quantification of vegetation effects on slope stability almost ever is a combined contribution of fungal mycelia and root networks. With soil aggregates as the "bricks" for building a stable soil matrix and pore structure, root-reinforcement strongly depends on aggregate strength controlling potential, efficiency, and sustainability of growth and development of the protective vegetation. From a geotechnical point of view, aggregation of fines may be such pronounced that characteristics of coarse-grained soils are adopted, often mirrored by higher values of the shear strength parameters, particularly the angle of internal friction Φ'. Consequently, neither the positive relationship between the strength of soil aggregates and slope stability is astonishing nor is the positive correlation between root characteristics - architecture represented by 3D-complexity, specific length and its density - and factor of safety calculations related to superficial soil failure. As far as the latter is concerned, however, so far almost exclusively the common shear strength parameters have been considered, namely angle of internal friction Φ' and root cohesion c'. However, similarly to the way fungi were ignored in biological slope stabilisation, the soil mechanically relevant parameter dilatancy (Ψ) was not in the concepts and modelling approaches for quantifying root-reinforcement. Nevertheless, dilatancy (Ψ) is an important mechanism and a contributing factor to the shearing behaviour of root-permeated soil that definitively cannot be ignored. Such evidence is soundly based on the fact that specific root characteristics combined with the maximum dilatancy angle (Ψmax) can explain the most variation in peak shear strength parameters. Therefore, a combined approach including soil, fungi, and roots under consideration of dilatancy is a promising way towards better understanding and more reliably quantifying the shear strength of root-permeated soil. Since sound quantification of biological stabilisation effects is the key for both sustainable slope stabilisation and wide acceptance of eco-engineering measures within the scope of risk and hazard prevention.

  13. Defining clogging potential for permeable concrete.

    PubMed

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The nest growth of the neotropical mound-building termite, Cornitermes cumulans: a micromorphological analysis.

    PubMed

    Cosarinsky, Marcela I

    2011-01-01

    The nests of Cornitermes cumulans K. (Isoptera: Termitidae), a very common termite in South American grasslands, display notable morphological transformations during the development of the colony. Young colonies inhabit small subterranean nests that develop into large, conspicuous, epigean mounds, inhabited by very populous colonies. Those macromorphological transformations are accompanied by micromorphological changes occurring gradually in the nest walls. The micromorphological changes during nest development described in the present study expand on previous macromorphological descriptions by explaining the re-organization of the soil components during nest growth. In subterranean nests, walls are composed of piles of lensshaped aggregates of soil material, each one surrounded by a thin organic coating. As the nest grows, mound walls are constructed by disassembling this first lenticular structure and rearranging the materials in a new fabric, where sand grains are loosely distributed among soil microaggregates of organic matter and clay. This is also a temporary construction, because the walls of large nests are composed of a porous mass of sands densely cemented with organic matter and clay in the mound, and a compact mass of the same components in the floor.

  15. Effect of surfactant types and their concentration on the structural characteristics of nanoclay

    NASA Astrophysics Data System (ADS)

    Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.

    2014-03-01

    A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.

  16. The effect of operating conditions on the performance of soil slurry-SBRs.

    PubMed

    Cassidy, D P; Irvine, R L

    2001-01-01

    Biological treatment of a silty clay loam with aged diesel fuel contamination was conducted in 8 L Soil Slurry-Sequencing Batch Reactors (SS-SBRs). The purpose was to monitor slurry conditions and evaluate reactor performance for varying solids concentration (5%, 25%, 40%, 50%), mixing speed (300 rpm, 700 rpm, 1200 rpm), retention time (8 d, 10 d, 20 d), and volume replaced per cycle (10%, 50%, 90%). Diesel fuel was measured in slurry and in filtered aqueous samples. Oxygen uptake rate (OUR) was monitored. Aggregate size was measured with sieve analyses. Biosurfactant production was quantified with surface tension measurements. Increasing solids concentration and decreasing mixing speed resulted in increased aggregate size, which in turn increased effluent diesel fuel concentrations. Diesel fuel removal was unaffected by retention time and volume replaced per cycle. Biosurfactant production occurred with all operating strategies. Foam thickness was related to surfactant concentration and mixing speed. OUR, surfactant concentration, and foam thickness increased with increasing diesel fuel added per cycle.

  17. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia

    NASA Astrophysics Data System (ADS)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don

    2017-09-01

    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  18. Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer

    USGS Publications Warehouse

    Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.

    2011-01-01

    Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport experimental and modeling studies conducted at the site.

  19. Problem of the thermodynamic status of the mixed-layer minerals

    USGS Publications Warehouse

    Zen, E.-A.

    1962-01-01

    Minerals that show mixed layering, particularly with the component layers in random sequence, pose problems because they may behave thermodynamically as single phases or as polyphase aggregates. Two operational criteria are proposed for their distinction. The first scheme requires two samples of mixed-layer material which differ only in the proportions of the layers. If each of these two samples are allowed to equilibrate with the same suitably chosen monitoring solution, then the intensive parameters of the solution will be invariant if the mixed-layer sample is a polyphase aggregate, but not otherwise. The second scheme makes use of the fact that portions of many titration curves of clay minerals show constancy of the chemical activities of the components in the equilibrating solutions, suggesting phase separation. If such phase separation occurs for a mixed-layer material, then, knowing the number of independent components in the system, it should be possible to decide on the number of phases the mixed-layer material represents. Knowledge of the phase status of mixed-layer material is essential to the study of the equilibrium relations of mineral assemblages involving such material, because a given mixed-layer mineral will be plotted and treated differently on a phase diagram, depending on whether it is a single phase or a polyphase aggregate. Extension of the titration technique to minerals other than the mixed-layer type is possible. In particular, this method may be used to determine if cryptoperthites and peristerites are polyphase aggregates. In general, for any high-order phase separation, the method may be used to decide just at what point in this continuous process the system must be regarded operationally as a polyphase aggregate. ?? 1962.

  20. Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.

    PubMed

    Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian

    2017-09-26

    The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.

  1. Fate of small charred particles in soils - importance of aggregation

    NASA Astrophysics Data System (ADS)

    Mueller, C. W.; Pechenkina, N.; Grünz, G.; Kölbl, A.; Steffens, M.; Heister, K.; Kögel-Knabner, I.

    2009-04-01

    Historic and recent fires affect a broad range of terrestrial ecosystems and are reflected in the composition of soil organic matter (SOM). Although the assignments of different sources and pools of black carbon (BC) are still under debate, the importance of BC for carbon (C) storage, nutrient supply and contaminant sorption is well recognized. Nevertheless, how processes of encapsulation of BC into aggregates may influence fate and properties of BC still needs further research. We observed small highly aromatic particulate OM (oPOMsmall, <20 µm) exclusively occluded within aggregates in a range of soils. As these particles were absent in the inter-aggregate soil space the question of the importance of soil aggregation for the fate of these particles is raised. In the presented study we analysed intact soil aggregates and the distribution of highly aromatic micro-scale charred particles and mineral bound SOM in Haplic Chernozems from Central Russia. We fractionated the soils by means of density to obtain particulate and mineral bound SOM fractions. The chemical composition of the obtained fractions was studied by solid-state 13C-NMR spectroscopy and energy dispersive X-ray spectroscopy (EDX). For visualization of the particles and aggregates we used scanning electron microscopy (SEM) and nano-scale secondary ion mass spectrometry (NanoSIMS). The importance of oxides for aggregate formation was elucidated by analyses of extractable Fe. Furthermore, we incubated the oPOMsmall fraction at 20°C in batch experiments to study the aggregate formation of charred particles with time. To track the fate of OM on new formed aggregates, we used a labelled amino acid mixture (min. 98 atom% 13C and 15N) as readily bioavailable OM input and isotopic tracer. The matrix of the intact soil aggregates, embedded in epoxy resin, was dominated by densely packed clay particles. At all depths particulate SOM was quantitatively dominated by the aromatic oPOM fractions, inter-aggregate POM was almost absent at higher depths. The oPOMsmall showed mainly amorphous structures and very few plant tissue structures as revealed by SEM. The oPOMsmall fraction showed a drastic increase in the content of aromatic C with depth along with decreasing aliphatic C in the thick A horizons. Almost the entire OM of the oPOMsmall fraction was composed of aromatic C compounds in the AB horizons. The incubation experiment with particles from the oPOMsmall fraction revealed a fast aggregate formation in water within a few days. With the isotopic sensitivity of the NanoSIMS 50, we were able to show spatial heterogeneous enrichments in 13C and 15N on new formed aggregates of aromatic particles.

  2. Micromorphological investigations of the Late Quaternary loess-paleosol sequences of the Kashmir Valley, India

    NASA Astrophysics Data System (ADS)

    Dar, Reyaz Ahmad; Chandra, Rakesh; Romshoo, Shakil Ahmad; Kowser, Nazia

    2015-11-01

    The loess-paleosol sequences of the Karewa Group preserve a valuable repository of the Late Quaternary climatic changes and the landscape evolution history of the Karewa Basin of Kashmir Valley in their lithological and pedogenic records. Three representative loess-paleosol sections at Shankerpora (SP), Khan Sahib (KS) and Pattan (PT) localities were chosen for detailed lithostratigraphic fieldwork and micromorphological observations of thin sections. Lithostratigraphic analysis revealed lateral and vertical variation in thickness and number of paleosol profiles from south-west to north-west of the Karewa Basin suggesting the availability of land-surface for periodic loess deposition. The SP section is marked by 6 (SP-S6, S7, S8, S9, S10, S12), KS section by 3 (KS-S2, S4, S5) and PT section by 2 (PT-S1, S3) thick mature paleosol profiles. Theses paleosols have well developed 'Ah' and 'Btk' horizons representing prolonged land-surface stability when pedogenic processes outpace loess deposition. On the other hand comparatively thin to thick paleosol profiles represent weak to moderate pedogenic maturity indicating short stratigraphic breaks with rapid loess deposition. Micromorphological observations of thin sections suggested that clay illuviation and CaCO3 accumulation have operated within the paleosol profiles. CaCO3 features are often associated with clay coatings suggesting decalcification of carbonates followed by clay illuviation. Pedogenic CaCO3 probably resulted from the precipitation of the soil solution near the average depth of wetting front. The pedogenic CaCO3, illuvial clay, mottles, iron manganese features, pedal microstructure and blocky aggregates reveal variation in the pedogenic maturity among and within the loess-paleosol sections. The morphological (both micro- and macro-morphological) attributes of loess-paleosols suggest variation of climatic conditions during the Late Quaternary period in the Karewa Basin of Kashmir Valley, India.

  3. Using operational and defined fractions to assess soil organic matter stabilization and structure

    NASA Astrophysics Data System (ADS)

    Horwath, W. R.

    2015-12-01

    Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate approach to examine SOM structure and stabilization across scales of soil development and management.

  4. Dynamics of Biopolymer Turnover in Soil Physical Fractions Following Land-Cover yChange in a Subtropical Savanna

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Gamblin, D.; Wang, Y.; Liao, J.; Boutton, T.; Jastrow, J.

    2004-12-01

    Changes in the apportionment of organic carbon and nitrogen among soil physical yfractions following land-cover shifts are of critical importance to the debate surrounding ythe capacity of terrestrial ecosystems to store or release greenhouse gases. For example, ythe difference between the mean residence times (MRTs) of light particulate organic ymatter (POM) vs. silts and clays is typically quite large, with silt and clay associated yorganic matter having the longest MRTs and the greatest likelihood to contribute to long yterm carbon storage. A few studies in agricultural and forest systems have demonstrated ythat biopolymer chemistry also varies along physical, as well as density, fractionation ygradients. We quantified changes in biopolymer (lignin, suberin and cutin, and yhydrolysable amino acids) chemistry of size and density fractionated soil from the Rio yGrande Plains of Texas where C4 grasslands (d13C = -14 %) have undergone succession yto subtropical thorn woodland dominated by C3 trees/shrubs (d13C = -27 %) over the ypast 150 years. This natural isotopic distinction was used to determine MRTs of free ylight organic matter (density less than 1.0 g/cc), macroaggregate (greater than 250 um), ymicroaggregate (53-250 um) and silt+clay (less than 53 um) fractions (see Liao et al., ythis session) which were then related to their specific biopolymer chemistries. Our yresults illustrate that lignin and aliphatic biopolymers (as measured by hydroxyl fatty yacids) are apportioned differently among size/density fractions and along the successional ychronosequence. Lignin is incorporated into all soil fractions soon after woody yencroachment, whereas aliphatic components are slow to be incorporated in the silt and yclay fractions. The lignin components that do become associated with silts and clays are, yin general, highly oxidized. Differences in foliar chemistry among the plant sources yindicate selective movement of leaf cutins into POM, macro- and microaggregate yfractions, but not into free or intra-aggregate silts and clays. Selected analyses of silt and yclay fractions for hydrolysable amino acids showed differences along the ychronosequence, with total hydrolysable amino acids comprising 30-45% of total ynitrogen. It is possible that amino and phenolic compounds are tightly bound to the silts yand clays (the fractions with the longest MRT) and repel the more hydrophobic and less ywater soluble cutin and suberin monomers, thereby restricting turnover. These results yprovide new insights regarding the interactions between soil structure, chemistry, yturnover, and preservation of soil organic matter. y

  5. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  6. Comparative research on tillable properties of diatomite-improved soils in the Yangtze River Delta region, China.

    PubMed

    Qu, Ji-Li; Zhao, Dong-Xue

    2016-10-15

    To improve soil texture and structure, techniques associated with physical, biological or chemical aspects are generally adopted, among which diatomite is an important soil conditioner. However, few studies have been conducted to investigate the physical, hydraulic and tillage performance of diatomite-improved soils. Consistency limits and compaction properties were investigated in this study, and several performance indicators were compared, such as the liquid limit, plastic limit and compactability, of silt, silt loam and silty-clay loam soils to which diatomite was added at volumetric ratios of 0%, 10%, 20%, and 30%. The results showed that diatomite significantly (p<0.05) improved the consistency limits, with the most preferred effects in the silt soil. The liquid limits were increased by 53.9%, 27.3%, and 14.7%, in the silt, silt loam and silty-clay loam soils, respectively, when the volumetric ratio was 30%. While diatomite lowered the maximum dry bulk density (MBD) of the classified soils, the optimum moisture content (OMC) was increased overall. The trend was consistent with the proportion of diatomite, and MBD decreased by 8.7%, 10.3%, and 13.2% in the silt, silt loam and silty-clay loam soils when 30% diatomite was mixed, whereas OMC increased by 28.7%, 22.4%, and 25.3%, respectively. Additionally, aggregate stability was negatively correlated with MBD but positively correlated with OMC. Diatomite exerts positive effects on soil mechanical strength, suggesting that soils from sludge farms are more tillable with a larger stabilized and workable matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Nest Growth of the Neotropical Mound-Building Termite, Cornitermes cumulans: A Micromorphological Analysis

    PubMed Central

    Cosarinsky, Marcela I.

