Science.gov

Sample records for clay minerals

  1. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  2. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  3. Clay Mineral: Radiological Characterization

    SciTech Connect

    Cotomacio, J. G.; Silva, P. S. C.; Mazzilli, B. P

    2008-08-07

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and {sup 40}K in these clay minerals.The objective of this work is to determine the concentrations of {sup 238}U, {sup 232}Th, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay.Measurement for the determination of {sup 238}U and {sup 232}Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906{+-}340 Bq kg{sup -1} for {sup 40}K, 40{+-}9 Bq kg{sup -1} for {sup 226}Ra, 75{+-}9 Bq kg{sup -1} for {sup 228}Ra, 197{+-}38 Bq kg{sup -1} for {sup 210}Pb, 51{+-}26 Bq kg{sup -1} for {sup 238}U and 55{+-}24 Bq kg{sup -1} for {sup 232}Th, considering both kinds of clay.

  4. Clay minerals for advanced ceramics

    SciTech Connect

    Murray, H.H. )

    1989-11-01

    The author describes new and improved beneficiation techniques available to allow the production of clay minerals of exceptionally high purity. This is particularly true for kaolins and smectites. Wet processing techniques include particle size separation, high intensity magnetic separation, chemical leaching, flotation, and selective flocculation. The blending of clay minerals with other minerals provides opportunities to make special ceramic materials such as cordierite and other minerals that have very special ceramic properties including low heat expansion, high fired strength, low absorption, and other desired qualities.

  5. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  6. Hyperspectral analysis of clay minerals

    NASA Astrophysics Data System (ADS)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  7. Mineral resource of the month: clays

    USGS Publications Warehouse

    Virta, Robert

    2004-01-01

    Clays represent one of the largest mineral commodities in the world in terms of mineral and rock production and use. Many people, however, do not recognize that clays are used in an amazingly wide variety of applications. Use continues to increase worldwide as populations and their associated needs increase. Robert Virta, clay and shale commodity specialist for the U.S. Geological Survey, has prepared the following information about clays.

  8. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  9. Dehydration-induced luminescence in clay minerals

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  10. Surface geochemistry of the clay minerals

    PubMed Central

    Sposito, Garrison; Skipper, Neal T.; Sutton, Rebecca; Park, Sung-ho; Soper, Alan K.; Greathouse, Jeffery A.

    1999-01-01

    Clay minerals are layer type aluminosilicates that figure in terrestrial biogeochemical cycles, in the buffering capacity of the oceans, and in the containment of toxic waste materials. They are also used as lubricants in petroleum extraction and as industrial catalysts for the synthesis of many organic compounds. These applications derive fundamentally from the colloidal size and permanent structural charge of clay mineral particles, which endow them with significant surface reactivity. Unraveling the surface geochemistry of hydrated clay minerals is an abiding, if difficult, topic in earth sciences research. Recent experimental and computational studies that take advantage of new methodologies and basic insights derived from the study of concentrated ionic solutions have begun to clarify the structure of electrical double layers formed on hydrated clay mineral surfaces, particularly those in the interlayer region of swelling 2:1 layer type clay minerals. One emerging trend is that the coordination of interlayer cations with water molecules and clay mineral surface oxygens is governed largely by cation size and charge, similarly to a concentrated ionic solution, but the location of structural charge within a clay layer and the existence of hydrophobic patches on its surface provide important modulations. The larger the interlayer cation, the greater the influence of clay mineral structure and hydrophobicity on the configurations of adsorbed water molecules. This picture extends readily to hydrophobic molecules adsorbed within an interlayer region, with important implications for clay–hydrocarbon interactions and the design of catalysts for organic synthesis. PMID:10097044

  11. Scanning electron microscopy of clays and clay minerals

    USGS Publications Warehouse

    Bohor, B.F.; Hughes, R.E.

    1971-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units-interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis-also are uniquely revealed by the SEM. Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types. ?? 1971.

  12. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  13. Ostwald ripening of clays and metamorphic minerals.

    PubMed

    Eberl, D D; Sacuterodonacute, J; Kralik, M; Taylor, B E; Peterman, Z E

    1990-04-27

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  14. Release kinetics of volatiles from clay minerals

    NASA Astrophysics Data System (ADS)

    Clausen, Pascal

    2007-03-01

    Smectite clay minerals are known to have interesting sorption properties, but the prediction of the kinetics of desorption of volatile molecules from such clays remains a challenge. The aim of this work is to relate the isothermal rate of desorption of volatile molecules from cation exchanged smectite clays to the chemical structures and geometries of the interacting species (clay platelet surface, type of counter-ion, type of volatile). It is thought that the rate of desorption of the volatiles at a given time is governed by their instantaneous diffusion in the clay and in the gas phase, which in turns is dependent on the volatile's interaction with its chemical and geometrical environment. Therefore, in addition to isothermal desorption rate measurements by thermogravimetry, activation energies of desorption are measured and calculated and the interacting compounds are characterized in terms of their chemical structure and geometry.

  15. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  16. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  17. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    PubMed

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  18. Feasibility of classification of clay minerals by using PAS

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Yoshida, Y.; Akiyama, Y.; Nishijima, S.

    2015-06-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found.

  19. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  20. Prolonged triboluminescence in clays and other minerals

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    Samples of various clays and minerals were ground or fractured and monitored with a liquid scintillation spectrometer in order to obtain triboluminescent decay curves. Kaolinite samples displayed several million counts/min after grinding, with a surface area emission estimated at tens of billions of photons/sq cm of surface. The photon production rates varied with the origin of the sample, and kaolinite continually yielded higher production rates than bentonite. The addition of water to the samples slightly increased the count rate of emitted light, while the addition of the fluorescent molecule substance tryptofan significantly enhanced the count rate. Freezing smears of kaolinite and montmorillonite in liquid nitrogen and in a salt ice mixture also induced triboluminescence in the montmorillonite. A possible connection between powdery triboluminescent materials formed in mining industries and respiratory disorders among miners is suggested.

  1. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  2. Late Precambrian oxygenation; inception of the clay mineral factory.

    PubMed

    Kennedy, Martin; Droser, Mary; Mayer, Lawrence M; Pevear, David; Mrofka, David

    2006-03-10

    An enigmatic stepwise increase in oxygen in the late Precambrian is widely considered a prerequisite for the expansion of animal life. Accumulation of oxygen requires organic matter burial in sediments, which is largely controlled by the sheltering or preservational effects of detrital clay minerals in modern marine continental margin depocenters. Here, we show mineralogical and geochemical evidence for an increase in clay mineral deposition in the Neoproterozoic that immediately predated the first metazoans. Today most clay minerals originate in biologically active soils, so initial expansion of a primitive land biota would greatly enhance production of pedogenic clay minerals (the "clay mineral factory"), leading to increased marine burial of organic carbon via mineral surface preservation.

  3. The systems containing clays and clay minerals from modified drug release: a review.

    PubMed

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied.

  4. [Mechanism of tritium persistence in porous media like clay minerals].

    PubMed

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  5. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  6. Relationship between sediment clay minerals and total mercury.

    PubMed

    Kongchum, Manoch; Hudnall, Wayne H; DeLaune, R D

    2011-01-01

    A group of 262 sediment samples were collected from various lakes, rivers, reservoirs, and bayous of Louisiana. All samples were analyzed for total mercury. Twenty nine of the samples with total mercury content ranging from 11 to 401 ppb (μg/kg) were analyzed for clay minerals and other sediment physical and chemical properties. Clay content in sediments varied from 3 to 72%. Clay minerals were determined by X-ray diffraction (XRD) technique. Identification of clay minerals was determined by MacDiff software and quantification of clay minerals was obtained by Peak Height Percentage (PHP) calculation. The dominant clay mineral was Hydrated Interlayer Vermiculite (HIV), which represented 51-83% of the total clay mineral. Significant linear correlations were observed between Hg and total clay content (r=0.538**). However Smectite was the only individual clay type correlated (r=0.465**) with mercury in sediment. Cation exchange capacity (r=0.404*), organic matter (r=0.577**), and sulfur (r=0.676**) were also correlated significantly with mercury level in sediment.

  7. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  8. Microbe-Clay Mineral Reactions and Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.

    2008-12-01

    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides

  9. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  10. Identification of clay minerals in reservoir rocks by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong Khang, Vu; Korovkin, Mikhail V.; Ananyeva, Ludmila G.

    2016-09-01

    Clay minerals including kaolinite, montmorillonite and bentonite in oil and gas reservoir rocks are identified by absorption spectra obtained via Fourier Transform Infrared (FTIR) spectroscopy. Bands around 3695, 3666, 3650 and 3630 cm-1 and bands around 3620 and 3400 cm-1 are the most diagnostically reliable for kaolinite and montmorillonite, respectively; also absorption bands in the region of 1200...955 cm-1 are equally diagnostic for all the clay minerals studied.

  11. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    NASA Astrophysics Data System (ADS)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  12. Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens

    NASA Astrophysics Data System (ADS)

    Earnest, C. M.

    The characterization of illite clay minerals by the use of the technique of differential thermal analysis (DTA), thermogravimetry (TG) and derivative thermogravimetry (DTG) is presented. This presentation is offered not only as a review of the thermal characteristics of this important group of clay materials but suggestions relative to the application of the thermal analysis techniques to contaminated illitic specimens; i.e., mineral mixtures, are included. Two commonly referenced illitic clay specimens, which have been widely distributed, were studied here. These were the American Petroleum Institute Reference Clay Specimen from Fithian, Illinois (API #35) and the Clay Mineral Society's Source Clay Specimen from Silver Hill, Montana (CMS-IMt). These clay specimens were studied using a modern computerized differential thermal analyzer which also contained a DSC mode of operation for peak energy assignment. Representative DTA thermal curves using both DTA and computerized DSC modes are given for both clay specimens. The effect of the variation of heating rate and sample size on the observed peak temperatures and resolution is demonstrated for both illite specimens.

  13. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  14. Intercalation of Trichloroethene by Sediment-Associated Clay Minerals

    SciTech Connect

    Matthieu, Donald E.; Brusseau, Mark; Johnson, G. R.; Artiola, J. L.; Bowden, Mark E.; Curry, J. E.

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site inTucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer dspacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (*26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  15. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.

    PubMed

    Sánchez-Martín, M J; Dorado, M C; del Hoyo, C; Rodríguez-Cruz, M S

    2008-01-15

    Adsorption of three surfactants of different nature, Triton X-100 (TX100) (non-ionic), sodium dodecylsulphate (SDS) (anionic) and octadecyltrimethylammonium bromide (ODTMA) (cationic) by four layered (montmorillonite, illite, muscovite and kaolinite) and two non-layered (sepiolite and palygorskite) clay minerals was studied. The objective was to improve the understanding of surfactant behaviour in soils for the possible use of these compounds in remediation technologies of contaminated soils by toxic organic compounds. Adsorption isotherms were obtained using surfactant concentrations higher and lower than the critical micelle concentration (cmc). These isotherms showed different adsorption stages of the surfactants by the clay minerals, and were classified in different subgroups of the L-, S- or H-types. An increase in the adsorption of SDS and ODTMA by all clay minerals is observed up to the cmc of the surfactant in the equilibrium solution is reached. However, there was further TX100 adsorption when the equilibrium concentration was well above the cmc. Adsorption constants from Langmuir and Freundlich equations (TX100 and ODTMA) or Freundlich equation (SDS) were used to compare adsorption of different surfactants by clay minerals studied. These constants indicated the surfactant adsorption by clay minerals followed this order ODTMA>TX100>SDS. The adsorption of TX100 and ODTMA was higher by montmorillonite and illite, and the adsorption of SDS was found to be higher by kaolinite and sepiolite. Results obtained show the influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays, and they indicate the interest to consider the soil mineralogical composition when one surfactant have to be selected in order to establish more efficient strategies for the remediation of soils and water contaminated by toxic organic pollutants.

  16. Fluoride content of clay minerals and argillaceous earth materials

    USGS Publications Warehouse

    Thomas, J.; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ??5% at different levels of fluoride concentration. Data are presented for various clay minerals and for the <2-??m fractions of marine and nonmarine clays and shales. Fluoride values range from 44 ppm (0.0044%) for nontronite from Colfax, WA, to 51,800 ppm (5.18%) for hectorite from Hector, CA. In general, clays formed under hydrothermal conditions are relatively high in fluoride content, provided the hydrothermal waters are high in fluoride content. Besides hectorite, dickite from Ouray, CO, was found to contain more than 50 times as much fluoride (6700 ppm) as highly crystalline geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals. It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content. ?? 1977.

  17. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    SciTech Connect

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  18. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  19. Iodide interactions with clay minerals: Batch and diffusion studies

    NASA Astrophysics Data System (ADS)

    Miller, A. W.; Kruichak, J.; Mills, M.; Wang, Y.

    2012-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Iodine-129 is often the major driver of exposure risk from nuclear waste repositories at timescales >10,000 years. Therefore, understanding the geochemical cycling of iodine in clays is critical in developing defensible quantitative descriptions of nuclear waste disposal. Anions are not typically considered to interact with most clays as it is assumed that the fixed negative charge of clays actively repels the dissoloved anion. This is corroborated by many batch studies, but diffusion experiments in compacted clays have shown iodide retardation relative to chloride. The reasons for this are unknown; however, several possible hypotheses include: redox transformation controls on sorption behavior, complex surface charge environments due to overlapping charge domains, and sorption to ancillary minerals or weathering products. Seven different clay minerals have been examined using several techniques to chracterize the surface charge environment and iodide uptake. The use of a series of clays shifts the independent variable away from water chemistry characteristics (pH, contaminant concentration), and toward structural characterisitics of clay minerals including isomorphous substitution and clay texture. Iodide uptake batch experiments were completed with the clay minerals in a range of swamping electrolytes. The results give evidence for a novel uptake mechanism involving ion pair formation and iodide concentration within nano-confined environments. These results were further tested using diffusional columns where nano-confined regimes make up a larger proportion of the total porosity. These columns were compacted to different hydrostatic pressures and saturated with different ionic compositions. Porosity distributions were characterized with a fluoride tracer. Iodide diffusion characteristics were

  20. First direct detection of clay minerals on Mars

    NASA Astrophysics Data System (ADS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-04-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  1. First Direct Detection of Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  2. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  3. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  4. Clay mineral evolution in the central Yellow Sea mud deposits

    NASA Astrophysics Data System (ADS)

    Cho, H. G.; Kim, D. C.; Yi, H.-I.

    2012-04-01

    The Yellow Sea, a typical epicontinental shelf located between China and Korea, has attracted by many researchers for the study of late Quaternary land-ocean interaction and paleoenvironmental changes. There are four main mudbelt deposits such as North Yellow Sea Mud (NWMD), Central Yellow Sea Mud (CYSM), Southeastern Yellow Sea Mud (SWYSM), and Southwestern Cheju Island Mud (SWCIM). These mudbelt deposits are mostly composed of fine-grained sediments with detrital origin, which mainly come from several rivers in China and Korea. In this study we reconstruct the evolution of clay mineral assemblages in Core YS11-PCL14 (35o 47.07'N, 124 o 06.89' E) retrieved from the Central Yellow Sea Mud. Clay mineral compositions of 67 samples taken at ~10 cm intervals from YS11-PLC14 core sediments and 31 river sediments flowed into the Yellow Sea were determined using the semi-quantitative X-ray diffraction analysis. The clay-mineral assemblage of core sediments are composed of illite (60~75%), chlorite (11~23%), kaolinite (10~15%), and smectite (1~7%), in decreasing order. The ratio (smectite/illite)*100 is abruptly decreases at depth around 200 cm, and is corresponded to abrupt increase in clay fraction. The lower part of core sediments having higher (smectite/illite)*100 ratio are derived ultimately from the Huanghe, because Huanghe only discharges sediments containing the higher (smectite/illite)*100 ratio among the rivers flowed into the Yellow Sea. According to age-dating in the adjacent Core 06-2 (35o 00'N, 124 o 25' E), the depth at abrupt change in clay fraction corresponds to about 5,000 yr. Clay mineral evolution in Central Yellow Sea Mud is closely related to changes in sediment provenance and paleoenvironment. Sea level rise and the strength of the Kuroshio Current control the dispersal and deposition of clays on the Yellow Sea shelf, and thus, determine the clay mineral compositions in the core sediments. Before 5,000 yr, sediments discharged from Huanghe have a

  5. Sorption of tylosin on clay minerals.

    PubMed

    Zhang, Qian; Yang, Chen; Huang, Weilin; Dang, Zhi; Shu, Xiaohua

    2013-11-01

    The equilibrium sorption of tylosin (TYL) on kaolinite and montmorillonite was measured at different solution pH using batch reactor systems. The results showed that all the sorption isotherms were nonlinear and that the nonlinearity decreased as the solution pH increased for a given clay. At a specific aqueous concentration, the single-point sorption distribution coefficient (KD) of TYL decreased rapidly as the solution pH increased. A speciation-dependent sorption model that accounted for the contributions of the cationic and neutral forms of TYL fit the data well, suggesting that the sorption may be dominated by both ion exchange and hydrophobic interactions. The isotherm data also fit well to a dual mode model that quantifies the contributions of a site-limiting Langmuir component (ion exchange) and a non-specific linear partitioning component (hydrophobic interactions). X-ray diffraction analyses revealed that the interlayers of montmorillonite were expanded due to the uptake of TYL. TYL molecules likely form a monolayer surface coverage.

  6. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  7. Water molecules in clay minerals: Thermodynamic functions and hydration

    NASA Astrophysics Data System (ADS)

    Gailhanou, Helène; Amouric, Marc; Olives, Juan; Rogez, Jacques; van Miltenburg, J. C.; van der Berg, G. J. K.; de Weireld, G.; Gaucher, E.; Blanc, P.

    2010-05-01

    Thermodynamic functions and adsorption of water molecules are very important properties for clay minerals. Smectite MX-80 and mixed-layer illite-smectite ISCz-1 were selected. They were first carefully characterized (HRTEM with EDX analysis), revealing original results. Then, the thermodynamic properties of water in clay were obtained by (i) comparison of the thermodynamic properties of anhydrous and hydrated minerals, between 0 and 350 K (adiabatic calorimetry, solution isothermal calorimetry), and (ii) water vapor adsorption isotherms, between 300 and 380 K (magnetic suspension thermobalance). Solution isothermal calorimetry is used to determine the enthalpies of formation of the minerals (1 bar and 298 K). Comparison of the results, for the anhydrous and the hydrated minerals, leads to the enthalpies of hydration at 298 K. Adiabatic calorimetry measurements give the heat capacities of the minerals from 5 to 350 K. Entropies, enthalpies of formation and Gibbs free energies of formation, for the anhydrous and the hydrated minerals, and then, entropies of hydration, enthalpies of hydration and Gibbs free energies of hydration, between 0 and 350 K, are finally obtained. Comparison of two close hydration states leads to the entropy, the enthalpy and the Gibbs free energy of the adsorption reaction: H2O free - H2O adsorbed. The Cp(T) curve, for the heat capacity of water in clay - i.e., the difference between the heat capacities of the hydrated and the anhydrous minerals -, shows that water in clay is a glass at low temperature, undergoes one or two continuous glass transitions between 150 and 270 K, and behaves as free liquid water above 273 K. The two glass transitions might correspond to two types of water molecules: (i) first adsorbed water molecules, bound to the interlayer cations of the clay mineral; (ii) last adsorbed water molecules, not bound to the interlayer cations. In addition, water vapor adsorption isotherms are obtained from 298 to 378 K (magnetic

  8. Ice nucleation efficiency of clay minerals in the immersion mode

    NASA Astrophysics Data System (ADS)

    Pinti, V.; Marcolli, C.; Zobrist, B.; Hoyle, C. R.; Peter, T.

    2012-07-01

    Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA), two illites (Illite NX and Illite SE) and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10). The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 Kclay minerals strongly depend on the amount of clay mineral present per droplet and on

  9. Geochemical dynamics of cesium sorption by selected clay minerals

    SciTech Connect

    Noll, M.R.

    1989-01-01

    This study focuses on the interactions of cesium with selected clay minerals. Cesium is of interest as it is a chief component of high level radioactive waste. Primarily, the thermodynamics and kinetics of Cs exchange reactions were investigated to determine the preference for Cs of a kaolinite, illite, and vermiculite. Thermodynamic studies indicated that Cs was most strongly preferred by Ca saturated clays. Of the three minerals studied, illite proved to be the most effective in adsorbing Cs as indicated by the Vanselow Selectivity Coefficients (k{sub v}). The k{sub v} values for illite ranged from 5.87 to over 10{sup 10}, depending on the mineral and saturating cation. Kinetics experiments proved to be the most interesting. On 2:1 clay minerals (illite and vermiculite), two simultaneous reactions are postulated. The first, and faster of the two reactions, is believed to correspond to Cs adsorption on surface planar sites. The second reaction may be the adsorption of Cs on interlayer and wedge exchange sites. Kaolinite only shows a single reaction since it is a 1:1 clay mineral. Rate coefficients were calculated and the first reaction was found to be on the order of one magnitude greater than the second reaction. The reactions on kaolinite were similar to this faster reaction. Desorption data indicated that the rate of desorption was one or more orders of magnitude less than the corresponding adsorption rate. It is important to note, however, that studies on the effect of temperature indicated that Arrhenius behavior is not followed in many of these experiments. It is postulated that changes in cation radius ratio, or the availability of exchange sites is causing this Anti-Arrhenius behavior. Finally, it is concluded that illite exhibits the greatest preference for the adsorption of Cs.

  10. Reversibility of soil forming clay mineral reactions induced by plant - clay interactions

    NASA Astrophysics Data System (ADS)

    Barré, P.; Velde, B.

    2012-04-01

    Recent data based upon observations of field experiments and laboratory experiments suggest that changes in phyllosilicate mineralogy, as seen by X-ray diffraction analysis, which is induced by plant action can be reversed in relatively short periods of time. Changes from diagenetic or metamorphic mineral structures (illite and chlorite) to those found in soils (mixed layered minerals in the smectite, hydroxy-interlayer mineral and illites) observed in Delaware Bay salt marsh sediments in periods of tens of years and observed under different biologic (mycorhize) actions in coniferous forests in the soil environment can be found to be reversed under other natural conditions. Reversal of this process (chloritisation of smectitic minerals in soils) has been observed in natural situations over a period of just 14 years under sequoia gigantia. Formation of smectite minerals from illite (potassic mica-like minerals) has been observed to occur under intensive agriculture conditions over periods of 80 years or so under intensive zea mais production. Laboratory experiments using rye grass show that this same process can be accomplished to a somewhat lesser extent after one growing season. However experiments using alfalfa for 30 year growing periods show that much of the illite content of a soil can be reconstituted or even increased. Observations on experiments using zea mais under various fertilizer and mycorhize treatments indicate that within a single growing season potassium can be extracted from the clay (illite layers) but at the end of the season the potassium can be restored to the clay structures and more replaced that extracted. Hence it is clear that the change in clay mineralogy normally considered to be irreversible, illite to smectite or chlorite to smectite observed in soils, is a reversible process where plant systems control the soil chemistry and the soil mineralogy. The changes in clay mineralogy concern mostly the chemical composition of the interlayer

  11. Immersion freezing of clay minerals and bacterial ice nuclei

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Bingemer, Heinz; Bundke, Ulrich; Cziczo, Daniel J.; Danielczok, Anja; Ebert, Martin; Garimella, Sarvesh; Hoffmann, Nadine; Höhler, Kristina; Kanji, Zamin A.; Kiselev, Alexei; Raddatz, Michael; Stetzer, Olaf

    2013-05-01

    The immersion mode ice nucleation efficiency of clay minerals and biological aerosols has been investigated using the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber. Both monodisperse and polydisperse populations of (1) various clay dust samples as well as (2) Snomax® (a proxy for bacterial ice nucleators) and (3) hematite are examined in the temperature range between -4°C and -35°C. The temperature dependence of ice formation inferred by the INAS (Ice Nucleation Active Surface-Site) density is investigated and discussed as a function of cooling rate and by comparing to predicted nucleation rates (i.e., classical nucleation theory with θ-probability density function nucleation scheme). To date, we observe that maintaining constant AIDA temperature does not trigger any new ice formation during the immersion freezing experiments with clay dust samples and Snomax®, implying strong temperature dependency (and weak time dependency) within our time scales and conditions of experiments. Ice residuals collected through a newly developed PCVI (Pumped ounter-flow Virtual Impactor) with the 50% cut size diameter of 10 to 20 μm have also been examined by electron microscope analyses to seek the chemical and physical identity of ice nuclei in clay minerals. In addition to the AIDA results, complementary measurements with mobile ice nucleation counters are also presented.

  12. Ice nucleation efficiency of clay minerals in the immersion mode

    NASA Astrophysics Data System (ADS)

    Pinti, V.; Marcolli, C.; Zobrist, B.; Hoyle, C. R.; Peter, T.

    2012-01-01

    Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. DSC (differential scanning calorimeter) measurements were performed on the kaolinites KGa-1b and KGa-2 from the Clay Mineral Society and kaolinite from Sigma-Aldrich; the montmorillonites SWy-2 and STx-1b from the Clay Mineral Society and the acid treated montmorillonites KSF and K-10 from Sigma Aldrich; the illites NX and SE from Arginotec. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites showed quite narrow standard peaks with onset temperatures 239 K < Tonstd < 242 K and best sites with averaged median freezing temperature Tmedbest = 257 K. Only the kaolinite from Sigma Aldrich featured a special peak with freezing onset at 248 K. The illites showed broad standard peaks with freezing onsets at 244 K < Tonstd < 246 K and best sites with averaged median freezing temperature Tmedbest = 262 K. Montmorillonites had standard peaks with onsets 238 K < Tonstd < 240 K and best sites with Tmedbest=257 K. SWy-2, M K10, and KSF featured special peaks with onsets at Tonspcl=247, 240, and 242 K, respectively. M K10 and KSF both from Sigma Aldrich had less intense standard peaks compared to the ones from the Clay Mineral Society suggesting that a fraction of the standard sites are lost by the acid treatment. The acid

  13. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  14. Diagenesis and clay mineral formation at Gale Crater, Mars

    SciTech Connect

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  15. Diagenesis and clay mineral formation at Gale Crater, Mars

    DOE PAGES

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; ...

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less

  16. Diagenesis and clay mineral formation at Gale Crater, Mars

    PubMed Central

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component. PMID:26213668

  17. Diagenesis and clay mineral formation at Gale Crater, Mars.

    PubMed

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ∽7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  18. Studies of clays and clay minerals using x-ray powder diffraction and the Rietveld method

    SciTech Connect

    Bish, D.L.

    1993-09-01

    The Rietveld method was originally developed (Rietveld, 1967, 1969) to refine crystal structures using neutron powder diffraction data. Since then, the method has been increasingly used with X-ray powder diffraction data, and today it is safe to say that this is the most common application of the method. The method has been applied to numerous natural and synthetic materials, most of which do not usually form crystals large enough for study with single-crystal techniques. It is the ability to study the structures of materials for which sufficiently large single crystals do not exist that makes the method so powerful and popular. It would thus appear that the method is ideal for studying clays and clay minerals. In many cases this is true, but the assumptions implicit in the method and the disordered nature of many clay minerals can limit titsapplicability. This chapter will describe the Rietveld method, emphasizing the assumptions important for the study of disordered materials, and it will outline the potential applications of the method to these minerals. These applications include, in addition to the refinement of crystal structures, quantitative analysis of multicomponent mixtures, analysis of peak broadening, partial structure solution, and refinement of unit-cell parameters.

  19. Transformation of anthracene on various cation-modified clay minerals.

    PubMed

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  20. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    PubMed Central

    Hashizume, Hideo

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components. PMID:25734235

  1. Clays and Clay Minerals and their environmental application in Food Technology

    NASA Astrophysics Data System (ADS)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  2. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  3. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.

    PubMed

    Luan, Fubo; Liu, Yan; Griffin, Aron M; Gorski, Christopher A; Burgos, William D

    2015-02-03

    Iron-bearing clay minerals are ubiquitous in the environment, and the clay-Fe(II)/Fe(III) redox couple plays important roles in abiotic reduction of several classes of environmental contaminants. We investigated the role of Fe-bearing clay minerals on the bioreduction of nitrobenzene. In experiments with Shewanella putrefaciens CN32 and excess electron donor, we found that the Fe-bearing clay minerals montmorillonite SWy-2 and nontronite NAu-2 enhanced nitrobenzene bioreduction. On short time scales (<50 h), nitrobenzene reduction was primarily biologically driven, but at later time points, nitrobenzene reduction by biologically formed structural Fe(II) in the clay minerals became increasingly important. We found that chemically reduced (dithionite) iron-bearing clay minerals reduced nitrobenzene more rapidly than biologically reduced iron-bearing clay minerals despite the minerals having similar structural Fe(II) concentrations. We also found that chemically reduced NAu-2 reduced nitrobenzene faster as compared to chemically reduced SWy-2. The different reactivity of SWy-2 versus NAu-2 toward nitrobenzene was caused by different forms of structural clay-Fe(II) in the clay minerals and different reduction potentials (Eh) of the clay minerals. Because most contaminated aquifers become reduced via biological activity, the reactivity of biogenic clay-Fe(II) toward reducible contaminants is particularly important.

  4. Report on "Methodologies for Investigating Microbial-Mineral Interactions: A Clay Minerals Society Short Course"

    SciTech Connect

    Maurice, Patricia A.

    2010-02-08

    A workshop entitled, “Methods of Investigating Microbial-Mineral Interactions,” was held at the Clay Minerals Society meeting at the Pacific Northwest National Laboratory in Richland, WA on June 19, 2004. The workshop was organized by Patricia A. Maurice (University of Notre Dame) and Lesley A. Warren (McMaster University, CA). Speakers included: Dr. P. Bennett, Dr. J. Fredrickson (PNNL), Dr. S. Lower (Ohio State University), Dr. P. Maurice, Dr. S. Myneni (Princeton University), Dr. E. Shock (Arizona State), Dr. M. Tien (Penn State), Dr. L. Warren, and Dr. J. Zachara (PNNL). There were approximately 75 attendees at the workshop, including more than 20 students. A workshop volume was published by the Clay Minerals Society [Methods for Study of Microbe-Mineral Interactions (2006), CMS Workshop Lectures, vol 14(Patricia A. Maurice and Leslie A. Warren, eds.) ISBN 978-1-881208-15-0, 166 pp.

  5. Harnessing Water and Resources from Clay Minerals on Mars and Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2017-02-01

    Clay minerals provide a source of water, metals, and cations that can be harvested to provide resources for human exploration on Mars, asteroids, etc. Planning how to access these resources from clays could be a vital component of human exploration.

  6. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  7. Analysis of mixed-layer clay mineral structures

    USGS Publications Warehouse

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  8. Role of clay minerals in the transportation of iron

    USGS Publications Warehouse

    Carroll, D.

    1958-01-01

    The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity

  9. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals

    PubMed Central

    Crosson, Garry S.; Sandmann, Emily

    2013-01-01

    Abstract The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo–second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and −0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10−2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment

  10. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    PubMed

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10(-2) g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may

  11. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-03-09

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure.

  12. Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals.

    PubMed

    Samuels, Maya; Mor, Omer; Rytwo, Giora

    2013-04-05

    The influence of methylene blue adsorption to different clays on its photodegradation was studied. Methylene blue in solution was decomposed by sunlight in a zero-order process. Adsorption to some clay minerals (sepiolite and vermiculite) and a zeolite (clinoptilolite) accelerated the degradation process, and converted it to a first-order reaction. On the other hand, adsorption to other clay minerals (palygorskite and montmorillonite) stabilized the dye and prevented its degradation. Interestingly, in the clay-dye complexes that exhibited stability, clear metachromasy of the adsorbed methylene blue occurred, whereas the effect was not observed in the clay-dye complexes that underwent photodegradation.

  13. Modeling of cation binding in hydrated 2:1 clay minerals

    SciTech Connect

    Smith, D.E.

    1998-06-01

    'The primary focus of the research is the development of molecular theories of ion exchange on clay minerals, with a view toward understanding the mechanism of radionuclide transport through soils. The specific scientific goals of the study involve using molecular simulation methods to correlate clay-ion binding strengths with interlayer structure and swelling properties. This should build upon the fundamental understanding of clay behavior and allow for improvement in transport modeling of radionuclides in clay-rich soils.'

  14. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals.

  15. Origin of clay-mineral variation in Wisconsinan age sediments from the Lake Michigan basin

    SciTech Connect

    Monaghan, G.W. ); Larson, G.J. . Dept. of Geological Sciences)

    1994-04-01

    Drift samples collected in Wisconsin and Michigan from exposures representative of the Wisconsinan stratigraphy of the Lake Michigan Lobe indicate that clay mineral and shale lithology systematically vary between successive till sheets as a result of differential erosion of two unique source beds: shale bedrock, rich in 10[angstrom] clay (illite) and pre-existing drift (particularly lacustrine clay), depleted in 10[angstrom] clay. A general increase in relative amounts of 10[angstrom] clay and shale clasts begins with early or middle Wisconsinan (Altonian) Glenn Shores till and continues through late Wisconsinan (Woodfordian) Ganges-New Berlin till and Saugatuck-Oak Creek till. Both 10[angstrom] clay and shale decrease in post Mackinaw (late Woodfordian) Interstade Ozaukee-Haven and Two Rivers tills. Clay minerals in till rich in 10[angstrom] clay (Saugatuck-Oak Creek) were derived mainly from extensive erosion and comminution of shale whereas those in tills depleted in 10[angstrom] clay (Ganges-New Berlin, Ozaukee-Haven, and Two Rivers) were eroded mainly from lacustrine clay. Because it is compositionally dissimilar to either the shale or lake clay source and relatively rich in kaolinite, clay minerals in early-middle Wisconsinan Glenn Shores till may have been derived from Sangamon saprolite eroded during an early post-Sangamon ice advance. Variations in source bed erosion and subsequent changes in till lithology result either from depletion of the source bed (Glenn Shores till) or from progressively eroding drift mantling shale outcrops (unroofing) during successive late Wisconsinan ice advances.

  16. Clay Minerals in Mawrth Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold.

    The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green.

    The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter.

    Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars.

    CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  17. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.

  18. A general evaluation of the frequency distribution of clay and associated minerals in the alluvial soils of ceylon

    USGS Publications Warehouse

    Herath, J.W.; Grimshaw, R.W.

    1971-01-01

    Clay mineral analyses were made of several alluvial clay materials from Ceylon. These studies show that the soil materials can be divided into 3 clay mineral provinces on the basis of the frequency distribution of clay and associated minerals. The provinces closely follow the climatic divisions. The characteristic feature of this classification is the progressive development of gibbsite from Dry to Wet Zone areas. Gibbsite has been used as a reliable indicator mineral. ?? 1971.

  19. [Effects of temperature on organic carbon mineralization in paddy soils with different clay content].

    PubMed

    Ren, Xiu-E; Tong, Cheng-Li; Sun, Zhong-Lin; Tang, Guo-Yong; Xiao, He-Ai; Wu, Jin-Shui

    2007-10-01

    An incubation test with three kinds of paddy soil (sandy loam, clay loam, and silty clay soils) in subtropical region was conducted at 10, 15, 20, 25 and 30 degrees C to examine the response of the mineralization of soil organic carbon (SOC) to temperature change. The results showed that during the period of 160 d incubation, the accumulative mineralized amount of SOC in sandy loam, clay loam, and silty clay soils at 30 degrees C was 3.5, 5.2 and 4.7 times as much as that at 10 degrees C, respectively. The mineralization rate was lower and relatively stable at lower temperatures (< or = 20 C), but was higher at the beginning of incubation and decreased and became stable as the time prolonged at higher temperatures (> or = 25 degrees C). During incubation, the temperature coefficient (Q10) of SOC mineralization in test soils fluctuated, with an average Q10 in sandy loam, clay loam, and silty clay soils being 1.92, 2.37 and 2.32, respectively. There was a positive exponential correlation between SOC mineralization constant k and temperature (P < 0.01), and the response of SOC mineralization to temperature change was in the order of clay loam soil > silty clay soil > sandy loam soil.

  20. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  1. Geochemistry of clay minerals for uranium exploration in the Grants mineral belt, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookins, D. G.

    1982-03-01

    Clay mineralogy studies of ore rocks versus barren rocks in the Grants mineral belt, New Mexico, show that some combination of chlorite (rosette form), illite, mixed-layer illite-montmorillonite, (±Mg-montmorillonite) are penecontemporaneous with uranium minerals in trend ore; these same clay minerals plus kaolinite are related to the roll-type ore near the main redox front of the Grants mineral belt. Clay minerals from barren rocks are characterized by a greater abundance of Na-montmorillonite, kaolinite, and face-to-edge form chlorite. Chlorites from ore zones contain much more vanadium than do chlorites from barren rocks. Trend orr probably formed from southeasterly flowing waters following paleochannels in the Late Jurassic. These deposits are found almost entirely in reduced rocks, and organic carbon may have been an important reductant to remove U-V-U-V-Se-Mo from solution as carbonate from ore zones contains some organic carbon based on stable isotope studies. Uplift, remobilization, and reprecipitation of some of the trend ore resulted in the formation of redistributed ore, some of which possesses a roll-type geometry. Mineralization for the roll-type ore was apparently controlled by sulfide-sulfate equilibria at or near the main redox front in the Grants mineral belt. Trend and roll-type ore possess different assemblages of clay minerals and different trace element abundances. Laramide-age faults cut both trend ore and some roll-type ores. Stack ore is found in Laramide-age fault zones. Limited oxygen isotopic data from clay minerals collected from two mines at Ambrosia Lake in reduced rocks indicate probable preservation of ancient, formational waters and show no evidence of infiltration by young meteoric waters. This information, plus the pre-Laramide-age faults, suggest, but do not unequivocally prove, that the main redox front has been relatively stable since its formation, probably some time in the Cretaceous. Younger encroachment of the redox front

  2. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    ERIC Educational Resources Information Center

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  3. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiangyu; Jin, Chunsheng; Liu, Caicai; Li, Shihu

    2015-01-01

    Clay minerals and Al-substituted haematite (Al-hm) usually coexist in soils and sediments. However, effects of clay minerals on Al-hm during thermal magnetic measurements in argon environment have not been well studied. In order to quantify such effects, a series of Al-hm samples were synthesized, and were then mixed with clay minerals (illite, chlorite, kaolinite and Ca-montmorillonite). The temperature dependence of magnetic susceptibility curves in an argon environment showed that Al-substituted magnetite was produced during the thermal treatment via the reduction of Al-hm by the clay mineral, which leads to a significant magnetic enhancement of the thermal products. In addition, the reductive capacity varies among different types of clay minerals, that is, illite > chlorite > kaolinite > Ca-montmorillonite. Furthermore, the iron content in the clay minerals and Al content of Al-hm are two predominant factors controlling the reduced haematite content. The iron is released from the clay minerals and provides the reducing agent, while Al decreases the crystallinity of haematite and thus facilitates the chemical reaction. Therefore, the thermal magnetic measurements can be used to quantify the Al content of Al-hm in natural samples. Our study provides significant information for palaeomagnetism and environmental magnetism studies, such as thermal magnetic analysis and palaeomagnetic intensity reconstruction using ancient pottery and kilns.

  4. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, T. F.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W.; Morrison, S. M.; Yen, A. S.; Morris, R. V.; Des Marais, D. J.

    2017-01-01

    One of the primary science goals of Mars Science Laboratory (MSL) is to investigate layered clay mineral-bearing deposits outcropping in the lower NW slopes of Aeolis Mons (Mt. Sharp) detected from orbit. Martian clay mineral-bearing layered rocks are of particular interest because they are potential markers of sedimentary deposits formed in habitable aqueous environments. The CheMin X-ray diffraction (XRD) instrument aboard MSL has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. Previously, the high concentrations of clay minerals (approximately 20 wt.%) detected in drill powders of mudstone (Sheepbed member) at Yellowknife Bay (YKB) allowed their detailed characterization. Drill powders recovered from lacustrine mudstones of the Sheepbed member at YKB contain smectite clay minerals. Based on the position of 02l reflections in XRD patterns, which serve as an indicator of octahedral occupancy, the smectites are Fe-bearing, trioctahedral species analogous to ferrian saponites from terrestrial deposits. The smectites are thought to have been formed through a process of isochemical aqueous alteration of detrital olivine close to the time of sediment deposition under anoxic to poorly oxidizing conditions. The clay minerals are key indicators that the lake waters were benign and habitable at the time. Clay minerals were detected at other locations during MSL's traverse, including samples from the Pahrump Hills, but lower abundances and overlapping peaks from crystalline phases in XRD patterns hamper in-depth analysis.

  5. [Species Determination and Spectral Characteristics of Swelling Clay Minerals in the Pliocene Sandstones in Xinghai, Qinghai].

    PubMed

    Wang, Chao-wen; Chen, Jiang-jun; Fang, Qian; Yin, Ke; Hong, Han-lie

    2015-10-01

    X-ray diffraction (XRD) and Fourier infrared absorption spectroscopy (FTIR) were conducted to deepen our research on specific species and spectral characteristics of swelling clay minerals in the Pliocene sandstones in Xinghai, Qinghai province. XRD results show that swelling clay minerals are dominant clay minerals in the sandstones, which can be up to 97% in percentage. XRD patterns show 060 reflections of the samples occur both remarkably at 1.534 Å and 1.498 Å, indicating the samples contain physical mixtures of trioctahedral and dioctahedral swelling clay minerals, respectively. Further treatment of Li-300 degrees C heat and glycerol saturation shows the swelling clay minerals collapse to 9.3-9.9 Å with a partial expansion to -18 Å. This indicates the swelling clay minerals dominate montmorillonite and contain minor saponite. The montmorillonite shows no swelling after Li-300 degrees C heat and glycerol saturation because of Li+ inserting into the octahedral layers, which balances the layer charge caused by the substitution of Mg to Al. FTIR results show the samples are composed of a kind of phyllosilicate with absorbed and structural water, which is in agreement with the results of XRD. Absorbed peaks at 913, 842, 880 cm(-1), corresponding to OH associated with Al-Al, Al-Mg, and Al-Fe pairs, further indicates the minerals are dominant dioctahedron in structure. Meanwhile, absorbed peaks at 625 and 519 cm(-1), corresponding to coupled Si-O and Al-O-Si deformation, indicates parts of Si is replaced by Al in tetrahedron. The spectral characteristics of the samples are against the presence of beidellite and nontronite based on the results of XRD and FTIR, while demonstrating an,existence of montmorillonite. This study, to distinguish the specific species of swelling clay species in clay minerals, would be of great importance when using clay mineralogy to interpret provenance and climatic information.

  6. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.

    PubMed

    Pu, Xunchi; Cutright, Teresa J

    2006-08-01

    Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.

  7. Impact of clay minerals on sulfate-reducing activity in aquifers

    USGS Publications Warehouse

    Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.

    2004-01-01

    Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

  8. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  9. Thermal neutron absorption cross section and clay mineral content for Miocene Carpathian samples

    PubMed

    Woznicka

    2000-12-01

    A correlation between the thermal neutron absorption cross section and the clay volume for samples from the chosen geological region is discussed. A comparison of the calculated and measured absorption cross sections as a function of clay volume allows an estimate to be made on the presence of highly absorbing impurities in clays. From the example presented, it was deduced that 105 ppm of B or 25 ppm of Gd in the clay minerals in the samples tested would be sufficient to explain the difference between the experimental and calculated cross sections.

  10. Evaluation of the medicinal use of clay minerals as antibacterial agents

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.

    2010-01-01

    process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  11. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-07-28

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  12. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    PubMed Central

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  13. Clay mineral particles as effficient carriers of methylene blue used for antimicrobial treatment.

    PubMed

    Bujdák, Juraj; Jureceková, Jana; Bujdákova, Helena; Lang, Kamil; Sersen, Frantisek

    2009-08-15

    There is a strong demand to identify new strategies for disinfection and treatment of human, animal, and plant pathogens. The presented work shows the potential of clay minerals to contribute to the development of novel disinfection materials. Enhanced antimicrobial effect of a photoactive organic dye, methylene blue (MB), in the colloids of clay mineral was observed. Singlet oxygen (1O2) formed upon visible light irradiation was detected directly using luminescence measurements atthe near-infrared region and by spin-trapping method. While MB adsorbed on clay colloid particles lost the ability to produce 1O2 due to molecular aggregation, surprisingly, the antimicrobial activity was significantly enhanced. Under visible light irradiation, MB/clay minerals dispersions prevented the sporulation of A. niger and Penicillium sp. and inhibited the growth of C. albicans by an additional 6-15% when compared with MB solution. In the experiments with E. coli, the efficiency of MB was increased by the reduction of surviving cells by 27 and 33%. S. aureus proved to be the most susceptible to MB/clay dispersions. Only less than 20% cells survived with respect to the control experiment at the low MB concentration (1.1 x 10(-6) mol dm(-3)). The contradiction between the significant antimicrobial properties of MB in clay colloidal systems and low 1O2 formation can be explained in terms of the photosensitization mechanism. The role of clay particles is most likely to promote the contact between microorganism cells and photoactive MB. Although the dye directly bound to the clay surface exhibits significantly reduced photoactivity, the presence of clay mediates the delivery of dye molecules on the surface or inside cells. The results indicate new perspectives of potential implementations of clay minerals as parts of complex disinfection materials for industrial applications or in understanding similar processes in nature.

  14. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  15. Potential bioavailability of mercury in humus-coated clay minerals.

    PubMed

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.

  16. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  17. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was first order with respect to both the initial Al concentration and the clay surface area. Changes in pH within this narrow range had virtually no effect on adsorption rate. This zero order reaction dependence suggested that the H/sup +/, compared to Al, has a weak affinity for the surface. The rates of adsorption decreased in the order of montmorillonite > kaolinite > vermiculite when compared on the basis of equal surface areas, but changed to kaolinite > montmorillonite > vermiculite when the clays were compared on an equal exchange capacity basis. The calculated apparent activation energies were < 32 kJ mol/sup -1/, indicating that over the temperature range of the study the adsorption process is only marginally temperature sensitive. The mechanism is governed by a simple electrostatic cation exchange involving outer sphere complexes between adsorbed Al and the clay surface. Vermiculite, may have a second reaction step governed by both electrostatic attraction and internal ion diffusion. Equilibrium constants for the formation of an adsorbed Al clay complex were also estimated and are 10/sup 5.34/, 10/sup 5.18/, and 10/sup 4.94/ for kaolinite, montmorillonite, and vermiculite, respectively, suggesting that these clays could play a significant role in controlling soil solutions Al concentrations.

  18. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  19. The Efficiency of 24 Minerals as Deposition Ice Nuclei: Focus on Feldspars, Clays and Metals

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J.; Ladino Moreno, L.; Abbatt, J.

    2013-12-01

    While the ice nucleating abilities of clay minerals have been extensively studied, those of the more minor mineralogical components of mineral dust have not been as widely examined. As a result, the deposition ice nucleating abilities of 24 atmospherically-relevant mineral samples were investigated using the University of Toronto continuous flow diffusion chamber at -40.0 × 0.3oC, using the same particle size (200nm) and preparation procedure throughout. The pure minerals' ice nucleating efficiencies were compared to those of complex mixtures (Arizona Test Dust and Mojave Desert Dust) and to that of lead iodide, which in the past was a prospective cloud seeding agent. Requiring a relative humidity with respect to ice (RHi) of 122.0 × 2.0% to activate 0.1% of the particles, lead iodide was the most efficient ice nucleus (IN) considered. Mojave Desert Dust (RHi 126.3 × 3.4%) and Arizona Test Dust (RHi 129.5 × 5.1%) exhibited lower but comparable activities. Through the analysis of a series of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and other metal-containing species), and feldspar minerals (orthoclase, plagioclase) it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 × 6.3% and 136.2 × 1.3%, respectively. The presence of feldspars (most notably orthoclase) may play a large role in the deposition IN efficiencies of mineral dusts in spite of their lower percentage in composition relative to clay minerals. By contrast, most metal oxides, sulfide and sulfates were poor ice nuclei.

  20. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  1. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    NASA Astrophysics Data System (ADS)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  2. Estimation of the standard molal heat capacities, entropies and volumes of 2:1 clay minerals

    NASA Astrophysics Data System (ADS)

    Ransom, Barbara; Helgeson, Harold C.

    1994-11-01

    The dearth of accurate values of the thermodynamic properties of 2:1 clay minerals severely hampers interpretation of their phase relations, the design of critical laboratory experiments and geologically realistic computer calculations of mass transfer in weathering, diagenetic and hydrothermal systems. Algorithms and strategies are described below for estimating to within 2% the standard molal heat capacities, entropies, and volumes of illites, smectites and other 2:1 clay minerals. These techniques can also be used to estimate standard molal thermodynamic properties of fictive endmembers of clay mineral solid solutions. Because 2:1 clay minerals like smectite and vermiculite are always hydrated to some extent in nature, contribution of interlayer H 2O to their thermodynamic properties is considered explicitly in the estimation of the standard molal heat capacities, entropies, and volumes of these minerals. Owing to the lack of accurate calorimetric data from which reliable values of the standard molal heat capacity and entropy of interlayer H 2O can be retrieved, these properties were taken in a first approximation to be equal to those of zeolitic H 2O in analcite. The resulting thermodynamic contributions per mole of interlayer H 2O to the standard molal heat capacity, entropy, and volume of hydrous clay minerals at 1 bar and 25°C are 11.46 cal mol -1, 13.15 cal mol -1 K -1 and 17.22 cm 3 mol, respectively. Estimated standard molal heat capacities, entropies and volumes are given for a suite of smectites and illites commonly used in models of clay mineral and shale diagenesis.

  3. Characterization of Clay Minerals and Kerogen in Alberta Oil Sands Geological End Members

    NASA Astrophysics Data System (ADS)

    Zheng, Limin

    The high degree of variability of oil sands ores can be attributed to a mixture of different geological end members, i.e., estuarine sand, estuarine clay, marine sand and marine clay. This study focused on the mineralogy, especially of clay minerals, and toluene insoluble organic matter, referred to as kerogen, in different oil sands end members. Clays and kerogens will likely have a significant impact on solvent recovery from the gangue following non-aqueous bitumen extraction. The bitumen-free solids were subjected to mineralogical and geochemical analysis. Kerogens were isolated and analyzed by various characterization methods. The types of clays were identified in oriented samples by X-ray diffraction analysis. The nitrogen to carbon ratio in the isolated kerogens is found to be higher than in bitumen. There are more type III kerogens in estuarine samples and more type II kerogens in marine samples.

  4. Molecular dynamics simulations of water, solution, and clay mineral-water systems (Invited)

    NASA Astrophysics Data System (ADS)

    Kawamura, K.

    2009-12-01

    Clays and clay minerals together with zeolites are major mineral components in the earth's surface environment. These minerals interact with the atmosphere, natural water, inorganic and organic components in soils, etc. Physicochemical processes in the surface region are generally complex and difficult to understand because of the complicated "molecular" structures and the ambient conditions under wet circumstances. We have investigated the structure and physical/dynamical properties of the mineral-gas/liquid systems by means of molecular simulation methods; molecular dynamics and Metropolis Monte Carlo methods. Swelling of smectite and adsorption of inorganic molecules in clay minerals and zeolites, etc. were simulated and analyzed on the basis of the atomic and molecular processes. We have developed atomic and molecular interaction models of inorganic systems. The models compose of electrostatic, short range repulsive, van der Waals and covalent (radial and angular) terms with respect to all the elements appeared in the mineral-water systems. All of our molecular dynamics simulations (MD) were performed with full degree of freedom of atom motions. Using the model for H2O molecule, the structure and physical properties such as density, diffusion coefficients, etc. of ice polymorphs and water are well reproduced. Alkaliharide aqueous solutions and gas hydrates and their (hydrophobic) solutions are also reasonably simulated. Clay mineral-water interactions are particularly important to understand the mechanical and chemical processes in the environments, in order to develop nano-composite materials, and to use clays in engineering applications. Absorption and swelling are the most remarkable properties of clay minerals, specially smectite. We have investigate these properties by means of molecular simulation methods using various clay minerals-water/solution systems. The swelling curves, the relation between humidity and the basal spacings, were reproduced

  5. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  6. Interaction of surface-modified silica nanoparticles with clay minerals

    NASA Astrophysics Data System (ADS)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-11-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  7. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    NASA Astrophysics Data System (ADS)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  8. Clay minerals in Northern Plains coal overburden as measured by X-ray diffraction

    SciTech Connect

    Klages, M.G.; Hopper, R.W.

    1982-03-01

    Mathematical models were tested for changing x-ray diffraction data to percentages of clay minerals in coal overburden. Various factors for adjusting peak areas were tested on 50 eastern Montana samples that contained smectite, illite, and daloinite, with lesser amounts of other minerals. Cation exchange capacities (CEC) of the clays were estimated from the calculated mineral percentages and correlated against measured CEC. The best model gave in r/sup 2/ of 0.89. It was used for estimating clay mineralogy at six mine sites in the Northern Great Plains. Average mineral contents in the surface 8 to 38 m of five of seven drill holes in the Montana-Wyoming border area were 40% smectite, with 20% each of illite and kaolinite. Clays from greater depths in the same area had no smectite and an average of 50% each of illite and kaolinite. All samples from a mine in central North Dakota were high in swelling clay, with an average of 60% smectite and 10% vermiculite.Samples from four holes at a mine in eastern Wyoming were all high in kaolinite, having an average of 50% with 30% illite and 10% interstratified smectite-vermiculite.

  9. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    PubMed

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  10. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    NASA Astrophysics Data System (ADS)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  11. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    SciTech Connect

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce W.; Kovarik, Libor

    2014-05-15

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  12. Geochemical constraints on the presence of clay minerals in the Burns formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Cino, C. D.; Dehouck, E.; McLennan, S. M.

    2017-01-01

    Burns formation sandstones, deposited by aeolian processes and preserved at Meridiani Planum, Mars, contain abundant sulfate minerals. These sedimentary rocks are thought to be representative of a sulfate-rich geological epoch during late Noachian - early Hesperian time that followed an earlier clay-rich epoch. Twenty Burns formation targets, abraded by the Rock Abrasion Tool (RAT) and for which alpha-particle X-ray spectrometry (APXS) and Mössbauer spectroscopy data are available, were selected for geochemical modeling. A linear unmixing modeling approach was employed. Mineralogical constituents quantitatively constrained by Mössbauer and Mini-TES spectroscopy and interpreted to be chemically precipitated from aqueous fluids during deposition and/or early diagenesis were subtracted from the bulk chemistry. Resulting residual chemical compositions, interpreted to be dominated by detrital siliciclastic components and representing ∼21-35% of the rocks, were then geochemically evaluated to constrain the potential for the presence of clay minerals or their poorly-crystalline or non-crystalline precursors/chemical equivalents. Calculations incorporated a robust estimate of the uncertainties in mineral abundances. On Al2O3 - (CaO+Na2O) - K2O (A-CN-K) and Al2O3 - (CaO+Na2O+K2O) - (FeOtotal+MgO) (A-CNK-FM) molar ternary diagrams, removal of chemical constituents resulted in a shift from igneous-like compositions to compositions consistent with secondary mineral assemblages containing significant aluminous clay mineral components. All of the residual compositions are corundum-normative, further supportive of the presence of highly aluminous phases. On the A-CNK-FM diagram, clay minerals plotting closest to the residual field are natural montmorillonites but could also represent mixtures of various Mg/Fe-rich phyllosilicates, such as nontronite or saponite, and other more Al-rich minerals such as Al-montmorillonite, kaolinite or illite. Depending on the age of clay

  13. Atomic-level studies of the depletion in reactive sites during clay mineral dissolution

    NASA Astrophysics Data System (ADS)

    Sanders, Rebecca L.; Washton, Nancy M.; Mueller, Karl T.

    2012-09-01

    Clay mineral dissolution rates can continuously decrease over time as reactive sites located on edges are preferentially depleted under certain pH conditions. Changes in reactive surface area and the difficulties in quantifying this elusive variable have been cited as one key reason for the complexity in developing accurate rate equations for the dissolution of clay minerals. Recently, a solid-state nuclear magnetic resonance (NMR) method has been proposed for counting the number of reactive surface sites on a defined quantity of a clay mineral. Using this solid-state NMR proxy, changes in reactive surface area were monitored for a series of batch dissolution experiments of low-defect kaolinite KGa-1b and Ca-rich bentonite STx-1b, a montmorillonite-rich clay containing an opal-CT impurity, at 21 °C and initial pH 3. Kaolinite specific surface area as determined from BET gas isotherm data did not change within error during 80 days of dissolution whereas bentonite specific surface area decreased rapidly to about 50% of the original value as interlayer cation concentrations changed. The solid-state NMR proxy revealed decreases in the number of reactive surface sites per gram of kaolinite and bentonite as a function of dissolution time, presumed to be from the preferential dissolution of reactive sites on edges at initial pH 3. This depletion of reactive edge sites can be tied to a concomitant decrease in the rates of release of Si and Al into solution. The quantity of reactive sites can be used to estimate the dissolution rates of kaolinite and bentonite as well as estimate trends in dissolution rates of other clay minerals. These results further highlight the need to quantify the number of reactive sites present on a per gram basis as well as characterize their depletion with time to develop and use dissolution rate models for clay minerals and other heterogeneous materials in the environment.

  14. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.

    PubMed

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César

    2013-09-10

    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water.

  15. Experimental Constraints on Microbial Liberation of Structural Iron from Common Clay Minerals in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S. W.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2013-12-01

    Iron is a limiting nutrient in many marine settings. The marine Fe-cycle is complex because Fe may be used as an electron donor or acceptor and cycled many times before ultimate burial in sediments. Thus, the availability of iron plays a large role in the marine carbon cycle, influencing not only the extent of primary productivity but also the oxidation of organic matter in sediments. The primary constituents of marine sediments are clay minerals, which commonly contain lattice-bound Fe in octahedral sites. In marine settings, the pool of Fe bound within silicate mineral lattices has long been considered reactive only over long timescales, and thus non-bioavailable. In vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe (III) from the crystal lattice of nontronite, an uncommon but particularly Fe-rich (> 12 wt.%) smectite. Importantly, this process is capable of liberating Fe (II) to solution, where it is available to biotic processes as an electron donor. In order to constrain the capacity of naturally-occurring marine bacteria to liberate structurally-coordinated Fe from the lattices of common clay minerals, we exposed a suite of 16 different clay minerals (0.8-13.9 wt.% Fe) to lab cultures of known Fe-reducer S. onenidensis MR-1 and to a natural consortium of Fe-reducing microbes from the San Pedro and Santa Monica Basins over timescales ranging from 7-120 days. Clay minerals were treated with Na-dithionite to extract surface-bound Fe prior to exposure. Crystallographic data and direct measurements of Fe in solution demonstrate the release of structural Fe from all clay minerals analyzed. Neoformation of illite and amorphous quartz were observed. The array of clay minerals and microbes used in this experiment complement past findings and suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly

  16. Clay minerals in Alpine Fault gouge: First results from the DFDP-1B pilot hole

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.