    2011-01-01

    The nests of Cornitermes cumulans K. (Isoptera: Termitidae), a very common termite in South American grasslands, display notable morphological transformations during the development of the colony. Young colonies inhabit small subterranean nests that develop into large, conspicuous, epigean mounds, inhabited by very populous colonies. Those macromorphological transformations are accompanied by micromorphological changes occurring gradually in the nest walls. The micromorphological changes during nest development described in the present study expand on previous macromorphological descriptions by explaining the re-organization of the soil components during nest growth. In subterranean nests, walls are composed of piles of lensshaped aggregates of soil material, each one surrounded by a thin organic coating. As the nest grows, mound walls are constructed by disassembling this first lenticular structure and rearranging the materials in a new fabric, where sand grains are loosely distributed among soil microaggregates of organic matter and clay. This is also a temporary construction, because the walls of large nests are composed of a porous mass of sands densely cemented with organic matter and clay in the mound, and a compact mass of the same components in the floor. PMID:22224433

  8. Estimation of organic carbon loss potential in north of Iran

    NASA Astrophysics Data System (ADS)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  9. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    PubMed

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia

    2017-11-01

    Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

  11. Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Zhang, Tao; Zhang, Yongbo; Xu, Qiang

    2018-06-01

    Loess, as one of the main Quaternary deposits, covers approximately 6% of the land surface of the Earth. Although loess is loose and fragile, loess columns are popular and they can stand stably for hundreds of years, thereby forming a spectacular landform. The formation of such special column-shaped soil structures is puzzling, and the underlying fundamentals remain unclear. The present study focuses on quantifying and examining the geometrical shape and spatial alignment of structural blocks of the Malan loess at different locations in the Loess Plateau of China. The structural blocks under investigation include clay- and silt-sized particles, aggregates, fragments, lumps, and columns, which vary in size from microns to tens of meters. Regardless of their size, the structural blocks of the Malan loess are found to be similar in shape, i.e., elongated with a length-to-width ratio of approximately 2.6. The aggregates, fragments, lumps, columns, and macropores between aggregates exhibit strong concentration in the vertical or subvertical alignment. These phenomena imply that the Malan loess is anisotropic and it is composed of a combination of vertically aligned strong units and vertically aligned weak segments. Based on this, "vertiloess" structure is proposed to denote this combination. The vertiloess structure prevents horizontal erosion, but favors spalling, peeling, toppling, falling and cracking-sliding of vertical loess pieces, thereby forming loess columns.

  12. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    PubMed

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Aggregation and C dynamics along an elevation gradient in carbonate-containing grassland soils of the Alps

    NASA Astrophysics Data System (ADS)

    Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid

    2017-04-01

    C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (<63 µm) and bulk soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.

  14. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area.

    NASA Astrophysics Data System (ADS)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio

    2017-04-01

    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable variation was recorded in total C and N pools. Interestingly, amendment with digestate altered the soil microbial community size in both soils as MBC and MBN were increased, although the response was more evident in the clay soil (olive) than in the sandy loam (citrus) one. The considerably higher qM observed in the clay soil suggests that the C mineralization was selectively stimulated in this soil. This finding was confirmed by the increase of CO2 emissions. As a whole our results show that digestate application selectively stimulated soil C dynamics and determined an unbalanced nutrient release, strongly depending on the soil physical-chemical properties. The use of digestate can therefore represent an interesting strategy for managing the soil fertility in Mediterranean agroecosystem soils, provided that digestate and recipient soil properties are carefully taken into account.

  15. The relative ages of eukaryotes and akaryotes.

    PubMed

    Penny, David; Collins, Lesley J; Daly, Toni K; Cox, Simon J

    2014-12-01

    The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.

  16. Fission products and nuclear fuel behaviour under severe accident conditions part 2: Fuel behaviour in the VERDON-1 sample

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Le Gall, C.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.

    2017-11-01

    Within the framework of the International Source Term Programme (ISTP), the VERDON programme aims at quantifying the source term of radioactive materials in case of a hypothetical severe accident in a light water reactor (LWR). Tests were performed in a new experimental laboratory (VERDON) built in the LECA-STAR facility (CEA Cadarache). The VERDON-1 test was devoted to the study of a high burn-up UO2 fuel and FP releases at very high temperature (≈2873 K) in a reducing atmosphere. Post-test qualitative and quantitative characterisations of the VERDON-1 sample led to the proposal of a scenario explaining the phenomena occurring during the experimental sequence. Hence, the fuel and the cladding may have interacted which led to the melting of UO2-ZrO2 alloy. Although no relocation was observed during the test, it may have been imminent.

  17. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.

    PubMed

    Rahmatpour, Samaneh; Shirvani, Mehran; Mosaddeghi, Mohammad R; Bazarganipour, Mehdi

    2017-05-15

    The rapid production and application of silver nanoparticles (AgNPs) have led to significant release of AgNPs into the terrestrial environments. Once released into the soil, AgNPs could enter into different interactions with soil particles which play key roles in controlling the fate and transport of these nanoparticles. In spite of that, experimental studies on the retention of AgNPs in soils are very scarce. Hence, the key objective of this research was to find out the retention behavior of AgNPs and Ag(I) ions in a range of calcareous soils. A second objective was to determine the extent to which the physico-chemical properties of the soils influence the Ag retention parameters. To this end, isothermal batch experiments were used to determine the retention of Poly(vinylpyrrolidinone)-capped AgNPs (PVP-AgNPs) and Ag(I) ions by nine calcareous soils with a diversity of physico-chemical properties. The results revealed that the retention data for both PVP-AgNPs and Ag(I) ions were well described by the classical Freundlich and Langmuir isothermal equations. The retention of PVP-AgNPs and Ag(I) ions was positively correlated to clay and organic carbon (OC) contents as well as electrical conductivity (EC), pH, and cation exchange capacity (CEC) of the soils. Due to multicolinearity among the soil properties, principal component analysis (PCA) was used to group the soil properties which affect the retention of PVP-AgNPs and Ag(I) ions. Accordingly, we identified two groups of soil properties controlling retention of PVP-AgNPs and Ag(I) ions in the calcareous soils. The first group comprised soil solid phase parameters like clay, OC, and CEC, which generally control hetero-aggregation and adsorption reactions and the second group included soil solution variables such as EC and pH as well as Cl - and Ca 2+ concentrations, which are supposed to mainly affect homo-aggregation and precipitation reactions. Copyright © 2017. Published by Elsevier Ltd.

  18. Reading the Molecular Code in Soils

    NASA Astrophysics Data System (ADS)

    Hess, N. J.; Tfaily, M. M.; O'Brien, S. L.; Tolic, N.; Jastrow, J. D.; Amonette, J. E.

    2015-12-01

    There is much that we understand about the relationship between plants, microbes, soil, and water but that understanding is incomplete at the molecular scale. With advent of high throughput genomic sequencing we are beginning to appreciate the diversity of microbial community structure and function and its response to the rhythm of plant function. Through the lens of high-resolution mass spectrometry we are getting our first glimpses of the diversity of soil and pore water organic chemistry at the molecular level. In combination, these diverse data streams are revealing traces of chemical metabolic pathways. This approach promises to reveal many exciting future discoveries, shedding light into the "black box" that exists beneath our feet. In this talk we discuss our experience with the molecular characterization of soils from native prairie to restored prairie to active corn-soybean soils from the DOE funded CSiTE project in Batavia, Illinois. We focus on how common soil separation and fractionation techniques can affect the resulting molecular soil characterization by comparing whole soils to those that have been fractionated into micro- and macro-aggregates and their corresponding silt and clay fractions. When carefully utilized and interpreted these fractionation techniques can be utilized for deepening understanding of the biotic and abiotic chemical pathways effecting the organic chemistry in the different soil fractions. In highly fractionated soils we find significant differences in organic chemistry between silt and clay separates of corresponding hierarchical aggregate fractions. However the most biologically rich information resides in the whole soil. Here we see significant gradients in soil chemistry across to active agricultural to restored to native prairie soils. These results suggest a cautionary note, namely that soil fractionation prior to molecular characterization can reveal much about the "abiotic" interactions between organic molecules and soil minerals but the much of the "biotic" story resides in the whole soil.

  19. Distal Impact Ejecta Material in Marine Sediments in the North-Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Hagstrum, J. T.

    2006-12-01

    We studied a sample of red clay weighing 1.4 grams, derived from a deep sea core (GPC3) located at Latitude 30 degrees N, Longitude 158 degrees W, provided by Jim Broda at the core lab of Woods Hole Oceanographic Institution (supported by NSF). The 65 Ma K/T boundary layer was identified by magnetic susceptibility measurements and Ir anomaly which peaked at a down-hole depth of 2055-2056 cm. We dissolved calcium carbonate in the red clay with dilute HCl to facilitate wet sieving for the size fraction greater than 38 microns. This process yielded 0.0l gram of clean grains from which we hand-picked materials under a binocular microscope. We picked out 40 microtektites (glass spherules, now devitrified), 12 olive- green aggregates composed of talc (probably from alteration of olivine), pyroxene, and magnetite, 6 crystals of biotite, a few magnetic oxide minerals and spherules, and 3 green and 1 blue crystals of silicon carbide (SiC). We are studying the SiC by X-rays. Also, there are abundant quartz grains. Six of the grains we picked out show two sets of shock lamellae decorated by a black substance. Some quartz crystals show mosaic structures. One other grain has a foreign particle embedded in it, while another has two penetrating hollow tubes. These two grains might have been impacted upon by high-velocity "bullets". Because the olive-green aggregates we found have both their mineralogy and texture similar to those often observed in chondrules, in addition to the presence of SiC, which is typically associated with carbonaceous chondrites, we recognize that there seems to be a strong implication that the impactor at Chicxulub which caused extinction of dinosaurs might have been a carbonaceous chondrite which sent the distal ejecta to our core site.

  20. Evaluation of the organization of the homoionic smectite layers (Na(+) or Ca(2+)) in diluted dispersions using granulometry, microscopy and rheometry.

    PubMed

    Paumier, S; Pantet, A; Monnet, P

    2008-09-01

    Smectites are swelling clay materials with pronounced colloidal properties that are widely used in industry. These properties originate in the electrokinetic properties of the smectite layers and their linkage capacities. Thin layers may be dispersed or aggregated according to many parameters, such as concentration, particle size and morphology, exchangeable cation nature and chemical environment (pH, ionic strength). The literature usually provides general rules, like the sodium dispersion contains a lot of small units whereas the calcium dispersion contains a few large units. A volume of water molecules bound to the clay surface is considered as the immobile water phase that behaves like the solid phase obstructing the flow. The water immobilized around layers and trapped inside aggregates cannot participate to the flow. In this study, we evaluated the volume occupied by calcium and sodium units inside the dispersion containing the immobile water phase. First, the smectite was cautiously extracted from a raw bentonite and its physicochemical properties were determined. A large quantity of extracted and saturated smectite (Na-smectite and Ca-smectite) was obtained. Second, the unit size and a shape factor for each sample were evaluated using granulometry and scanning transmission electron microscopy on wet samples (Wet STEM) and some flow curves. Na-smectite dispersions contain 0.13 microm(2) surface units with a shape factor of 50. Ca-smectite dispersions contain 0.32 microm(2) surface units with a shape factor of 3.3. Finally, rheometry allowed us to evaluate the unit occupancy using an adaptation of the Krieger-Dougherty law. We used shape factors and evaluated the concentration from which the entire immobile volume was connected (6.4% for Na-smectite and 11.9% for Ca-smectite). This study explains the evolution of flow properties with increasing concentrations by the evolution of layer interactions at the microscopic scale for homoionic smectite particles in diluted dispersions.

  1. Formation and Restacking of Disordered Smectite Osmotic Hydrates

    DOE PAGES

    Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.; ...

    2015-12-01

    Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less

  2. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, C.; Wirth, R.; Wenk, H. -R.

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has beenmore » observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.« less

  3. Digital data sets that describe aquifer characteristics of the Elk City Aquifer in western Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and supplies ground water for irrigation, domestic, and industrial purposes in Beckham, Custer, Roger Mills, and Washita Counties along the divide between the Washita and Red River basins. The Elk City aquifer consists of the Elk City Sandstone and overlying terrace deposits, made up of clay, silt, sand and gravel, and dune sands in the eastern part and sand and gravel of the Ogallala Formation (or High Plains aquifer) in the western part of the aquifer. The Elk City aquifer is unconfined and composed of very friable sandstone, lightly cemented with clay, calcite, gypsum, or iron oxide. Most of the grains are fine-sized quartz but the grain size ranges from clay to cobble in the aquifer. The Doxey Shale underlies the Elk City aquifer and acts as a confining unit, restricting the downward movement of ground water. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Elk City aquifer. The maps digitized were published at a scale of 1:63,360. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  4. Formation and Restacking of Disordered Smectite Osmotic Hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.

    Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less

  5. Shallow Slip Localization Along Megathrusts: Investigating the Role of Scaly Fabric

    NASA Astrophysics Data System (ADS)

    Vannucchi, P.

    2015-12-01

    Scaly fabric is classically interpreted as a low strain-rate structure, resulting from progressive shearing with episodic formation and destruction of oriented and flattened clay layers and aggregates. Scientific Ocean drilling of the Japan Trench in response to the 2011 Tohoku-Oki EQ sampled the active plate-boundary décollement zone in a place of known, large, and very recent displacement. The visual inspection of core material from the plate boundary décollement reveals a clay layer with scaly fabric, cut by a sharp discontinuity that may be the record of co-seismic slip (Chester et al., 2013). This result brought to the need to re-evaluate the role and the characteristics of scaly fabric. Scaly fabric is the typical meso/microstructure marking the location of slip concentration in all the active décollements cored near the trench (i.e. Barbados, Nankai, Costa Rica, Japan Trench) and in analogue fossil examples cropping out onland. Scaly fabric tends to form self-similar patterns, and usually areas with smaller phacoids are interpreted as more deformed. We know that scaliness develops in the early stages of deformation, that the slip surfaces defining the phacoids are sharp and they do not occur randomly, that they grow and coalesce forming a progressively finer anastomosing network, and that eventually the anastomoising slip surfaces are "enhanced" or "cut" by straight slip surfaces. Advances in identifying detailed evolutionary history of slip localization from scaly fabric to discrete surfaces have been paralleled by laboratory experiments. Here we try to summarize direct and indirect information on physical properties of clay layers deformed at shallow depth and, possibly, their links to the seismic cycle. These challenges include future work on the role of scaly fabric on earthquake deformation along faults.

  6. Preservation of adobe buildings. Study of materials

    NASA Astrophysics Data System (ADS)

    Velosa, A.; Rocha, F.; Costa, C.; Varum, H.

    2012-04-01

    Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.

  7. Porosimetric, Thermal and Strength Tests of Aerated and Nonaerated Concretes

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Jarosław; Garbalińska, Halina

    2017-10-01

    The paper presents the results of porosimetry tests of lightweight concretes, obtained with three research methods. Impact of different porosity structures on the basic thermal and strength properties was also evaluated. Tests were performed, using the pressure gauge method on fresh concrete mixes, as well as using the mercury porosimetry test and optic RapidAir method on specimens prepared from mature composites. The study was conducted on lightweight concretes, based on expanded clay aggregate and fly ash aggregate, in two variants: with non-aerated and aerated cement matrix. In addition, two reference concretes, based on normal aggregate, were prepared, also in two variants of matrix aeration. Changes in thermal conductivity λ and volumetric specific heat cv throughout the first three months of curing of the concretes were examined. Additionally, tests for compressive strength on cubic samples were performed during the first three months of curing. It was found that the pressure gauge method, performed on a fresh mix, gave lowered values of porosity, compared to the other methods. The mercury porosity tests showed high sensitivity in evaluation of pores smaller than 30μm. Unfortunately, this technique is not suitable for analysing pores greater than 300μm. On the other hand, the optical method proves good in evaluation of large pores, greater than 300μm. The paper also presents results of correlation of individual methods of porosity testing. A consolidated graph of the pore structure, derived from both mercury and optical methods, was presented, too. For the all of six tested concretes, differential graphs of porosity, prepared with both methods, show a very broad convergence. The thermal test results indicate usefulness of aeration of the cement matrix of the composites based on lightweight aggregates for the further reduction of the thermal conductivity coefficient λ of the materials. The lowest values of the λ coefficient were obtained for the aerated concretes based of fly ash aggregate. A diminishing influence of aeration on the volumetric heat capacity cv is clearly seen. Simultaneous aeration of the matrix and use of lightweight aggregates brought about also a significant decrease in the average compressive strength fcm of the tested composites.