    2012-12-01

    Clay mineralization is increasingly recognized as a key process along fault systems in the upper crust. The Alpine Fault in New Zealand is a major active fault zone with locally large earthquakes. Samples from this fault zone offer excellent opportunity to investigate recent and ancient rupture zones, and the mechanical role of clay mineral transformations and fluid-rock interactions in particular. The Alpine Fault drilling project (DFDP-project) on the South Island of New Zealand sampled two shallow pilot holes; DFDP-1A was drilled down to 100.6 m and DFDP-1B drilled down to 151.4 m. Five samples from borehole DFDP-1B have been investigated by X-ray diffraction, X-ray texture goniometry and electron microscopy. These samples were taken at ~143.3 m (sections 69_2 to 69_2) and ~128.1 m depth (sections 59_1 to 59_1); the latter is the area of principal slip. The bulk rock mineralogy shows similar compositions in all samples with quartz, phyllosilicates (muscovite, chlorite), calcite, zeolite and clay minerals; the dominant clay phases in all samples are illite and chlorite. Importantly, abundant discrete smectite is uniquely present in gouge zones at sections 69_2 (~143.4 m) and 59_1 (~128.1 m). Smectite was likely formed by dissolution-precipitation reactions during displacement and movement of aqueous fluids along permeable fractures, at the expense of host rock minerals. Electron microscopy of fault gouge at section 69_2 shows small illite and smectite particles with pseudo-hexagonal shapes and variable amounts of K, Ca, Mg and Fe, growing adjacent to each other. Some distinct illite and smectite mineral veins form epitaxially on quartz-feldspar mineral surfaces. Clay fabric intensity, measured by X-ray goniometry, is higher outside the gouge zones (true cataclasite, section 69_1) with average fabric intensities of m.r.d. 3.5. Both gouge zones at sections 59_2 and 69_1 exhibit uniformly weak fabrics for illite and chlorite (m.r.d. ~2.5 on average). The weak

  17. Cambrian burgess shale animals replicated in clay minerals

    PubMed

    Orr; Briggs; Kearns

    1998-08-21

    Although the evolutionary importance of the Burgess Shale is universally acknowledged, there is disagreement on the mode of preservation of the fossils after burial. Elemental mapping demonstrates that the relative abundance of elements varies between different anatomical features of the specimens. These differences reflect the compositions of the minerals that replicated the decaying organism, which were controlled by contrasts in tissue chemistry. Delicate morphological details are replicated in the elemental maps, showing that authigenic mineralization was fundamental to preserving these fossils, even though some organic remains are also present.

  18. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  19. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron availability

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Achterberg, E. P.

    2014-06-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. The nano-thin platelets included illite, smectite, illite-smectite mixed layers and their nanoscale mixtures (illite-smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on microgrids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than in Asian dust, while Asian dust was more enriched in chlorite. The average Fe / Si, Al / Si and Fe / Al molar ratios of the clay minerals, compared to previously reported chemistries of mineral dusts and leached solutions, indicated that dissolved Fe originated from clay minerals. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite are important sources of available Fe in

  20. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  1. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  2. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  3. Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis

    NASA Astrophysics Data System (ADS)

    Churchman, G. Jock

    Data in the literature for soils that are dominated by each of the main types of clay minerals were examined and compared with those for reference clay minerals of the same types to determine the extent to which the nature and properties of clay-size minerals in soils could be explained by those of clay minerals with the same name from non-soil, ‘geological’ environments. Published information on soils from Australia, New Zealand and Iran was sourced for this study. The clay fractions of each of the soils are dominated by either one of the common phyllosilicates: kaolinite, halloysite, illite/mica, vermiculite, smectite, and palygorskite, or by the nanocrystalline mineral, allophane. Data for samples of kaolinite that had been extracted from soils from several countries (Australia, Thailand, Indonesia and Brazil) and purified before characterization have also been examined. In soils, each dominant clay mineral is generally associated with other materials, including iron oxides, other phyllosilicates and/or nanocrystalline minerals and organic matter. As the most studied example of an extracted phyllosilicate, kaolinite shows a wide range of properties in different soils, but a narrower range of properties within a particular locality. However, almost all of the soil kaolinites studied have larger specific surface areas and higher cation exchange capacities than reference kaolinites. The literature also reveals that, among phyllosilicates in soils, illites have a wide range of potassium contents, expandable minerals (vermiculites and smectites) may be interlayered by hydroxy-Al species particularly, and smectitic layers often occur interstratified with other layers, including those of illite, kaolinite and halloysite. The variability of soil phyllosilicates and their common association with other, often poorly crystallized but highly reactive minerals and compounds can be explained by their formation in the highly heterogeneous and dynamic soil environment

  4. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    PubMed Central

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  5. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  6. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content

    NASA Astrophysics Data System (ADS)

    Cherblanc, F.; Berthonneau, J.; Bromblet, P.; Huon, V.

    2016-06-01

    The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

  7. Clay mineral formation on Mars: Chemical constraints and possible contribution of basalt out-gassing

    NASA Astrophysics Data System (ADS)

    Berger, Gilles; Meunier, Alain; Beaufort, Daniel

    2014-05-01

    We focus on processes possibly occurring on Mars that could affect sufficiently large volumes of rocks to be detected by remote sensing techniques. When compared with the chemical modelling of water-rock interactions, the petrographic and mineralogical characteristics of clay deposited in the prismatic joints of a lava flow from the Parana basin (Brazil) suggest that the clay fraction of lava flows may be formed at least partly during an early post-magmatic stage associated with the degassing of acid volatiles. In view of the literature concerning other contexts, such as meteorites or experimental syntheses, we conclude that the crystallization of anhydrous mafic minerals and the formation of clay mineral are not systematically mutually exclusive phenomena. While clay formation is generally related to chemical reaction pathways, it is not necessarily due to the alteration of pre-existing silicates. Such post-magmatic reactions, even if they are likely to represent only a minor contribution to Martian clay formation limited to early Noachian times, require much lower amounts of water compared to conventional hydrothermal alteration or weathering systems. The products of these reactions can be detected over large surface areas, as in the case of the Mars sites, thus allowing us to envisage a greater diversity of paleogeographic scenarios for Early Mars.

  8. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    SciTech Connect

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

    2011-07-01

    99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0.4 %). The

  9. Leaching of clay minerals in a limestone environment

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1959-01-01

    Water saturated with CO2 at about 25??C was percolated through mixed beds of limestone or marble fragments and montmorillonite, "illite" and kaolinite in polyethylene tubes for six and fortyfive complete runs. The leachates were analysed for SiO2, A12O3 and Fe2O3, but only SiO2 was found. The minerals lost SiO2 in this order: montmorillonite > kaolinite > "illite". The differential removal of SiO2 during the short period of these experiments suggests a mechanism for the accumulation of bauxite deposits associated with limestones. ?? 1959.

  10. Genesis of clay mineral assemblages and micropaleoclimatic implications in the Tertiary Powder River Basin, Wyoming

    SciTech Connect

    Flores, R.M.; Weaver, J.N. ); Bossiroy, D.; Thorez, J. )

    1990-05-01

    An x-ray diffraction (XRD) study was undertaken on the clay mineralogy of the early Tertiary coal-bearing sequences of the Powder River basin. The vertical and lateral distribution of alternating fluvial conglomerates, sandstones, mudstones, shales, coals, and paleosols reveals a transition from alluvial fans along the basin margin to an alluvial plain and peat bogs basinward. Samples included unweathered shales and mudstones from a borehole and a variety of corresponding surface outcrop samples of Cambrian to Eocene age. Samples older than Tertiary were collected along the basin margin specifically to determine the potential source of parent material during Tertiary sedimentation. XRD analyses were performed on the <2-{mu}m fraction prepared as oriented aggregates. To investigate the materials in their natural state, no chemical pre-treatments the authors applied before the analysis. A series of specific post-treatments, consisting of catonic saturation (Li+, K+), a solution with polyalcohols, heating, acid attack and hydrazine saturation was selectively applied. These post-treatments permit a good discrimination between the mimetic clay minerals such as smectite and illite-smectite mixed layers that constitute the bulk of the clay fraction in the Tertiary rocks. When analyzed only using routine XRD, these swelling minerals are apparently uniformly distributed in the fluvial sedimentary rocks and are better interpreted as a single smectitic population. However, the post-treatments clearly differentiate both qualitatively and quantitatively this smectitic stock. Other clays include illite and kaolinite, which have different degrees of crystallinity, and minor interstratified clays (i.e., illite-chlorite, chlorite-smectite). The clay minerals in pre-Tertiary (and pedogenic) materials are different from those in the Tertiary rocks.

  11. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids

    PubMed Central

    Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti

    2017-01-01

    Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10–200 mg l−1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution. PMID:28358048

  12. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  13. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  14. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    PubMed Central

    Warr, Laurence N.; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J.; Basirico, Laura M.; Olson, Gregory M.

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  15. Effect of clay minerals present in aquifer soils on the adsorption and desorption of hydrophobic organic compounds

    SciTech Connect

    Ghosh, D.R. ); Keinath, T.M. )

    1994-02-01

    Adsorption of hydrophobic organic compounds (HOCs) onto clay minerals and organic matter present in soils results in retarding their mobility. To study the impact of clay minerals on HOC sorption, kinetic and equilibrium studies were performed using naphthalene as a test surrogate contaminant. The results of these studies indicated that expandable clay minerals (clays that expand and expose large internal surface area on wetting), such as montmorillonite and vermiculite, had a significant impact on naphthalene partitioning. A mathematical model was developed from the equilibrium data which related clay mineral concentrations with the naphthalene partition coefficient. Equilibrium desorption studies were also performed by adding a micellar solution of a surfactant mixture (50:50) of Tween 20 and Aerosol AY-65 to mobilize the adsorbed naphthalene. The surfactant mixture was generally unable to mobilize the sorbed contaminant due to sorption irreversibility and adsorption hysteresis. 36 refs., 1 fig., 5 tabs.

  16. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  17. Laboratory studies on the heterogeneous chemistry of clay minerals in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Mashburn, Courtney Dyan

    Atmospheric mineral aerosol is a potentially important reactive surface that may provide a heterogeneous sink for gas phase species such as nitric acid and oxygenated organic compounds in the Earth's troposphere. Smectite clays, such as montmorillonite, are particularly interesting reactive surfaces because they are commonly found in the atmosphere and have a unique ability to swell. The swelling properties of montmorillonite allow for substantial adsorbed water under humid conditions, possibly promoting further reactivity. The heterogeneous uptake of water, nitric acid and a series of small organic acids on Na-montmorillonite clay under upper tropospheric temperatures and humidities was studied in a high vacuum chamber equipped with a quadrupole mass spectrometer (MS) and a transmission Fourier transform infrared (FT-IR) spectrometer used to detect the gas and condensed phases, respectively. Water adsorption on montmorillonite clay was measured using FT-IR as a function of relative humidity (RH) with respect to liquid water at temperatures from 212 to 232 K. The specific surface area and adsorbed water content of the swollen clay were determined and are consistent with previous results from gravimetric methods at room temperature. Thus, water adsorption appears to be independent of temperature down to upper tropospheric temperatures. However, the amount of adsorbed water and swollen surface area was found to increase significantly as the RH was raised. Na-montmorillonite was found to contain 10% water by mass at 50% RH and the observed growth curve is comparable to that of ammonium sulfate, a well characterized hygroscopic species. Thus, swelling clays entrained in the Earth's atmosphere may be important cloud condensation nuclei and may indirectly affect the Earth's climate. The heterogeneous uptake of the C1 to C4 organic acids on Na-montmorillonite clay was studied at 212 K as a function of RH, from 0% to 45% RH, organic acid pressure and clay mass. While the

  18. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.

    PubMed

    Wang, Xiaoli; Li, Yu

    2011-05-30

    Clay minerals in surficial sediment samples, collected from the Songhua River in China, were separated via sedimentation after removal of Fe/Mn oxides and organic materials; Cu and Zn adsorption onto the sediment components was then evaluated. Clay minerals were examined via X-ray diffraction and scanning electron microscopy. Clay minerals were found to consist mainly of illite, kaolinite, chlorite and an illite/smectite mixed layer. Non-clay minerals were dominated by quartz and orthoclase. The retention of Cu and Zn by clay minerals was 1.6 and 2.5 times, respectively, greater than that of the whole, untreated surficial sediment. Compared to the other critical components in sediments related to metal sorption (Mn oxides, Fe oxides and organic materials), the adsorption capacity of clay minerals was found to be relatively lower on a unit mass basis. These data suggest that, although clay minerals may be important in the adsorption of heavy metals to aquatic sediments, their role is less significant than Fe/Mn oxides and organic materials.

  19. Reactive Clay Minerals in a land use sequence of disturbed soils of the Belgian Loam Belt

    NASA Astrophysics Data System (ADS)

    Barao, Lucia; Vandevenne, Floor; Ronchi, Benedicta; Meire, Patrick; Govers, Gerard; Struyf, Eric

    2014-05-01

    Clay minerals play a key role in soil biogeochemistry. They can stabilize organic matter, improve water storage, increase cation exchange capacity of the soil (CEC) and lower nutrient leaching. Phytoliths - the biogenic silica bodies (BSi) deposited in cell walls of plants - are important Si pools in soil horizons due to their higher solubility compared to minerals. They provide the source of Si for plant uptake in short time scales, as litter dissolves within soils. In a recent study, we analyzed the BSi pool differences across a set of different land uses (forests, pastures, croplands) in 6 long-term disturbed (multiple centuries) soil sites in the Belgium Loam Belt. Results from a simultaneous chemical extraction in 0.5M NaOH of Si and Al, showed that soils were depleted in the BSi pool while showing high levels of reactive secondary clay minerals, mainly in the deeper horizons and especially in the forests and the croplands. During the extraction, clays were similar in reactivity to the biogenic pool of phytoliths. In order to study the kinetics in a more natural environment, batch dissolution experiments were conducted. Samples from different soil depths for each land use site (0.5 g) were mixed with 0.5 L of demineralised water modified to pH 4, 7 and 10. Subsamples of 2 ml were taken during 3 months. In the end of the period, results for pH 7 showed that in the pastures, where reactive clays were almost absent, the ratio Si/RSi (defined as the Si concentration in the end of the batch experiment divided by the reactive silica extracted from the soil with the alkaline extraction) was lower than 0.005%. The same ratio was higher in the mineral horizons of forests (Si/RSi>0.01%) and croplands (0.005% < Si/RSi <0.01%) where clay minerals were the dominant fraction. These preliminary results highlight the clay minerals' strong potential for Si mobilization. More attention should be paid to this important fraction as it can contribute strongly to Si availability

  20. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions.

    PubMed

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Kabra, Akhil N; Kurade, Mayur B; Lee, Dae S; Jeon, Byong-Hun

    2015-12-01

    Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.

  1. Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Khitrov, N. B.

    2016-12-01

    Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica-hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica-hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica-smectite interstratifications is higher. An eluvial-illuvial distribution of clay fraction in solonetzes is accompanied by the acid-alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10-30%) of smectitic phase represented by chlorite-smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30-50%) of smectitic phase represented by mica-smectite interstratifications, the similar decrease (by 10-20%) in the content of smectitic phase does not result in its

  2. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean.

    PubMed

    Kennedy, Martin J; Wagner, Thomas

    2011-06-14

    The majority of carbon sequestration at the Earth's surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m(2) g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m(-2) when compared to 0.4 mg-OC m(-2) for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10-18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land-sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic.

  3. Subsurface water and clay mineral formation during the early history of Mars.

    PubMed

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  4. Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra

    NASA Astrophysics Data System (ADS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2015-09-01

    Quantitative estimates of clay minerals on the martian surface, via remote sensing observations, provide constraints on activity, timing, duration, and extent of aqueous processes and the geochemical environment in martian history. We describe an analytical study to begin enabling quantitative estimates of phyllosilicates when mixed with martian analog materials. We characterize the chemistry, mineralogy, particle size distribution, and reflectance spectra of the end-member materials: saponite, montmorillonite, pyroxene, and palagonitic soil. Reflectance spectra were obtained for physical mixtures of saponite and montmorillonite with pyroxene, and saponite with palagonitic soil. We analyzed the diagnostic phyllosilicate spectral signatures in the 2.2-2.4 μm wavelength region in detail for the mixtures. This involved fitting the observed ∼2.3 or ∼2.2 μm band depth, associated with the presence of saponite and montmorillonite, respectively, as a function of the abundance of these materials in the mixtures. Based upon the band depth of the spectral features we find that 3-5 wt.% of the clay minerals in the mixture with pyroxene can be recognized and at 25 wt.% their presence is indisputable in the mixtures. When the saponite is mixed with the lower albedo palagonitic soil, its presence is clearly distinguishable via the 1.4 and 2.3 μm features at 25 wt.% abundance. These relationships, between abundance and band depth, provide an ability to quantitatively address the amount of these materials in mixtures. The trends described here provide guidance for estimating the presence of phyllosilicates in matrices on the martian surface.

  5. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites

    USGS Publications Warehouse

    May, Howard M.; Klnniburgh, D.G.; Helmke, P.A.; Jackson, M.L.

    1986-01-01

    Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ?? 0.35) ?? 107. The experimentally determined Gibbs free energy of formation (??Gf,2980) for the kaolinite is -3,789.51 ?? 6.60 kj mol-1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ??Gf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ??Gf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ??Gf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions. ?? 1986.

  6. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    PubMed Central

    Hunter, W. R.; Battin, T. J.

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  7. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    PubMed

    Hunter, W R; Battin, T J

    2016-08-02

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  8. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  9. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  10. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Achterberg, E. P.

    2014-11-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. Chemical compositions and lattice fringes of the nano-thin platelets suggested that they included illite, smectite, illite-smectite mixed layers, and their nanoscale mixtures (illite-smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on micro-grids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than Asian dust, while Asian dust was more enriched in chlorite. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite, are probably important sources of Fe to remote marine ecosystems. Further detailed analyses of the mineralogy and chemistry of clay minerals in global mineral dusts are required to evaluate the

  11. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because

  12. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    NASA Astrophysics Data System (ADS)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  13. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    PubMed Central

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-01-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments. PMID:28233805

  14. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments.

    PubMed

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-24

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs(+) and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs(+) mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs(+) extractability measurements show that the increase of aluminization is accompanied by an increase in Cs(+) mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs(+) in vermiculite layers is poorly mobile, while the extractability of Cs(+) is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs(+) mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  15. Experimental study of Frictional property of siliceous shale from the viewpoint of clay mineral fabric

    NASA Astrophysics Data System (ADS)

    Wada, E.; Takemura, T.

    2015-12-01

    There exist slate cleavages in siliceous shale distributed in Tamba-belt located southwest Japan, belonging to Jurassic accretionary complexes, which is formed by a unique geological process. Tamba belt is classified into the complexes of the Type I and II Suites. It is well known that the siliceous shale mined from Type I Suite of Tamba belt is of high-quality as natural whetstone. In this study, we analyzed the relationship between the accretionary prism geology and topography of the study area in order to characterize the distribution of the siliceous shale. We measured illite crystallinity (IC) in order to consider the deformation process, metamorphic conditions, and clay mineral fabric. The value of IC and clay mineral fabric are deemed to be related to frictional properties.

  16. Removal of methylene blue from aqueous solution by fibrous clay minerals.

    PubMed

    Hajjaji, M; Alami, A; El Bouadili, A

    2006-07-31

    Kinetics and equilibrium processes of the methylene blue (MB) retention from aqueous solution by a mixture of fibrous clay minerals, which was isolated from a naturally occurring clay, were investigated. For these purposes, the effects of contact time, initial adsorbate concentration, adsorbent content, pH and ionic strength were determined. The results show that the MB retention obeys a pseudo-first order equation and the process is a diffusion controlled solid-state reaction. Moreover, the isotherm data fitted the Langmuir equation and the MB binding process became more energetic with the increase of the adsorbent concentration. In addition, the augmentation of the clay content or the initial MB concentration reduced the adsorption capacity, presumably because of the clay particles microaggregation and/or the occurrence of MB deriving species. On the other hand, it is observed that the MB uptake limit is reduced in low acid pH, particularly below the PZC, as well as in ionic strengthen solutions. These facts are linked to the silanol group protonation and to the reduction of the electrostatic forces induced by the clay particles, respectively.

  17. Importance of Tetrahedral Iron during Microbial Reduction of Clay Mineral NAu-2

    NASA Astrophysics Data System (ADS)

    Shi, B.; Wu, L.; Liu, K.; Smeaton, C. M.; Li, W.; Beard, B. L.; Johnson, C.; Roden, E. E.; Van Cappellen, P.

    2015-12-01

    Transformations between Fe(II) and Fe(III) in ferruginous clay minerals significantly impact the physicochemical properties of soils and sediments, such as the ion exchange capacity and redox potential. An increasing number of studies have focused on clay minerals that undergo redox changes, however, none have so far addressed Fe isotope fractionation during these processes. In this study, Fe isotope fractionations were determined during microbial reduction of Fe(III) in nontronite NAu-2 with different concentrations of lactate. No secondary Fe-bearing minerals, including Fe oxides, were detected by SEM in over 100 days of incubation, suggesting that the measured fractionations only reflected the net isotope effect associated with the clay minerals. The initial reduction likely started from edge sites, and the reductive dissolution released aqueous Fe(II). Basal plane sorbed Fe(II) was detectable after the extent of Fe reduction exceeded 5% and extensive electron transfer and isotope exchange had occurred between basal plane sorbed Fe(II) and structural Fe(III). With lower concentrations of the lactate(40 mM), the maximum Fe isotope fractionation was larger (∆56Febasal Fe(II)-structure Fe(III)= -4.37‰), consistent with greater adsorption than in systems with more lactate. After the Fe in reactive sites was all reduced, isotope exchange between Fe(II) and structural Fe(III) was inhibited due to blockage of electron transfer pathways by the collapse of the clay layers. The results agree with another study in our group on microbial reduction of NAu-1, despite both the smaller extent of reduction (~10% vs. 22% max bioreduction for NAu-1 and NAu-2, respectively) and smaller isotope fractionation factor than for NAu-2. We speculate that tetrahedral Fe in NAu-2 may have accelerated the electron transfer between Fe atoms, thus inducing a higher extent of reduction and a larger Fe isotope fractionation compared to NAu-1.

  18. Application of short-wave infrared (SWIR) spectroscopy in quantitative estimation of clay mineral contents

    NASA Astrophysics Data System (ADS)

    You, Jinfeng; Xing, Lixin; Liang, Liheng; Pan, Jun; Meng, Tao

    2014-03-01

    Clay minerals are significant constituents of soil which are necessary for life. This paper studied three types of clay minerals, kaolinite, illite, and montmorillonite, for they are not only the most common soil forming materials, but also important indicators of soil expansion and shrinkage potential. These clay minerals showed diagnostic absorption bands resulting from vibrations of hydroxyl groups and structural water molecules in the SWIR wavelength region. The short-wave infrared reflectance spectra of the soil was obtained from a Portable Near Infrared Spectrometer (PNIS, spectrum range: 1300~2500 nm, interval: 2 nm). Due to the simplicity, quickness, and the non-destructiveness analysis, SWIR spectroscopy has been widely used in geological prospecting, chemical engineering and many other fields. The aim of this study was to use multiple linear regression (MLR) and partial least squares (PLS) regression to establish the optimizing quantitative estimation models of the kaolinite, illite and montmorillonite contents from soil reflectance spectra. Here, the soil reflectance spectra mainly refers to the spectral reflectivity of soil (SRS) corresponding to the absorption-band position (AP) of kaolinite, illite, and montmorillonite representative spectra from USGS spectral library, the SRS corresponding to the AP of soil spectral and soil overall spectrum reflectance values. The optimal estimation models of three kinds of clay mineral contents showed that the retrieval accuracy was satisfactory (Kaolinite content: a Root Mean Square Error of Calibration (RMSEC) of 1.671 with a coefficient of determination (R2) of 0.791; Illite content: a RMSEC of 1.126 with a R2 of 0.616; Montmorillonite content: a RMSEC of 1.814 with a R2 of 0.707). Thus, the reflectance spectra of soil obtained form PNIS could be used for quantitative estimation of kaolinite, illite and montmorillonite contents in soil.

  19. DE-FG02-06ER15364: Final Technical Report Nanoscale Reactivity of Clays, Clay Analogues (Micas), and Clay Minerals

    SciTech Connect

    Nagy, Kathryn L.

    2008-07-03

    The project objectives were to determine the nanoscale to molecular scale structure of the interface between muscovite mica and aqueous solutions containing various sorbates and to explore systematics that control the incorporation of inorganic and organic chemical components during aging of nanoparticles of iron-oxides and aluminosilicate clays. The basal surface of phyllosilicates is a primary sorbent of environmental contaminants, natural organic matter, and nutrients. Micas are also superb atomically-flat substrates used in materials science and surface physics applications. We applied X-ray scattering techniques using high brilliance synchrotron radiation to investigate molecular-scale details of mica’s interface structure in solutions containing common and toxic cations, anions, and natural organic molecules. Nanoparticles are ubiquitous in the environment and have a high capacity for sorbing contaminants through the combined effects of their high surface areas and pH-dependent surface charge. Aging of nanoparticles from metastable to stable phases can be inhibited by sorption of nonstructural components, but exact mechanisms are unknown. We synthesized Fe-oxides and aluminosilicate clay minerals from aqueous solutions in the presence of selected anions, and organic molecules, and quantified the uptake of these additives during aging and some implications for nanoparticle formation.

  20. Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer

    USGS Publications Warehouse

    Shelobolina, Evgenya S.; Anderson, Robert T.; Vodyanitskii, Yury N.; Sivtsov, Anatolii V.; Yuretich, Richard; Lovely, Derek R.

    2004-01-01

    The availability of Fe(III)-bearing minerals for dissimilatory Fe(III) reduction was evaluated in sediments from a petroleum-contaminated sandy aquifer near Bemidji, Minnesota (USA). First, the sediments from a contaminated area of the aquifer, in which Fe(III) reduction was the predominant terminal electron accepting process, were compared with sediments from a nearby, uncontaminated site. Data from 0.5 m HCl extraction of different size fractions of the sediments revealed that the clay size fraction contributed a significant portion of the ‘bio-available’ Fe(III) in the background sediment and was the most depleted in ‘bio-available’ Fe(III) in the iron-reducing sediment. Analytical transmission electron microscopy (TEM) revealed the disappearance of thermodynamically unstable Fe(III) and Mn(IV) hydroxides (ferrihydrite and Fe vernadite), as well as a decrease in the abundance of goethite and lepidocrocite in the clay size fraction from the contaminated sediment. TEM observations and X-ray diffraction examination did not provide strong evidence of Fe(III)-reduction-related changes within another potential source of ‘bio-available’ Fe(III) in the clay size fraction – ferruginous phyllosilicates. However, further testing in the laboratory with sediments from the methanogenic portion of the aquifer that were depleted in microbially reducible Fe(III) revealed the potential for microbial reduction of Fe(III) associated with phyllosilicates. Addition of a clay size fraction from the uncontaminated sediment, as well as Fe(III)-coated kaolin and ferruginous nontronite SWa-1, as sources of poorly crystalline Fe(III) hydroxides and structural iron of phyllosilicates respectively, lowered steady-state hydrogen concentrations consistent with a stimulation of Fe(III) reduction in laboratory incubations of methanogenic sediments. There was no change in hydrogen concentration when non-ferruginous clays or no minerals were added. This demonstrated that Fe

  1. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters < 17 angstroms. Changes in micro porosity (relative to no heat treatment) are most significant for heat treatments 300 °C and above. Alterations are also seen in the chemical properties (CEC, XRD, iodide sorption) of clays, and like pore size distribution changes, are most significant above 300 °C. Overall, the results imply that changes seen in pores size distribution

  2. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yueh-Min; Gao, Jin-bo; Yuan, Yong-Qiang; Ma, Jun; Yu, Shen

    2016-08-01

    Clay minerals in surface sediments can affect the adsorption of heavy metals. However, few historical studies have focused on the influence of fine clay mineral characteristics on metal sorption. Since the reactions between heavy metals and fine clay minerals in sediments remain obscure, this study investigates the influence of fine clay mineral characteristics on metal sorption in a typical urbanizing small watershed. Clay minerals, including nanoparticles with various size fractions ranging from 1000 to 2000 (clay), 450-1000 (fine clay), and 220-450 (very fine clay) nm were used to demonstrate their transformation from well crystalline to poorly crystalline. The nanoparticles were collected and evaluated by determination of their surface area, X-ray diffraction, scanning electron microscopy (SEM) and chemical analyses. The relationship between metal content and properties of the surface sediments was also revealed by canonical correlation analysis. With smaller particle sizes, nanoparticles (very fine clay) were observed to be poorly crystalline, possibly indicating few repetitions of unit cells as a result of preferential structural disruption of other crystal planes caused by pressure-induced phase transition in the fine-size fractions. The first canonical matrix (M) variables of metal contents can be predicted by both surface area and pore volume, followed by kaolinite and illite contents. On the other hand, the category of metal, i.e., Cu, Cr, Zn, or Pb, was significantly correlated with the first 'M' canonical variables. The data obtained in the present study are of fundamental significance in advancing our understanding of the reactions between heavy metals and fine clay minerals in the terrestrial ecosystem.

  3. Clay minerals as proxies of the late Quaternary East Asian monsoon evolution in the South China Sea revisited

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, X.; He, Z.; Colin, C.; Zhao, Y.

    2012-12-01

    Clay minerals have a significant role in sedimentation and paleoenvironment studies of the South China Sea. Many previous studies showed that the time series variation in late Quaternary clay mineral assemblages presents mostly glacial-interglacial cyclicity, and they were interpreted chemical weathering closely related to contemporaneous climatic changes of source areas. It is quite debatable whether clay minerals can directly indicate the East Asian monsoon evolution. To answer this question, we investigated sediment cores collected in various locations in the South China Sea during the MARCO POLO cruise in 2005, MD05-2904 (2066 m water depth, abbreviated w.d.) and MD05-2905 (1198 m w.d.) in the north, MD05-2901 (1254 m w.d.) and MD05-2899 (2393 m w.d.) in the west, and MD05-2895 (1982 m w.d.) in the south. Our results show that provenance supply and current transport directly control the clay mineralogical compositions in core and surface sediments, with various expression forms in different locations. In the north, the clay mineral assemblage indicates a relationship between surface current transport (for smectite) under the significant influence of the Kuroshio intrusion and deep water transport (for illite and chlorite). In the west, the East Asian monsoons forced surface currents and different clay-composition provenances affect the glacial-interglacial cyclicity of clay mineral variations. In the south, land-sea distribution variations controlled by the sea level change determine the sources of clay minerals. Our new studies suggest that the late Quaternary clay minerals in the South China Sea do not bear contemporaneous paleoclimatic features, and their implication for proxies of the East Asian monsoon evolution is realized through both the provenance supply and current transport processes.

  4. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    SciTech Connect

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 {+-} 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area.

  5. Origin, Behavior and Texture of Clay Minerals in Mongolian Active Fault of Bogd and Comparison with SAFOD Fault Gouge

    NASA Astrophysics Data System (ADS)

    Wenk, H.; Buatier, M.; Chauvet, A.; Kanitpanyacharoen, W.

    2010-12-01

    Fault gouges are generally considered as the highly deformed zone corresponding to the localization of shear during seismic events. Clays are ubiquitous minerals in fault gouges but the origin is unclear. They can form as a result of break up of inherited phyllosilicates during faulting, or during co- or post- deformation events or even during interseismic creeping. In this study, we aim to characterize the origin and nature of the clay minerals, to observe the microtexture and preferred orientation of clay at various scales in order to understand the behavior of clay mineral in seismic faults. The investigation relied on x-ray powder patterns, SEM, TEM and high energy synchrotron x-ray diffraction. The major clay components are smectite, illite-smectite, illite-mica and kaolinite. Our observations suggest that the protolith and the fault rock of the Bogd and paleo-Bogd faults in Mongolia were highly altered by fluids. The fluid-rock interactions allows clay minerals to form and to precipitate kaolinite and smectite. Thus, newly formed clay minerals are heterogeneously distributed in the fault zone. The decrease of smectite component of the highly deformed samples suggests a dehydration process during deformation, leading to illite precipitation. From synchrotron diffraction images, volume fractions and preferred orientation were analyzed. Our analysis shows that texture strength of constituent clays is very weak ranging from 1.05 to 2.59 m.r.d., which is consistent with similar data from SAFOD fault gouge. The clays minerals of the Bogd fault favors the slip weakening behavior of the fault.

  6. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  7. Preferred Orientation and Anisotropy of Clay minerals and Pores in Posidonia Shales

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Chen, K.; Wenk, H.

    2010-12-01

    Shales compose a large part of sedimentary basins and form the seal and source rocks for hydrocarbon reservoirs. They are also of great interest in context of repositories for nuclear waste and carbon sequestration. A comprehensive study of shale properties is thus crucial for seismic prospecting, particularly due to high elastic anisotropy that is contributed by the alignment of constituent clay minerals during compaction and diagenesis. In this study, we quantitatively analyze composition, crystal preferred orientation (or texture), and the 3D porosity structure in four Posidonia shales from Germany using high energy synchrotron x-rays. We can infer texture information from x-ray diffraction images relying on the Rietveld method, as well as determine the 3D porosity structure from tomography images. We observed that quartz and calcite are dominating phases while illite-smectite, illite-mica and kaolinite are the major clay minerals. The texture strength of clays range from 4.22 to 6.12 m.r.d. A comparison of shallow Posidonia shales with deep shales from the North Sea, Saudi Arabia, and the Gulf of Mexico documents that P-wave anisotropy increases with increasing phyllosilicate content (mainly illite-smectite and kaolinite) and increasing burial. Low absorption features in microtomography images indicate porosity (including kerogen and fractures), which is estimated at 1 vol% and observed to be anisotropic, mainly organized parallel to bedding with little connectivity of flat pores in direction perpendicular to the bedding plane.

  8. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  9. Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

    PubMed

    Lombardi, Kátia Cylene; Mangrich, Antonio Salvio; Wypych, Fernando; Rodrigues-Filho, Ubirajara Pereira; Guimarães, José L; Schreiner, Wido H

    2006-03-01

    This paper describes the interaction among soil organic matter components with kaolinite, an important clay mineral present in tropical soils, especially in Brazil. XPS data show that the soil organic matter adsorbed on kaolinite has aromatic and aliphatic structures, with phenolic and/or alcoholic functions and carbonyl carbons (CO) of amide and/or carboxylic groups. The N1s spectrum of the kaolinite shows an asymmetric peak that is assigned to amide and protonated ammines probably from humin. The interaction between them is strong enough to resist chemical oxidative or reductive attack besides loose amide functionalities. EPR data show that reductive treatment reduces some Fe3+ of the kaolinite structure, loosing organic components. A schematic representation of the reduction of structural Fe3+ in the concentrated domains and consequently increased concentration of Fe3+ ions in diluted domains of the spectrum is presented. This reinforces the hypothesis that humin is a stable carbon sink in soils when adsorbed to clays.

  10. Cesium Diffusion through Angstrom-Scale Open Spaces in Clay Minerals

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koichiro; Sato, Kiminori; Nakata, Masataka

    2017-03-01

    Saponite clay minerals possess the local molecular structures, where one and two nanosheets are inserted into interlayer spaces forming open spaces with their sizes of ˜3 and ˜9 Å, respectively. Here, Cs diffusion via the above-mentioned open spaces is highlighted based on the results of open space analysis using positronium (Ps) lifetime spectroscopy coupled with a conventional diffusion experiment. A population of Cs is found to significantly migrate in the saponite clay yielding a diffusion coefficient of ˜2.0 × 10-7 cm2 s-1 with an application of Fick's second law, which arises from overall diffusion contributed from open spaces with a variety of sizes. On the other hand, the diffusion coefficient solely attributable to the angstrom-scale open space is ˜2.5 × 10-8 cm2 s-1, which amounts to more than ˜10% than that of overall diffusion.

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  12. Evidence for microbial liberation of structurally-coordinated iron in clay minerals as a nutrient source in the world ocean

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2012-12-01

    Clay minerals are the most abundant materials found at the surface of earth and they are the primary constituents of marine sediments. Iron, a limiting nutrient in many marine settings, is a common constituent of clay minerals. Recent in vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe from the crystal lattice of nontronite, an uncommon and particularly Fe-rich (> 12 wt.%) smectitie. Reduction of structurally-coordinated Fe results in both the liberation of Fe(II) to solution, where it is available for other biotic processes, as well as the transformation of smectite to illite. However, it remains unclear: 1. whether Fe-reducers are able to access structurally coordinated Fe found at low wt.% in common clay minerals; and 2. if naturally occuring populations of Fe-reducers are able to reduce structurally coordinated Fe as are some lab strains. In order to address these questions, we conducted in vitro experiments using a suite of sixteen clay minerals with low (0.8 wt.%) to high (13.9 wt.%) Fe concentrations. Clays were treated with Na-dithionite solution to remove surface-bound Fe, isolating for study Fe sourced from within the clay crystal lattice. Experimental evidence clearly indicates that, under in vitro conditions, Fe(III) bound in common clay minerals is available for reduction by the lab strain Shewanella oneidensis MR-1 as well as by naturally-occuring consortia of Fe-reducers cultured from the San Pedro and Santa Monica Basins. Our findings suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly to biogeochemical cycling of Fe and C.

  13. Clay minerals on Mars: Riotinto mining district (Huelva, Spain) as Earth analogue for acidic alteration pathways

    NASA Astrophysics Data System (ADS)

    Mavris, C.; Cuadros, J.; Bishop, J. L.; Nieto, J. M.; Michalski, J. R.

    2015-12-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages indicating processes for which Earth analogues exist. Among them, aluminous clay-sulfate assemblages have been observed, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue site for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration. The oxidation of an extensive pyrite-rich orebody provided mild to extreme acidic fluxes that leached the surrounding rocks for over 20 million years. The mineral assemblages are strongly dependent on their acidic alteration intensity. The observed mineralogical parageneses and leaching conditions for our sites at Riotinto are consistent with three alteration sequences: i) Mild: containing a range of clay minerals from vermiculite to kaolinite, with a wide variety of crystal order and mixed-layering; ii) Intermediate: containing smectite to kaolinite with jarosite-group phases; iii) Advanced: containing kaolinite, jarosite-group phases, and iron oxides. Our findings suggest that, even within this general scheme, the specific alteration pathways can be different.

  14. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  15. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  16. Quantitative XRD HW-IR plot for clay mineral domain size and lattice strain analyses

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Chen, D. Z.; Zhou, J.; Chen, T.; Wang, H.; Zhang, Z. Q.

    2003-04-01

    Based on integral-breadth method, the one of three basic XRD methods (Klug &Alexander, 1974), authors (2000) proposed a qualitative half width (HW)-intensity ratio (IR) plot for clay mineral domain size and lattice strain analyses. In this study, the quantitative HW-IR plot is further developed on the basis of i) the curve relation between the Voigt function and the Pearson VII function; ii) the relationship between the Kübler index and the Weaver index. By numerical simulating, it is derived a curve relation between shape indexes k of the Voigt function and u of the Pearson VII function. With this curve relation, k and u can be converted each other in an accuracy of ten thousandth and therefore the domain size and the lattice strain contributions can be precisely separated from an XRD peak according to Langford's (1978) formula. For micaceous minerals, the HW-IR plot requires only a pair of values of the Kübler index and the Weaver index from 1nm reflection. For other clay minerals, the plot needs a pair of values of the (00l) peak's half width and intensity ratio IR. IR is a ratio of peak maximum to the intensity at the position of maximum minus 0.422oΔ2Θ in CuKα radiation. This quantitative plot renders a mean dimension of clay particles perpendicular to the reflection plane (00l) and an approximate upper limit strain normal to d001. The accuracy for domain size analysis reaches one tenth of nanometre and that for the lattice strain analysis is in ten thousandth respectively. This plot method can be widely used with any digital X-ray diffractometer, whose XRD data can be converted into text format. Excel 5.0 or latter versions in both English and Chinese can well support the HW-IR plot. This study was supported by NNSFC (Grant No 40272022)

  17. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE PAGES

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  18. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  19. Clay minerals in surface sediment of the north Yellow Sea and their implication to provenance and transportation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, An-Chun; Huang, Peng; Xu, Fang-Jian; Zheng, Xu-Feng

    2014-11-01

    The clay minerals in surface sediments of the north Yellow Sea have been identified with X-ray diffraction analysis and scanning electron microscope and energy dispersive X-ray spectrometer analysis to constrain the provenance and sediment transportation system in the area. Illite, with an average abundance of 58%, is the dominant mineral, followed by smectite (20% on average), chlorite (16% on average) and kaolinite (6% on average). The result of the a K-mean clustering analysis for the clay minerals show a close relationship between sedimentary types and clay mineral assemblages: there is more kaolinite and smectite in the muddy area in the western part of the north Yellow Sea and more chlorite in the sandy area in the eastern part. The Huanghe (Yellow River) is considered to provide most of the clay minerals, and in particular, rich kaolinite and smectite to the muddy area, whereas the Yalujiang provides large amounts of illite and chlorite. The spatial distribution characteristics of the clay minerals are closely related with the local circulation system, including the Shandong Coastal Current and Yellow Sea Warm Current. The former transports the outflow of the Huanghe to the north Yellow Sea, whereas the intrusion of the latter in wintertime is responsible for the annular enrichment of smectite in central part, as well as poor classification near Dalian Bay.

  20. Effects of natural microbial preparations on the electrokinetic potential of bacterial cells and clay minerals.

    PubMed

    Kiremidjian, L; Stotzky, G

    1973-06-01

    A complex mixture of fermentation residues and eutrophication products used commercially as a soil amendment and in various phases of sewage treatment was effective in reducing the electrophoretic mobility of clay minerals (kaolinite and montmorillonite) and cells of Agrobacterium radiobacter. The active fraction(s), which is active at very low concentrations, appears to be a stable (to heat, dialysis, concentration, and storage), net negatively charged polymer which may have several positively charged sites. The material does not significantly alter the viscosity or surface tension of aqueous systems and is probably a microbial metabolite(s).

  1. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.

    PubMed

    Freedman, Miriam Arak

    2015-10-01

    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials.

  2. Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral.

    PubMed

    da Fonseca, Maria G; de Oliveira, Michelle M; Arakaki, Luiza N H

    2006-09-01

    Vermiculite, a 2:1 clay mineral, was applied as adsorbent for removal of cadmium, zinc, manganese, and chromium from aqueous solutions. Parameters such as time of reaction, effect of pH and cation concentration were investigated. All isotherms were L type of the Gilles classification, except zinc (type S). The adsorbent showed good sorption potential for these cations. The experimental data was analyzed by Langmuir isotherm model showing reasonable adjustment. The quantity of adsorbed cations was 0.50, 0.52, 0.60, and 0.48 mmol g(-1) of Cd(2+), Mn(2+), Zn(2+), and Cr(3+), respectively.

  3. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.

    PubMed

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.

  4. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; Downs, Robert; Morrison, Shaunna; Achilles, Cherie; DesMarais, David J.; Crisp, Joy A.; Sarrazin, Philippe; Morookian, John Michael; Grotzinger. John P.

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  5. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  6. Effects of heavy metals on the electrokinetic properties of bacteria, yeast, and clay minerals

    SciTech Connect

    Collins, Y.E.

    1987-01-01

    The electrokinetic patterns of four bacteria (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae, Canida albicans), and two clay minerals (montmorillonite, kaolinite) in the presence of the chloride salts of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and of Na and Mg were determined by microelectrophoresis. The cells and clays were net negatively charged at pH values above their isoelectric point (pI) in solutions of Na, Mg, Hg, and Pb with an ionic strength (..mu..) of 3 x 10/sup -4/. However, at pH values above pH 5.0, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn. The charge of the bacteria and S. cerevisiae also reversed in solution of Ni and Cu with a ..mu.. > 3 x 10/sup -4/, whereas there was no reversal in solutions with a ..mu.. < 3 x 10/sup -4/. The clays became net positively charged when the ..mu.. of Cu was > 3 x 10/sup -4/ and that of Ni was > 1.5 x 10/sup -4/. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (..mu.. = 3 x 10/sup -4/). The pI of the cells in the presence of some heavy metals, especially Ni and Cr, was at higher pH values than in the presence of Na and Mg.

  7. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  8. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk.

  9. Clay mineral weathering and contaminant dynamics in a casutic aqueous sytem II. Mineral transformation and microscale partitioning

    SciTech Connect

    Choi, Sunkyung; Crosson, Garry S.; Mueller, Karl T.; seraphin, supapan; Chorover, Jon

    2005-04-08

    Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m AlT, 2 m Na*, 1 m NO3 *, pH *14, Cs* and Sr2* present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10*5 to 10* mol kg*. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.

  10. Clay mineral weathering and contaminant dynamics in a caustic aqueous system. II. Mineral transformation and microscale partitioning

    NASA Astrophysics Data System (ADS)

    Choi, Sunkyung; Crosson, Garry; Mueller, Karl T.; Seraphin, Supapan; Chorover, Jon

    2005-09-01

    Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m Al T, 2 m Na +, 1 m NO 3-, pH ˜14, Cs + and Sr 2+ present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs] 0 and [Sr] 0 concentrations from 10 -5 to 10 - mol kg -. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.

  11. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  12. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  13. Spatial distribution of clay minerals in agrochernozems of erosional and denudational plains in the Stavropol region

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Godunova, E. I.; Shkabarda, S. N.; Samsonova, A. A.; Malueva, T. I.

    2012-09-01

    The distribution pattern of the fine fractions (<1.0 and 1-5 μm) and the mineralogical composition of the agrochernozems formed on the erosional-denudational plains of the Stavropol region have been studied. Erosion and denudation caused the redistribution of the fine material within the catena with its maximal accumulation on the lowermost part of the slope. The same processes favored the formation of surface deposits slightly differing in the composition of the principal mineral phases, i.e., complex disordered mixedlayered micas-smectites with varying combinations of micaceous and smectite layers in crystallites and di- and trioctahedral hydromicas. Imperfect kaolinite and magnesium-ferric chlorite are accompanying minerals. An increase in the amount of mixed-layered minerals with smectite layer is observed down the profile. In addition to the mentioned minerals, the individual smectite and clinoptilolite, which are components of Tertiary deposits, are identified in the lower parts of the agrochernozem profiles. The fine-silt fractions consist of (in decreasing order) di- and tri-octahedral micas, quartz, feldspars, plagioclase, and an admixture of phyllosilicates (kaolinite, chlorite, and mixed-layered chlorite-smectites). The maximal amount of the fine fraction, as well as the maximal amount of mica in it, is registered in the soils in the lower part of the slope. The phyllosilicates are decomposed in this fraction in the upper horizons. The seven-year-long application of mineral fertilizers intensified the peptization of the soil mass in the arable horizons, which increased the content of clay particles in them. A more contrasting distribution of the mixed-layered formations in the profiles, a considerable decrease in their reflection intensities, an increase in the structural disorder of the minerals, and a certain increase in the content of the fine-dispersed quartz are observed.

  14. Microorganism-induced weathering of clay minerals in a hydromorphic soil

    NASA Astrophysics Data System (ADS)

    Hong, Hanlie; Fang, Qian; Cheng, Liuling; Wang, Chaowen; Churchman, Gordon Jock

    2016-07-01

    In order to improve the understanding of factors influencing weathering in hydromorphic soils, the clay mineral and chemical compositions, iron (hydr)oxides, organic compounds, and Sr and Nd isotopic compositions, of hydromorphic soils on the banks of the Liangzi Lake, Hubei province, south China, were investigated. The B horizon in the lower profile exhibits a distinct net-like pattern, with abundant short white veins within the red-brown matrix. Their various 87Sr/86Sr and 143Nd/144Nd isotopic compositions showed only small variations of 0.7270-0.7235 and 0.51200-0.51204, respectively, consistent with the composition of Yangtze River sediments, indicating that the soils were all derived from alluvium from the catchment. The white veins contained notably more SiO2, Al2O3, TiO2, and mobile elements relative to the red-brown matrix, while they both showed similar values for the chemical index of alteration of 86.7 and 87.1, respectively, and displayed similar degrees of weathering. The clay minerals in A, AE, and E horizons of the soil profile were illite, kaolinite, and mixed-layer illite-smectite. These same three clay minerals comprised the white net-like veins in the soil B horizon, whereas only illite and kaolinite were observed in the red-brown matrix. Iron (hydr)oxides in A, AE, and E horizons of the soil profile were hematite and goethite, whereas in the red-brown matrix of the B horizon they were hematite, goethite, and ferrihydrite. Different organic compounds were observed for the white vein and the red-brown matrix in the soil B horizon: an 18:2 fatty acid biomarker for fungi in the net-like vein, but not in the red-brown matrix. Compared with the red-brown matrix, the white net-like vein also clearly contained more mono-unsaturated fatty acids, which are sometimes associated with bacteria that have the capacity to reduce Fe(III). Thus, migration of iron and the formation of the net-like veins involved the participation of biota during the hydromorphic

  15. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    PubMed

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  16. Quality-assured evaluation of effective porosity using fit-for-purpose estimates of clay-mineral volume fraction

    NASA Astrophysics Data System (ADS)

    Worthington, Paul F.

    2010-05-01

    Reservoirs that contain dispersed clay minerals traditionally have been evaluated petrophysically using either the effective or the total porosity system. The major weakness of the former is its reliance on "shale" volume fraction ( Vsh) as a clay-mineral indicator in the determination of effective porosity from well logs. Downhole clay-mineral indicators have usually delivered overestimates of fractional clay-mineral volume ( Vcm) because they use as a reference nearby shale beds that are often assumed to comprise clay minerals exclusively, whereas those beds also include quartzitic silts and other detritus. For this reason, effective porosity is often underestimated significantly, and this shortfall transmits to computed hydrocarbons in place and thence to estimates of ultimate recovery. The problem is overcome here by using, as proxy groundtruths, core porosities that have been upscaled to match the spatial resolutions of porosity logs. Matrix and fluid properties are established over clean intervals in the usual way. Log-derived values of Vsh are tuned so that, on average, the resulting log-derived porosities match the corresponding core porosities over an evaluation interval. In this way, Vsh is rendered fit for purpose as an indicator of clay-mineral content Vcm for purposes of evaluating effective porosity. The method is conditioned to deliver a value of effective porosity that shows overall agreement with core porosity to within the limits of uncertainty of the laboratory measurements. This is achieved through function-, reservoir- and tool-specific Vsh reduction factors that can be applied to downhole estimates of clay-mineral content over uncored intervals of similar reservoir character. As expected, the reduction factors can also vary for different measurement conditions. The reduction factors lie in the range of 0.29-0.80, which means that in its raw form, log-derived Vsh can overestimate the clay-mineral content by more than a factor of three. This

  17. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve

    2013-01-01

    the last three varieties may be contemporaneous. One sample shows agate (alpha- quartz) that was precipitated between the episodes of deposition of the fine-grained and coarse-grained 'griffithite.' 'Griffithite' is not unique as a possible terrestrial analog - some clay minerals from the Doushantou formation, China, have similar 02L diffraction bands, and many basalts contain smectites in vesicles and as replacements after olivine. Similar trioctahedral smectites occur also in the nakhlite martian meteorites - as veinlets and replacements of olivine. By understanding the formation of these terrestrial clays, we hope to constrain the nature and mechanism of formation of the Sheepbed clay mineral.

  18. First-principles study of cesium adsorption to weathered micaceous clay minerals

    NASA Astrophysics Data System (ADS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  19. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  20. Provenance of deglacial IRD and clay minerals in the Chukchi Plateau, western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Park, K. K.; Khim, B. K.; Ohkushi, K.

    2012-04-01

    A gravity core PC01 with a multiple core PL01 was collected from the Chukchi Plateau in the western Arctic Ocean on the R/V Mirai Cruise MR09-03. Core PL01 was compensated for the top-loss of core PC01, which represents a complete composite core. Age of the composite core was estimated by correlation of geochemical properties and IRD abundance with well-dated cores in the western Arctic Ocean, because AMS 14C dates of bulk sediments were contaminated by old carbon. The distinct deglacial interval of the composite core was characterized by high CaCO3 and TOC contents, high C/N ratios, and low δ13C values, which clearly indicates the increased terrestrial contribution. Based on the microscope and SEM observation, the major IRD constituents are composed of carbonate minerals, supporting the high CaCO3 content at the deglacial interval. These deglacial IRDs including carbonate minerals are possibly originated from the Canadian Arctic Archipelago. Clay mineral data at the high IRD interval show high kaolinite/chlorite ratios due to the increase of kaolnite that may be derived from the northern Alaskan margin of the North America. Therefore, the deglacial interval with high IRD abundance and increase of kaolinite/chlorite ratios indicates the intensified Beaufort Gyre system that played an important role in the sediment delivery.

  1. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.

    PubMed

    Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong

    2017-04-01

    Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd(2+)) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd(2+) sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R(2) > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd(2+), in particular zeolite, and the percentage decreases for Cd(2+) sorption increased with increasing concentrations of Cd(2+) as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd(2+), however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd(2+) concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd(2+) sorption. The adsorbed form was found to inhibit Cd(2+) sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd(2+) sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd(2+) sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils.

  2. Interactions Between Chlorinated Waste Solvents and Clay Minerals in Low Permeability Subsurface Layers

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero-Diaz, M.; Demond, A. H.

    2014-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. These layers may have a different mineralogical make up than the surrounding geologic media; specifically, they may be characterized by a high clay content. Although these layers are often considered inert, interactions may occur between the clay minerals and the waste liquids that may influence transport. Measurements of the basal spacing of Na-montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that it is similar to that with water; however, its basal spacing in contact with waste chlorinated liquids was reduced, leading to cracking. In fact, the basal spacing in contact with the waste chlorinated liquids was closer to that in contact with air than in contact with water. The observation that contact with pure organic liquids did not cause cracking, but contact with chlorinated wastes obtained from the field did, suggests that other components of the waste are critical to the basal spacing reduction process. Screening experiments indicated that the presence of a binary mixture of surfactants, a nonionic and an anionic surfactant, in the chlorinated solvent were necessary to cause the cracking at the same rate and magnitude as the chlorinated wastes obtained from the field. Fourier transform infrared (FT-IR) spectroscopy measurements suggest that the mixture alters the adsorbed water OH-bending band, implying a displacement of adsorbed water. Coupling these results with sorption and x-ray diffraction (XRD) measurements, a hypothesis of component conformation in the clay interlayer space that leads to cracking can be constructed.

  3. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    NASA Astrophysics Data System (ADS)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  4. Sedimentary processes on the Mekong subaqueous delta: Clay mineral and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Xue, Zuo; Paul Liu, J.; DeMaster, Dave; Leithold, Elana L.; Wan, Shiming; Ge, Qian; Nguyen, Van Lap; Ta, Thi Kim Oanh

    2014-01-01

    Sedimentary processes on the inner Mekong Shelf were investigated by examining the characteristics of sediments sampled in gravity cores at 15 locations, including grain size, clay mineralogy, sediment accumulation rates, and the elemental and stable carbon isotopic composition of organic matter (atomic C/N ratios and δ13C). Deltaic deposits exhibit contrasting characteristics along different sides of the delta plain (South China Sea, SCS hereafter, to the east and Gulf of Thailand, GOT hereafter, to the west) as well as on and off the subaqueous deltaic system. On one hand, cores recovered from the subaqueous delta in the SCS/GOT are consisted of poorly/well sorted sediments with similar/different clay mineral assemblage with/from Mekong sediments. Excess 210Pb profiles, supported by 14C chronologies, indicate either "non-steady" (SCS side) or "rapid accumulation" (GOT side) processes on the subaqueous delta. The δ13C and C/N ratio indicate a mixture of terrestrial and marine-sourced organic matter in the deltaic sediment. On the other hand, cores recovered from areas with no deltaic deposits or seaward of the subaqueous delta show excess 210Pb profiles indicating "steady-state" accumulation with a greater proportion of marine-sourced organic matter. Core analysis's relevance with local depositional environment and previous acoustic profiling are discussed.

  5. Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Hamann, Yvonne; Ehrmann, Werner; Schmiedl, Gerhard; Kuhnt, Tanja

    2009-05-01

    The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.

  6. NMR spectroscopic investigations of surface and interlayer species on minerals, clays and other oxides

    SciTech Connect

    Kirkpatrick, R.J.; Yeongkyoo Kim; Weiss, C.A.; Cygan, R.T.

    1996-07-01

    The behavior of chemical species adsorbed on solid surfaces and exchanged into clay interlayers plays a significant role in controlling many natural and technologically important processes, including rheological behavior, catalysis, plant growth, transport in natural pore fluids and those near anthropogenic hazardous waste sites, and water-mineral interaction. Adsorption and exchange reactions have been the focus of intense study for many decades. Only more recently, however, have there been extensive spectroscopic studies of surface species. Among the spectroscopic methods useful for studying surface and exchanged species (e.g., infrared, X-ray photoelectron spectroscopy [XPS] and X-ray absorption spectroscopy [XAS]), nuclear magnetic resonance spectroscopy (NMR) has the considerable advantage of providing not only structural information via the chemical shift and quadrupole coupling constant but dynamical information in the Hz-mHz range via lineshape analysis and relaxation rate measurements. It is also possible to obtain data in the presence of a separate fluid phase, which is essential for many applications. This paper illustrates the range of applications of NMR methods to surface and exchanged species through review of recent work from our laboratory on Cs in clay interlayers and Cs, Na and phosphate adsorbed on oxide surfaces. The substrate materials used for these experiments and our long-term objectives are related to problems of geochemical interest, but the principals and techniques are of fundamental interest and applicable to a wide range of technological problems.

  7. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; Franz, H. B.; Glavin, D. P.; Jones, J. H.; McAdam, A. C.; Pavlov, A. A.; Trainer, M. G.; Williford, K. H.

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  8. A comparison of heavy mineral assemblage between the loess and the Red Clay sequences on the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin; Wang, Zhao; Song, Yougui; Pfaff, Katharina; Luo, Zeng; Nie, Junsheng; Chen, Wenhan

    2016-06-01

    QEMSCAN-based (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) heavy mineral analysis has recently been demonstrated an efficient way to allow a rapid extraction of provenance information from sediments. However, one key issue to correctly obtain a provenance signal using this technique is to clearly separate effects of diagenetic alteration on heavy minerals in sediments, especially in fine-grained loess. Here we compare heavy mineral assemblages of bottom Quaternary loess (L33) and upper Pliocene Red Clay of three sites on the Chinese Loess Plateau (CLP). Two sites (Chaona and Luochuan) with similar modern climate conditions show similar heavy mineral assemblages but contain much less of the unstable heavy mineral amphibole than the drier Xifeng site. This result provides strong evidence supporting that climate-caused diagenesis is an important factor controlling heavy mineral assemblages of fine-grained loess. However, heavy mineral assemblages are similar for loess and paleosol layers deposited after 0.5 Ma on the Chinese Loess Plateau regardless of climate differences, suggesting that time is also a factor controlling heavy mineral assemblages of loess and Red Clay. Our high resolution sampling of the upper Miocene-Pliocene Chaona Red Clay sequence reveals similar heavy mineral compositions with a minor amphibole content, different from the drier Xifeng site results of the same age. This result indicates that the monsoonal climate pattern might have been maintained since the late Miocene. Furthermore, it indicates that the heavy mineral method is promising in tracing provenance for sites northwest of the Xifeng site on the Loess Plateau.