  8. Origin and evolution of spliceosomal introns

    PubMed Central

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section. PMID:22507701

  9. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis

    NASA Astrophysics Data System (ADS)

    Kennedy, Martin John; Löhr, Stefan Carlos; Fraser, Samuel Alex; Baruch, Elizabeth Teresa

    2014-02-01

    The burial of marine sourced organic carbon (OC) in continental margin sediments is most commonly linked to oceanographic regulation of bottom-water oxygenation (anoxia) and/or biological productivity. Here we show an additional influence in the Devonian Woodford Shale, in which OC occurs as nanometer intercalations with specific phyllosilicate minerals (mixed-layer illite/smectite) that we term organo-mineral nanocomposites. High resolution transmission electron microscopic (HRTEM) images provide direct evidence of this nano-scale relationship. While discrete micron-scale organic particles, such as Tasmanites algal cysts, are present in some lamina, a strong relation between total organic carbon (TOC) and mineral surface area (MSA) over a range of 15% TOC indicate that the dominant association of organic carbon is with mineral surfaces and not as discrete pelagic grains, consistent with HRTEM images of nanocomposites. Where periods of oxygenation are indicated by bioturbation, this relationship is modified by a shift to lower OC loading on mineral surfaces and reduced MSA variability likely resulting from biological mixing and homogenization of the sediment, oxidative burn down of OC and/or stripping of OC from minerals in animal guts. The TOC-MSA relationship extends across a range of burial depths and thermal maturities into the oil window and persists through partial illitization. Where illitization occurs, the loss of mineral surface area associated with the collapse of smectite interlayer space results in a systematic increase in TOC:MSA and reorganization of organic carbon and clays into nano-scale aggregates. While the Woodford Shale is representative of black shale deposits commonly thought to record heightened marine productivity and/or anoxia, our results point to the importance of high surface area clay minerals for OC enrichment. Given that the vast majority of these clay minerals are formed in soils before being transported to continental margin settings, their mineralogy and attendant preservative potential is primarily a function of continental climate and provenance making these deposits a sensitive recorder of land as well as oceanographic change.

  10. Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles.

    PubMed

    Layet, Clément; Auffan, Mélanie; Santaella, Catherine; Chevassus-Rosset, Claire; Montes, Mélanie; Ortet, Philippe; Barakat, Mohamed; Collin, Blanche; Legros, Samuel; Bravin, Matthieu N; Angeletti, Bernard; Kieffer, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Doelsch, Emmanuel

    2017-09-05

    The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg -1 of dissolved Ce 2 (SO 4 ) 3 , bare and citrate-coated CeO 2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO 2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.

  11. Trapping characteristic of halloysite lumen for methyl orange

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Yan, Hua; Pei, Zhenzhao; Wu, Junyong; Li, Rongrong; Jin, Yanxian; Zhao, Jie

    2015-08-01

    The interaction of clay minerals and dyes is an area of great interest especially in the development of novel adsorbents. In this report, we demonstrated interaction of halloysite nanotubes (HNTs) and an anionic dye, methyl orange (MO), through a electrostatic attraction. Halloysite lumen has a trapping characteristic for methyl orange, which is mainly determined by the positively charged nature of the inner surface of HNTs. XRD results confirmed that intercalation of methyl orange into HNTs did not occur. SEM-EDS and photostability results showed that MO molecules were primarily in HNTs lumen. Adsorption isotherm studies revealed an interesting phenomenon, i.e., a sudden increase of adsorption capacity occurred in the initial dye concentration of about 75 mg/L, which was just the dye concentration corresponding to the onset of dye oligomer formation. This suggested dye aggregation state had a decisive influence to the adsorption behavior of MO on the halloysite. BET results demonstrated at low and high dye concentrations, single MO molecule and aggregation of several dimers through hydrophobic interaction, interacted with Al-OH2+ sites on the inner wall, respectively. Desorption experiments showed that MO in HNTs can be completely removed with deionized water, indicating halloysite is a low-cost and efficient adsorbent for anionic dye.

  12. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete.

    PubMed

    Pilegis, Martins; Gardner, Diane; Lark, Robert

    2016-06-02

    Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN). The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c) ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA) and the concrete mix composition.

  13. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete

    PubMed Central

    Pilegis, Martins; Gardner, Diane; Lark, Robert

    2016-01-01

    Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN). The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c) ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA) and the concrete mix composition. PMID:28773560

  14. A pretreatment method for grain size analysis of red mudstones

    NASA Astrophysics Data System (ADS)

    Jiang, Zaixing; Liu, Li'an

    2011-11-01

    Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.

  15. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Svendsen, Claus; Soares, Amadeu M V M; Loureiro, Susana

    2012-08-01

    Metal-based nanoparticles (NPs) (e.g., silver, zinc oxide, titanium dioxide, iron oxide) are being widely used in the nanotechnology industry. Because of the release of particles from NP-containing products, it is likely that NPs will enter the soil compartment, especially through land application of sewage sludge derived from wastewater treatment. This review presents an overview of the literature dealing with the fate and effects of metal-based NPs in soil. In the environment, the characteristics of NPs (e.g., size, shape, surface charge) and soil (e.g., pH, ionic strength, organic matter, and clay content) will affect physical and chemical processes, resulting in NP dissolution, agglomeration, and aggregation. The behavior of NPs in soil will control their mobility and their bioavailability to soil organisms. Consequently, exposure characterization in ecotoxicological studies should obtain as much information as possible about dissolution, agglomeration, and aggregation processes. Comparing existing studies is a challenging task, because no standards exist for toxicity tests with NPs. In many cases, the reporting of associated characterization data is sparse, or missing, making it impossible to interpret and explain observed differences in results among studies. Copyright © 2012 SETAC.

  16. No tillage effect on water retention characteristics of soil aggregates in rainfed semiarid conditions.

    NASA Astrophysics Data System (ADS)

    Blanco-Moure, Nuria; López, M. Victoria; Moret, David

    2010-05-01

    The evaluation of changes in soil moisture retention characteristics associated to alterations in soil structure is of great interest in tillage studies. Most of these studies have evaluated soil properties in samples of total soil but not in individual aggregates. However, soil behavior at a macroscale level depends on the aggregate properties. A better knowledge of aggregate characteristics, as the water retention properties, will help to explain, for example, the response of soil to tillage, compaction and crop growth, and hence, to plan adequate soil management practices. In this study we determine the water retention curve of soil aggregates of different sizes from a soil under two tillage systems (conventional and no tillage). The study was carried out in a silty clay loam soil of semiarid Aragon (NE Spain). Two tillage systems were compared: no tillage (NT) and conventional tillage with mouldboard plough (CT). Water retention curves (WRC) were determined for soil surface aggregates (0-5 cm) of three different sizes (8-4, 4-2 and 2-1 mm in diameter) by using the TDR-pressure cell (Moret et al. 2008. Soil Till. Res, 100, 114-119). The TDR-pressure cell is a non-destructive method which permits determining WRC with the only one and same soil sample. Thus, the pressure cell was filled with aggregates up to 4 cm height, weighted and wetted to saturation from the bottom. Pressure steps were sequentially applied at -0.5, -1.5, -3, -5, -10, -33, -100, -300 kPa, and water content of each aggregate sample was measured gravimetrically and by TDR 24 h after starting each pressure head step. The volume of the sample within the cell was also determined at this moment in order to obtain the bulk density and thus calculate the volumetric water content. A good relationship was obtained between the volumetric water content calculated from the gravimetric water content and the corresponding values measured by TDR (r2=0.907; p≤0.05). Within the same tillage treatment, no significant differences in WRC were found among soil aggregate sizes. Soil aggregates under CT retained more water at lower pressure heads in all aggregate sizes; in contrast the retention was more effective in those from NT at high pressure level. The extensive structural degradation of the CT aggregates observed during wetting with the consequent decrease in the soil volume within the transparent cell, can help to explain the different behaviour of both soils. The CT aggregates were probably disintegrated by slaking, causing a reduction in water drainage and, therefore, an increase in soil water content at low pressure heads. This idea was also confirmed with the application of the double exponential function proposed by Dexter et al. (2008. Geoderma 173, 243-253). The WRC curves measured by TDR were successfully fitted to the theoretical model proposed by Dexter (r2=0.986; p≤0.05). Thus, the model estimated that the large porosity between aggregates retain slightly more water under CT (0.36-0.39 m3 m-3) than under NT (0.31-0.35 m3 m-3). On the contrary, pores inside the aggregates tend to storage more water in NT (0.16-0.20 m3 m-3vs. 0.13-0.17 m3 m-3 in CT). These results show the suitability of NT to reduce the risk of soil crusting and compaction in agricultural lands of Aragón.

  17. Monitoring Natural Occurring Asbestos in ophiolite sequences and derived soils: implication with human activities

    NASA Astrophysics Data System (ADS)

    Punturo, Rosalda; Bloise, Andrea; Cirrincione, Rosolino

    2016-04-01

    The present contribution focuses on soils that developed on serpentinite-metabasite bedrocks, which could potentially be rich in asbestos minerals and, as a consequence, have a negative impact on agricultural activity and on environmental quality. In order to investigate the natural occurrences of asbestos (NOA) on the surface of the soil formed from serpentinites and metabasite, we selected a study area located in Sila Piccola (Calabrian Peloritani Orogen, southern Italy), where previous studies highlighted the presence of asbestiform minerals within the large ophiolitic sequences that crop out (Punturo et al., 2015; Bloise et al., 2015). Agricultural soil samples have been collected mainly close to urban centres and characterized by using different analytical techniques such as X-ray powder diffraction (XRPD), transmission electron microscopy combined with energy dispersive spectrometry (TEM-EDS), thermogravimetry (TG) and differential scanning calorimetry (DSC) Results pointed out as all the collected soil samples contain serpentine minerals (e.g., chrysotile), asbestos amphiboles, clays, chlorite, muscovite, plagioclase and iron oxides in various amounts. Electron microscope images of the soils show that their contain a variety of aggregating agents such as organic matter and clay in which individual fibres of chrysotile and tremolite-actinolite are trapped. The investigation showed that both serpentinite and metabasite rocks act as a perennial source of contamination for the agriculture lands because of the high amount of tremolite-actinolite found in the studied soil samples developed on such lithotypes. Even if asbestiform minerals usually occur in aggregates which cannot be suspended in the air, agricultural activities such as plowing can destroy these soil aggregates with the creation of dust containing inhalable asbestos fibres that evolve into airborne increasing the exposure of population to them. Since the dispersion of fibres could be associated with carcinogenic lung cancer, in our opinion further research is required to investigate the variation in the asbestos content in soils with increase in distance from serpentinites outcrops, in order to assess the non-occupational lifelong exposure of population to Natural Occurring Asbestos. References Punturo R., Bloise A., Critelli T., Catalano M., Fazio E., and Apollaro C. (2015). Environmental implications related to natural asbestos occurrences in the ophiolites of the Gimigliano-Mount Reventino unit (Calabria, southern Italy). Intern. J. of Environmental Research, 9(2), 405-418. Bloise A., Punturo R., Catalano M., Miriello D., and Cirrincione R. (2016). Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy) Ital. J. Geosci., 135, 2, (doi: 10.3301/IJG.2015.24).

  18. Effect of farmyard manure rate on water erosion of a Mediterranean soil: determination of the critical point of inefficacy

    NASA Astrophysics Data System (ADS)

    Annabi, Mohamed; Bahri, Haithem; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Intensive cultivation of soils, using multiple soil tillage, led to the decrease of their organic matter content and structural stability in several cultivated area of the Mediterranean countries. In these degraded soils, the addition of organic products, traditionally the animal manure, should improve soil health among them the resistance of soil to water erosion. The aim of this study was to evaluate after 1 year of the addition to a cambisoil different doses of farmyard manure on soil organic matter content, on microbial activity and on aggregate stability (proxy to soil resistance to water erosion). The statistical process (bilinear model) was used to found a point at which the addition of the organic product no longer influences the soil resistance to erosion. The farmyard manure issued from a cow breeding was composted passively during 4 months and used to amend a small plots of a cultivated cambisol (silty-clay texture, 0.9% TOC) located in the northeast of Tunisia (Morneg region). The manure was intimately incorporate to the soil. The manure organic matter content was 31%, and its isohumic coefficient was 49%. Twelve dose of manure were tested: from 0 to 220 t C.ha-1. The experiment was started on September 2011. In November 2012, soil sampling was done and soil organic carbon content (Walkley-Black method) and soil aggregate stability (wet method of Le Bissonnais) were assessed. A laboratory incubations of soil+manure mixtures, with the same proportions as tested in the field conditions, was carried at 28°C and at 75% of the mixture field capacity water retention. Carbon mineralization was monitored during three months incubation. Results show that the addition of farmyard manure stimulated the microbial activity proportionally to the added dose. This activation is due to the presence of easily biodegradable carbon in the manure, which increases with increasing manure dose. On the other hand, the addition of manure increased the aggregate stability with the manure dose increasing. This aggregate stabilization is due to the stimulation of microbial activity (r= 0.72, n=12) which can improves the aggregate stability by increasing the aggregate cohesion by adhesive substances such as the polysaccharides and by the enmeshment of aggregate by fungal hyphea. The increase of organic matter content due to manure addition contributes also to aggregate stabilization with a high regression slope with the first manure doses (less then 120 t C.ha-1). Using a bi-linear model, reach 2.3% of soil organic carbon seems to be a critical level from which the aggregate stability evolves little.

  19. CRANBERRY WILDERNESS STUDY AREA, WEST VIRGINIA.

    USGS Publications Warehouse

    Meissner, Charles R.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness Study Area, West Virginia contains a large demonstrated resource of bituminous coal of coking quality. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56. 5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout the State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.

  20. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  1. Deer density and disease prevalence influence transmission of Chronic Wasting Disease in White-tailed Deer

    USGS Publications Warehouse

    Samuel, Michael D.; Richards, Bryan J.; Storm, Daniel J.; Rolley, Robert E.; Shelton, Paul; Nicholas S. Keuler,; Timothy R. Van Deelen,

    2013-01-01

    Host-parasite dynamics and strategies for managing infectious diseases of wildlife depend on the functional relationship between disease transmission rates and host density. However, the disease transmission function is rarely known for free-living wildlife, leading to uncertainty regarding the impacts of diseases on host populations and effective control actions. We evaluated the influence of deer density, landscape features, and soil clay content on transmission of chronic wasting disease (CWD) in young (<2-year-old) white-tailed deer (Odocoileus virginianus) in south-central Wisconsin, USA. We evaluated how frequency-dependent, density-dependent, and intermediate transmission models predicted CWD incidence rates in harvested yearling deer. An intermediate transmission model, incorporating both disease prevalence and density of infected deer, performed better than simple density- and frequency-dependent models. Our results indicate a combination of social structure, non-linear relationships between infectious contact and deer density, and distribution of disease among groups are important factors driving CWD infection in young deer. The landscape covariates % deciduous forest cover and forest edge density also were positively associated with infection rates, but soil clay content had no measurable influences on CWD transmission. Lack of strong density-dependent transmission rates indicates that controlling CWD by reducing deer density will be difficult. The consequences of non-linear disease transmission and aggregation of disease on cervid populations deserves further consideration.