  9. Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals

    USGS Publications Warehouse

    Kerns, R.L.; Mankin, C.J.

    1968-01-01

    Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet. Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density. The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration. Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies. ?? 1968.

  10. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    PubMed

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web.

  11. The role of clay minerals in the preservation of organic matter in sediments of qinghai lake, NW China

    USGS Publications Warehouse

    Yu, B.; Dong, H.; Jiang, H.; Lv, G.; Eberl, D.; Li, S.; Kim, J.

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our

  12. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation

    NASA Astrophysics Data System (ADS)

    Zhao, Linduo; Dong, Hailiang; Edelmann, Richard E.; Zeng, Qiang; Agrawal, Abinash

    2017-03-01

    In pedogenic and diagenetic processes, clay minerals transform from pre-existing phases to other clay minerals via intermediate interstratified clays. Temperature, pressure, chemical composition of fluids, and time are traditionally considered to be the important geological variables for clay mineral transformations. Nearly ten years ago, the role of microbes was recognized for the first time, where microbial reduction of structural Fe(III) in smectite resulted in formation of illite under ambient conditions within two weeks. However, the opposite process, the oxidation of structural Fe(II) in illite has not been studied and it remains unclear whether or not this process would result in the back reaction, e.g., from illite to smectite. The overall objective of this study was to investigate biological oxidation of structural Fe(II) in illite coupled with nitrate reduction and the effect of this process on clay mineral transformation. Laboratory incubations were set up, where structural Fe(II) in illite served as electron donor, nitrate as electron acceptor, and Pseudogulbenkiania sp. strain 2002 as mediator. Solution chemistry and gas composition were monitored over time. Mineralogical transformation resulting from bio-oxidation was characterized with X-ray diffraction and scanning and transmission electron microscopy. Our results demonstrated that strain 2002 was able to couple oxidation of structural Fe(II) in illite with reduction of nitrate to N2 with nitrite as a transient intermediate. This oxidation reaction resulted in transformation of illite to smectite and ultimately to kaolinite (illite → smectite → kaolinite transformations). This study illustrates the importance of Fe redox process in mediating the smectite-illite mineral cycle with important implications for Fe redox cycling and mineral evolution in surficial earth environments.

  13. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite

    SciTech Connect

    Fernandez, Rodrigo; Martirena, Fernando; Scrivener, Karen L.

    2011-01-15

    This paper investigates the decomposition of three clayey structures (kaolinite, illite and montmorillonite) when thermally treated at 600 {sup o}C and 800 {sup o}C and the effect of this treatment on their pozzolanic activity in cementitious materials. Raw and calcined clay minerals were characterized by the XRF, XRD, {sup 27}Al NMR, DTG and BET techniques. Cement pastes and mortars were produced with a 30% substitution by calcined clay minerals. The pozzolanic activity and the degree of hydration of the clinker component were monitored on pastes using DTG and BSE-IA, respectively. Compressive strength and sorptivity properties were assessed on standard mortars. It was shown that kaolinite, due to the amount and location of OH groups in its structure, has a different decomposition process than illite or montmorillonite, which results in an important loss of crystallinity. This explains its enhanced pozzolanic activity compared to other calcined clay-cement blends.

  14. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals.

    PubMed

    Lin, Y; Munroe, P; Joseph, S; Ziolkowski, A; van Zwieten, L; Kimber, S; Rust, J

    2013-03-01

    In this study biochar mixtures comprising a Jarrah-based biochar, chicken litter (CL), clay and other minerals were thermally treated, via torrefaction, at moderate temperatures (180 and 220 °C). The objectives of this treatment were to reduce N losses from CL during processing and to determine the effect of both the type of added clay and the torrefaction temperature on the structural and chemical properties of the final product, termed as an enhanced biochar (EB). Detailed characterisation indicated that the EBs contained high concentrations of plant available nutrients. Both the nutrient content and plant availability were affected by torrefaction temperature. The higher temperature (220 °C) promoted the greater decomposition of organic matter in the CL and dissociated labile carbon from the Jarrah-based biochar, which produced a higher concentration of dissolved organic carbon (DOC). This DOC may assist to solubilise mineral P, and may also react with both clay and minerals to block active sites for P adsorption. This subsequently resulted in higher concentrations of plant available P. Nitrogen loss was minimised, with up to 73% of the initial total N contained in the feedstock remaining in the final EB. However, N availability was affected by both torrefaction temperature and the nature of the clay minerals added.

  15. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.

    PubMed

    El-Bayaa, A A; Badawy, N A; Alkhalik, E Abd

    2009-10-30

    It is important to assess the effects of ionic strength when studying adsorption of metal ions on clay mineral because the background salt may complex metals and compete for adsorption sites. The sorption behavior of vermiculite pure clay mineral has been studied with respect to copper and chromium as a function of ionic strength in single metal ion solutions. Background electrolytes used in these experiments were KCl, NaCl and NH4Cl. The studies were conducted by a batch method at temperature 25 degrees C. The adsorption capacity and adsorption energy for each metal ion were calculated from the Langmuir adsorption isotherm. Also the competitive adsorption behavior of some heavy metal ions such as Cr(III), Cu(II), Ni(II) and Co(II) by vermiculite pure clay mineral was studied. The result shows the competition between coexisting heavy metal cations for the same adsorption sites of an adsorbent. However, when trivalent metal was added to the solution it competitively replaced divalent ions that had been previously adsorbed onto the vermiculite pure clay mineral, resulting in the desorption of these metals into the solution.

  16. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  17. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  18. Interplay between cataclasis, clay mineral diagenesis and porosity reduction in deformation bands in unconsolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne

    2013-04-01

    . The dominant deformation mechanisms and the magnitude of porosity reduction in the carbonate-free lithologies are controlled by the initial mica content, mean grain size, level of alteration and albite content in the host rock. The studied deformation bands show a preferred fracturing of sericitized albite grains and the smearing of micas into the pore space. These processes increase the amount of phyllosilicates in the pore space and facilitate the growth of various authigenic clay minerals like smectite, vermiculite, kaolinite and illite. Because of the changed petrophysical properties the deformation bands show a different diagenetic evolution in comparison with the host rock. We identified 4 steps in the development from a high-porosity host rock to a low porosity deformation band. The measured reduction in porosity by up to 18% is associated with a permeability reduction, reflected in the retention of fluids along the deformation bands with the highest content of authigenic clay minerals.

  19. Lithium, a preliminary survey of its mineral occurrence in flint clay and related rock types in the United States

    USGS Publications Warehouse

    Tourtelot, H.A.; Brenner-Tourtelot, E. F.

    1978-01-01

    Maximum concentrations of lithium found in samples of flint clay and associated rocks of Pennsylvanian age in different States, in parts per million (ppm), are: Missouri, 5100; Pennsylvania-Maryland, 2100; Kentucky, 890; Ohio, 660; Alabama, 750; and Illinois, 160. Lithium-bearing kaolin deposits are distributed in the Coastal Plain province from New Jersey to Texas, and one occurs in Idaho; maximum lithium concentrations in samples from these deposits range from 64 to 180 ppm. The maximum concentration found in the Arkansas bauxite region is 460 ppm and that in flint clay in Colorado is 370 ppm. Samples from areas other than Pennsylvania, Maryland, Kentucky and Missouri are relatively few in number, represent mostly commercially valuable clays, and represent only a part of the refractory clay deposits in the United States. Data are not available on the clays associated with these deposits that may be unusable because they contain too much lithium as well as other deleterious elements. In both Pennsylvania and Missouri, lithium contents vary regionally between districts and locally between deposits. In samples containing more than 2000 ppm lithium, the lithium occurs in a dioctahedral chlorite mineral very similar to cookeite, which previously has not been recognized in sedimentary clays. The associated clays consist chiefly of well-crystallized kaolinite. The dioctahedral chlorite, however, seems to be most abundant where diaspore and boehmite occur along with the kaolinite. Barium, chromium, copper, phosphorus and strontium are present in some samples in amounts of several hundred pans per million or more, and may contribute to the failure of some clays to perform satisfactorily in firing tests. Lithium-rich clays could serve as a significant lithium resource in the very distant future. Clays that contain as much as 1% lithium may be common enough in Missouri or in Pennsylvania to be produced as a by-product to help support benefication costs for refractory clays

  20. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  1. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  2. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals

    SciTech Connect

    Collins, Y.E.; Stotzky, G. )

    1992-05-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength ([mu]) of 3 [times] 10[sup [minus]4]; montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 and then at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a [mu] of >3 [times] 10[sup [minus]4], whereas there was no reversal in solutions with a [mu] of <3 [times] 10[sup [minus]4]. The clays became net positively charged when the [mu] of Cu was >3 [times] 10[sup [minus]4] and that of Ni was >1.5 [times] 10[sup [minus]4]. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measured the electrophoretic mobility did not affect their viability.

  3. Controls on clay minerals assemblages in an early paleogene nonmarine succession: Implications for the volcanic and paleoclimatic record of extra-andean patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Raigemborn, María Sol; Gómez-Peral, Lucía E.; Krause, Javier Marcelo; Matheos, Sergio Daniel

    2014-07-01

    The distribution of the clay minerals of the Banco Negro Inferior-Río Chico Group succession (BNI-RC), a middle Danian-middle Eocene mainly continental epiclastic-pyroclastic succession exposed in the Golfo San Jorge Basin, extra-Andean Patagonia (∼46° LS), is assessed in order to determine the possible origin of clay and specific non-clay minerals using X-ray diffraction and scanning electron microscopy analyses. The control over the clay mineralogy of the sedimentary settings, contemporary volcanism, paleoclimate and weathering conditions is considered. A paleoclimatic reconstruction is provided and correlated with the main global warming events that occurred during the early Paleogene. Mineralogical analyses of BNI-RC demonstrate that smectite and kaolin minerals (kaolinite, halloysite and kaolinite/smectite mixed layers) are the main clay minerals, whereas silica polymorphs (volcanic glass and opal) are common non-clay minerals. Throughout the succession, smectite and kaolin minerals are arranged in different proportions in the three clay-mineral assemblages. These show a general vertical trend in which the smectite-dominated assemblage (S1) is replaced by the smectite-dominated assemblage associated with other clays (S2) and the kaolinite-dominated assemblage (K), and finally by S2 up-section. The detailed micromorphological analysis of the clay and non-clay minerals allows us to establish that the origins of these are by volcanic ash weathering, authigenic and pedogenic, and that different stages in the evolution of mineral transformations have occurred. The supply of labile pyroclastic material from an active volcanic area located to the northwest of the study area could have acted as precursor of the authigenic and volcanogenic minerals of the analyzed succession. Diverse fine-grained lithological facies (muddy and tuffaceous facies) and sedimentary settings (coastal swamp and transitional environments, and different fluvial systems) together with

  4. Orientation and optical properties of methylene blue crystal for better understanding of interactions with clay mineral surface

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2013-04-01

    The properties of cationic dye Methylene blue (MB) adsorbed on diferent surfaces have been investigated intensively over the years and various models for the orientation of its cations have been proposed (Hang and Brindley, 1970; Bujdak et al., 2003; Li and Zare, 2004; Marr III et al., 1973; Bujdak, 2006).The main objective of this work is to investigate and determine orientation and optical properties of metylene blue crystal upon its crystallization on a glass slate and to use those findings in better understanding of interactions with clay minerals. Cationic dyes have very high affinity for clay surfaces and those interactions are easily detected, therefore these dyes are used to determine several properties of clay surfaces (morphology, layer charge, CEC). For this study, we have selected a group of MB crystal and carried out XRD analysis, polarized absorption spectra measurement (400 - 900 nm) and determination of optical properties (pleochroism, determination of twining and extinction angle) using polarizing microscope. Methylene blue crystals are exhibiting mostly needle like habitus with huge difference in width - length ratio. According to X-ray diffraction it is quite obvious that the y (b) axis is perpendicular to the crystal surface. The x (a) and z (c) axis lie in the crystal plane (010). Crystals exhibit prominent dichroism: from blue (E || elong.) to colorless. In accordance with current interpretation of MB spectra peaks at 647 and 570 nm can be assigned as dimer aggregation and peaks at 475 and 406 nm as higher level of aggregation. All of them exhibit pronounced polarization dependence. The group of peaks at lower energy (700 to 900 nm) do not show significant polarization dependence and they correspond to the J - aggregates. Peak at around 800 nm have been noticed as fluorescence active. In dependence with thickness of the crystals and vibration direction we have observed presence of polysynthetic twinning which can be compared with polysynthetic

  5. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2015-06-01

    A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.

  6. Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2004-05-10

    A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

  7. [Effect of acetic acid on adsorption of acid phosphatase by some soil colloids and clay minerals].

    PubMed

    Zhao, Zhenhua; Huang, Qiaoyun; Jiang, Xin; Yu, Guifen; Wang, Fang; Li, Xueyuan

    2004-03-01

    This paper studied the effect of acetic acid with different concentrations and pH values on the adsorption of acid phosphatase by some soil colloids and clay minerals (SCCM). The results showed that the pH values for the maximum adsorption of the enzyme were between the IEP of the enzyme and the PZC of SCCM. In the acetic acid systems, the amount of the enzyme adsorbed by SCCM was in the order of goethite > yellow brown soil > latosol > kaolinite > delta-MnO2. A remarkable influence of acetic acid concentration on the adsorption amount and the binding energy of the enzyme was observed. With the increase of the concentration from 0 to 200 mmol.L-1 in the system, acetic acid exhibited an enhanced effect, followed by an inhibition action on the adsorption of the enzyme on SCCM. The changes of the binding energy (K value) for the enzyme on SCCM were on the contrary to those of the maximum adsorption. The possible mechanisms for the influence of acetic acid on the adsorption of enzyme by SCCM were also discussed.

  8. Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Rick, Johannes J.; Gray, Deric; Gould, Richard W.

    2017-04-01

    Particulate inorganic matter (PIM) is a key component in estuarine and coastal systems and plays a critical role in trace metal cycling. Better understanding of coastal dynamics and biogeochemistry requires improved quantification of PIM in terms of its concentration, size distribution, and mineral species composition. The angular pattern of light scattering contains detailed information about the size and composition of particles. These volume scattering functions (VSFs) were measured in Mobile Bay, Alabama, USA, a dynamic, PIM dominated coastal environment. From measured VSFs, we determined through inversion the particle size distributions (PSDs) of major components of PIM, amorphous silica and clay minerals. An innovation here is the extension of our reported PSDs significantly into the submicron range. The PSDs of autochthonous amorphous silica exhibit two unique features: a peak centered at about 0.8 μm between 0.2 and 4 μm and a very broad shoulder essentially extending from 4 μm to >100 μm. With an active and steady particle source from blooming diatoms, the shapes of amorphous silica PSDs for sizes <10 μm varied little across the study area, but showed more particles of sizes >10 μm inside the bay, likely due to wind-induced resuspension of larger frustules that have settled. Compared to autochthonous amorphous silica, the allochthonous clay minerals are denser and exhibit relatively narrower PSDs with peaks located between 1 and 4 μm. Preferential settling of larger mineral particles as well as the smaller but denser illite component further narrowed the size distributions of clay minerals as they were being transported outside the bay. The derived PSDs also indicated a very dynamic situation in Mobile Bay when a cold weather front passed through during the experiment. With northerly winds of speeds up to 15 m s-1, both amorphous silica and clay minerals showed a dramatic increase in concentration and broadening in size distribution outside the exit

  9. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    USGS Publications Warehouse

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  10. Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites

    USGS Publications Warehouse

    Foster, M.D.

    1953-01-01

    Determination of free silica by the method proposed made possible the derivation of logical formulas for several specimens of montmorillonites for which the formulas could not be derived from the analyses alone. Other montmorillonites, for which logical formulas could be derived from their analyses, were found to contain small amounts of free silica or free alumina. Others were found to contain neither free silica nor free alumina. The method consists of the following steps: (1) digestion of 1 g of the specimen with 0.5 N NaOH solution in a covered platinum crucible or dish on a steam bath for 4 hrs, stirring the mixture at 30-min intervals, (2) filtration of the undissolved material, followed by washing several times with 1% NaOH solution, (3) neutralization of the filtrate with HCl, addition of 5 ml HCl in excess and determination of SiO and Al2O3 in the usual way and (4) calculation of the amount of free SiO2 or free Al2O3 if any and the amount of attack of the clay structure by the treatment from the ratio of SiO2 to Al2O3 dissolved and the ratio of SiO2 to Al2O3 obtained on analysis. Tests with 5% Na2CO3 solution, the reagent formerly used for the solution of free SiO2 in rocks and minerals, showed that solution of opal by this reagent is always fractional, never complete, no matter how small the amount present or how long the period of treatment. Re-treatment of the sample results in 90-95% solution if 10 mg or less of opal is present, but for larger amounts of opal the percentage dissolved decreases as the amount present increases. On the other hand, 75 ml of 0.5 N NaOH completely dissolves as much as 400 mg of opal in 4 hrs digestion in a covered platinum crucible or dish, on a steam bath. However, a weaker solution or a shorter period of digestion does not effect complete solution. The same amount (75 ml) of 0.5 N NaOH also dissolves 90 mg of cristobalite and 57 mg of quartz having a grain size of less than 2 microns. Use of NaOH also permits determination

  11. Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Watkins, J.; Ehlmann, B. L.; Yin, A.

    2014-12-01

    Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals

  12. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites.

    PubMed

    Gorski, Christopher A; Aeschbacher, Michael; Soltermann, Daniela; Voegelin, Andreas; Baeyens, Bart; Marques Fernandes, Maria; Hofstetter, Thomas B; Sander, Michael

    2012-09-04

    Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.

  13. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.

    PubMed

    Shao, Hongbo; Ray, Jessica R; Jun, Young-Shin

    2010-08-01

    To ensure efficiency and sustainability of geologic CO2 sequestration (GCS), a better understanding of the geochemical reactions at CO2-water-rock interfaces is needed. In this work, both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on phlogopite (KMg3Si3AlO10(F,OH)2) surfaces under GCS conditions (368 K, 102 atm) in 1 M NaCl. Phlogopite served as a model for clay minerals in potential GCS sites. During the reaction, dissolution of phlogopite was the predominant process. Although the bulk solution was not supersaturated with respect to potential secondary mineral phases, interestingly, nanoscale precipitates formed. Atomic force microcopy (AFM) was utilized to record the evolution of the size, shape, and location of the nanoparticles. Nanoparticles first appeared on the edges of dissolution pits and then relocated to other areas as particles aggregated. Amorphous silica and kaolinite were identified as the secondary mineral phases, and qualitative and quantitative analysis of morphological changes due to phlogopite dissolution and secondary mineral precipitation are presented. The results provide new information on the evolution of morphological changes at CO2-water-clay mineral interfaces and offer implications for understanding alterations in porosity, permeability, and wettability of pre-existing rocks in GCS sites.

  14. Geoscientific Applications of Particle Detection and Imaging Techniques withSpecial Focus on the Monitoring Clay Mineral Reactions

    NASA Astrophysics Data System (ADS)

    Warr, Laurence N.; Grathoff, Georg H.

    The combined use of focused X-ray, electron, and ion beams offers a diverse range of analytical capabilities for characterizing nanoscale mineral reactions that occur in hydrous environments. Improved image and microanalytical techniques (e.g., electron diffraction and energy-dispersive X-ray spectroscopy), in combination with controlled sample environments, are currently leading to new advances in the understanding of fluid-mineral reactions in the Earth Sciences. One group of minerals playing a key role in the containment of radioactive waste and the underground storage of CO2 is the clay minerals: these small, expandable, and highly adsorbent hydrous phyllosilicates form important low-permeable geological barriers by which waste can be safely deposited. In this article we summarize some of the state-of-the-art particle and imaging techniques employed to predict the behavior of both engineered and natural clay mineral seals in proposed storage sites. Particular attention is given to two types of low-permeability geomaterials: engineered bentonite backfill and natural shale in the subsurface. These materials have contrasting swelling properties and degrees of chemical stability that require detailed analytical study for developing suitable disposal or storage solutions.

  15. Deformation characteristics and associated clay-mineral variation in 2-3 km buried Hota accretionary complex, central Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Kameda, J.; Yamaguchi, H.

    2009-12-01

    Although deformation and physical/chemical properties variation in aseismic-seismic transition zone were essential to examine critical changes in environmental parameters that result in earthquake, they are poorly understood because the appropriate samples buried 2-4 km have not been collected yet (scientific drilling has never reached there and most of ancient examples experienced the deeper burial depth and suffered thermal and physical overprinting). The lower to middle Miocene Hota accretionary complex is a unique example of on land accretionary complex, representing deformation and its physical/chemical properties of sediments just prior to entering the seismogenic realm. The maximum paleotemperature was estimated approximately 55-70°C (based on vitrinite reflectance) indicative of a maximum burial depth about 2-3 km assuming a paleo-geothermal gradient as 25-35°C/km. Accretionary complex in this temperature/depth range corresponds with an intermediate range between the core samples collected from the modern accretionary prism (e.g. Nankai, Barbados, and so on) and rocks in the ancient accretionary complexes on land. This presentation will treat the detailed structural and chemical analyses of the Hota accretionary complex to construct deformation properties of décollement zone and accretionary complex in its 2-3 km depth range and to discuss the interrelation between the early diagenesis (hydrocarbon/cations generation and sediment dewatering, etc.) and transition of the deformation properties. The deformation in this accretionary complex is characterized by two deformation styles: one is a few centimeter-scale phacoidal deformation representing clay minerals preferred orientation in the outer rim, whereas random fabric in the core, quite similar texture to the rocks in the present-Nankai décollement. The other is S-C style deformation (similar deformation to the mélanges in ancient accretionary complex on land) exhibiting block-in-matrix texture and

  16. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.

    PubMed

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-06-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  17. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  18. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.

    PubMed

    Kavurmaci, Sibel Sen; Bekbolet, Miray

    2014-01-01

    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (<3 kDa) was more pronounced for sole HA rather than HA in the presence of clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters.

  19. Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C

    SciTech Connect

    Sugama, T.; Ecker, L.; Gill, S.; Butcher, T.; Bour, D.

    2010-11-01

    To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid; thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.

  20. A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis; modifications to Drever's filter-membrane peel technique

    USGS Publications Warehouse

    Pollastro, R.M.

    1982-01-01

    Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.

  1. [Mineralogy and genesis of mixed-layer clay minerals in the Jiujiang net-like red soil].

    PubMed

    Yin, Ke; Hong, Han-Lie; Li, Rong-Biao; Han, Wen; Wu, Yu; Gao, Wen-Peng; Jia, Jin-Sheng

    2012-10-01

    Mineralogy and genesis were investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) to understand the mineralogy and its genesis significance of mixed-layer clay minerals in Jiujiang red soil section. XRD and FTIR results show that the net-like red soil sediments are composed of illite, kaolinite, minor smectite and mixed-layer illite-smectite and minor mixed-layer kaolinite-smectite. HRTEM observation indicates that some smectite layers have transformed into kaolinite layers in net-like red soil. Mixed-layer illite-smectite is a transition phase of illite transforming into smectite, and mixed-layer kaolinite-smectite is a transitional product relative to kaolinite and smectite. The occurrence of two mixed-layer clay species suggests that the weathering sequence of clay minerals in net-like red soil traversed from illite to mixed-layer illite-smectite to smectite to mixed-layer kaolinite-smectite to kaolinite, which indicates that net-like red soil formed under a warm and humid climate with strengthening of weathering.

  2. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  3. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    SciTech Connect

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

  4. Alteration of glass as a possible source of clay minerals on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Keil, K.

    1978-01-01

    Thermodynamic calculations show that, under present Martian surface conditions, favorable gas-solid weathering products of feldspar glasses should include beidellites (clays of the montmorillonite series) + carbonates + quartz. The gas-solid weathering of mafic silicate glass ( of volcanic or impact origin) may similarly favor the production of metastable Fe-rich montmorillonite clays. Simple mass-balance calculations suggest that gas-solid weathering of Martian proto-regolith containing 10% glass could conceivably produce a global blanket of clays at a rate of at least 0.4 cm/b.y. The production rate should be expected to increase significantly with the glass content and rate of reworking of the proto-regolith and with the availability of water. Complete extraction of altered glass from a lunar-like proto-regolith might yield a global Martian clay blanket about 10-100 cm in thickness.

  5. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  6. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    PubMed

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  7. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

    PubMed

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (<1% CEC) for bentonite. Sorption to clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  8. Minerals and clay minerals assemblages in organic-rich facies: the case study of the Sinemurian-Pliensbachian carbonate deposits of the western Lusitanian Basin (Portugal)

    NASA Astrophysics Data System (ADS)

    Caniço, Ana; Duarte, Luís V.; Silva, Ricardo L.; Rocha, Fernando; Graciano Mendonça Filho, João

    2015-04-01

    The uppermost Sinemurian-Pliensbachian series of the western part of the Lusitanian Basin is composed by hemipelagic carbonates particularly enriched in organic matter. Great part of this succession, considered to be one of the most important potential source rock intervals of Portugal, crops out in the S. Pedro de Moel and Peniche sectors, belonging to the Água de Madeiros and Vale das Fontes formations. In this study, supported by a detailed and integrated stratigraphic framework, we analyzed 98 marly samples (whole-rock mineralogy and clay minerals assemblages) from the aforementioned formations in the S. Pedro de Moel and Peniche sectors. X-ray Diffraction analysis followed the standard procedures and the semi-quantification of the different mineral phases was calculated using MacDiff 4.2.6. The goals of this work are to demonstrate the vertical variability of the mineral composition of these two units and investigate the relationship between the clay minerals assemblages and the content in organic matter (Total organic carbon: TOC). Besides the abundance of calcite and phyllosilicates, whole-rock mineralogy revealed the presence of quartz, potassium feldspar, dolomite, and pyrite (trace amounts). Other minerals like anhydrite, barite and gypsum occur sporadically. The clay minerals assemblages are dominated by illite+illite/smectite mixed-layers (minimum of 59%), always associated with kaolinite (maximum of 37%) and chlorite (maximum of 25%); sporadically smectite occurs in trace amounts. Generally, high TOC levels (i.e., black shale facies with TOC reaching up to 22 wt.% in both units, see Duarte et al., 2010), show a major increase in chlorite and kaolinite (lower values of illite+illite/smectite mixed layers). A kaolinite enrichment is also observed just above the Sinemurian-Pliensbachian boundary (base of Praia da Pedra Lisa Member of Água de Madeiros Formation; values varying between 30 and 37%). This event is associated with a second-order regressive

  9. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry].

    PubMed

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu

    2010-03-01

    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  10. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe.

    PubMed

    Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H

    2002-04-15

    This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.

  11. The possible role of nannobacteria (dwarf bacteria) in clay-mineral diagenesis and the importance of careful sample preparation in high-magnification SEM study

    SciTech Connect

    Folk, R.L.; Lynch, F.L.

    1997-05-01

    Bacterial textures are present on clay minerals in Oligocene Frio Formation sandstones from the subsurface of the Corpus Christi area, Texas. In shallower samples, beads 0.05--0.1 {micro}m in diameter rim the clay flakes; at greater depth these beads become more abundant and eventually are perched on the ends of clay filaments of the same diameter. The authors believe that the beads are nannobacteria (dwarf forms) that have precipitated or transformed the clay minerals during burial of the sediments. Rosettes of chlorite also contain, after HCl etching, rows of 0.1 {micro}m bodies. In contrast, kaolinite shows no evidence of bacterial precipitation. The authors review other examples of bacterially precipitated clay minerals. A danger present in interpretation of earlier work (and much work of others) is the development of nannobacteria-looking artifacts caused by gold coating times in excess of one minute; the authors strongly recommend a 30-second coating time. Bacterial growth of clay minerals may be a very important process both in the surface and subsurface.

  12. Cation diffusion in the interlayer space of swelling clay minerals - A combined macroscopic and microscopic study

    NASA Astrophysics Data System (ADS)

    Tertre, Emmanuel; Delville, Alfred; Prêt, Dimitri; Hubert, Fabien; Ferrage, Eric

    2015-01-01

    This study investigates the diffusion process of calcium cations confined in the interlayer space of 5 mm disks of vermiculite swelling clay minerals during the Na-for-Ca exchange process. Diffusion experiments were performed at four NaCl salinities (3 × 10-3, 5 × 10-2, 0.1 and 1 M) of the exchanger solution. A macroscopic analysis of the diffusion process based on the aqueous calcium concentrations released in the solution and on Ca-profiles obtained in the solid was performed using a pore diffusion model that has been classically used in the literature. The results obtained at the macroscopic scale showed that the apparent diffusion coefficients describing both aqueous and profiles data for Ca depend on the diffusion time and salinity of the aqueous reservoir. Such variations suggested that interlayer diffusion was driven by (1) the gradient of the sorbed species in the interlayer, which depends on the diffusion time due to the ion exchange equilibrium; and (2) the discontinuity, due to Donnan equilibrium, existing at the limit between the "internal disk border" and the "external disk border" in contact with the aqueous reservoir. Then, a set of molecular and Brownian dynamics simulations was used to (1) assess such interpretations and (2) quantitatively predict aqueous and profile data obtained at the macroscopic scale. For an aqueous reservoir with high salinity (1 M NaCl), a good agreement was obtained between the macroscopic data and the predictions obtained from Brownian dynamics simulations, confirming the role played by the gradient of the interlayer species that is suggested at the macroscopic scale and which is at the basis of the "surface diffusion models" published in literature. In addition, for aqueous reservoirs with lower salinity (5 × 10-2 M), the results obtained by Brownian dynamics simulations and normalized to the exchange rate measured at infinite time showed that the diffusion properties of the species in the aqueous reservoir cannot be

  13. Modeling of cation binding in hydrated 2:1 clay minerals. Progress report, September 15, 1996--September 14, 1997

    SciTech Connect

    Smith, D.E.

    1997-01-01

    'The primary focus of the research is the development of molecular theories of ion binding to clay minerals, with a view toward understanding the mechanism of radionuclide transport through soils. The overall aim of the research and the computational methods employed are essentially unchanged from those originally proposed. The research is split conceptually into three phases, based on the radionuclides considered. The first, cesium phase has an estimated completion time of 1.5 years from the project initiation. This phase is ongoing at this time. The second, strontium and third, uranium phases will be addressed in the second half of the project period. Phase 1 Accomplishments Code Development: A computer simulation code for the treatment of hydrated smectite and vermiculite clays with varying water content has been developed. This version of the code enables calculations under conditions of constant interlayer spacing or constant applied pressure, and for the complete series of interlayer alkali-metal ions. Final development of the code for (i), calculations of exchange free energies, and (ii), calculations at constant water chemical potential should be completed within the next month. This will allow the most important scientific issues of phase 1 to be fully addressed. Hydrated Clay Structure: The molecular structures of Cs{sup +}- and Na{sup +}-montmorillonite (a common swelling clay) have been investigated. The observed layer spacings versus water content of both clays agree well with experimental swelling curves. 1,2 This has provided validation of the simulation models. Comparison of cesium and sodium structures indicate that cesium preferentially forms inner-sphere complexes with the clay surface. The relationship of this structural observation to Na{sup +} Cs{sup +} exchange thermodynamics is presently under investigation. Dry Cs{sup +}-Montmorillonite Structure: It is thought that dry, cesium-substituted montmorillonites exist as mixed-layer structures

  14. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  15. ADSORPTION, DESORPTION AND OXIDATION OF ARSENIC AFFECTED BY CLAY MINERALS AND AGING PROCESS

    EPA Science Inventory

    Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very litt...

  16. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral

  17. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about

  18. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  19. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    NASA Astrophysics Data System (ADS)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  20. The 1.7- to 4.2-micron spectrum of asteroid 1 Ceres - Evidence for structural water in clay minerals

    NASA Technical Reports Server (NTRS)

    Lebofsky, L. A.; Feierberg, M. A.; Larson, H. P.; Johnson, J. R.; Tokunaga, A. T.

    1981-01-01

    A high-resolution Fourier spectrum (1.7-3.5 microns) and medium-resolution spectrophotometry (2.7-4.2 microns) were obtained for Asteroid 1 Ceres. The presence of the 3-micron absorption feature due to water of hydration was confirmed. The 3-micron feature is compared with the 3-micron bands due to water of hydration in clays and salts. It is concluded that the spectrum of Ceres shows a strong absorption at 2.7-2.8 microns due to structural OH groups in clay minerals. The dominant minerals on the surface of Ceres are therefore hydrated clay minerals structurally similar to terrestrial montmorillonites. There is also a narrow absorption feature at 3.1 microns which is attributable to a very small amount of water ice on Ceres. This is the first evidence for ice on the surface of an asteroid.

  1. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  2. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    PubMed

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  3. Effect of pH on the heavy metal-clay mineral interaction

    SciTech Connect

    Altyn, O.; Oezbelge, H.O.; Dogu, T.; Oezbelge, T.A.

    1997-12-31

    Adsorption and ion exchange of Pb and Cd on the surface of kaolinite and montmorillonite were studied with a strong emphasis on the pH values of solutions containing heavy metal ions. The pH range studied was 2.5 - 9. For kaolinite at a clay/solution ratio of 1/10 (w/w), Pb removal changes from 20 to 30% for an initial Pb concentration of 1640 ppm, and Cd removal changes from 10 to 20% for an initial Cd concentration of 1809 ppm. Due to its high exchange capacity, montmorillonite can remove more heavy metal than kaolinite. Removal rates for montmorillonite can reach up to 90% for both Pb and Cd. In the pH range of 3-6, there is a plateau for the removal rates. At pH values higher than 6, removal seems to increase artificially due to the precipitation of heavy metals. Under similar conditions for both clays, the rate of removal of Pb is always higher than that of Cd. As the pH value decreases for montmorillonite, there is a strong tendency for decreased surface area and swelling, as indicated by BET surface area measurements, adsorbed layer thickness and pore size distribution data. In the range of pH values studied, X-ray diffraction analysis showed the appearance of a characteristic (001) peak for montmorillonite, indicating that the crystalline structure of the clay was intact during the experiments.

  4. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: use in clay mineral studies

    USGS Publications Warehouse

    Crowley, J.K.; Vergo, N.

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the same spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. -from Authors

  5. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    DTIC Science & Technology

    2012-12-01

    Aldrich clays had been converted to the homoionic Na + form for another project. 45 Substrate suspensions were prepared in a formulated source water ( FSW ...at a concentration of 250 mg/L. This FSW has been used in other agent fate studies and is well characterized. 74,107 The FSW has a pH of 7.7...suspensions were allowed to equilibrate in the FSW for 72 h before being used. A mixed solution of MPA, EMPA, EA 2192, and VX was prepared in FSW at a

  6. Stability of guanine adsorbed in a clay mineral under gamma irradiation at temperatures (77 and 298 K): Implications for chemical evolution studies

    NASA Astrophysics Data System (ADS)

    Meléndez-López, A. L.; Ramos-Bernal, S.; Ramírez-Vázquez, M. L.

    2014-07-01

    Chemical evolution is a physical and chemical preamble prior the appearance of life. In these processes, clay minerals might have played an important role on the early Earth. The relevance of these solids in the emergence of life is due to their ancient origin, wide distribution, and especially, their physico-chemical properties. Clays, therefore, are considered the most likely inorganic materials to promote organic reactions in the primitive Earth. John D. Bernal suggested clays as concentrators of biological precursor molecules, as catalysis and clays might protect these molecules from high-energy radiation. On the other hand, nucleic acid bases and their derivatives are important compounds in biological systems. Their synthesis and stability in environmental conditions are of paramount importance in chemical evolution. The aim of this work is to extend the knowledge of the role of clays in the prebiotic epoch in relation to the behavior of guanine, a nucleic acid base, adsorbed in a clay mineral. To this end, we studied its adsorption in clays, its site of binding, and its survival under a high radiation field and at different temperatures and pH. The results showed guanine adsorption onto clays increased with the decreasing of the pH. This result could be explained by electrostatic forces between guanine positively charged at an acid pH and the negatively charged interlamellar channel of the clay. X-ray diffractograms showed that guanine is adsorbed onto the clay at the interlayer channel. To study the survival of guanine in a high radiation field, the system guanine-clay was irradiated under different irradiation doses, temperatures, and pH. The results showed that more than 90% of the guanine survives, and when the radiolysis is made without clay, the decomposition of this molecule occurs at low irradiation doses. The radiolysis performed at 77 K showed very low decomposition, which is important in cometary chemistry. These results show the protection role of

  7. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    SciTech Connect

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs.

  8. Mars atmosphere. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars.

    PubMed

    Mahaffy, P R; Webster, C R; Stern, J C; Brunner, A E; Atreya, S K; Conrad, P G; Domagal-Goldman, S; Eigenbrode, J L; Flesch, G J; Christensen, L E; Franz, H B; Freissinet, C; Glavin, D P; Grotzinger, J P; Jones, J H; Leshin, L A; Malespin, C; McAdam, A C; Ming, D W; Navarro-Gonzalez, R; Niles, P B; Owen, T; Pavlov, A A; Steele, A; Trainer, M G; Williford, K H; Wray, J J

    2015-01-23

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  9. Cesium and Strontium Uptake to Clay Minerals and Their Weathering Products in a Caustic Waste

    SciTech Connect

    Choi, Sunkyung; Amistadi, Mary Kay; Seraphin, Supapan; Chorover, Jon

    2004-03-28

    Weathering behavior and contaminant (Sr and Cs) uptake by specimen clays (illite, vermiculite, montmorillonite and kaolinite) and their secondary solid phase products were studied in batch systems under geochemical conditions characteristic of leaking tank waste at the Hanford Site in WA (0.05 M AlT, 2 M Na+, 1 M NO3 -, pH {approx}14, Cs+ and Sr2+ present as co-contaminants). Time series experiments were conducted from 0 to 369 days, with initial Cs+ and Sr2+ concentrations ranging from 10-5 to 10-3 M. Cesium sorption after 369 d reaction was the greatest in the order of vermiculite, illite, montmorillonite and kaolinite at 10-3 M Cs/Sr. In the case of Sr, vermiculite showed highest Sr sorption and was followed by kaolinite, montmorillonite and illite at highest loading Cs/Sr after 369 d. Secondary phase products were feldspathoid sodium aluminum nitrate silicate, sodium aluminum nitrate silicate hydrate, Na-Al chabazite and zeolite X in weathered clays. Discrete Sr single phases were found in kaolinite and illite systems after 369 d at 10-3 M Cs/Sr.

  10. Kinetics and thermodynamics studies of copper exchange on Na-montmorillonite clay mineral.

    PubMed

    El-Batouti, Mervette; Sadek, Olfat M; Assaad, Fayez F

    2003-03-15

    The kinetics of Cu ion exchange on Na-montmorillonite clay has been investigated at 20, 30, and 40 degrees C in water, methanol, and ethanol. The reaction is endothermic in nature. Solvent effects on the reaction rate have been discussed. The thermodynamic activation parameters were calculated and discussed in terms of solvation effects. A multiple reaction rate order equation was used to describe the adsorption process. Lower rates and higher activation energies (Ea) were observed in aqueous solution than in either of the alcohols. The Ea values ranged from 20.88 kJmol(-1) in water to 9.20 kJmol(-1) in ethanol, while at 20 degrees C the rate constant (k) varied from 0.111 ppm(-1)s(-1) in water to 0.205 ppm(-1)s(-1) in ethanol. The main factor influencing the rate of the adsorption process is the mobility of the adsorbed Cu cations, which is apparently larger in alcohols than in water, due to the difference in the molar activation energy of the solvent. The determined isokinetic temperature indicates that the reaction is enthalpy-controlled, where the interaction between solvent and clay surface plays an important role. A reaction mechanism that describes the solvent effect on the rate of Cu ion exchange is proposed.

  11. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.

    PubMed

    Cai, Peng; He, Xiaomin; Xue, Aifang; Chen, Hao; Huang, Qiaoyun; Yu, Jun; Rong, Xinming; Liang, Wei

    2011-01-30

    Adsorption, desorption and degradation by Pseudomonas putida of methyl parathion (O,O-dimethyl O-p-nitrophenyl phosphorothioate) on montmorillonite, kaolinite and goethite were studied. Metabolic activities of methyl parathion-degrading bacteria P. putida in the presence of minerals were also monitored by microcalorimetry to determine the degradation mechanism of methyl parathion. Montmorillonite presented higher adsorption capacity and affinity for methyl parathion than kaolinite and goethite. The percentage of degradation of methyl parathion adsorbed on minerals by P. putida was in the order of montmorillonite>kaolinite>goethite. The presence of minerals inhibited the exponential growth and the metabolic activity of P. putida. Among the examined minerals, goethite exhibited the greatest inhibitory effect on bacterial activity, while montmorillonite was the least depressing. The biodegradation of adsorbed methyl parathion by P. putida is apparently not controlled by the adsorption affinity of methyl parathion on minerals and may be mainly governed by the activity of the methyl parathion-degrading bacteria. The information obtained in this study is of fundamental significance for the understanding of the behavior of methyl parathion in soil environments.

  12. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Zolensky, M. E.

    1991-01-01

    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  13. Experimental Determination of Clay Mineral Reactions in Clastic Reservoir Rock Resulting from the Injection of Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Mangini, S. A.; Shaw, C. A.; Skidmore, M. L.

    2013-12-01

    The Cretaceous Frontier Formation of the Powder River Basin, WY has been considered as a potential reservoir for storing anthropogenic CO2. The reservoir zones are composed of fine-grained quartz and potassium feldspar rich sandstones, cemented with clay minerals (kaolinite and interlayered illite and montmorillonite). The purpose of these experiments is to determine whether susceptible minerals such as illite, montmorillonite, and potassium feldspar undergo in-situ 'weathering' reactions when exposed to the high concentrations of carbonic acid generated by the dissolution of supercritical CO2 in formation water. The transformation of these minerals has the potential to: 1.) open up pore space through dissolution; 2.) reduce pore space and/or close pore throats by precipitating new minerals, or 3.) cause little change if the reactions take place slowly. Core samples of the Frontier Formation were obtained from the USGS Core Repository in Denver, CO and their physical and mineralogical properties analyzed. Porosity and permeability of the cores have been determined by helium porosimetry and gas permeability testing. Pore space distribution was analyzed by CT scan. Mineralogy was determined by thin section analysis, X-Ray diffraction, and Scanning Electron Microscopy. Ongoing experiments will expose the cores to CO2 saturated brine in a flow-through reactor at conditions similar to those found in the subsurface (100oC and 15MPa). Changes to the chemical composition of the brine will be determined by withdrawing samples at regular intervals during the experiment and analyzing their contents with ion chromatography and colorimetry. The physical and mineralogical properties of the cores will be analyzed after each experiment and compared to the initial conditions. We will report on the results of these experiments.

  14. Clay mineral weathering and contaminant dynamics in a caustic aqueous system I. Wet chemistry and aging effects

    SciTech Connect

    Choi, Sunkyung; Amistadi, Mary K.; Chorover, Jon

    2005-04-08

    Caustic high level radioactive waste induces mineral weathering reactions that can influence the fate of radionuclides released in the vicinity of leaking storage tanks. The uptake and release of CsI and SrII were studied in batch reactors of 2:1 layer-type silicates?illite (Il), vermiculite (Vm) and montmorillonite (Mt)?under geochemical conditions characteristic of leaking tank waste at the Hanford Site in WA (0.05 mAlT, 2 m Na*, 1 m NO3 *, pH *14, Cs and Sr present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10*5 to 10*3 mol kg*1. Clay mineral type affected the rates of (1) hydroxide promoted dissolution of Si, Al and Fe, (2) precipitation of secondary solids and (3) uptake of Cs and Sr. Initial Si release to solution followed the order Mt * Vm * Il. An abrupt decrease in soluble Si and/or Al after 33 d for Mt and Vm systems, and after 190 d for Il suspensions was concurrent with accumulation of secondary aluminosilicate precipitates. Strontium uptake exceeded that of Cs in both rate and extent, although sorbed Cs was generally more recalcitrant to subsequent desorption and dissolution. After 369 d reaction time, reacted Il, Vm and Mt solids retained up to 17, 47 and 14 mmol kg*1 (0.18, 0.24 and 0.02 *mol m*2) of Cs, and 0, 27 and 22 mmol kg*1 (0, 0.14 and 0.03 *molm*2) Sr, respectively, which were not removed in subsequent Mg exchange or oxalic acid dissolution reactions. Solubility of Al and Si decreased with initial Cs and Sr concentration in Mt and Il, but not in Vm. High co-contaminant sorption to the Vm clay, therefore, appears to diminish the influence of those ions on mineral transformation rates.

  15. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model.

    PubMed

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L

    2013-08-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some

  16. Clay mineral contribution from various provenances in the northern South China Sea over the past 400 kyr: implications for the East Asian monsoon evolution

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Liu, Zhifei; Xie, Xin; Kissel, Catherine

    2014-05-01

    Clay mineralogy of Core MD12-3432 taken at 2125 m water depth (CIRCEA cruise on board the R.V. Marion Dufresne, IPEV) in the northern South China Sea was investigated in order to understand the time series contribution of terrigenous sediments from various provenances. With calibration of a low-resolution analysis on carbonate concentration and major elements, we converted the XRF core scanned calcium data into a high-resolution carbonate content records. Through referring to the well-dated carbonate record of nearby Core MD05-2904, we established a reliable age model, indicating about 400 kyr ago at the bottom of Core MD12-3432. The clay mineral assemblage is dominated by smectite (23-59%) and illite (22-43%), with minor chlorite (13-27%) and kaolinite (4-13%). The time series variation of clay mineral assemblages indicates strong glacial-interglacial cyclicity. In general, the variation in smectite content is similar to that of carbonate concentration, with higher values during interglacials than during glacials, while illite and chlorite contents showing opposite patterns. The change in kaolinite content shows an independent pattern with high values during glacials, corresponding well with the illite crystallinity variation. The provenance analysis of these clay minerals suggests three end-member sources: all smectites derive from Luzon, all kaolinites originate from the Pearl River, and illite and chlorite are coming from both the Pearl River and Taiwan. Using the linear separation method of illite crystallinity, a time series of the clay mineral contribution from the three major provenances to the northern South China Sea was reconstructed. Combined with spectral analyses, we suggest the clay mineral contribution from Pearl River was mainly influenced by sea level change, while the East Asian summer monsoon controlled the contribution from Luzon. The strong precipitation rate related to intensive East Asian summer monsoon would have enhanced the denudation and

  17. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay

    NASA Astrophysics Data System (ADS)

    Charlet, L.; Scheinost, A. C.; Tournassat, C.; Greneche, J. M.; Géhin, A.; Fernández-Martínez, A.; Coudert, S.; Tisserand, D.; Brendle, J.

    2007-12-01

    surface H 2 species, and are then available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, we derived an average particle size of this precipitate which does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters.

  18. Lead exchange into zeolite and clay minerals: A [sup 29]Si, [sub 27]Al, [sup 23]Na solid-state NMR study

    SciTech Connect

    Liang, J.J.; Sherriff, B.L. )

    1993-08-01

    Chabazite, vermiculite, montmorillonite, hectorite, and kaolinite were used to remove Pb, through ion exchange, from 0.01 M aqueous Pb(NO[sub 3])[sub 2] solutions. These minerals contained 27 (Na-chabazite), 16, 9, 9, and 0.5 wt % of Pb, respectively, after equilibration with the solutions. Ion exchange reached equilibrium within 24 h for Na-chabazite and vermiculite, but in less than 5 min for montmorillonite and hectorite. Na-chabazite took up more Pb than natural (Ca, Na)-chabazite (7 wt % Pb), whereas no such difference was observed in different cation forms of the clay minerals. Calcite impurities, associated with the clay minerals, effectively removed Pb from the aqueous solutions by the precipitation of cerussite (PbCO[sub 3]). [sup 29]Si, [sup 27]Al, and [sup 23]Na magic angle spinning (MAS) nuclear magnetic resonance (NMR), [sup 23]Na double rotation (DOR) NMR, and [sup 23]Na variable-temperature MAS NMR were used to study the ion exchange mechanisms. In Na-chabazite, cations in all three possible sites take part in the fast chemical exchange. The chemical exchange passes from the fast exchange regime to the slow regime at [minus]80 to [minus]100[degrees]C. One site contains a relatively low population of exchangeable cations. The other two more shielded sites contain most of the exchangeable cation. The exchangeable cations in chabazite and vermiculite were found to be close to the SiO[sub 4] and AlO[sub 4] tetrahedra, while those in the other clay minerals were more distant. Two sites (or groups of sites) for exchangeable cations were observed in hectorite. Lead tended to occupy the one which corresponds to the [minus]8 ppM peak on the [sup 23]Na MAS NMR spectrum. The behavior of the exchangeable cations in the interlayer sites was similar in all the clay minerals studied. 27 refs., 7 figs., 4 tabs.

  19. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A (14)C-tracer study.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A(14)C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field.

  20. Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina)

    NASA Astrophysics Data System (ADS)

    Do Campo, Margarita; del Papa, Cecilia; Nieto, Fernando; Hongn, Fernando; Petrinovic, Ivan

    2010-07-01

    Variations in clay-mineral assemblages in ancient continental deposits are frequently used to reconstruct past climate changes. In active settings, volcanic events can supply highly labile volcaniclastic material, which can easily be transformed into smectite via diagenesis, which can produce a noticeable footprint in clay-mineral assemblages. Southern Central Andean foreland deposits are appropriate case studies to ascertain whether the climatic signal was preserved in the clay assemblages of their fine-grained sediments as tectonic uplift, volcanism, and sedimentation have been interacting since the Cretaceous. We have studied a 1400-m-thick coarsening-upward Palaeogene succession of the Tin Tin basin (northern Calchaquí Valley, Argentina), applying X-ray diffraction (XRD), electron microscopy, and detailed sedimentary facies analysis with the aim of comparing tendencies in the vertical fluctuations of clay minerals with evidence from sedimentological facies. Illite-muscovite plus smectite account for 78% to 100% of the clay minerals in the fine fraction, with kaolinite and chlorite in subordinate amounts. The vertical variation of sedimentary settings from an overbank/lacustrine domain to fluvial braided plains and an aeolian dune field suggests a gradual increase in aridity upsection. However, smectite abundances do not show a gradual decreasing trend compatible with progressively lower hydrolyzing conditions; their relative abundances vary widely throughout the section, depicting pulse-like, abrupt fluctuations. Despite the absence of field evidence for volcanic influence, several indications of volcanic and volcaniclastic material have been found under scanning electron microscopy (SEM) in levels with high smectite abundances from the middle to the top of the succession. They include quartz crystals showing embayments and skeletal forms, with smectite filling the voids, microcrystalline silica, as well as heulandite crystals in close association with

  1. Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals

    PubMed Central

    2014-01-01

    We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the

  2. Clay minerals and gravels of late Pleistocene interstadial coastal sediments above the current sea level, south coast of Korea

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Kim, J. C.; Lim, J.; Yi, S.; Nahm, W. H.; Kim, J. Y.; Han, M.

    2015-12-01

    At nowadays, the severe greenhouse effect causes rapid sea level rise around the Korea Peninsula. Paleo-climate researches have been concentrating on hydrological activities during the mid-Holocene optimum and the last interglacial period to use the paleo-analogues data in predicting the future hydrological environments. The previous studies on the late Pleistocene interstadial coastal sediments have primarily been biased towards the terraces of the east coast in the Korean Peninsula. According to the results, the last interglacial marine terraces of the east coast were existed at 18 m in elevation. Uplift rate of them was presumed to be 0.1mm/year (Choi, 2006). Also, the stratigraphy of the Quaternary coastal deposits of the Yellow Sea has been suggested by Park et al. (1998) and Lim et al. (2003). In recent, Jang et al. (2014) reported the OSL dated Eemian marine deposit along the southwest coast of Korea. However, the age-equivalent outcrops of the south coast are not discovered yet. The first outcrops of the late Pleistocene interstadial coastal sediment above the present sea level were discovered at IJin-ri site of Haenam, south coast of Korea. It would be very useful for calculating the rates of Eemian sea level rise and uplift of south coast of Korea. 62 cubic samples were collected at 6 cm intervals from the section (4.8-8.83m in elevation). Four sedimentary units, from Unit 1 to 4 in ascending order, are distinguished based on sedimentary textures and grain size distribution as follows: Unit 1 (sand, 4.8 m-5.32 m in elevation), Unit 2 (silty clay, 5.32 m-6.8 m in elevation), Unit 3 (gravelly sand, 6.8m-7.8m in elevation) and, Unit 4(sandy gravel, 7.8m-8.83m in elevation). The sediments which included rounded or semi-rounded gravels are thought to be transported from marine. Also, the assemblages of clay minerals from the sections are similar to those of Yellow Sea. It shows the possibility that the sediments originated from marine during high sea level

  3. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.

    2014-12-01

    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  4. CLAYFORM: a FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula

    USGS Publications Warehouse

    Bodine, M.W.

    1987-01-01

    The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.

  5. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications.

  6. Insights into the Mechanism of Fe(II) Adsorption and Oxidation at Fe-Clay Mineral Surfaces from First-Principles Calculations

    SciTech Connect

    Alexandrov, Vitali Y.; Rosso, Kevin M.

    2013-10-02

    Interfacial reactivity of redox-active iron-bearing mineral surfaces plays a crucial role in many environmental processes including biogeochemical cycling of various elements and contaminants. Herein, we apply density-functional-theory (DFT) calculations to provide atomistic insights into the heterogeneous reaction between aqueous Fe(II) and the Fe-bearing clay mineral nontronite Fe2Si4O10(OH)2 by studying its adsorption mechanism and interfacial Fe(II)-Fe(III) electron transfer (ET) at edge and basal surfaces. We find that edge-bound Fe(II) adsorption complexes at different surface sites (ferrinol, silanol and mixed) may coexist on both (010) and (110) edge facets, with complexes at ferrinol FeO(H) sites being the most energetically favorable and coupled to proton transfer. Calculation of the ET activation energy suggests that interfacial ET into dioctahedral Fe(III) sheets is probable at the clay edges and occurs predominantly but not exclusively through the complexes adsorbed at ferrinol sites and might also involve mixed sites. No clear evidence is found for complexes on basal surface that are compatible with ET through the basal sheet despite this experimentally hypothesized ET interface. This study suggests a strong pH-dependence of Fe(II) surface complexation at basal versus edge facets and highlights the importance of the protonation state of bridging ligands and proton coupled electron transfer to facilitate ET into Fe-rich clay minerals.

  7. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  8. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study

    PubMed Central

    2014-01-01

    Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578

  9. Clay Minerals in Soils as Evidence of Holocene Climatic Change, Central Indo-Gangetic Plains, North-Central India

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Parkash, Bramha; Pal, Dilip K.

    1998-11-01

    Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite-kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000-6500 yr B.P. and 3800-? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400-4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.

  10. Fluid-rock interaction controlling clay-mineral crystallization in quartz-rich rocks and its influence on the seismicity of the Carboneras fault area (SE Spain)

    NASA Astrophysics Data System (ADS)

    Jimenez-Espinosa, R.; Abad, I.; Jimenez-Millan, J.; Lorite-Herrera, M.

    2009-04-01

    The Carboneras Fault zone is one of the longest fault in the Betic Cordillera (SE Spain) and it would be a good candidate to generate large magnitude earthquakes (Gracia et al., 2006). Seismicity in the region is characterised by low to moderate magnitude events, although large destructive earthquakes have occurred, which reveals significant earthquake and tsunami hazards (Masana et al., 2004). Due to the internal architecture of the fault zone, shear lenses of post-orogenic sediments of Miocene and Pliocene age including marls and sandstones sequences are juxtaposed to the predominant slaty gouges of the Alpine basement. Microcataclasites and gouges of the quartz-rich post-orogenic sediments are also developed as cm- to m-scale bands, allowing the comparison between the deformed materials and their protoliths. Red, yellow and white sandstones and their respective cataclasites can be identified. This communication is concerned with the clay mineral crystallization events in these materials and its possible influence on the seismicity model of the region. The presence of phyllosilicates in fault zones as either neoformed or inherited clays is commonly related with fluid circulation and a mechanically weak fault behaviour (e.g., Wang, 1984). A critical factor for the understanding of the mechanical role of clays in fault rocks is to determine the timing of formation of mineral assemblages and microstructure of fault rocks and protolith. The effects of post-faulting alteration limit inferences about fault behaviour that can be made from exhumed rocks. The Carboneras fault zone provides good opportunities to study mineral processes enhanced by deformation, given that it is located in a region of arid climate and shows outcroppings of quartzitic rocks included in slaty rocks. Combined XRD, optical microscopy and SEM analyses reveal that deformed quartzitic rocks are enriched in phyllosilicates, increasing especially the amount of chlorite. The samples strongly damaged

  11. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: effect on forensic diagnostic ratios.

    PubMed

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2014-07-01

    The impact of modified montmorillonites on adsorption and biodegradation of crude oil C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. Consequently, the effect on C1-dibenzothiophenes/C1-phenanthrenes, C2-dibenzothiophenes/C2-phenanthrenes, 2+3-methyldibenzothiophene/4-methyldibenzothiophene and 1-methyldibenzothiophene/4-methyldibenzothiophene ratios commonly used as diagnostic ratios for oil forensic studies was evaluated. The clay mineral samples were treated to produce acid activated montmorillonite, organomontmorillonite and homoionic montmorillonite which were used in this study. The different clay minerals (modified and unmodified) showed varied degrees of biodegradation and adsorption of the C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes. The study indicated that as opposed to biodegradation, adsorption has no effect on the diagnostic ratios. Among the diagnostic ratios reviewed, only C2-dibenzothiophenes/C2-phenanthrenes ratio was neither affected by adsorption nor biodegradation making this ratio very useful in forensic studies of oil spills and oil-oil correlation.

  12. Clay mineral assemblages of terrestrial records (Xining Basin, China) during the Eocene-Oligocene climate Transition (EOT) and its environmental implications

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Guo, Z.

    2013-12-01

    The Eocene-Oligocene Transition (EOT) between ~34.0 and 33.5 million years ago, where global climate cooled from 'greenhouse' to 'icehouse' at ~33.5 Ma ago, is one of the great events during Cenozoic climate deterioration. In contrast to the marine records of the EOT, significantly less research has focused on the continental climate change during this time, particularly in inner Asia. We present a comprehensive study of the upper Eocene to lower Oligocene succession with regular alternations of laterally continuous gypsum/gypsiferous layers and red mudstone beds in Tashan section of Xining Basin, which is located at the northeastern margin of the Tibetan Plateau. Clay minerals, which were extracted from this succession, were analyzed qualitatively and semi-quantitatively by using X-ray differaction (XRD). Base on detailed magnetostratigraphic time control, clay mineral compositions of this succession (33.1-35.5 Ma) are compared with open ocean marine records and Northern Hemisphere continental records to understand the process and characteristics of Asian climate change before, during and after EOT. Our results indicate that illite is the dominant clay mineral with less chlorite and variable smectite. Multi-parameter evidence suggests that the source areas of detrital inputs in Tashan have not changed and climate is the main control for the composition of the clay fraction. The characteristics of clay mineral concentrations suggest warm and humid fluctuations with cold and dry conditions and intense of seasonality during ~35.5-34.0 Ma in inner Asian. This changed to cold and dry condition at ~34 Ma and remained so from ~34-33.1 Ma. The comparisons between continental and marine records indicate that the climate changes experienced in the Xining basin region are more consistent with Northern Hemisphere rather than open oceans records. This indicates that paleoclimate changes for inner Asian before, during and after EOT was not controlled by Antarctic ice growth

  13. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility

    NASA Astrophysics Data System (ADS)

    Fan, Q. H.; Tanaka, M.; Tanaka, K.; Sakaguchi, A.; Takahashi, Y.