  2. Flocculation characteristics of freshly eroded aggregates

    NASA Astrophysics Data System (ADS)

    Manning, Andrew; Wendling, Valentin; Gratiot, Nicolas; Legout, Cedric; Michallet, Herve

    2014-05-01

    In Europe, 260,000 square kms of soils already suffer erosion by water. This worrying level of land degradation is expected to increase in the context of climate change, with situations particularly critical in mountainous environments. This study aims at improving sediment transport parameterisation, by examining the kinetics of fine soil aggregates (size D, settling velocity Ws, density), once immersed in a turbulent flow. Thus observing the changing state, as soil aggregates become suspended sediment floc/aggregates. Particle properties of two Mediterranean materials (black marl and molasse, both sampled in badlands) were tested in grid stirred experiments. Hydrodynamic properties were monitored with ADV and turbidity sensors. For each soil, three suspended sediment concentration (SSC) loads (1.5; 5; 10 g/l) representative of flood conditions were tested. Aggregate properties were obtained at four depths above the grid, using the video LabSFLOC technique and laser techniques. These acquisition heights are associated with the corresponding turbulence dissipation rates G of 1.5, 3, 7 and 19 s^-1. Once particles were injected in the tank, a quasi-equilibrium state was rapidly reached, after one to two minutes. The floc/aggregate properties did not vary with sediment load. The median diameter D_50 was measured to be around 60 microns for the clay loam soil and around 15 microns for the two badlands materials. Examining the molasse samples, we see that the SSC at 1, 5, 10, 20 and 40 minute intervals were all +12 g/l at distances 10 cm and 15 cm above the nominal vertical mid-stroke grid position for the experimental SSC ranges. At the less turbulent zone, a 2 g/l base SSC reduced by 80% and at a nominal 10 g/l the SSC dipped by two orders of magnitude from the base concentration. If we consider the population distribution for molasse at a base SSC of 10 g/l sampled 15cm above the grid after 40 minutes, D ranged from 39 - 273 microns. A small microfloc cluster only had Ws of 0.4-0.5 mm/s, an order of magnitude slower than the peak sample Ws of 5.8 mm/s. These fast settling aggregates spanned the macrofloc (> 160 microns) and microfloc transition from 100-220 microns, representing over half the SSC. The majority of the microflocs (< 160 microns) exhibited effective densities between 160-1600 kg/m^-3, which suggests that some degree of flocculation has occurred. Furthermore, there are highly porous macroflocs demonstrating effective densities < 40 kg/m^-3; these flocs fell at a Ws of about 1 mm/s and represented ~4% of the total SSC. A key fundamental research question to be addressed in this study was: do aggregates rapidly turn into flocs? The initial results indicate that aggregates do not easily/rapidly turn into flocs. However, despite their poor kinetics, particles were undoubtedly aggregated. The aggregation index was measured to be of 50% for badlands materials. The behaviour of the soils differ significantly from those observed for estuarine muds, floc size and settling velocity increases with suspended sediment concentration, where as the soils tested did not.

  3. Tumbling in Turbulence: How much does particle shape effect particle motion?

    NASA Astrophysics Data System (ADS)

    Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.

    2014-12-01

    Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.

  4. Nanometre-scale crystals formed in the presence of natural organic matter .

    NASA Astrophysics Data System (ADS)

    Frisia, Silvia; Borsato, Andrea; Zhang, Huiming; Meister, Patrick; Della Porta, Giovanna; Marjo, Chris; Cheong, Soshan; Hartland, Adam; Gattolin, Giovanni; Ischia, Gloria; Anderson, Ebony; Rich, Anne

    2017-04-01

    Nanocrystals have been observed to form micrite in several environments where natural organic matter (NOM) is present in dissolved, colloidal and particulate form, in both modern and ancient continental and marine sediments. In ancient (Triassic) marine deposits, we found perfectly preserved nanocrystal aggregates entombed by NOM, which appears to be associated with clay particulate. These nanocrystal, which have been preserved through million of years, bear similarities with nanocrystal observed in diverse, freshwater, modern settings. In modern and Holocene continental environments, micrite is of interest because of its association with archives of past climate, such as stalagmites. Nanocrystal aggregates forming micrite have been observed in association with microbial structures in tufa, thermal spring pisoids and in cave speleothems. We carried out "instant precipitation" experiments in several caves from New Zealand, Australia and and Italy, cut in both limestones and dolomites, with a focus on finding a relationship between NOM and micrite precipitation. Transmission Electron Microscope (TEM) investigations of the experimental precipitates suggest that nanocrystals nucleated already after 30 minutes on NOM colloids (as confirmed by EDS spectra) possibly originated in the soil zone. Some samples were left to "mature" for 24 hours: aggregates began to show some preferred orientation and a few single crystals on micrometer scale were also observed, which do not seem to be associated with NOM. Our preliminary results suggest that NOM, such as soil-derived humid and fulvic acids, aids nanocrystal aggregate nucleation and growth. The cave experiments seem to indicate that it is not necessary to have microbial mats, or EPS to favor formation of micrite. Our experiments did not capture the occurrence of amorphous precursors, but the amorphous phase may have been gone undetected as NOM is amorphous. Our findings have potential implications for the interpretation of ancient deposits consisting of micrite, where this fabric is not associated with clear microbial structures.

  5. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  6. Elucidating the Physical and Chemical Structural Changes of Proteins on Clay Mineral Surfaces using Large-scale Molecular Dynamics Simulations in Tandem with NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.

    2014-12-01

    Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged mineral surfaces and variably charged edges, and the potential role of amphiphilic proteins in providing adsorptive layers for SOM-mineral interfaces. Our efforts at characterizing these systems through combined modeling and simulation and NMR will also be discussed.

  7. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography

    NASA Astrophysics Data System (ADS)

    Weng, Yi-Tse; Wang, Chun-Chieh; Chiang, Cheng-Cheng; Tsai, Heng; Song, Yen-Fang; Huang, Shiuh-Tsuen; Liang, Biqing

    2018-05-01

    An approach for nanoscale 3-D tomography of organic carbon (OC) and associated mineral nanoparticles was developed to illustrate their spatial distribution and boundary interplay, using synchrotron-based transmission X-ray microscopy (TXM). The proposed 3-D tomography technique was first applied to in situ observation of a laboratory-made consortium of black carbon (BC) and nanomineral (TiO2, 15 nm), and its performance was evaluated using dual-scan (absorption contrast and phase contrast) modes. This novel tool was then successfully applied to a natural OC-mineral consortium from mountain soil at a spatial resolution of 60 nm, showing the fine structure and boundary of OC, the distribution of abundant nano-sized minerals, and the 3-D organo-mineral association in situ. The stabilization of 3500-year-old natural OC was mainly attributed to the physical protection of nano-sized iron (Fe)-containing minerals (Fe oxyhydroxides including ferrihydrite, goethite, and lepidocrocite), and the strong organo-mineral complexation. In situ evidence revealed an abundance of mineral nanoparticles, in dense thin layers or nano-aggregates/clusters, instead of crystalline clay-sized minerals on or near OC surfaces. The key working minerals for C stabilization were reactive short-range-order (SRO) mineral nanoparticles and poorly crystalline submicron-sized clay minerals. Spectroscopic analyses demonstrated that the studied OC was not merely in crisscross co-localization with reactive SRO minerals; there could be a significant degree of binding between OC and the minerals. The ubiquity and abundance of mineral nanoparticles on the OC surface, and their heterogeneity in the natural environment may have been severely underestimated by traditional research approaches. Our in situ description of organo-mineral interplay at the nanoscale provides direct evidence to substantiate the importance of mineral physical protection for the long-term stabilization of OC. This high-resolution 3-D tomography approach is a promising tool for generating new insight into the interior 3-D structure of micro-aggregates, the in situ interplay between OC and minerals, and the fate of mineral nanoparticles (including heavy metals) in natural environments.

  8. Kinetic and Conformational Insights of Protein Adsorption onto Montmorillonite Revealed Using in Situ ATR-FTIR/2D-COS.

    PubMed

    Schmidt, Michael P; Martínez, Carmen Enid

    2016-08-09

    Protein adsorption onto clay minerals is a process with wide-ranging impacts on the environmental cycling of nutrients and contaminants. This process is influenced by kinetic and conformational factors that are often challenging to probe in situ. This study represents an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigation of the adsorption of a model protein (bovine serum albumin (BSA)) onto a clay mineral (montmorillonite) at four concentrations (1.50, 3.75, 7.50, and 15.0 μM) under environmentally relevant conditions. At all concentrations probed, FTIR spectra show that BSA readily adsorbs onto montmorillonite. Adsorption kinetics follow an Elovich model, suggesting that primary limitations on adsorption rates are surface-related heterogeneous energetic restrictions associated with protein rearrangement and lateral protein-protein interaction. BSA adsorption onto montmorillonite fits the Langmuir model, yielding K = 5.97 × 10(5) M(-1). Deconvolution and curve fitting of the amide I band at the end of the adsorption process (∼120 min) shows a large extent of BSA unfolding upon adsorption at 1.50 μM, with extended chains and turns increasing at the expense of α-helices. At higher concentrations/surface coverages, BSA unfolding is less pronounced and a more compact structure is assumed. Two-dimensional correlation spectroscopic (2D-COS) analysis reveals three different pathways corresponding to adsorbed conformations. At 1.50 μM, adsorption increases extended chains, followed by a loss in α-helices and a subsequent increase in turns. At 3.75 μM, extended chains decrease and then aggregated strands increase and side chains decrease, followed by a decrease in turns. With 7.50 and 15.0 μM BSA, the loss of side-chain vibrations is followed by an increase in aggregated strands and a subsequent decrease in turns and extended chains. Overall, the BSA concentration and resultant surface coverage have a profound impact on the dynamics of BSA adsorption onto montmorillonite. These results enhance our understanding of the molecular-level protein dynamics and stabilization of organic matter at mineral surfaces.

  9. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  10. Roles of Nano- and Micro-Scale Subsurface Geochemical Reactions on Environmentally Sustainable Geologic Carbon Dioxide Sequestration

    NASA Astrophysics Data System (ADS)

    Hu, Yandi

    Geologic CO2 sequestration (GCS) is a promising approach to reduce anthropogenic CO2 emissions into the atmosphere. At GCS sites, injected CO2 is kept in formation rock by an overlying low permeability caprock. During and after CO2 injection, geochemical reactions can affect the porosity, permeability, and pollutant transport in aquifers. Despite their importance, nano- and micro-scale subsurface geochemical reactions are far from well-understood. Clay mobilization has been reported to decrease aquifer permeability during water flooding, and clay minerals are abundant in caprock. Thus, we studied CO2-brine-clay interactions under varied conditions relevant to different GCS sites (at 35-95°C and under 35-120 atm CO2, in water, NaCl, MgCl2, or CaCl2 solutions). Biotite, Fe-bearing mica, was used as a model clay mineral. We observed numerous fibrous illite precipitates on mica after reaction for only 3 h, which had not been previously reported. A few hours later, the mica surface cracked and fibrous illite detached. The mobilization of fibrous illite can decrease the aquifer's permeability greatly and affect the safety and efficiency of GCS. Mechanisms related to ion exchange, mica swelling, and CO2 intercalation were explored. Oriented aggregation of illite nanoparticles forming the fibrous illite was directly observed, suggesting a new mechanism for fibrous illite formation. Interestingly, besides the pH effect, aqueous CO2 enhances mica cracking over N2. These findings can help to achieve safer subsurface operations. At GCS field sites, Fe concentration increased near the injection sites and originally adsorbed pollutants were released. As the brine flows, Fe re-precipitated because of pH increase. To better predict the fate and transport of aqueous pollutants, the nucleation and growth of Fe(III) (hydr)oxides were studied. New information about sizes and volumes of the Fe(III) (hydr)oxide nanoparticles precipitated in solution and on quartz, mica, and sapphire were provided using small angle X-ray scattering, in the presence of different ions (Al 3+, Cl-, NO3-, and SO 42-). Using complementary techniques, the controlling mechanisms related to surface charge, bond formation, and interfacial energies were explored. These new findings can help better predict pollutant transport in aquifers not only at GCS sites, but also in managed aquifer recharge and acid mine drainage sites.

  11. 75 FR 15655 - Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... and/or copolymer products. Brick and Structural Clay Products...... 327121 Brick and structural clay tile manufacturing facilities. Brick and Structural Clay Products; Clay 327122 Ceramic wall and floor... Structural Clay Products...... 327123 Other structural clay products manufacturing facilities. Clay Ceramics...

  12. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  13. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  14. Spatial distribution of heterocyclic organic matter compounds at macropore surfaces in Bt-horizons

    NASA Astrophysics Data System (ADS)

    Leue, Martin; Eckhardt, Kai-Uwe; Gerke, Horst H.; Ellerbrock, Ruth H.; Leinweber, Peter

    2017-04-01

    The illuvial Bt-horizon of Luvisols is characterized by coatings of clay and organic matter (OM) at the surfaces of cracks, biopores and inter-aggregate spaces. The OM composition of the coatings that originate from preferential transport of suspended matter in macropores determines the physico-chemical properties of the macropore surfaces. The analysis of the spatial distribution of specific OM components such as heterocyclic N-compounds (NCOMP) and benzonitrile and naphthalene (BN+NA) could enlighten the effect of macropore coatings on the transport of colloids and reactive solutes during preferential flow and on OM turnover processes in subsoils. The objective was to characterize the mm-to-cm scale spatial distribution of NCOMP and BN+NA at intact macropore surfaces from the Bt-horizons of two Luvisols developed on loess and glacial till. In material manually separated from macropore surfaces the proportions of NCOMP and BN+NA were determined by pyrolysis-field ionization mass spectrometry (Py-FIMS). These OM compounds, likely originating from combustion residues, were found increased in crack coatings and pinhole fillings but decreased in biopore walls (worm burrows and root channels). The Py-FIMS data were correlated with signals from C=O and C=C groups and with signals from O-H groups of clay minerals as determined by Fourier transform infrared spectroscopy in diffuse reflectance mode (DRIFT). Intensive signals of C15 to C17 alkanes from long-chain alkenes as main components of diesel and diesel exhaust particulates substantiated the assumption that burning residues were prominent in the subsoil OM. The spatial distribution of NCOMP and BN+NA along the macropores was predicted by partial least squares regression (PLSR) using DRIFT mapping spectra from intact surfaces and was found closely related to the distribution of crack coatings and pinholes. The results emphasize the importance of clay coatings in the subsoil to OM sorption and stabilization. Differences between biopores and cracks suggest differences in the mass transport and OM turnover between these macropore types in Luvisols.

  15. Studies on thermal reactions and sintering behaviour of red clays by irreversible dilatometry

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Misra, S. N.; Misra, N. M.