    2014-06-01

    The relationship between cesium (Cs) adsorption on clay minerals with various expandabilities and Cs mobility in environment was investigated using sequential extraction, batch adsorption, X-ray diffraction (XRD), generalized adsorption model (GAM), and Cs LIII-edge extended X-ray absorption fine structure (EXAFS) analyses with molecular simulations using the density functional theory (DFT). In particular, the difference between the affinities of illite (non-expansion) and vermiculite (intermediate expansion) for Cs and the effect of humic acid (HA) addition on the Cs/clay mineral system were highlighted in this study. These two factors affect Cs mobility and bioavailability in surface soil and sediments. The batch adsorption results showed that Cs adsorption was inhibited to some extent in the ternary clay + HA + Cs system because of (i) the blocked access of Cs to the frayed edge site (FES) and type II site [inner-sphere (IS) complex in GAM] by HA, and (ii) the reduced availability of the interlayer site in vermiculite. EXAFS analysis further confirmed that the adsorbed Cs in clay minerals was drastically changed by the sequential addition of HA. In addition, the dominant IS complex in the illite + Cs and illite + Cs + HA systems (in which HA was added after Cs adsorption on illite) can be converted to the outer-sphere (OS) complex largely in the illite + HA + Cs system (in which HA was added prior to Cs adsorption). These results are consistent with the sequential extraction and GAM results. The IS complex of dehydrated Cs+ mainly formed at the FES and interlayer site on illite (non-expansion) without resulting in any illite structural changes. However, on vermiculite (intermediate expansion), the dehydrated Cs+ can be adsorbed as an IS complex associated with the siloxane group of the di-trigonal cavity in the tetrahedral SiO4 sheet. This adsorption is accompanied by collapse of the layer, which can be easily coated by HA molecules to prevent Cs fixation

  14. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones)

    NASA Astrophysics Data System (ADS)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude

    2015-06-01

    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  15. CO2-Brine-Iron-bearing Clay Mineral Interactions: Surface Area Changes and Fracture-Filling Potentials in Geologic CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Jun, Y.; Hu, Y.

    2011-12-01

    Geologic carbon dioxide sequestration (GCS) is a promising option to reduce anthropogenic CO2 emission from coal-fired power plants. The injected CO2 in GCS sites can induce dissolution of rocks and secondary mineral formation, potentially change the physical properties of the geological formations, and thus influence the transport and injectivity of CO2. However, most of the relevant studies are based on hydrological transport, using simulation models rather than studying actual interfacial chemical reactions. The mechanisms and kinetics of interfacial reactions among supercritical CO2 (scCO2)-saline water-rock surfaces at the molecular scale and their impacts on CO2 leakage have not been well understood. This research investigated the effects of various environmental factors (such as temperature, pressure, salinity, and different metal ion and organic-containing brine) on the dissolution and surface morphological changes of clay minerals. In this work, iron-bearing clay mineral, biotite [K(Mg,Fe)3AlSi3O10(OH,F)2], was used for model clay minerals in potential GCS sites. Both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on clay mineral surfaces under GCS conditions in high salinity systems. Using atomic force microscopy (AFM) and scanning electron microscopy (SEM), the interfacial surface morphology changes were observed. Shortly after a CO2 pressure of 102 atm is applied at 95oC, in situ pH of solutions was 3.15 ± 0.10. The early intrinsic dissolution rates of biotite were 8.4 ± 2.8 × 10-13 and 11.2 ± 3.0 × 10-13 mol Si m-2s-1 in water and NaCl solution, respectively. At the early stage of reaction, fast growth of fibrous illite on biotite basal planes was observed. After 22-70 h reaction, the biotite basal surface cracked, resulting in illite detaching from the surfaced. Later, the cracked surface layer was released into solution, thus the inner layer was exposed as a renewed

  16. Cerium sequestration and accumulation in fractured crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals

    NASA Astrophysics Data System (ADS)

    Yu, Changxun; Drake, Henrik; Mathurin, Frédéric A.; Åström, Mats E.

    2017-02-01

    considerable amounts of Mn. These spectroscopic and microscopic features led us to suggest that the remarkable accumulation of Ce(IV) in this fracture is a result of repeated formation and dissolution of Mn oxides, that is, formation of Mn oxide followed by oxidative scavenging of Ce as Ce oxide nanoparticles, which largely remained during the subsequent reductive dissolution of the Mn oxides. In addition, the XANES data indicate that goethite has the capability to oxidize Ce at near-neutral pH under our experimental conditions (goethite reacted with 0.001 M Ce for 48 h in a glove box with O2 <1 ppm). This previously unrecognized Ce oxidation pathway also seems to contribute to a minor extent to the oxidative scavenging of Ce in the fracture network. Trivalent Ce in the fracture coatings, in particular below 2.5 m, is mainly sorbed as inner-sphere complexes on clay minerals. Taking into account the facts that Ce in the present groundwater is scarce and modeled to be largely complexed with humic substance, it is argued that the inner-sphere complexes were mainly formed from past (Paleozoic) hydrothermal fluids.

  17. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study.

    PubMed

    Ryan, P C; Hillier, S; Wall, A J

    2008-12-15

    Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 (+/-1) % of ripidolite, 19 (+/-1) % of saponite, and 19 (+/-3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases.

  18. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  19. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Part of the 2003 industrial minerals review. The legislation, production, and consumption of common clay and shale are discussed. The average prices of the material and outlook for the market are provided.

  20. Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: an XRD and HRTEM-AEM study

    NASA Astrophysics Data System (ADS)

    Vázquez, M.; Nieto, F.; Morata, D.; Droguett, B.; Carrillo-Rosua, F. J.; Morales, S.

    2014-08-01

    HRTEM textural evidence shows that clay minerals in the Tinguiririca geothermal field (Andean Cordillera, central Chile) are the result of direct alteration of former volcanic glass and minerals by hydrothermal fluids at similar temperatures to the present day. They show the classical pattern of diagenetic transformation from smectite at the top to illite at the bottom, with the progressive formation of corrensite and chlorite. The high fluid/rock ratio, disposability of necessary cations and absence of previous detrital phyllosilicates allow the consideration of this area as a natural laboratory to establish the extreme ideal conditions for very low-T reactions. Transformations from smectite to R1 illite-smectite (I-S) and from these to R3 mixed-layers occur respectively at 80-120 °C and 125-180 °C. In spite of ideal genetic conditions, the new-formed minerals show all the defective character and lack of textural and chemical equilibrium previously described in the literature for diagenetic and hydrothermal low-temperature assemblages. Chemistry of smectite-illite phases evolves basically through a diminution of the pyrophyllitic component toward a theoretical muscovite (Si4 + + □ -> Al3 ++ K+). However, a second chemical vector (Si4 ++ Mg2 + → Al3 ++ Al3 +), that is, decreasing of the tschermack component, also contributes to the evolution toward the less Si-more Al rich muscovite in relation to the original smectite. Residual Mg (and Fe) from the latter reaction is consumed in the genesis of chloritic phases. Nevertheless, as a consequence of the lack of chemical equilibrium (probably because of the short time-scale of the geothermal alteration processes), the composition of clay minerals is highly heterogeneous at the level of a single sample. Consequently, the respective fields of smectite, R1 I-S and R3 I-S overlap each other, making the distinction among these three phases impossible based exclusively on chemical data.

  1. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  2. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2012-09-04

    Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.

  3. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  4. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    PubMed

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.

  5. Comment on "Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates," by L. N. Warr and D. R. Peacor

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Drits, V.A.

    2003-01-01

    A recent paper by Warr and Peacor (2002) suggested that our use of the Bertaut-Warren-Averbach technique (MudMaster computer program) for studying changes in crystallite thickness distributions (CTDs) of clay minerals during diagenesis and very low-grade metamorphism is not reliable because it is dependent on many variables which can not be fully controlled. Furthermore, the authors implied that the measured shapes of CTDs cannot be used with confidence to deduce crystal growth mechanisms and histories for clays, based on our CTD simulation approach (using the Galoper computer program). We disagree with both points, and show that the techniques are powerful, reliable and useful for studying clay mineral alteration in rocks. ?? 2003 Schweiz. Mineral. Petrogr. Ges.

  6. Dioxin congener patterns in commercial catfish from the United States and the indication of mineral clays as the potential source.

    PubMed

    Huwe, J K; Archer, J C

    2013-01-01

    Since 1991 the US Department of Agriculture (USDA) has conducted annual surveys of pesticide residues in foods under the Agricultural Marketing Service's Pesticide Data Program (PDP). To assess chemical residues in domestically marketed catfish products, 1479 catfish samples were collected during the 2008-2010 PDPs. A subset of 202 samples was analysed for 17 toxic polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). The average pattern of the individual PCDD/F congener concentrations in the catfish was rather unique in that it had almost no measurable amounts of polychlorinated dibenzofurans (PCDFs), but all PCDDs were present. This pattern was more dominant in the domestically produced catfish products than in the imported products (China/Taiwan). Comparison of the pattern to known sources of PCDD/Fs showed strong similarities to the pattern of PCDD/Fs found in kaolin clays which have often been used as anti-caking agents in animal feeds. To investigate whether catfish feeds may be the source of the PCDD/Fs found in the catfish, archived catfish feed data from a US Food and Drug Administration (USFDA) database were examined. In 61 out of 112 feed samples, the PCDD concentrations were 50 times higher than the PCDF concentrations and resembled the pattern found in the catfish products and in clays mined in the south-eastern United States. Although the source of PCDD/Fs in domestically marketed catfish products cannot be definitively established, mined clay products used in feeds should be considered a likely source and, given the wide concentration range of PCDD/Fs that has been found in clays, a critical control point for PCDD/Fs entrance to the food supply.

  7. Prospecting for clay minerals within volcanic successions: Application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Longo, V.; Testone, V.; Oggiano, G.; Testa, A.

    2014-12-01

    Electrical resistivity tomography (ERT) is applied to prospect for and characterise a bentonitic clay deposit in northern Sardinia. Sardinian bentonites derived from the hydrothermal alteration of thick successions of pyroclastic flows and epiclastites are associated with the Oligo-Miocene calc-alkaline volcanic cycle. The alteration of these rocks is generally controlled by faults that control the local circulation of hydrothermal fluids. Two-dimensional ERT investigations were performed close to a faulted area to define the location, thickness and lateral continuity of the clayey body, and determine how it relates to faulting and stratigraphy. A line-based three-dimensional ERT data acquisition was carried out in a selected area to estimate the available clay reserves. The reliability of these resistivity models was assessed by comparison with local borehole data. Finally, the interpretation of the ERT results was optimised through synthetic modelling of the electrical resistivity imaging technique. The results define the extent and geometry of the bentonitic deposit with good accuracy and outline the scenarios where the ERT method may provide optimal results when prospecting for clay deposits.

  8. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  9. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  10. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  11. TEM/AEM characterization of fine-grained clay minerals in very-low-grade rocks: Evaluation of contamination by EMPA involving celadonite family minerals

    SciTech Connect

    Li, Gejing; Peacor, D.R.; Coombs, D.S.; Kawachi, Y.

    1996-12-31

    Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very fine-grained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.

  12. Clay mineral assemblages and analcime formation in a Palaeogene fluvial lacustrine sequence (Maíz Gordo Formation Palaeogen) from northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Do Campo, M.; del Papa, C.; Jiménez-Millán, J.; Nieto, F.

    2007-09-01

    The Palaeogene Maíz Gordo Formation is one of the main lacustrine events recorded in northwestern Argentina. It consists of sandstone, mudstone, and limestone beds 200 m thick, deposited in a brackish-alkaline lake and braided alluvial systems. The Maíz Gordo Lake evolved mainly as a closed system, with brief periods as an open one. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study samples from seven sites, corresponding respectively to proximal, intermediate, and transitional positions of the fluvial environment and marginal and inner-lake environment, focusing on the clay mineralogy and analcime formation. The basinward zonation of diagenetic minerals identified in the Maíz Gordo Lake was: mordenite → analcime → K-feldspar. Although not a typical zonation of saline-alkaline lakes, it does indicate an increase in salinity and alkalinity towards the centre. In proximal fluvial settings, smectite predominates at the base of the sequence, with scarce kaolinite. Towards the top, a striking increase in kaolinite content suggests a change from a relatively arid climate with alternating humid and dry seasons, towards a warm and humid climate. Kaolinite content clearly decreases in a basinward direction. Such a variation is attributable to changes in hydro-geochemistry, denoting the progressive influence of the brackish and alkaline lake water on interstitial pores. SEM images of intermediate fluvial samples reveal authigenesis of illite at the expense of kaolinite booklets. In littoral and inner-lake settings the clay fraction is composed of muscovite, sometimes with subordinate smectite. Analcime occurs in variable amounts in all sedimentary facies, in rock pores or filling veins. It forms subhedral square to hexagonal, or anhedral rounded crystals, denoting that they coarsened at low to moderate degrees of supersaturation. Although the mordenite identified in a fluvial level would have been the precursor of analcime in the Ma

  13. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals

    NASA Technical Reports Server (NTRS)

    Macklin, J. W.; White, D. H.

    1985-01-01

    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220 degrees C. The i.r. spectrum of L-pyroglutamic acid varies in a manner dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  14. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    NASA Astrophysics Data System (ADS)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  15. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  16. Clays as prebiotic photocatalysts

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lawless, J.; Lahav, N.; Sutton, S.; Sweeney, M.

    1981-01-01

    Clay minerals catalyze peptide bond formation in fluctuating environments. A number of plausible mechanisms have been proposed and tested. The possibility that clays may actually be energizing the reaction by means of electronic excitation, creating mobile or trapped holes and electrons in the lattice, is explored. It has been discovered that clays emit light upon dehydration. The correlation between dehydration-induced, or thermoluminescent, processes and the yield of glycine oligomers after treatments known to affect the luminescent yields is being tested, in an effort to understand the catalytic mechanism

  17. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  18. Microtektites and Associated Minerals in the Iridium-Rich Layer of Marine Clay From the Central North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Leung, I. S.

    2014-12-01

    Our study is based on a sample derived from a deep sea core (GPC3) from the mid-Pacific Ocean floor north of the Hawaiian Islands, provided by Jim Broda, Woods Hole Oceanographic Institution. The 65 Ma K/T boundary layer was identified by measurements of magnetic susceptibility (Doh, 1987) and Ir anomaly (Kyte et al., 1995) which peaked at a down-hole depth of 2055-2056 cm. Our sample of red clay was about 5 cubic cm in size. After wet-sieving for the size fraction greater than 38 microns, we hand-picked grains of interest under a binocular microscope. We found 40 microtektites (glass spherules, mostly devitrified), 12 olive-green aggregates composed of talc/magnetite, and 3 green and blue crystals of silicon carbide (SiC). There are many quartz grains having decorated deformation lamellae or mosaic structures. The olive-green talc/magnetite particles have textures and composition similar to materials found in chondritic meteorites, whereas, SiC crystals are known to occur in carbonaceous chondrites. These particles seem to implicate an affinity to meteorites. Ir-rich deposits world-wide are believed to have settled from dust produced by the Chicxulub Impact, but what object from space created the impact crater is rather uncertain. Our results reported here cannot rule out the possiblilty of impact by comets, because the nature of cometary dust particles are not very well known.

  19. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    PubMed

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  20. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  1. Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data

    USGS Publications Warehouse

    Chiou, C.T.; Rutherford, D.W.; Manes, M.

    1993-01-01

    Vapor sorption isotherms of ethylene glycol monoethyl ether (EGME) at room temperature and isotherms of N2 gas at liquid nitrogen temperature were determined for various soils and minerals. The N2 monolayer capacities [Qm (N2)] were calculated from the BET equation and used to determine the surface areas. To examine whether EGME is an appropriate adsorbate for determination of surface areas, the apparent EGME monolayer capacities [Qm (EGME)ap] were also obtained by use of the BET equation. For sand, aluminum oxide, kaolinite, hematite, and synthetic hydrous iron oxide, which are relatively free of organic impurity and expanding/solvating minerals, the Qm (EGME)ap values are in good conformity with the corresponding Qm (N2) values and would give surface areas consistent with BET (N2) values. For other samples (Woodburn soil, a natural hydrous iron oxide, illite, and montmorillonite), the Qm (EGME)ap values overestimate the Qm (N2) values from a moderate to a large extent, depending on the sample. A high-organic-content peat shows a very small BET (N2) surface area; the EGME/ peat isotherm is linear and does not yield a calculation of the surface area. Large discrepancies between results of the two methods for some samples are attributed to the high solubility of polar EGME in soil organic matter and/ or to the cation solvation of EGME with solvating clays. The agreement for other samples is illustrative of the consistency of the BET method when different adsorbates are used, so long as they do not exhibit bulk penetration and/or cation solvation. ?? 1993 American Chemical Society.

  2. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  3. K-Ar age of mica clay minerals in an ultracataclasite of a fossil seismogenic fault in the Mugi Mélange, Shimanto accretionary complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Tonai, S.; Ito, S.; Hashimoto, Y.; Tamura, H.

    2015-12-01

    We used the K-Ar ages of clay-sized mineral grains to investigate the timing of activity on the fossil seismogenic Minami-Awa Fault, which separates coherent strata of the Shimanto accretionary complex to its north from tectonic mélange to south. The K-Ar ages from the matrix shale of the mélange range from 85 to 48 Ma and decrease with decreasing grain size, indicating that they record a mixture of authigenic illite and detrital mica. In contrast, the K-Ar ages of an ultracataclasite within the fault core are significantly younger, ranging from 29 to 23 Ma, and are unrelated to grain size. This indicates that 40Ar diffused completely from the ultracataclasite between 29 and 23 Ma, which postdates the formation of authigenic illite by about 20 Myr. The diffusion of 40Ar in the ultracataclasite was probably caused by frictional heating or high-temperature fluid migration that occurred when the fault was reactivated. The results indicate that seismogenic faults that separate tectonic mélange from coherent strata in accretionary complexes may slip, not only during accretion, but also long after accretion.

  4. Impact of medicated feed along with clay mineral supplementation on Escherichia coli resistance to antimicrobial agents in pigs after weaning in field conditions.

    PubMed

    Jahanbakhsh, Seyedehameneh; Kabore, Kiswendsida Paul; Fravalo, Philippe; Letellier, Ann; Fairbrother, John Morris

    2015-10-01

    The aim of this study was to examine changes in antimicrobial resistance (AMR) phenotype and virulence and AMR gene profiles in Escherichia coli from pigs receiving in-feed antimicrobial medication following weaning and the effect of feed supplementation with a clay mineral, clinoptilolite, on this dynamic. Eighty E. coli strains isolated from fecal samples of pigs receiving a diet containing chlortetracycline and penicillin, with or without 2% clinoptilolite, were examined for antimicrobial resistance to 15 antimicrobial agents. Overall, an increased resistance to 10 antimicrobials was observed with time. Supplementation with clinoptilolite was associated with an early increase but later decrease in blaCMY-2, in isolates, as shown by DNA probe. Concurrently, a later increase in the frequency of blaCMY-2 and the virulence genes iucD and tsh was observed in the control pig isolates, being significantly greater than in the supplemented pigs at day 28. Our results suggest that, in the long term, supplementation with clinoptilolite could decrease the prevalence of E. coli carrying certain antimicrobial resistance and virulence genes.

  5. Comparing the activity of aluminum in two B horizons developed from volcanic ash deposits in Japan, dominated by short-range ordered aluminosilicates and crystalline clay minerals, respectively

    NASA Astrophysics Data System (ADS)

    Yagasaki, Yasumi; Mulder, Jan; Okazaki, Masanori

    2006-01-01

    Mechanisms controlling the activity of free aluminum (Al) in Bw1 horizons of soils developed from volcanic ash deposits in Japan were investigated by means of acid-base titrations and kinetic studies. In a Bw1 horizon, with a high content of acid-oxalate extractable Al, soil solution reached equilibrium with short-range ordered aluminosilicates in the order of days. Relatively fast kinetics of the release and precipitation of Al and Si indicate a high reactivity of short-range ordered aluminosilicates in the soil. In the Bw1 horizon of an adjacent soil, with a high content of crystalline clay minerals like halloysite and interlayered vermiculite, solution remained well undersaturated with respect to short-range ordered aluminosilicates and aluminum hydroxide. Apparent equilibrium with respect to halloysite occurred after more than 30 days. This halloysite ( logKso0=3.74±0.02 (25 °C)) has a solubility that is less than that reported in the literature ( logKso0=4.36 (25°C)). Our findings suggest that different reactive aluminosilicates may control the activity of free Al in sub-surface horizons of volcanic ash soils with different mineralogy.

  6. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the common clay and shale industry is provided. In 2000, U.S. production increased by 5 percent, while sales or use declined to 23.6 Mt. Despite the slowdown in the economy, no major changes are expected for the market.

  8. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  9. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species.

  10. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  11. Method of treating clay to improve its whiteness

    SciTech Connect

    Young, R. H.; Brooks, R. L.; Morris, H. H.

    1985-01-08

    A method of treating a clay to remove therefrom titanium mineral impurities comprising the steps of mixing an aqueous slurry of said clay having a high solids content with an activator and a collector for the titanium mineral impurities; conditioning the aqueous clay slurry at said high solids content for a time sufficient to dissipate therein at least 25 horsepower hours of energy per ton of solids; adding to the conditioned aqueous clay slurry a polyacrylate salt deflocculant; subjecting the conditioned aqueous clay slurry undiluted containing the polyacrylate salt deflocculant to a froth flotation process and removing the titanium impurities with the froth; and recovering clay having a reduced titanium minerals impurities content.

  12. Analytical Characterization of Natural Clay

    NASA Astrophysics Data System (ADS)

    El-Sheikhy, Refat; Al-Shamrani, Mosleh

    2010-10-01

    The current paper introduces the study of morphology and electronic microscopy characterization of one type of the smectite Saudi nano clay montmorillonite type. During the last decade, nanotechnology achieved a recognized progress in many fields based mainly on synthesized materials. Much attention is devoted to produce natural nano particles. It was found that the clay is one of the rare materials which have platelets of nano scale size. The nano clay minerals are found in different types. It is investigated that the nano clay minerals have super properties which can not be found in the other materials. The Kingdom of Saudi Arabia has many zones having different types of good nano clays. These nano clays are found in certain mixtures with other different materials such as Mg, Ca, Fe and others. By developing an innovated technique we could extract Saudi Arabian nano clay with high grade purity. The results are very interesting. The produced nano clay particles are with good quality and super properties. It can be used in many fields of nanocomposites.

  13. Deglacial Record in the Illinois River Valley Explains Asynchronous Phases of Meltwater Pulses and Clay Mineral Excursions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2014-12-01

    One prominent event of the Bølling/Allerød (B/A) interstadial was the large meltwater release to global oceans. The Laurentide Ice Sheet (LIS) is usually considered the main source. But, the large LIS meltwater discharge conflicts with the marine record showing an active North Atlantic meridional overturning circulation (AMOC) during the B/A interval. Continuous dune-lacustrine successions in the Illinois River Valley (IRV) have shown complete records of the last deglacial chronozones. Their grain-size distributions and accurate B/A age 14C dates of plant fossils from 15 m deep lacustrine sediment in the IRV suggest that most of the IRV and parts of the adjacent upland were inundated by water. The inundation was caused by a sediment dam interpreted to have been constructed and followed by a breach at the confluence of the Mississippi and Illinois Rivers during the B/A interval due to sediment mobilization by the large meltwater release. The grain size distributions correlate with meltwater pulses and mineralogical excursions in sediments from the Gulf of Mexico (GOM) very well. The blockage and release of illite and chlorite rich fine-grained sediments from the Lake Michigan basin changed the relative abundance of clay minerals and thus the ratio of smectite/(illite + chlorite) in the sediment of the GOM. This finding explains why the meltwater episodes from the LIS and the associated detrital discharges are not synchronous in the sediments in the GOM. The finding also ties meltwater pulses and associated detrital discharges in the GOM closely to the LIS discharges via the Mississippi River Valley on chronozonal scales. Three arguments can be made from this result: 1) unaffected AMOC during B/A interval resulted potentially from the hyperpycnal inflow into the GOM floor; 2) limited volume of the meltwater discharge did not significantly influence the AMOC; and 3) the freshwater input into the GOM from the LIS at this particular location did not significantly

  14. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  15. Examination and Manipulation of Clay Aggregates - Initial Inquiry

    DTIC Science & Technology

    2011-06-06

    and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared

  16. Chemical disaggregation of kaolinitic claystones (tonsteins and flint clays)

    USGS Publications Warehouse

    Triplehorn, D.M.; Bohor, B.F.; Betterton, W.J.

    2002-01-01

    The coarse, non-clay fraction of many flint-like kaolinitic claystones often contains mineral grains diagnostic of the claystone's origin and, in the case of tonsteins (altered volcanic ashes), may also provide minerals suitable for radiometric dating. Separation of the non-clay mineral fraction is often difficult because flint clays and flint-like clays resist slaking in water and thus are difficult to disaggregate. Chemical disaggregation of resistant kaolinitic claystones may be achieved by immersion in either hydrazine monohydrate or DMSO for periods ranging from one day to several weeks. Generally, hydrazine monohydrate works more quickly and efficiently than DMSO to disaggregate most kaolinitic claystones and flint clays.

  17. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  18. CLAY MINERALOGY OF INSOLUBLE RESIDUES IN MARINE EVAPORITES.

    USGS Publications Warehouse

    Bodine, Marc W.

    1985-01-01

    Insoluble residues from three sequences of Paleozoic marine evaporites (Retsof salt bed in western New York, Salado Formation in south-eastern New Mexico, and Paradox Member of the Hermosa Formation in southeastern Utah) are rich in trioctahedral clays. Chlorite (clinochlore), corrensite (mixed-layer chlorite-trioctahedral smectite), talc, and illite (the only dioctahedral clay) are the dominant clay minerals; serpentine, discrete trioctahedral smectite (saponite), and interstratified talc-trioctahedral smectite are sporadically abundant. These clay-mineral assemblages differ chemically and mineralogically from those observed in most continental and normal marine rocks, which commonly contain kaolinite, dioctahedral smectite (beidellite-montmorillonite), illite, mixed-layer illite-dioctahedral smectite, and, in most cases, no more than minor quantities of trioctahedral clay minerals. The distinctive clay mineralogy in these evaporite sequences suggests a largely authigenic origin. These clay minerals are thought to have formed during deposition and early diagenesis through interaction between argillaceous detritus and Mg-rich marine evaporite brines.

  19. The colloidal chemistry of ceramic clays

    NASA Technical Reports Server (NTRS)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  20. Clay energetics in chemical evolution

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.

    1986-01-01

    Clays have been implicated in the origin of terrestrial life since the 1950's. Originally they were considered agents which aid in selecting, concentrating and promoting oligomerization of the organic monomeric substituents of cellular life forms. However, more recently, it has been suggested that minerals, with particular emphasis on clays, may have played a yet more fundamental role. It has been suggested that clays are prototypic life forms in themselves and that they served as a template which directed the self-assembly of cellular life. If the clay-life theory is to have other than conceptual credibility, clays must be shown by experiment to execute the operations of cellular life, not only individually, but also in a sufficiently concerted manner as to produce some semblance of the functional attributes of living cells. Current studies are focussed on the ability of clays to absorb, store and transfer energy under plausible prebiotic conditions and to use this energy to drive chemistry of prebiotic relevance. Conclusions of the work are applicable to the role of clays either as substrates for organic chemistry, or in fueling their own life-mimetic processes.

  1. Clay at Nili Fossae

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Nili Fossae region of Mars was compiled from separate images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE), two instruments on NASA's Mars Reconnaissance Orbiter. The images were taken at 0730 UTC (2:30 a.m. EDT) on Oct. 4, 2006, near 20.4 degrees north latitude, 78.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36 to 3.92 micrometers, and shows features as small as 18 meters (60 feet) across. HiRISE's image was taken in three colors, but its much higher resolution shows features as small as 30 centimeters (1 foot) across.

    CRISM's sister instrument on the Mars Express spacecraft, OMEGA, discovered that some of the most ancient regions of Mars are rich in clay minerals, formed when water altered the planet's volcanic rocks. From the OMEGA data it was unclear whether the clays formed at the surface during Mars' earliest history of if they formed at depth and were later exposed by impact craters or erosion of the overlying rocks. Clays are an indicator of wet, benign environments possibly suitable for biological processes, making Nili Fossae and comparable regions important targets for both CRISM and HiRISE.

    In this visualization of the combined data from the two instruments, the CRISM data were used to calculate the strengths of spectral absorption bands due to minerals present in the scene. The two major minerals detected by the instrument are olivine, a mineral characteristic of primitive igneous rocks, and clay. Areas rich in olivine are shown in red, and minerals rich in clay are shown in green. The derived colors were then overlayed on the HiRISE image.

    The area where the CRISM and HiRISE data overlap is shown at the upper left, and is about 5 kilometers (3 miles) across. The three boxes outlined in blue are enlarged to show how the different minerals in the scene match up with different landforms. In the image

  2. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  3. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  4. Effect of the local clay distribution on the effective electrical conductivity of clay rocks

    NASA Astrophysics Data System (ADS)

    Cosenza, P.; Prêt, D.; Zamora, M.