    2018-05-01

    Thermal behavior of clays strongly influences that of ceramic bodies made thereof and hence, its study is must for assessing its utility in ceramic products as well as to set the body composition. Irreversible dilatometry is an effective thermal analysis tool for evaluating thermal reactions as well as sintering behavior of clays or clay based ceramic bodies. In this study, irreversible dilatometry of four red clay samples (S, M, R and G) of Gujarat region, which vary in their chemical and mineralogical compositions was carried out using a Dilatometer and compared. Chemical analysis and XRD of red clays were carried out. XRD showed that major clay minerals in S, M and R clays are kaolinite. However, clay marked R and G showed presence of both kaolinite and illite and /muscovite. Presence of non-clay minerals such as hematite, quartz, anatase were also observed in all clays. XRD results were in agreement with chemical analyses results. Rational analyses showed variation in amount of clay and non-clay minerals in red clay samples. Evaluation of dilatometric curves showed that clay marked as S, M and R exhibit patterns typical for kaolinitic clays. Variation in linear expansion (up to 550°C) and shrinkage (above 550°C) between these three clays was found to be related to difference in amount of quartz and kaolinite respectively. However, dilatometric curve of G exhibit a pattern similar to that for an illitic clay. This study confirmed that sintering of investigated kaolinitic and illitic and / muscovitic red clays initiates at above 1060°C and 860°C respectively and this behaviour strongly depends upon type and amount of minerals and their chemical compositions.

  16. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  17. Cranberry Wilderness study area, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meissner, C.R. Jr.; Mory, P.C.

    1984-01-01

    The Cranberry Wilderness study area contains a large demonstrated resource of bituminous coal of coking quality according to studies made in 1977. Demonstrated coal resources in beds more than 14 in. thick are about 110 million short tons of which 56.5 million tons are in beds more than 28 in. thick in areas of substantiated coal resource potential. Other mineral resources in the study area include peat, shale and clay suitable for building brick and lightweight aggregate, sandstone suitable for low-quality glass sand, and sandstone suitable for construction material. These commodities are found in abundance in other areas throughout themore » State. Study of the drill-hole data did not reveal indications of a potential for oil and gas resources in the study area. Evidence of metallic mineral potential was not found during this investigation.« less

  18. Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel.

    PubMed

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2008-08-19

    The unusual behavior of smectites, the ability to change volume when wetted (swelling) or dried (shrinking), makes soil rich in smectites very unstable and dangerous for the building industry because of the movement of building foundations and poor slope stability. These macroscopic properties are dominated by the structural arrangement of the smectites' finest fraction. Here, we show in three dimensions how the swelling phenomenon in smectite, caused by a combination of hydratation and electrostatic forces, may expand the dry smectite volume not 10-fold, as previously thought, but to more than 1000-fold. A new technique, transmission X-ray microscopy, makes it possible to investigate the internal structure and 3-D tomographic reconstruction of clay aggregates. This reveals, for the first time, the smectite gel arrangement in the voluminous cellular tactoid structure within a natural aqueous environment.

  19. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    NASA Astrophysics Data System (ADS)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  20. Effect of sustainable land management practices on soil aggregation and stabilization of organic carbon in semiarid mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Garcia-Franco, Noelia; Albaladejo, Juan; Almagro, María; Wiesmeier, Martin; Martínez-Mena, María

    2016-04-01

    Arid and semiarid regions represent about 47% of the total land area of the world (UNEP, 1992). At present, there is a priority interest for carbon (C) sequestration in drylands. These areas are considered as very fragile ecosystems with low organic carbon (OC) saturation, and potentially, high capacity for soil OC sequestration. In addition, the restoration of these areas is one of the major challenges for scientists, who will be able to identify and recommended the best land uses and sustainable land management (SLM) practices for soil conservation and mitigation of climate change in these environments. In this regard, in semiarid Mediterranean ecosystems there is an urgent need for the implementation of SLM practices regardless of land-use type (forest, agricultural and shrubland) to maintain acceptable levels of soil organic matter (SOM) and the physico-chemical protection of the OC. Long- and short-term effects of SLM practices on soil aggregation and SOC stabilization were studied in two land uses. The long-term experiment was conducted in a reforestation area with Pinus halepensis Mill., where two afforestation techniques were implemented 20 years ago: a) mechanical terracing with a single application of organic waste of urban soil refuse, and b) mechanical terracing without organic amendment. An adjacent shrubland was considered as the reference plot. The short-term experiment was conducted in a rain-fed almond (Prunus dulcis Mill., var. Ferragnes) orchard where two SLM practices were introduced 4 years ago: a) reduced tillage plus green manure, and b) no tillage. Reduced tillage was considered as the reference plot given that it is the habitual management practice. Four aggregate size classes were differentiated by sieving (large and small macroaggregates, microaggregates, and the silt plus clay fraction), and the microaggregates occluded within small macroaggregates (SMm) were isolated. In addition, different organic C fractions corresponding with active, slow and passive pools were separated using a density fractionation method. Our results showed that the chemical stabilization of OC, was the main mechanisms of C sequestration in the two study sites, which occurred through the formation of complexes with silt and clay particles and its physical protection in microaggregates formed within macroaggregates. In addition, the chemical stabilization was promoted by the mineral composition of the soil matrix. Both studied sites, especially that involving organic soil amendment in the forest system, and the green manure treatment in the agricultural system exhibited an increase in the labile pool of OC in the soil. This increase promoted the formation of macroaggregates, in two ways: 1) directly, by acting as a binding agent between soil particles, and 2) indirectly, by stimulating the microbiological activity, especially that of the fungi - which "package" the particles with their hyphae. The establishment of these new macroaggregates favors the formation of microaggregates. In addition, in the agricultural soils, minimum tillage seems to be necessary, from the point of view of carbon sequestration, since it promotes the incorporation of plant material and the formation of aggregates into deeper layers

  1. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  2. 77 FR 8004 - Fall 2011 Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    .... Title Identifier No. 438 SAN No. 5367 NESHAP: Brick 2060-AP69 and Structural Clay Products and Clay...-Term Actions 438. NESHAP: Brick and Structural Clay Products and Clay Products Legal Authority: Not Yet... metals) emitted from brick and clay ceramics kilns and glazing operations at clay ceramics production...

  3. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    PubMed

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  4. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  5. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.

  6. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy

    PubMed Central

    Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-01-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141

  8. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  9. Influence of iron redox cycling on organo-mineral associations in arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Herndon, E.; AlBashaireh, A.; Duroe, K.; Singer, D. M.

    2016-12-01

    Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in arctic tundra systems. In tundra soils that are periodically to persistently saturated, the accumulation of iron oxyhydroxides and organo-iron precipitates at redox interfaces may inhibit decomposition by binding organic molecules and protecting them from microbial degradation. Here, we couple synchrotron-source spectroscopic techniques with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in organic and mineral horizons of the seasonally thawed active layer in tundra soils from northern Alaska. Mineral-associated organic matter comprised 63 ± 9% of soil organic carbon stored in the active layer of ice wedge polygons. Ferrous iron produced in anoxic mineral horizons diffused upwards and precipitated as poorly-crystalline oxyhydroxides and organic-bound Fe(III) in the organic horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris and in aggregates with clays and particulate organic matter. Organic matter released through acid-dissolution of iron oxides may represent a small pool of readily-degradable organic molecules temporarily stabilized by sorption to iron oxyhydroxide surfaces, while larger quantities of particulate organic carbon and humic-like substances may be physically protected from decomposition by Fe-oxide coatings and aggregation. We conclude that formation of poorly-crystalline and crystalline iron oxides at redox interfaces contributes to mineral protection of organic matter through sorption, aggregation, and co-precipitation reactions. Further study of organo-mineral associations is necessary to determine the net impact of mineral-stabilization on carbon storage in rapidly warming arctic ecosystems.

  10. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    NASA Astrophysics Data System (ADS)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  11. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    PubMed

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-07

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice

    PubMed Central

    Otto, Caitlin C.; Kilbourne, Jacquelyn

    2016-01-01

    Discoveries associated with antibacterial activity of hydrated clays necessitate assessments of in vivo efficacy, practical use and safety. Surface properties of clays can lead to variations in the composition and abundance of bound compounds or ions, thus affecting antibacterial activity. Since exchangeable metal ions released from the clay surface are responsible for in vitro antibacterial activity, we evaluated the in vivo antibacterial efficacy of four natural clays (one illite clay, two montmorillonite clays and one kaolinite clay) and three ion-exchanged, antibacterial clays against superficial, cutaneous meticillin-resistant Staphylococcus aureus (MRSA) infections in mice. Superficial, cutaneous wounds on the back of SKH1-Elite mice were generated and subsequently infected with MRSA. Following twice daily applications of a hydrated clay poultice to infected wounds for 7 days, we observed significant differences in the in vivo antibacterial efficacy between different types of clays. The natural and ion-exchanged illite clays performed best, as measured by bacterial load, inflammatory response and gross wound morphology with significant decreases in bacterial viability and dermatitis. Topical application of kaolinite clay was the least effective, resulting in the lowest decrease in bacterial load and exhibiting severe dermatitis. These data suggest that specific types of clays may offer a complementary and integrative strategy for topically treating MRSA and other cutaneous infections. However, since natural clays exhibit in vitro antibacterial variability and vary vastly in surface chemistries, adsorptive/absorptive characteristics and structural composition, the properties and characteristics of illite clays could aid in the development of standardized and customized aluminosilicates for topical infections. PMID:26508716

  13. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance.

    PubMed

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-05

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  14. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  15. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  16. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  17. Preliminary investigation of cement materials in the Taif area, Saudi Arabia

    USGS Publications Warehouse

    Martin, Conrad

    1970-01-01

    A preliminary investigation of possible sources of cement rock in the Taft area was made during the latter part of August 1968. Adequate deposits of limestone, clay, quartz conglomerate and sandstone, and pisolitic iron ore, yet no gypsum, were located to support a Cement plant should it prove feasible to establish one in this area. These materials, made up mostly of Tertiary and later sediments, crop out in isolated, inconspicuous low hills in a north- trending belt, 10 to 15 kilometers wide, lying about 90 kilometers to-the east of At Taft. The belt extends for more than 90 kilometers from the vicinity of Jabal 'An in the south to the crushed rock pits at Radwan and beyond in the north. The area is readily accessible either from the Talf-Riyadh highway or from the Taif-Bishah road presently under construction. The limestone, which is quite pure and dense in some localities but dolomitic, argillaceous, and cherty in others, occurs in a variety of colors and would make suitable decorative building stone. The volcanic rocks of the Harrat Hadan, lying directly to the east of the limestone belt, include volcanic ash beds some of which may have been altered to bentonitlc clays. Others may have been lithified and might be suitable for light-weight aggregate. These possibilities remain to be investigated. Precambrian metamorphic rocks lying directly to the south and southeast of Taif were also investigated as possible cement rock sources, but no suitable material was found here.

  18. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files The data sets in this report include digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer covers approximately 82 square miles and supplies water for irrigation, domestic, municipal, and industrial use for the City of Enid and western Garfield County. The Quaternary-age Enid isolated terrace aquifer is composed of terrace deposits that consist of discontinuous layers of clay, sandy clay, sand, and gravel. The aquifer is unconfined and is bounded by the underlying Permian-age Hennessey Group on the east and the Cedar Hills Sandstone Formation of the Permian-age El Reno Group on the west. The Cedar Hills Sandstone Formation fills a channel beneath the thickest section of the Enid isolated terrace aquifer in the midwestern part of the aquifer. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Enid isolated terrace aquifer. The maps digitized were published at a scale of 1:62,500. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  19. Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany

    NASA Astrophysics Data System (ADS)

    Medinski, T.; Freese, D.

    2012-04-01

    Alley-cropping system is seen as a viable land-use practice for mitigation of greenhouse gas CO2, energy-wood production and soil carbon sequestration. The extent to which carbon is stored in soil varies between ecosystems, and depends on tree species, soil types and on the extent of physical protection of carbon within soil aggregates. This study investigates soil carbon sequestration at alley-cropping systems presented by alleys of fast growing tree species (black locust and poplar) and maize, in Brandenburg, Eastern Germany. Carbon accumulation and turnover are assessed by measuring carbon fractions differing in decomposition rates. For this purpose soil samples were fractionated into labile and recalcitrant soil-size fractions by wet-sieving: macro (>250 µm), micro (53-250 µm) and clay + silt (<53 µm), followed by determination of organic carbon and nitrogen by gas-chromatography. Soil samples were also analysed for the total C&N content, cold-water extractable OC, and microbial C. Litter decomposition was evaluated by litter bags experiment. Soil CO2 flux was measured by LiCor automated device LI-8100A. No differences for the total and stable (clay+silt, <53 µm) carbon fraction were observed between treatment. While cold water-extractable carbon was significantly higher at maize alley compared to black locust alley. This may indicate faster turnover of organic matter at maize alley due to tillage, which influenced greater incorporation of plant residues into the soil, greater soil respiration and microbial activity.

  20. Removal of clay by stingless bees: load size and moisture selection.

    PubMed

    Costa-Pereira, Raul

    2014-09-01

    Some organisms disperse energy, associated with the transportation of resource, which is not necessarily food. Stingless bees of Central Amazonia (Melipona flavolineata and M. lateralis) collect clay in banks along streams for nest building. The moisture of the clay varies along the bank, and bees collect clay from specific location, indicating that there is some sort of preference regarding their selection. This study aims at identifying: if larger bees carry more clay; if there is a preference for moisture of substrates; and if bees are less efficient accumulating and transporting clay when it is wet. In order to do so, I measured the size of the bees and of the pellets of clay found in the corbicula. I set up a field experiment to test substrate preferences. The amount of clay transported, increased exponentially in accordance to the size of the bee, and the preferred substrate was the driest clay. The amount and the efficiency of removal of clay were not affected by the moisture of the substrate. Despite the wet clay being denser, it does not reduce the efficiency of exploitation of the resource, but suggests that bees spend more energy to carry the same quantity of wet clay, which may be the underlying mechanism explaining their preference for removing drier clay.

  1. Does Aggregation Affect the Redistribution and Quality of Eroded SOC?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Kuhn, Nikolaus

    2015-04-01

    A substantial amount of literature has discussed the impacts of soil erosion on global carbon cycling. However, numerous gaps in our knowledge remain unaddressed, for instance, the biogeochemical fate of displaced SOC during transport being one of them. The transport distance and the quality of eroded SOC are the two major factors that determine its fate. Previous laboratory-based research had demonstrated that the effects of aggregation can potentially shorten the transport distance of eroded SOC. The mineralization potential of SOC also differs in sediment fractions of different likely transport distances. It is therefore essential to examine the transport distance and quality of eroded SOC under field conditions with natural rainfall as the agent of erosion. Soil samples from a silty clay soil from Switzerland and a sandy soil from Denmark, were collected in the field this summer after natural rainfall events. The soil from Switzerland was sampled from a field of maize in St. Ursanne (47°20' N 7°09' E) on August 6th, 2014 after a natural rainfall event. A depositional fan consisting of aggregated sediment was formed outside the lower edge of the field. The sandy soil from Denmark was sampled from a farm in Foulum (56°30' N, 9°35' W) on September 4, 2014, after a series of natural rainfall events. Soil samples were collected at different topographic positions along the two slopes. All the soil samples from the two farms were fractionated by a settling tube. Bulk soil from Switzerland and Denmark was also dispersed by ultrasound. The SOC contents of all bulk soils and associated fractions were determined using a carbon analyzer Leco 612 at 1000°C. The quality of SOC in different settling fractions collected from various topographic positions were also determined by stable isotopes of C and N (13C and 15N). Our results show that 1) the aggregate specific SOC distribution evidently differs from the mineral particle specific SOC distribution, indicating that re-distribution of eroded SOC is determined by actual aggregate size distribution rather than mineral particle size distribution. 2) The aggregate specific distributions of SOC content from different positions along hillslopes demonstrate that preferential deposition of SOC-enrich sediment along hillslopes is much more pronounced than the mineral particle specific SOC would suggest. 3) The quality of SOC differs significantly in various settling fractions. The fast settling fractions consist of more of labile SOC, and thus is very likely to be mineralized during transport across landscapes, thereby likely contributing as a source of atmospheric CO2. Overall, effects of aggregation can potentially change the transport distance of eroded SOC and thus skew its redistribution towards the terrestrial deposition.

  2. Delineation of a quick clay zone at Smørgrav, Norway, with electromagnetic methods under geotechnical constraints

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Bastani, Mehrdad; Donohue, Shane; Persson, Lena; Aspmo Pfaffhuber, Andreas; Reiser, Fabienne; Ren, Zhengyong

    2013-05-01

    In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures. For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.

  3. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  4. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  5. The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.

  6. [Mechanisms of removing red tide organisms by organo-clays].

    PubMed

    Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui

    2006-08-01

    We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.

  7. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  8. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    PubMed

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  9. Evaluation of the medicinal use of clay minerals as antibacterial agents.

    PubMed

    Williams, Lynda B; Haydel, Shelley E

    2010-07-01

    Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis ('flesh-eating' infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between 'healing clays' and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall.

  10. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    PubMed

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  11. Geological and technological characterization of the Late Jurassic-Early Cretaceous clay deposits (Jebel Ammar, northeastern Tunisia) for ceramic industry

    NASA Astrophysics Data System (ADS)

    Ben M'barek-Jemaï, Moufida; Sdiri, Ali; Ben Salah, Imed; Ben Aissa, Lassaad; Bouaziz, Samir; Duplay, Joelle

    2017-05-01

    Late Jurassic-Lower Cretaceous clays of the Jebel Ammar study site were used as raw materials for potential applications in ceramic industry. Physico-chemical characterization of the collected samples was performed using atomic absorption spectroscopy, X-ray diffraction, thermogravimetry and dilatometry (Bugot's curve). Geotechnical study was also undertaken by the assessment of plasticity and liquidity limits. It was found that high concentrations of silica, alumina with SiO2/Al2O3 ratio characterized the studied clays; its high amounts of CaO and Fe2O3 in the Late Jurassic clays indicated their calcareous nature. In addition, technological tests indicated moderate to low plasticity values for the Late Jurassic and Lower Cretaceous clays, respectively. Clay fraction (<2 μm) reached 50% of the natural clay in some cases. Mineralogical analysis showed that Jurassic clays were dominated by smectite, illite and kaolinite, as clay mineral species; calcite was the main associated mineral. Lower Cretaceous clays were mainly composed of abundant illite accompanied by well-crystallized smectite and kaolinite. Kaolinite gradually increased upwards, reaching 70% of the total clay fraction (i.e. <2 μm). Quartz, calcite and feldspar were the main non-clay minerals. Based on these analyses, the clays meet technological requirements that would allow their use in the ceramic industry and for the manufacturing of ceramic tiles.

  12. 78 FR 44315 - Spring 2013 Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Structural Clay Products Manufacturing and Clay Ceramics Manufacturing. 238 Standards of Performance 2060... (NESHAP): Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Legal Authority... pollutants (HF, HCl, and metals) emitted from brick and clay ceramics kilns, as well as dryers and glazing...

  13. Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chuang, Y. F.

    2014-12-01

    Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  14. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  15. Origin and evolution of phyllosilicate deformation bands in the poorly lithified sandstones of the Rio do Peixe Basin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio

    2017-04-01

    In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.

  16. Element exchange in a water-and gas-closed biological life support system

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80°C controlled electromagnetic field is proposed.

  17. Element exchange in a water-and gas-closed biological life support system

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Kudenko, Yu. A.; Gitelson, J. I.

    1997-01-01

    Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80 degC controlled electromagnetic field is proposed.

  18. SALINITY AND SODICITY INTERACTIONS OF WEATHERED MINESOILS IN NORTHWESTERN NEW MEXICO AND NORTH EASTERN ARIZONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Musslewhite; Song Jin

    2006-05-01

    Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbushmore » (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.« less

  19. [Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil].

    PubMed

    Pirog, T P; Shevchuk, T A; Voloshinka, I N; Gregirchak, N N

    2005-01-01

    Oil-oxidizing bacteria were isolated from oil-polluted soil and water samples and identified as Acinetobacter calcoaceticus K-4, Nocardia vaceinii K-8, Rhodococcus erythropolis EK-1, and Mycobacterium sp. K-2. It was found that immobilization of the bacteria on an expanded clay aggregate accelerated their growth and consumption of hydrocarbon substrates. It was also found that water polluted with 100 mg/l oil could be purified with Rhodococcus erythropolis EK-1 and Nocardia vaceinii K-8 cells immobilized in this way. The dependence of the degree of water purification on its flow rate, aeration, and availability of nitrogen and phosphorus sources was determined. The efficiency of water purification from oil by immobilized Rhodococcus erythropolis EK-1 cells at high flow rates (of up to 0.68 l/h), low aeration (of 0.1 l/l per min) and an intermittent supply of 0.01% diammonium phosphate reached 99.5-99.8%.

  20. Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkaya, Ozlem Aslan; Boeke, Hasan, E-mail: hasanboke@iyte.edu.tr

    Serapis temple, which was constructed in the Roman period in the city of Pergamon (Bergama/Turkey), is one of the most important monuments of the world heritage. In this study, the characteristics of bricks and mortars used in the temple have been determined in order to define the necessary characteristics of the intervention materials, which will be used in the conservation works of the temple. Several analyses were carried out to determine their basic physical properties, raw material compositions, mineralogical and microstructural properties using X-ray diffraction, Scanning Electron Microscope and a Thermo Gravimetric Analyzer. Analysis results indicated that the mortars aremore » stiff, compact and hydraulic due to the use of natural pozzolanic aggregates. The Roman bricks are of low density, high porosity and were produced from raw materials containing calcium poor clays fired at low temperatures.« less

  1. The effect of sintering time on recycled magnesia brick from kiln of the cement plant

    NASA Astrophysics Data System (ADS)

    Aji, B. B.; Rosalina, D.; Azhar; Amin, M.

    2018-01-01

    This research aim was to investigate the effect of sintering time on reuse waste of magnesia brick from the rotary kiln of the cement plant. Reuse of the magnesia brick was carried out by mixed the kaolin as the binder. Spent refractory was used as aggregate with the composition of 85% spent refractory and 15% kaolin clay, respectively. The reuse brick then was molded with the size of 5x5x5 cm using hydraulic press under a load of 10 tons in order to forms green body. Green body then dried and sintered at 1200 °C with time variation of 2 hours, 4 hours, 6 hours, 8 hours and 10 hours, respectively. Thus, for comparison reuse brick was tested to its apparent porosity, the bulk density, and Cold Crushing Strength (CCS). The effect of kaolin addition as binder was also discussed.

  2. Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition

    PubMed Central

    Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech

    2016-01-01

    An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %–8 wt %) caused marked changes in the aggregates’ microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%–2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates’ bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms. PMID:28773964

  3. Summertime conditions of a muddy estuarine environment: the EsCoSed project contribution.

    PubMed

    Brocchini, Maurizio; Calantoni, Joseph; Reed, Allen H; Postacchini, Matteo; Lorenzoni, Carlo; Russo, Aniello; Mancinelli, Alessandro; Corvaro, Sara; Moriconi, Giacomo; Soldini, Luciano

    2015-01-01

    As part of the Estuarine Cohesive Sediments (EsCoSed) project, a field experiment was performed in a highly engineered environment, acting as a natural laboratory, to study the physico-chemical properties of estuarine sediments and the associated hydro-morphodynamics during different seasons. The present contribution focuses on the results obtained from the summertime monitoring of the most downstream part of the Misa River (Senigallia, Italy). The measured hydrodynamics suggested a strong interaction between river current, wave forcing and tidal motion; flow velocities, affected by wind waves traveling upstream, changed significantly along the water column in both direction and magnitude. Surficial salinities in the estuary were low in the upper reaches of the estuary and exceeded 10 psu before the river mouth. Montmorillonite dominated the clay mineral assemblage, suggesting that large, low density flocs with high settling velocities (>1 mm s(-1)) may dominate the suspended aggregate materials.

  4. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites

    PubMed Central

    Zope, Indraneel S.; Yu, Zhong-Zhen

    2017-01-01

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition. PMID:28800095

  5. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    PubMed

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  6. Domestic Aluminum Resources: Dilemmas of Development. Volume II. Appendixes II-VII. Detailed Agency Comments and GAO Response.

    DTIC Science & Technology

    1980-07-17

    31 Clay/hydrochloric acid, gas - induced crystallization 32 Clay/nitric acid evaporative crystallization 32 Clay/hydrochloric acid, evapora- tive...ALUMINA AND ALUMINUM TECHNOLOGIES 53 Evaluation of nonbauxitic alumina production processes 54 Clay/carbo-chlorination 54 Clay/hydrochloric acid, gas ...reports that the miniplant program is centered on a single process-- clay/hydrochloric acid- gas precipitation. The Bureau of Mines has not retreated

  7. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  8. Sediment management and renewability of floodplain clay for structural ceramics

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. J.; Wiersma, A. P.; Middelkoop, H.; van der Perk, M.; Bakker, M.; Maljers, D.; Hobo, N.; Makaske, B.

    2009-04-01

    The Netherlands have vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. The extraction of clay creates land surface lowerings of about 1.5 m, of which the majority are located in the embanked floodplains of the rivers Rhine and Meuse. At these surface lowerings, clay is replenished within several decades. This study explores to which extent the clay can be regarded as a renewable resource, with potential for sustainable use. For this purpose, first the current and past clay consumption is calculated. Subsequently, clay deposition in the floodplains is estimated from literature data on clay accumulation using sediment traps, heavy metal and radionuclide distribution in soil profiles, and from morphological modelling studies. These estimates of clay-deposition and consumption are then compared following three approaches that consider various temporal and spatial scales of clay deposition. This allows us to establish the extent to which man determines sedimentary processes in the Dutch floodplains. Consequently, using the sediment response to the land surface lowering resulting from clay extraction, we explore sediment management options for the Dutch Rhine and Meuse. Altogether we argue that clay has been, probably is, and certainly can be managed as a renewable mineral resource.

  9. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    NASA Astrophysics Data System (ADS)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  10. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    NASA Astrophysics Data System (ADS)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the frame of the programme GEOTECHNOLOGIEN.

  11. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  12. Evaluation of the medicinal use of clay minerals as antibacterial agents

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.

    2010-01-01

    Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis (‘flesh-eating’ infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources. Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between ‘healing clays’ and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s). The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation. Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  13. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  14. Preparation and properties of recycled HDPE/clay hybrids

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  15. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  16. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  17. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    PubMed

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  18. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  19. Pore space analysis of NAPL distribution in sand-clay media

    USGS Publications Warehouse

    Matmon, D.; Hayden, N.J.

    2003-01-01

    This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.

  20. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Method of preparation of a CO.sub.2 removal sorbent with high chemical stability during multiple cycles

    DOEpatents

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-07-14

    Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.

  2. [Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].

    PubMed

    Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming

    2004-09-01

    Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.

  3. Chemical and mineralogical characteristics of French green clays used for healing

    USGS Publications Warehouse

    Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.

    2008-01-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.

  4. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy (kaolinitic) and thus the clay plus silt fraction was the best correlate for SOC but with crystalline iron oxides (dithionite-citrate minus ammonium oxalate - oxalic acid extractable iron) being also correlated to SOC in these soils (R2 = 0.74). Most of SOC in these soils was found on the clay+silt fraction and in stable, clay rich aggregates. However, SOC of high activity clays and other less weathered soils such as Alisols, Cambisols and Plinthosols showed no correlation with particle size or iron oxides, being mostly stabilized by aluminium complexes. We found SOC of these soils to be better explained by a three way interaction among soil pH, carbon quality and dithionite-citrate extractable Al (R2 = 0.85). Consistent with this observation, SOC in the less weathered soils was mostly found in the colloidal fraction (75%). SOC of Podzols and Arenosols on the other hand had only a small but significant influence from their clay plus silt fraction (R2 = 0.31), with particulate organic matter accounting for most of its SOC.

  5. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    PubMed

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  8. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  9. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  10. Termites utilise clay to build structural supports and so increase foraging resources.

    PubMed

    Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A

    2016-02-08

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.

  11. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes.

    PubMed

    Moreno-Maroto, José Manuel; González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodríguez, Luis; Acosta, Anselmo

    2017-09-15

    Three different wastes have been assessed for lightweight aggregate (LWA) manufacturing: granite and marble sludge (COR), sepiolite rejections (SEP) and polyethylene-hexene thermoplastics (P). A preliminary study of the physical and chemical properties of the raw materials was carried out to design proper batches. It was mixed 10% SEP with 90% COR to confer plasticity, and in turn, 0, 2.5, 5 and 10% (w/w) of P was added to check its suitability as a bloating agent. The mixtures were milled, kneaded with water, extruded, shaped into pellets, oven-dried and finally fired at 1100, 1125 and 1150 °C for 4, 8 and 16 min. The main technological properties of the aggregates related to bloating, density, porosity, loss on ignition, water absorption and compressive strength were measured. Scanning Electron Microscopy was used to study the microstructure of some LWAs. 23 out of 29 types of aggregate were lightweight, although neither bloating effect was observed, nor the typical cellular structure comprised of shell and core with relatively large pores was obtained, but a structure consisting of micropores and microchannels. The increase of temperature and time of firing involved a greater sintering, which in turn was translated into higher shrinkage, density and compressive strength values, but less porosity and water absorption. The addition of P did not involve any improvement, indeed it caused a significant decrease in compressive strength. The LWA sintered without P at the minimum time (4 min) and temperature of firing (1100 °C) was selected to assess its water suction capability. The results pointed out that this LWA could be suitable in hydroponics and/or water filtration systems, even better than the commercial LWA Arlita G3. A new and most environment-friendly perspective in LWA industry arises from here, promoting LWA production at relative low temperatures (prior to significant sintering occurs) and using non-plastic silty wastes instead of clays as major components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Patterns in woody vegetation structure across African savannas

    NASA Astrophysics Data System (ADS)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.

  13. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions

    PubMed Central

    Mooney, Sacha J.

    2016-01-01

    Tropical regions have been considered the world’s primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil’s physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming. PMID:27959897

  14. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    PubMed

    Carmeis Filho, Antonio C A; Crusciol, Carlos A C; Guimarães, Tiara M; Calonego, Juliano C; Mooney, Sacha J

    2016-01-01

    Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil's physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming.

  15. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    NASA Astrophysics Data System (ADS)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  16. Release of Escherichia coli under raindrop impact: The role of clay

    NASA Astrophysics Data System (ADS)

    Wang, C.; Parlange, J.-Y.; Schneider, R. L.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Truhlar, A. M.; Walter, M. T.

    2018-01-01

    A recent paper by Wang et al. (2017) showed that the release of Escherichia coli (E. coli) from soil into overland flow under raindrop impact and the release of clay follow identical temporal patterns. This raised the question: what is the role of clay, if any, in E. coli transfer from soil to overland flow, e.g., does clay facilitate E. coli transfer? Using simulated rainfall experiments over soil columns with and without clay in the matrix, we found there was significantly more E. coli released from the non-clay soil because raindrops penetrated more deeply than into the soil with clay.

  17. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.

    PubMed

    Londono, Sandra Carolina; Williams, Lynda B

    2016-04-01

    Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.

  18. Surface charge features of kaolinite particles and their interactions

    NASA Astrophysics Data System (ADS)

    Gupta, Vishal

    Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH<6, and negatively charged at pH>8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed composed of silica/alumina bilayers with a c-spacing of 7.2 A. The surface charge densities of the silica face, the alumina face and the edge surface of kaolinite all influence particle interactions, and thereby affect the mechanical properties of kaolinite suspensions. The improved knowledge of kaolinite surface chemistry from this dissertation research provides a foundation for the development of improved process strategies for both the use and disposal of clay particles such as kaolinite.

  19. Synchrotron-based Infrared-microspectroscopy reveals the impact of land management on carbon storage in soil micro-aggregates

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, Maria C.; Dalal, Ram C.; Menzies, Neal W.; Kopittke, Peter M.

    2015-04-01

    Carbon stabilization in soil microaggregates results from chemical and biological processes that are highly sensitive to changes in land use. Indeed, such processes govern soil capability to store carbon, this being essential for soil health and productivity and to regulate emissions of soil organic carbon (SOC) as CO2. The identification of carbon functionalities using traditional mid-infrared analysis can be linked to carbon metabolism in soil but differences associated to land use are generally limited. The spatial resolution of synchrotron-based Infrared-microspectroscopy allows mapping microaggregate-associated forms of SOC because it has 1000 times higher brightness than a conventional thermal globar source. These maps can contribute to better understand molecular organization of SOC, physical protection in the soil particles and co-localization of carbon sources with microbial processes. Spatially-resolved analyses of carbon distribution in micro-aggregates (<200 μm diameter) have been conducted using FTIR microspectroscopy (Infrared Microspectroscopy beamline, Australian Synchrotron). Two soil types (Ferralsol and Vertisol, World Reference Base 2014) were collected from undisturbed areas and from a location(s) immediately adjacent which has a long history of agricultural use (>20 years). Soils were gently screened (250 μm) to obtain intact microaggregates which were humidified and frozen at -20°C, and sectioned (200 μm thickness) using a diamond knife and a cryo-ultramicrotome. The sections were placed between CaF2 windows and the spectra were acquired in transmission mode. The maps obtained (5 µm step-size over ca. 150 × 150 µm) revealed carbon distribution in microaggregates from soils under contrasting land management, namely undisturbed and cropping land. Accumulation of aromatic and carboxylic functions on specific spots and marginal co-localization with clays was observed, which suggests processes other than organo-mineral associations being responsible for carbon stabilization. A substantial decrease in carboxylic compounds was observed for agricultural soils. Clays were mostly co-localized with alkenes and polysaccharides, particularly in agricultural soils, likely due to enhanced microbial activity in those spots. Results will be linked to currently ongoing analysis of soil enzymes activities and characterization of dissolved organic carbon components. This novel methodological approach combines biological and chemical information on organic carbon dynamics in soil at a molecular level and will constitute a substantial advance towards understanding carbon storage in soil and the long term impact of land management.

  20. Effect of red clay on diesel bioremediation and soil bacterial community.

    PubMed

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  1. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  2. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  3. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    PubMed

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  5. Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer

    DTIC Science & Technology

    1993-08-01

    Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements

  6. Clay: The Forgotten Art.

    ERIC Educational Resources Information Center

    Martin, Doris Marie

    1995-01-01

    Discusses the tactile and kinesthetic areas of learning children experience when using clay. Includes practical tips for using and storing clay for preschool use and notes the differences between potters' clay and play dough. (HTH)

  7. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    PubMed

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  8. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    PubMed

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  9. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.

  10. The use of fortified soil-clay as on-site system for domestic wastewater purification.

    PubMed

    Oladoja, N A; Ademoroti, C M A

    2006-02-01

    The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.

  11. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  12. Effects of biochar on hydraulic conductivity of compacted kaolin clay.

    PubMed

    Wong, James Tsz Fung; Chen, Zhongkui; Wong, Annie Yan Yan; Ng, Charles Wang Wai; Wong, Ming Hung

    2018-03-01

    Compacted clay is widely used as capillary barriers in landfill final cover system. Recently, biochar amended clay (BAC) has been proposed as a sustainable alternative cover material. However, the effects of biochar on saturated hydraulic conductivity (k sat ) of clay with high degree of compaction is not yet understood. The present study aims to investigate the effects of biochar on k sat of compacted kaolin clay. Soil specimens were prepared by amending kaolin clay with biochar derived from peanut-shell at 0, 5 and 20% (w/w). The k sat of soil specimens was measured using a flexible water permeameter. The effects of biochar on the microstructure of the compacted clay was also investigated using MIP. Adding 5% and 20% of biochar increased the k sat of compacted kaolin clay from 1.2 × 10 -9 to 2.1 × 10 -9 and 1.3 × 10 -8 ms -1 , respectively. The increase in k sat of clay was due to the shift in pore size distribution of compacted biochar-amended clay (BAC). MIP results revealed that adding 20% of biochar shifted the dominant pore diameter of clay from 0.01-0.1 μm (meso- and macropores) to 0.1-4 μm (macropores). Results reported in this communication revealed that biochar application increased the k sat of compacted clay, and the increment was positively correlated to the biochar percentage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6 m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6 m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions)« less

  14. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  15. Evolution of the 1963 Vajont landslide (Northern Italy) from low and high velocity friction experiments

    NASA Astrophysics Data System (ADS)

    Ferri, F.; di Toro, G.; Hirose, T.; Han, R.; Noda, H.; Shimamoto, T.; Pennacchioni, G.

    2009-04-01

    The final slip at about 30 m/s of the Vajont landslide (Northern Italy) on 9th October 1963 was preceded by a long creeping phase which was monitored over about three years. Creep was localized in cm-thick clay-rich (50% Ca-montmorillonite + smectite + illite + vermiculite, 40% calcite and 10% quartz) gouge layers. The velocity results in thermoviscoplastic model of the landslide (Veveakis et al., 2007) suggested that during creep, compaction and frictional heating released water from the clay-rich layer and, by increasing the pore-pressure in the slipping zone, determined the final collapse of the landslide. Here we investigated the frictional evolution of the clay-rich layers and the transition towards the final collapse. Experiments were carried out on the clayey gouge from the slipping zone at atmospheric humidity conditions ("dry") and in the presence of excess water ("saturated"). High velocity friction experiments were performed in a rotary shear apparatus at 1 MPa normal stress (about the normal stress at the sliding surface of the Vajont landslide), velocity v from 0.006 m/s to 1.31 m/s and displacements up to 34 m. The 1 mm-thick clayey gouges were sandwiched between marble cylindrical specimens (24.95 mm in diameter) and confined by Teflon rings to avoid gouge expulsion during the experiments. The fluid release during the experiments was monitored with a humidity sensor. Low velocity friction experiments were performed in a biaxial apparatus at 5 MPa normal stress, v from 1.0 10E-7 m/s to 1.0 10E-4 m/s (within the range at which the slide became critical, 2.0 10E-7 m/s, Veveakis et al., 2007) and displacements up to 0.02 m. In dry experiments, friction is 0.43-0.47 at v < 1.0 10E-4 m/s and decreases to 0.21 at 1.31 m/s. Velocity-step runs evidenced a velocity-weakening behaviour with a (direct effect) - b (evolution effect) = -0.005 to -0.008. In saturated experiments, friction is 0.18 at v < 1.0 10E-4 m/s (in agreement with the experiments by Tika & Hutchinson 1999 performed on the Vajont clays), and decreases to 0.03-0.05 at v > 0.006 m/s. At dry conditions, dilatancy was observed for v > 0.7 m/s suggesting fault pressurization by water release due to smectite-to-illite decomposition. Decomposition occurred at temperatures above 300°C, as confirmed by the breakdown of the Teflon ring and by the emission of H2O from the sample assembly. SEM observations show that deformation was localized in 200 micron-thick slipping zone at the contact with the marble cylinders, and that the gouge includes concentric aggregates of sub-micrometer clay + calcite + quartz grains wrapping nuclei of calcite, quartz or clay fragments. All these features suggest that rolling lubrication was concomitant to thermal pressurization. At saturated conditions, dilatancy and H2O emission were absent, deformation was diffused in the slipping zone and no concentric structures were found: these features suggest that the H2O liquid-vapour transition was not achieved, though the actual lubricating mechanism has not been fully understood yet. Our experimental data indicate that the frictional behaviour is velocity-weakening in both dry and saturated conditions and determined by the clay fraction within the gouge and it. The presence of free water in the slipping zone reduces friction to almost zero, explaining the high velocity achieved by the slide during the final collapse. REFERENCES Boutareaud S., Calugaru D. G., Han R., Fabbri O., Mizoguchi K., Tsutsumi A. and Shimamoto T., Geophys. Res. Lett., 35, L05302, 2008. Tika T. E.and Hutchinson J. N., Géotechnique 49: 59-74, 1999. Veveakis E., Vardoulakis I. and Di Toro G., J. Geophys. Res. 112: F03026, 2007.

  16. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  17. Termites utilise clay to build structural supports and so increase foraging resources

    PubMed Central

    Oberst, Sebastian; Lai, Joseph C. S.; Evans, Theodore A.

    2016-01-01

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites. PMID:26854187

  18. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment

    NASA Astrophysics Data System (ADS)

    Curry, Kenneth J.; Bennett, Richard H.; Mayer, Lawrence M.; Curry, Ann; Abril, Maritza; Biesiot, Patricia M.; Hulbert, Matthew H.

    2007-04-01

    We employed direct visualization of organic matter (OM) sequestered by microfabric signatures in organo-clay systems to study mechanisms of OM protection. We studied polysaccharides, an abundant class of OM in marine sediments, associated with the nano- and microfabric of clay sediment using a novel application of transmission electron microscopy, histochemical staining (periodic acid-thiosemicarbazide-silver proteinate), and enzymatic digestion techniques. We used two experimental organo-clay sediment environments. First, laboratory-consolidated sediment with 10% chitin (w/w) added was probed for chitin before and after digestion with chitinase. Second, fecal pellets from the polychaete Heteromastus filiformis were used as a natural environment rich in clay and polysaccharides. Sections of this material were probed with silver proteinate for polysaccharides before and after digestion with a mixture of enzymes (amylase, cellulase, chitinase, dextranase, and pectinase). In both environments, chitin or other polysaccharides were found within pores, bridging clay domains, and attached to clay surfaces in undigested samples. Digested samples showed chitin or polysaccharides more closely associated with clay surfaces and in small pores. Our results imply protective roles for both sorption to clay surfaces and encapsulation within clay microfabric signatures.

  19. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  20. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  1. Field trip guidebook on environmental impact of clays along the upper Texas coast

    NASA Technical Reports Server (NTRS)

    Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay

    1991-01-01

    The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.

  2. Evaluation of Nanoclay Exfoliation Strategies for Thermoset Polyimide Nanocomposite Systems

    NASA Technical Reports Server (NTRS)

    Ginter, Michael J.; Jana, Sadhan C.; Miller, Sandi G.

    2007-01-01

    Prior works show exfoliated layered silicate reinforcement improves polymer composite properties. However, achieving full clay exfoliation in high performance thermoset polyimides remains a challenge. This study explores a new method of clay exfoliation, which includes clay intercalation by lower molecular weight PMR monomer under conditions of low and high shear and sonication, clay treatments by aliphatic and aromatic surfactants, and clay dispersion in primary, higher molecular weight PMR resin. Clay spacing, thermal, and mechanical properties were evaluated and compared with the best results available in literature for PMR polyimide systems.

  3. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  4. Investigation of Four Different Laponite Clays as Stabilizers in Pickering Emulsion Polymerization.

    PubMed

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chniguir, Mehdi; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-06-21

    Clay-armored polymer particles were prepared by emulsion polymerization in the presence of Laponite platelets that adsorb at the surface of latex particles and act as stabilizers during the course of the polymerization. While Laponite RDS clay platelets are most often used, the choice of the type of clay still remains an open issue that is addressed in the present article. Four different grades of Laponite were investigated as stabilizers in the emulsion polymerization of styrene. First, the adsorption isotherms of the clays, on preformed polystyrene particles, were determined by ICP-AES analysis of the residual clay in the aqueous phase. Adsorption of clay depended on the type of clay at low concentrations corresponding to adsorption as a monolayer. Adsorption of clay particles as multilayers was observed for all the grades above a certain concentration under the considered ionic strength (mainly due to the initiator ionic species). The stabilization efficiency of these clays was investigated during the polymerization reaction (free of any other stabilizer). The clays did not have the same effect on stabilization, which was related to differences in their compositions and in their adsorption isotherms. The different grades led to different polymer particles sizes and therefore to different polymerization reaction rates. Laponite RDS and S482 gave similar results, ensuring the best stabilization efficiency and the fastest reaction rate; the number of particles increased as the clay concentration increased. Stabilization with Laponite XLS gave the same particles size and number as the latter two clays at low clay concentrations, but it reached an upper limit in the number of nucleated polymer particles at higher concentrations indicating a decrease of stabilization efficiency at high concentrations. Laponite JS did not ensure a sufficient stability of the polymer particles, as the polymerization results were comparable to a stabilizer-free polymerization system.

  5. Study of colloidal properties of natural and Al-pillared smectite and removal of copper ions from an aqueous solution.

    PubMed

    Sartor, Lucas Resmini; de Azevedo, Antonio Carlos; Andrade, Gabriel Ramatis Pugliese

    2015-01-01

    In this study, an Al-pillared smectite was synthesized and changes in its colloidal properties were investigated. The pillaring solution was prepared by mixing 0.4 mol L(-1) NaOH and 0.2 mol L(-1) AlCl3.6H2O solutions. Intercalated clays were heated to obtain the pillared clay, and X-ray diffractometry (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy and N2 sorption/desorption isotherms analysis were done to characterize the changes in clay properties. Moreover, adsorption experiments were carried out in order to evaluate the capacity of the pillared clays to remove Cu2+ from an aqueous solution and to characterize the interaction between adsorbent and adsorbate. The results indicate that the natural clay has a basal spacing of 1.26 nm, whereas the pillared clays reached 1.78 nm (500°C) and 1.80 nm (350°C) after calcination. XRF analysis revealed an increase in the Al3+ in the pillared clay as compared to the natural clay. The surface area and pore volume (micro and mesoporous) were higher for the pillared clays. Experimental data from the adsorption experiment were fit to Langmuir and Freundlich and Temkin adsorption models, and the former one was the best fit (highest r2 value) for all the clays and lower standard deviation (Δg%) for the natural clay. On the other hand, the Temkin model exhibited Δg% value lower for the pillared clays. Thermodynamics parameters demonstrate that the Cu2+ adsorption process is spontaneous for all the clays, but with higher values for the pillared materials. In addition, application of the Dubinin-Radushkevich model revealed that the bond between the metal and the clay are weak, characterizing a physisorption.

  6. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  7. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    PubMed

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  8. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  9. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    PubMed

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  10. Three Ways.

    ERIC Educational Resources Information Center

    Lisitano, Larry F.; And Others

    1983-01-01

    Three student projects using clay are discussed. These include a ceramic wall panel with an eagle motif, clay vessels formed by coiling clay, and clay puppets made with light bulbs as armatures. Instructions on materials, forming techniques, and finishing are given. (IS)

  11. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  12. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.

    PubMed

    Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R

    2005-01-01

    Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.

  13. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  14. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    PubMed

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    PubMed

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS

  16. How rice roots form their surrounding: Distinctive sub-zones of oxides, silicates and organic matter

    NASA Astrophysics Data System (ADS)

    Koelbl, Angelika; Mueller, Carsten; Hoeschen, Carmen; Lugmeier, Johann; Said-Pullicino, Daniel; Romani, Marco; Koegel-Knabner, Ingrid

    2016-04-01

    Most of the rice (Oryza sativa) worldwide is grown under flooded conditions in bunded fields (paddies). Inundation during long periods of the year leads to anoxic conditions in the soil. The rice plant is well adapted to these conditions by being able to transport oxygen via aerenchyma from the atmosphere to the roots. This plant mediated O2 transport also influences the adjacent soil. Driven by the O2 leakage into the rhizosphere, reddish ferric oxides and ferric hydroxides precipitate along the root channels. Thus, radial gradients of ferric Fe and with it co-precipitated organic substances form. Detailed investigations of element gradients on a submicron scale within the oxide coatings are still missing. Nano-scale secondary ion mass spectrometry (NanoSIMS) analyses can help to visualize and study the interplay of the various soil components at a submicron scale like, e.g., the attachment of organic material to minerals or the architecture of microstructures. The aim of the present study was to evaluate the composition and size of oxide coatings around rice roots concerning the distribution of organic matter and its spatial relation to oxides and silicates. Samples were taken from the plough pan of a paddy field close to the National Rice Research Centre, Castello d'Agogna (Pavia, Italy). Intact soil aggregates were air-dried, embedded in epoxy resin and then cut and polished in order to obtain a surface with low topography. Reflected-light microscopy was used (mm to μm scale) to visualize the aggregate architecture and to identify root channels in the embedded aggregate. In the next step, scanning electron microscopy (SEM) was applied to obtain images of high resolution and to define distinctive spots for subsequent NanoSIMS analyses. Using the Cameca NanoSIMS 50L at TU München, we simultaneously detected 12C-, 12C14N-, 28Si-, 32S-, 27Al16O- and 56Fe16O- at several areas around root channels in order to distinguish between organic material and different mineral particles (e.g. oxides, clay minerals). Beside single 40 x 40 μm sized spots, mosaics of 20 x 20 μm sized images were combined to investigate the region from the surface of the root channels into the soil matrix. The image data of all detected secondary ions was analysed using line scans and designation of regions of interest (ROI) to evaluate relative occurrences and spatial distributions. The results revealed that the oxic zone around rice roots can be subdivided in distinctive sub-zones. We identified a distinctive zone of approx. 20 μm around the root channels, where exclusively oxide-associated organic matter occurred. This zone can be clearly distinguished from a clay mineral-dominated zone. In addition, oxide-incrusted root cells revealed coexisting regions of Fe (hydr)oxides and Al-organic complexes.

  17. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.

  18. Dust emission and soil loss due to anthropogenic activities by wind erosion simulations

    NASA Astrophysics Data System (ADS)

    Katra, Itzhak; Swet, Nitzan; Tanner, Smadar

    2017-04-01

    Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.

  19. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    PubMed

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  20. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...

  1. The surface modification of clay particles by RF plasma technique

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  2. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  3. CEC-normalized clay-water sorption isotherm

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.

    2011-11-01

    A normalized clay-water isotherm model based on BET theory and describing the sorption and desorption of the bound water in clays, sand-clay mixtures, and shales is presented. Clay-water sorption isotherms (sorption and desorption) of clayey materials are normalized by their cation exchange capacity (CEC) accounting for a correction factor depending on the type of counterion sorbed on the mineral surface in the so-called Stern layer. With such normalizations, all the data collapse into two master curves, one for sorption and one for desorption, independent of the clay mineralogy, crystallographic considerations, and bound cation type; therefore, neglecting the true heterogeneity of water sorption/desorption in smectite. The two master curves show the general hysteretic behavior of the capillary pressure curve at low relative humidity (below 70%). The model is validated against several data sets obtained from the literature comprising a broad range of clay types and clay mineralogies. The CEC values, derived by inverting the sorption/adsorption curves using a Markov chain Monte Carlo approach, are consistent with the CEC associated with the clay mineralogy.

  4. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.

    PubMed

    Pu, Xunchi; Cutright, Teresa J

    2006-08-01

    Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.

  5. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  6. Enhancement of Plant Establishment on Dredged Material Sites with Mycorrhizal Fungi and Clay Amendments

    DTIC Science & Technology

    1989-10-01

    montmorillonite enhanced the growth of smooth brome grass. Topsoil, the clays attapulgite and kaolinite , and the commercial products Agrosoke anj Stawetwere...clays bentonite, attapulgite, kaolinite , and montmorillonite . Trade name and company addresses for the clays are listed in Table 1. Agrosoke and Stawet...desertcoZa, G. etunicatwn, and G. intraradice8. The clays attapulgite, ben- tonite, kaclinite,/and montmorillonite from various commercial sources were

  7. Process for the preparation of organoclays

    DOEpatents

    Chaiko, David J.

    2004-11-23

    A method for preparing organoclays for use as rheological control agents and in the preparation of nanocomposites. Typically, the clay is dispersed in water, and a specific amount of polymeric hydrotrope, ranging from 0.1 to 15 weight percent relative to the weight of the clay, is adsorbed onto the clay surface. Quaternary amine exchange is also performed on the clay to modify the surface hydrophilic/lipophilic balance (HLB) of the clay.

  8. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  9. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  10. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  11. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.

  12. Impact of clay minerals on sulfate-reducing activity in aquifers

    USGS Publications Warehouse

    Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.

    2004-01-01

    Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

  13. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  14. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    NASA Astrophysics Data System (ADS)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    The emergence of antibiotic resistant bacteria and increasing accumulations of antibiotics in reclaimed water, drive the quest for new natural antimicrobials. We are studying the antibacterial mechanism(s) of clays that have shown an ability to destroy bacteria or significantly inhibit their growth. One possible mode of action is from soluble transition metal species, particularly reduced Fe, capable of generating deleterious oxygen radical species. Yet another possibility is related to membrane damage as a consequence of physical or electrostatic interaction between clay and bacteria. Both mechanisms could combine to produce cell death. This study addresses a natural antibacterial clay from the NW Amazon basin, South America (AMZ clay). Clay mineralogy is composed of disordered kaolinite (28.9%), halloysite (17.8%) illite (12%) and smectite (16.7%). Mean particle size is 1.6μm and total and specific surface area 278.82 and 51.23 m2/g respectively. The pH of a suspension (200mg/ml) is 4.1 and its Eh is 361mV after 24h of equilibration. The ionic strength of the water in equilibrium with the clay after 24 h. is 6 x10-4M. These conditions, affect the element solubility, speciation, and interactions between clay and bacteria. Standard microbiological methods were used to assess the viability of two model bacteria (Escherichia coli and Bacillus subtilis) after incubation with clay at 37 degC for 24 hrs. A threefold reduction in bacterial viability was observed upon treatment with AMZ clay. We separated the cells from the clay using Nycodenz gradient media and observed the mounts under the TEM and SEM. Results showed several membrane anomalies and structural changes that were not observed in the control cells. Additionally, clay minerals appeared in some places attached to cell walls. Experiments showed that exchanging AMZ clay with KCl caused loss of antibacterial property. Among the exchangeable -and potentially toxic- ions we measured Al+3, Cu+2, Zn+2, Ba+2 and Co+2. Besides being toxic at high concentrations, these species affect the electrophoretic interactions between clay and bacteria surfaces. Additionally, the cation exchange neutralizes the clay surface charge thus modifying further the behavior of particles in suspension. Therefore, we evaluated the clay and bacteria zeta potential (ζ) as an index for possible electrostatic forces and modeled the total interactions using DLVO theory. We suspended the particles in water equilibrated with clay (leachate). Results show that at pH 4, the ζ of clays is -14 mV while it is -3mV for bacteria. The divalent ions and trivalent Aluminum, present in the AMZ leachate, compress the thickness of the double layer (hydration shell) thus decreasing electrostatic repulsion and allowing particles to come closer. The proximity of particles increases the probability of attractive forces to bind clays and cells. In summary, results indicate that a process other than simple chemical transfer from clay to bacteria is operating. The electrostatic attraction and physical proximity may enhance the toxic action of metals and interfere with the membrane properties or processes.

  15. Clay Mineral Structure Similar to Clays Observed in Mudstone on Mars

    NASA Image and Video Library

    2013-12-09

    This schematic shows the atomic structure of the smallest units that make up the layers and interlayer region of clay minerals. This structure is similar to the clay mineral in drilled rock powder collected by NASA Curiosity Mars rover.

  16. Bentonite Clay as a Natural Remedy: A Brief Review

    PubMed Central

    2017-01-01

    Background: From old times, the human kind has used clays, externally or internally, for maintaining body health or treating some diseases. Meanwhile there are few scientific articles reviewing the beneficial effects of clays on body function. Bentonite clay is one of the available clays in nature, used as traditional habits, and remedies in many cultures. Methods: These articles explored among 2500 scientific articles published in PubMed to sort the scientific works have been done on the effects of this clay on body function (it was about 100 articles). Results: Bentonite has a broad range of action on different parts of body. Conclusion: As traditional remedies seem to have a deep root in maintaining body health, it merits doing more research works on bentonite clay and its impacts on body function. PMID:29026782

  17. CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles

    DOEpatents

    Siriwardane, Ranjani V.; Rosencwaig, Shira

    2015-09-22

    Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.

  18. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  19. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  20. Burnt clay magnetic properties and palaeointensity determination

    NASA Astrophysics Data System (ADS)

    Avramova, Mariya; Lesigyarski, Deyan

    2014-05-01

    Burnt clay structures found in situ are the most valuable materials for archaeomagnetic studies. From these materials the full geomagnetic field vector described by inclination, declination and intensity can be retrieved. The reliability of the obtained directional results is related to the precision of samples orientation and the accuracy of characteristic remanence determination. Palaeointensity evaluations depend on much more complex factors - stability of carried remanent magnetization, grain-size distribution of magnetic particles and mineralogical transformations during heating. In the last decades many efforts have been made to shed light over the reasons for the bad success rate of palaeointensity experiments. Nevertheless, sometimes the explanation of the bad archaeointensity results with the magnetic properties of the studied materials is quite unsatisfactory. In order to show how difficult is to apply a priory strict criteria for the suitability of a given collection of archaeomagnetic materials, artificial samples formed from four different baked clays are examined. Two of the examined clay types were taken from clay deposits from different parts of Bulgaria and two clays were taken from ancient archaeological baked clay structures from the Central part of Bulgaria and the Black sea coast, respectively. The samples formed from these clays were repeatedly heated in known magnetic field to 700oC. Different analyses were performed to obtain information about the mineralogical content and magnetic properties of the samples. The obtained results point that all clays reached stable magnetic mineralogy after the repeated heating to 700oC, the main magnetic mineral is of titano/magnetite type and the magnetic particles are predominantly with pseudo single domain grain sizes. In spite that, the magnetic properies of the studied clays seem to be very similar, reliable palaeointensity results were obtained only from the clays coming from clay deposits. The palaeointensity experiments for the samples formed from the ancient baked clays completely failed to give relibable results.

  1. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    PubMed Central

    Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V

    2008-01-01

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials. PMID:27877975

  2. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  3. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Clay Shoveler's Fracture: A Case Report and Review of the Literature.

    PubMed

    Posthuma de Boer, Jantine; van Wulfften Palthe, Alexander F Y; Stadhouder, Agnita; Bloemers, Frank W

    2016-09-01

    A clay-shoveler's fracture is a very rarely occurring stress-type avulsion fracture of the lower cervical or upper thoracic spinous processes owing its name to the clay shovelers of past times. Currently, this type of injury is mainly encountered in individuals practicing sports involving rotational movements of the upper spine. We present a case of a man sustaining a clay-shoveler's injury during his work in a horse-riding school. Treatment consisted of a period of rest and analgesics, followed by mobilization as was tolerated. We give a brief historical account of clay shoveler's fractures. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Clay-shoveler's fractures are frequently overlooked due to their rareness; however, they have specific clinical features that should alert an attending physician to set the correct diagnosis. This report describes a typical case of a clay-shoveler's fracture, relates to the historical entity of clay-shoveler's fractures, and summarizes existing literature on this topic. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  6. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  8. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  9. Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.

    PubMed

    Ferrario, Joseph; Byrne, Christian; Schaum, John

    2007-04-01

    Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.

  10. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals.

    PubMed

    Pan, Gang; Zhang, Ming-Ming; Chen, Hao; Zou, Hua; Yan, Hai

    2006-05-01

    Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.

  11. Reducing the Cation Exchange Capacity of Lithium Clay to Form Better Dispersed Polymer-Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Liang, Maggie

    2004-01-01

    Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.

  12. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    USGS Publications Warehouse

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The factors influencing water compositions were determined.

  14. 76 FR 54932 - TSCA Inventory Update Reporting Modifications; Chemical Data Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... neutralized light naphthenic. 64742-36-5 Distillates (petroleum), clay- treated heavy paraffinic. 64742-37-6 Distillates (petroleum), clay- treated light paraffinic. 64742-38-7 Distillates (petroleum), clay- treated... agents (petroleum), spent sodium hydroxide. 64742-41-2 Residual oils (petroleum), clay- treated. 64742-42...

  15. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  16. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on wildlife, with laboratory trials showing contradictory outcomes. Clay minerals have different applications in the environment, thus with a strict control of the concentrations used, they can provide beneficial uses. Despite the extensive number of reports available, there is also a need of systematic in vitro-in vivo extrapolation studies, with still scarce information on toxicity biomarkers such as inmunomodulatory effects or alteration of the genetic expression. In conclusion, a case by case toxicological evaluation is required taking into account that different clays have their own toxicological profiles, their modification can change this profile, and the potential increase of the human/environmental exposure to clay minerals due to their novel applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    PubMed

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  18. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    NASA Astrophysics Data System (ADS)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  19. Development of High Capacity Enterosorbents for Aflatoxin B1 and Other Hazardous Chemicals.

    PubMed

    Wang, Meichen; Maki, Cody R; Deng, Youjun; Tian, Yanan; Phillips, Timothy D

    2017-09-18

    Previously, a calcium montmorillonite clay (NovaSil) included in the diet of animals has been shown to bind aflatoxin B1 (AfB1) and reduce the symptoms of aflatoxicosis. To investigate and improve the capacity and efficacy of clay-based materials as aflatoxin sorbents, we developed and tested calcium and sodium montmorillonite clays amended with nutrients including l-carnitine and choline. Also, we determined the sorption of AfB1 by isothermal analysis and tested the ability of these amended sorbents to protect adult hydra from AfB1 toxicity. The results showed that exchanging montmorillonite clays with l-carnitine and choline inhibited swelling of the clays and increased the sorption capacity and efficacy of clay surfaces for AfB1. Results from dehydroxylated and heat-collapsed clays suggested that AfB1 was primarily adsorbed in the clay interlayer, as predicted from thermodynamic calculations and computational modeling. The hydra bioassay further indicated that the modified clays can significantly protect adult hydra from AfB1 with as low as 0.005% clay inclusion. This enterosorbent therapy may also be applied to screen hazardous chemicals such as pesticides and PAHs based on similar sorption mechanisms. Taken together, enterosorbent therapy could be delivered in nutritional supplements, foods that are vulnerable to aflatoxin contamination, flavored liquids and animal feeds during emergencies and outbreaks of acute aflatoxicosis, and as a screening model for hazardous environmental chemicals.

  20. The influence of tennis court surfaces on player perceptions and biomechanical response.

    PubMed

    Starbuck, Chelsea; Damm, Loïc; Clarke, James; Carré, Matt; Capel-Davis, Jamie; Miller, Stuart; Stiles, Victoria; Dixon, Sharon

    2016-09-01

    This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.

Top