    2015-01-01

    The "local porosity theory" proposed by Hilfer was revisited to develop a "local clay theory" (LCT) that establishes a quantitative relationship between the effective electrical conductivity and clay distribution in clay rocks. This theory is primarily based on a "local simplicity" assumption; under this assumption, the complexity of spatial clay distribution can be captured by two local functions, namely, the local clay distribution and the local percolation probability, which are calculated from a partitioning of a mineral map. The local clay distribution provides information about spatial clay fluctuations, and the local percolation probability describes the spatial fluctuations in the clay connectivity. This LCT was applied to (a) a mineral map made from a Callovo-Oxfordian mudstone sample and (b) (macroscopic) electrical conductivity measurements performed on the same sample. The direct and inverse modeling shows two results. First, the textural and classical model assuming that the electrical anisotropy of clay rock is mainly controlled by the anisotropy of the sole clay matrix provides inconsistent inverted values. Another textural effect, the anisotropy induced by elongated and oriented nonclayey grains, should be considered. Second, the effective conductivity values depend primarily on the choice of the inclusion-based models used in the LCT. The impact of local fluctuations of clay content and connectivity on the calculated effective conductivity is lower.

  5. Clay mineral provinces in tidal mud flats at Germany's North Sea coast with illite K-Ar ages potentially modified by biodegradation

    NASA Astrophysics Data System (ADS)

    Brockamp, Olaf; Clauer, Norbert

    2012-07-01

    Mineralogical studies, chemical analyses and K-Ar dating were carried out on clay fractions from tidal mud flats along the Lower Saxony coast and its bays to identify material sources and sedimentary processes at this dynamic interface between air, land and sea. From the coast into the bays, sediments are enriched in fine-grained smectite relative to the coarser grained illite, chlorite and kaolinite, due to the weakening of the tidal current energy in the bays. In addition, the study area can be divided into two provinces on the basis of the illite K/Rb ratios and Mg contents. To the west [Schiermonnikoog, Dollart, Ley Bay up to Norderney island], longshore currents carry suspensions from the Belgian and Dutch coasts; to the east [from Langeoog island, Jade Bay to the Helgoland mud area] suspensions from the Elbe and Weser rivers are mixed with submarine reworked glacial sediments, whereas the portion of longshore current suspensions from the west decreases, becoming negligible in the Helgoland mud area off the Elbe and Weser estuaries. The illite K-Ar data vary considerably and fail as source indicators due to differential settling and mixing of the clay material and probably to Ar loss from illite by biodegradation during digestive processes. Only further offshore, outside the zone of dynamic sediment dispersion, do the K-Ar data fit provenance patterns.

  6. Antimicrobial clay-based materials for wound care.

    PubMed

    Gaskell, Elsie E; Hamilton, Ashley R

    2014-04-01

    The historical use of clay minerals for the treatment of wounds and other skin ailments is well documented and continues within numerous human cultures the world over. However, a more scientific inquiry into the chemistry and properties of clay minerals emerged in the 19th century with work investigating their role within health gathering pace since the second half of the 20th century. This review gives an overview of clay minerals and how their properties can be manipulated to facilitate the treatment of infected wounds. Evidence of the antimicrobial and healing effects of some natural clay minerals is presented alongside a range of chemical modifications including metal-ion exchange, the formation of clay-drug composites and the development of various polymer-clay systems. While the evidence for applying these materials to infected wounds is limited, we contextualize and discuss the future of this research.

  7. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2015-11-01

    It is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment. We investigated the effects of key sediment physicochemical properties on the bioavailability of U to a model freshwater benthic invertebrate, Chironomus dilutus. Several 10-day spiked sediment bioaccumulation experiments were performed, exposing C. dilutus larvae to a variety of formulated sediments spiked with different concentrations of U (5, 50 and/or 200 mg U/kg d.w.). Mean accumulation of U in C. dilutus larvae decreased significantly from 1195 to 10 mg U/kg d.w. as kaolin clay content increased from 0% to 60% in sediment spiked with 50 mg U/kg d.w. Similarly, higher organic matter content also resulted in a significant reduction of U bioaccumulation in C. dilutus larvae, indicating a reduction in U bioavailability. Concentrations of U in both the overlying water and sediment pore water displayed a strong positive relationship to U bioaccumulation in C. dilutus larvae (r(2) = 0.77, p<0.001 and r(2) = 0.57, p < 0.001, respectively) for all experiments, while total U concentrations in the sediment had a poor relationship to U bioaccumulation (r(2) = 0.10, p = 0.028). Results from this research confirm that sediment clay and organic matter content play a significant role in altering U bioavailability, which is important in informing risk assessments of U contaminated sites and in the development of site-specific sediment quality guidelines for U.

  8. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  9. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

    NASA Astrophysics Data System (ADS)

    Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.

    2014-01-01

    Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

  10. Size-based speciation of iron in clay mineral particles by gravitational field-flow fractionation with electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Chantiwas, Rattikan; Beckett, Ronald; Grudpan, Kate

    2005-01-01

    Gravitational field-flow fractionation (FFF) coupled to UV and ETAAS detectors has been tested for micron-size particles in the range of 5-20 μm using three Fe-rich clay samples. The iron content estimated after aqua regia extraction was about 20-40 mg kg -1. The ETAAS analysis was performed both off-line from collected fractions and in an online continuous sampling mode using a specially designed flow through vial placed in the autosampler of the ETAAS. Comparison of the direct injection method with total analysis after aqua regia digestion shows that slurry injection of the dilute samples in the gravitational field-flow fractionation (GrFFF) effluent is quite efficient in these samples. In the majority of cases, more than 90% recovery was obtained for the slurry injection method. Fe mass-based particle size distributions and Fe concentration versus particle diameter plots can be generated using certain assumptions. This provides detailed information on size-based speciation of particulate samples. Generally, the Fe concentrations in the particles decreased slightly with an increase in particle size as is often found for soil and sediment samples.

  11. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    PubMed

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-05

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment.

  12. Clay: The Forgotten Art.

    ERIC Educational Resources Information Center

    Martin, Doris Marie

    1995-01-01

    Discusses the tactile and kinesthetic areas of learning children experience when using clay. Includes practical tips for using and storing clay for preschool use and notes the differences between potters' clay and play dough. (HTH)

  13. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double

  14. Sorption of N[sub 2] and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data

    SciTech Connect

    Chlou, C.T.; Rutherford, D.W. ); Manes, M. )

    1993-08-01

    Vapor sorption isotherms of ethylene glycol monoethyl ether (EGME) at room temperature and isotherms of N[sub 2] gas at liquid nitrogen temperature were determined for various soils and minerals. The N[sub 2] monolayer capacities [Q[sub m](N[sub 2])] were calculated from the BET equation and used to determine the surface areas. To examine whether EGME is an appropriate adsorbate for determination of surface areas, the apparent EGME monolayer capacities [Q[sub m](EGME)[sub ap

  15. Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide.

    PubMed

    Wu, Huayong; Jiang, Daihua; Cai, Peng; Rong, Xingmin; Huang, Qiaoyun

    2011-01-01

    Adsorption of Pseudomonas putida on kaolinite, montmorillonite and goethite was studied in the presence of organic ligands and phosphate. Citrate, tartrate, oxalate and phosphate showed inhibitive effect on P. putida adsorption by three minerals in a broad range of anion concentrations. The highest efficiencies of the four ligands in blocking the adsorption of P. putida on goethite, kaolinite and montmorillonite were 58-90%, 35-76% and 20-48%, respectively. The ability of organic ligands in prohibiting the binding of P. putida cells to the minerals followed the sequence of citrate>tartrate>oxalate>acetate. The significant suppressive effects on P. putida adsorption were ascribed to the increased negative charges by adsorbed ligands and the competition of ligands with bacterial surface groups for binding sites. The inhibitive effects on P. putida adsorption by organic ligands were also dependent on the steric hindrance of the molecules. Acetate presented promotive effect on P. putida adsorption by kaolinite and goethite at low anion concentrations. The results obtained in this study suggested that the adsorption of bacteria in soils especially in the rhizosphere can significantly be impacted by various organic and inorganic anions.

  16. Thermo Gravimetric and Differential Thermal Analysis of Clay of Western Rajasthan (india)

    NASA Astrophysics Data System (ADS)

    Shekhawat, M. S.

    The paper presents the study of thermo gravimetric and differential thermal analysis of blended clay. Western part of Rajasthan (India) is rich resource of Ball clays and it is mainly used by porcelain, sanitary ware, and tile industry. The quality and grade of clay available in the region vary from one deposit to other. To upgrade the fired colour and strength properties, different variety of clays may be blended together. The paper compares the results of thermal analysis one of blended clay B2 with reference clay of Ukraine which is imported by industries owners. The result revealed that the blended clay is having mineral kaolinite while the Ukrainian clay is Halloysite.

  17. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  18. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  19. Uranium in clays of crystalline rocks

    SciTech Connect

    Simmons, G.; Caruso, L.

    1985-03-10

    Uraniferous clay aggregates in several granites have been examined in detail with a scanning electron microscope (SEM) equipped with a high resolution backscattered electron detector (BSE) and an energy dispersive x-ray system (EDS). The same polished sections used for the microscope observations were irradiated with thermal neutrons and the etched lexan detectors were then used to determine the location of uranium with a spatial resolution of a few microns. A set of 100 samples of the following granites were used for this study: Carnmenellis granite of southwestern England, Conway and Mount Osceola granites of central New Hampshire, Sherman granite of Wyoming and Colorado, Granite Mountains granite of Wyoming, several granites from central Maine, and the Graniteville granite of Missouri. These samples contain clay rich regions as large as a few millimeters that appear to consist entirely of clay when examined with the petrographic microscope. The clays are smectite, nontronite, or vermiculite. The fission track detectors show uranium to be present within the regions. Close examination with the BSE and EDS, however, shows in every instance that the host for the uranium is not clay but clay-sized grains of the following minerals: bastnesite group, hematite, siderite, secondary monazite, secondary thorite, and several different Y-bearing niobates. This finding may have severe implications for the long-term retention of uranium and transuranic elements adsorbed on clay. Perhaps the presence of clay is not significant for the long-term retention of radioisotopes. 22 refs., 7 figs.

  20. Phosphates in some missouri refractory clays

    USGS Publications Warehouse

    Hall, R.B.; Foord, E.E.; Keller, D.J.; Keller, W.D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays. The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspora, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore ("burley" clay). The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality. The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host

  1. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  2. Natural Radioactivity of Boron Added Clay Samples

    SciTech Connect

    Akkurt, I.; Guenoglu, K.; Canakcii, H.; Mavi, B.

    2011-12-26

    Clay, consisting fine-grained minerals, is an interesting materials and can be used in a variety of different fields especially in dermatology application. Using clay such a field it is important to measure its natural radioactivity. Thus the purpose of this study is to measure {sup 226}Ra, {sup 232}Th and {sup 40}K concentration in clay samples enriched with boron. Three different types of clay samples were prepared where boron is used in different rate. The measurements have been determined using a gamma-ray spectrometry consists of a 3''x3'' NaI(Tl) detector. From the measured activity the radium equivalent activities (Ra{sub eq}), external hazard index (H{sub ex}), absorbed dose rate in air (D) and annual effective dose (AED) have also been obtained.

  3. Natural Radioactivity of Boron Added Clay Samples

    NASA Astrophysics Data System (ADS)

    Akkurt, I.; ćanakciı, H.; Mavi, B.; Günoǧlu, K.

    2011-12-01

    Clay, consisting fine-grained minerals, is an interesting materials and can be used in a variety of diferent fields especially in dermatology application. Using clay such a field it is important to measure its natural radioacitivty. Thus the purpose of this study is to measure 226Ra, 232Th and 40K concentration in clay samples enriched with boron. Three different types of clay samples were prepared where boron is used in different rate. The measurements have been determined using a gamma-ray spectrometry consists of a 3″×3″ NaI(Tl) detector. From the measured activity the radium equivalent activities (Raeq), external hazard index (Hex), absorbed dose rate in air (D) and annual effective dose (AED) have also been obtained.

  4. Clay complexes support HDS catalyst.

    SciTech Connect

    Marshall, C. L.; Carrado, K.; Chemical Engineering

    2000-01-01

    the synthesis method, and the purity of the synthetic clays is high compared to naturally occurring clay minerals.

  5. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  6. Prolonged triboluminescence in clays and other minerals

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    The decay curves of various triboluminescent-excited materials were obtained, including well-crystallized and poorly crystallized kaolin, bentonite, quartz, sodium chloride, and chalk calcite. A qualitative increase in triboluminescence was observed for kaolin dipped in water or tryptophan solution compared to dry kaolin, and for frozen kaolin and montmorillonite pastes. Theoretical explanations for the tryptophan effect are discussed.

  7. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  8. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work

    NASA Astrophysics Data System (ADS)

    McKissock, I.; Walker, E. L.; Gilkes, R. J.; Carter, D. J.

    2000-05-01

    In Western Australia water repellency mostly occurs in soils with sandy texture; the severity of water repellency is influenced by very small changes in clay content. Additions of 1-2% clay can prevent water repellency and for some time clay amendments have been used by farmers to overcome water repellency. The aim of this study was to assess the effectiveness of clays in ameliorating water repellency. Clays were assessed for effectiveness in reducing water repellency by mixing with water repellent sands and measuring water drop penetration time (WDPT) on the resultant mixtures. WDPT was measured on the initial mixtures, a wetting and drying cycle was imposed and WDPT measured again. Two sets of clays were assessed: four simple clays containing kaolinite (2) or smectite (2) group minerals and a group of clayey subsoil materials which had been collected by farmers. For the simple clays, clay mineral type was the most significant factor in determining response. Kaolin was much more effective than smectite. Imposition of a wetting and drying cycle greatly reduced water repellency. The dominant exchangeable cation of the clays (sodium or calcium) had little effect on the ability of the clays to reduce water repellency. The factor that was most predictive of the effectiveness of clayey subsoils materials in reducing water repellency was texture: clay content ( r2=0.18) or clay+silt content ( r2=0.23). These properties were more predictive of water repellency values after the wetting and drying cycle treatment ( r2=0.36, r2=0.44). The proportion of the clay fraction that consisted of kaolinite was next most predictive in determining effectiveness which is again indicative of kaolin group minerals being more effective than smectite group minerals. The exchangeable sodium percentage and clay dispersibility had no systematic effect on the ability of these clays to reduce water repellency. These results provide a basis for developing a practical field procedure to enable

  9. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  10. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    NASA Astrophysics Data System (ADS)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  11. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  12. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  13. What Makes a Natural Clay Antibacterial?

    PubMed Central

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Poret-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (<200 nm), illite-smectite and reduced iron phases. The role of clay minerals in the bactericidal process is to buffer the aqueous pH and oxidation state to conditions that promote Fe2+ solubility. Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals. PMID:21413758

  14. Soil clay content underlies prion infection odds

    USGS Publications Warehouse

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  15. Portable Radiometer Identifies Minerals in the Field

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Machida, R. A.

    1982-01-01

    Hand-held optical instrument aids in identifying minerals in field. Can be used in exploration for minerals on foot or by aircraft. The radiometer is especially suitable for identifying clay and carbonate minerals. Radiometer measures reflectances of mineral at two wavelengths, computes ratio of reflectances, and displays ratio to user.

  16. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  17. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    SciTech Connect

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  18. Modeling Radionuclide Transport in Clays

    SciTech Connect

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny; Liu, Hui -Hai; Birkholzer, Jens

    2012-05-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field

  19. Reply to Comment by Xu et al. on "Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust" by Seo et al.

    NASA Astrophysics Data System (ADS)

    Seo, Inah; Lee, Yong Il; Yoo, Chan Min; Kim, Hyung Jeek; Hyeong, Kiseong

    2016-12-01

    Against Xu et al. (2016), who argued that East Asian Desert (EAD) dust that traveled on East Asian Winter Monsoon winds dominates over Central Asian Desert (CAD) dust in the Philippine Sea with presentation of additional data, we reconfirm Seo et al.'s (2014) conclusion that CAD dust carried on the Prevailing Westerlies and Trade Winds dominates over EAD dust in overall dust budget of the central Philippine Sea. The relative contribution of dust from EADs and CADs using clay mineral composition should be evaluated with elimination of mineralogical contribution from the volcanic end-member which is enriched in kaolinite and overestimate the contribution of EAD dust.

  20. Transformation of the soil clays under the anthropogenic salinization

    NASA Astrophysics Data System (ADS)

    Simakova, Y.

    2009-04-01

    The objects of our investigation are the podzolic soils from the Seriogovo salt plug territory (Russian platform) where salt mineral waters deposites are situated. Samples were obtained from 7 soil uncontaminated (background) and saline cross sections near the Seryogovo salt deposite at the depth 0-103 cm. X-ray analysis indicates that almost all clay samples of background sections contain smectite, illite, chlorite, kaolinite with dominated smectite. In clay samples of saline soils chlorite, vermiculite, interstratified chlorite/vermiculite, kaolinite, illite and galite are contained. Chlorite became the predominant 1.4-nm-mineral. Smectite is the most abundant mineral in the clay fraction of uncontaminated soils. The smectite is not well ordered, evident by incomplete collapse to 1.0 nm when heated to 550oC. Small amount of disordered chlorite contains in this samples. In the lower parts of saline cross sections smectite is almost disappeared, the most abundant minerals are pedogenic dioctahedral chlorite and interstratified minerals. The comparison of the "d(060)" value of XRD patterns display that uncontaminated and contaminated samples has both trioctahedral and dioctahedral minerals but the intensity of the 060 peak for the dioctahedral mineral of saline soils, however, is proportionally larger than in the uncontaminated clay. The investigations display the difference between the clay minerals of saline and background soil samples of Seriogovo deposits because of their transformation under the environmental changes. The expandable layer silicates typical for the soils transformed to the unexpandable dioctahedral soil chlorite. Transformation reactions involves the introduction of non-exchangable hydroxyl-Al polymers into the interlamellar space of pre-existing smectite or vermiculite. We can propose that interlayer octahedral layers are more stable than exchangeable cations of clay minerals' crystal structure in the saline environment. The results presented

  1. Biological effects of minerals

    SciTech Connect

    Guthrie, G.D. Jr.

    1991-09-01

    In general, clay materials exhibit a range of biological activities, from apparently inactive or slightly active, such as hematite, to highly fibrogenic and carcinogenic, such as fibrous brucite (nemalite). The zeolites also exhibit such as range, with some mordenite being slightly active and erionite being highly active; however, erionite is the only zeolite that has been studied extensively. The diversity of mineral species holds great potential for probing these mechanisms, especially when mineralogical data are integrated with biological data. Unfortunately, many of the studies reporting data on the biological effects of clays and zeolites fail to report detailed mineralogical information; hence, it is difficult at present to interpret the biological activities of minerals in terms of their physical and chemical properties. Important mineralogical data that are only rarely considered in biological research include exact mineralogy of the specimen (i.e., identification and abundance of contaminants), physical and chemical properties of minerals, and surface properties of minerals. 141 refs., 1 fig., 8 tabs.

  2. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  3. The Science of Clay

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2005-01-01

    Students' natural curiosity provides a rich opportunity for teachers to make meaningful scientific connections between art and ceramics that will enhance the understanding of both natural forces and scientific aspects at work in the creation of clay artworks. This article discusses the scientific areas of study related to clay, which include…

  4. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  5. Finicky clay divers

    NASA Astrophysics Data System (ADS)

    Cordry, Sean M.

    1998-02-01

    Clay spheres dropped into a dilute vinegar/baking-soda solution accumulate CO2 bubbles on their surfaces. Spheres below a certain size will then float, otherwise they remain sunken. Students must determine the maximum size that will float by considering the net density of the clay/bubble system.

  6. The clays of the United States east of the Mississippi River

    USGS Publications Warehouse

    Ries, Henrich

    1903-01-01

    Since clays vary mineralogically they vary also chemically, but the plasticity may remain the same through a wide range of chemical composition, and this property is evidently not dependent on the chemical composition alone, but is due rather to some physical cause. The plasticity may be destroyed by heating the clay to a sufficiently high temperature to drive off the chemically combined water. Although varying in their mineral composition, most clays are supposed to contain more or less of the mineral kaolinite (a hydrated silicate of alumina), which is commonly referred to as the clay base or clay substance. The adoption of the latter term has probably arisen from the fact that many have 'considered this mineral to be the cause of plasticity, an idea now known to be somewhat incorrect, because some of the most plastic clays contain but small quantities of kaolinite, and vice versa. 

  7. Characterization of clay from northern of Morocco for their industrial application

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Fagel, Nathalie

    2010-05-01

    Clays are a natural resource used for millennia. Currently applications such as industrial minerals are diversified. In this context, our goal is to estimate the potential of the many clay deposits in northern of Morocco. The choice of this region is justified by the particular abundance of clay deposits used to manufacture building materials (brick, ceramic and refractories) and pottery. This study focuses on the mineralogical, chemical and geotechnical characterization tests carried out on Tangier-Tetouan and Meknes clays from northern of Morocco. The suitability of raw clay material from those regions in order to produce ceramic and brick has not been tested yet. The results revealed that the studied samples are diversified, kaolinite and illite (Tetouan clay) and kaolinite and illite and smectite and vermiculite (Tangier and Meknes clay) based materials. There were no major differences in grain-size distribution, whereas Meknes clay was more plastic than Tetouan-Tangier clay. The cation exchange capacity show that Meknes and Tangier clay were more important than Tetouan clay. Specific surface area and thermal analaysis complete this caracterization. It was found that almost all technological properties of the Meknes clay deposit are led to the manufacture of ceramic floor tile, and Tetouan-Tangier clay provide opportunities to making brick and ceramic floor. The Tetouan-Tangier and Meknes clay are a potential ceramic raw material for growing Morrocan ceramic tile and brick industries.

  8. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  9. Sb(III) and Sb(V) Sorption onto Al-Rich Phases: Hydrous Al Oxide and the Clay Minerals Kaolinite KGa-1b and Oxidized and Reduced Nontronite NAu-1

    SciTech Connect

    Ilgen, Anastasia G.; Trainor, Thomas P.

    2012-11-13

    We have studied the immobilization of Sb(III) and Sb(V) by Al-rich phases - hydrous Al oxide (HAO), kaolinite (KGa-1b), and oxidized and reduced nontronite (NAu-1) - using batch experiments to determine the uptake capacity and the kinetics of adsorption and Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy to characterize the molecular environment of adsorbed Sb. Both Sb(III) and Sb(V) are adsorbed in an inner-sphere mode on the surfaces of the studied substrates. The observed adsorption geometry is mostly bidentate corner-sharing, with some monodentate complexes. The kinetics of adsorption is relatively slow (on the order of days), and equilibrium adsorption isotherms are best fit using the Freundlich model. The oxidation state of the structural Fe within nontronite affects the adsorption capacity: if the clay is reduced, the adsorption capacity of Sb(III) is slightly decreased, while Sb(V) uptake is increased significantly. This may be a result of the presence of dissolved Fe(II) in the reduced nontronite suspensions or associated with the structural rearrangements in nontronite due to reduction. These research findings indicate that Sb can be effectively immobilized by Al-rich phases. The increase in Sb(V) uptake in response to reducing structural Fe in clay can be important in natural settings since Fe-rich clays commonly go through oxidation-reduction cycles in response to changing redox conditions.

  10. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  11. Biodegradation of crude oil saturated fraction supported on clays.

    PubMed

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  12. Field trip guidebook on environmental impact of clays along the upper Texas coast

    NASA Technical Reports Server (NTRS)

    Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay

    1991-01-01

    The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.

  13. Formation of stable nanocomposite clays from small peptides reacted with montmorillonite and illite-smectite mixed layer clays

    NASA Astrophysics Data System (ADS)

    Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.

    2015-12-01

    Understanding how organic compounds interact with clay minerals and which functional groups result in the strongest bonds is pivotal to achieving a better understanding of how mineral composition affects the residence time of carbon and nitrogen in soils. In this work, we describe how small peptides derived from tryptone casein digest are dissolved and suspended with clay minerals to examine the nature of OM adsorption to mineral surfaces and the resulting effect on clay mineral structure. XRD analyses indicate that peptides intercalation results in expansion of the d001 spacing of montmorillonite (Mt) and the smectite component of a 70-30 illite-smectite mixed layer clay (I-S) and poorer crystallinity overall as a result of exfoliation of tactoids. Peptide adsorption is concentration-dependent, however, surface adsorption appears to mediate interlayer adsorption in Mt reaching a maximum of 16% of the mass of the organoclay complex, indicating that at a critical concentration, peptide intercalation will supersede surface adsorption resulting in a more stable attachment. In I-S the degree of surface adsorption and intercalation is proportional to concentration, however, surface adsorption is not a priming mechanism for interlayer adsorption. Thermogravimetric analysis of the organoclay complexes determined by TGA coupled to GC-MS indicate that the most prominent product species measured was 1-(1-Trimethylsiloxyethenyl)-3-trimethylsiloxy-benzene, likely from tryptophan monomer decomposition. The compound was detected over a broad temperature range, greater than 300 oC, during pyrolysis and suggests a carbon-silicon covalent bond formed between the peptide and tetrahedral layers in the clay. An additional silicon-bearing VOC detected at lower pyrolysis temperature by GC was N,N-Diethyl-1-(trimethylsilyl)-9,10-didehydroergoline-8-carboxamide, likely derived from a lysine-bearing peptide derivative. We hypothesize that hydrophobic (non-ionic) peptides react with silanol

  14. Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays.

    PubMed

    Fernández-Saavedra, Rocío; Darder, Margarita; Gómez-Avilés, Almudena; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2008-04-01

    The present work introduces a comparative study on the use of polymer nanocomposites containing clay minerals of different structure, such as montmorillonite and sepiolite as host solids for the templating synthesis of carbon-like materials from different organic precursors. Carbon-clay nanocomposites were obtained by polymerization of either acrylonitrile or sucrose previously inserted in the pores of the clay minerals, followed by their further thermal transformation in carbon-like compounds. Acid treatment of the resulting carbon-clay nanocomposites removes the inorganic templates giving carbon-like materials with different textural features. Polymer-clay, carbon-clay and carbon-like materials have been characterized by applying spectroscopic techniques as FTIR and in situ EIS (electrochemical impedance spectroscopy) and other structural, textural and analytical tools (chemical analysis, XRD, SEM-EDX, TEM-EDX, N2 adsorption isotherms,...). Electrochemical properties of these carbon-clay nanocomposites, as well as their templated carbonaceous materials and their use as electrode materials of different electrochemical devices such as rechargeable Li-batteries, supercapacitors and electrochemical sensors, are also discussed.

  15. Adsorption and Desorption of Nitrogen and Water Vapor by clay

    NASA Astrophysics Data System (ADS)

    Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei

    2015-04-01

    Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.

  16. Clay fraction mineralogy of a Cambisol in Brazil

    NASA Astrophysics Data System (ADS)

    Anastacio, A. S.; Fabris, J. D.; Stucki, J. W.; Coelho, F. S.; Pinto, I. V.; Viana, J. H. M.

    2005-11-01

    Clay minerals having a 2:1 (tetrahedral:octahedral sheet) structure may be found in strongly weathering soils only if the local pedo-climatic environment prevents them from further weathering to other minerals such as iron oxides. The clay minerals impart important chemical properties to soils, in part by virtue of changes in the redox state of iron in their crystal structures. Knowing the chemical nature of soil clays is a first step in evaluating their potential reactivity with other soil constituents and processes, such as the chemical decomposition of organic substrates to be potentially used in environmental remediation. The purpose of this work was to characterize the iron oxides and iron-bearing clay minerals from a B horizon of a Cambisol developed on tuffite in the State of Minas Gerais, Brazil, using chemical analysis, powder X-ray diffraction, Mössbauer spectroscopy, and thermal analysis. The iron oxides of this NaOH-treated clay-fraction were found to contain mainly maghemite (γFe2O3) and superparamagnetic goethite (αFeOOH). Kaolinite (Al2Si2O5(OH)4), smectite, and minor portions of anatase (TiO2) were identified in the CBD-treated sample.

  17. Clay mineralogy in agrochernozems of western Ukraine

    NASA Astrophysics Data System (ADS)

    Papish, I. Ya.; Chizhikova, N. P.; Poznyak, S. P.; Varlamov, E. B.

    2016-10-01

    The mineralogy of clay fractions separated from deep low-humus deep-gleyic loamy typical agrochernozems on loess-like loams of the Upper Bug and Dniester uplands in the Central Russian loess province of Ukraine consists of complex disordered interstratifications with the segregation of mica- and smectite-type layers (hereafter, smectite phase), tri- and dioctahedral hydromicas, kaolinite, and chlorite. The distribution of the clay fraction is uniform. The proportions of the layered silicates vary significantly within the profile: a decrease in the content of the smectite phase and a relative increase in the content of hydromicas up the soil profile are recorded. In the upper horizons, the contents of kaolinite and chlorite increase, and some amounts of fine quartz, potassium feldspars, and plagioclases are observed. This tendency is observed in agrochernozems developed on the both Upper Bug and Dniester uplands. The differences include the larger amounts of quartz, potassium feldspars, and plagioclases in the clay material of the Upper Bug Upland, while the contents of the smectite phase in the soil profiles of the areas considered are similar. An analogous mineral association is noted in podzolized agrochernozems on loess-like deposits in the Cis-Carpathian region of the Southern Russian loess province developed on the Prut-Dniester and Syan-Dniester uplands. The distribution of particle-size fractions and the mineralogy of the clay fraction indicate the lithogenic heterogeneity of the soil-forming substrate. When the drifts change, the mineral association of the soils developed within the loess-like deposits gives place to minerals dominated by individual smectite with some mica-smectite inter stratifications, hydromicas, and chlorite.

  18. The direct synthesis of organic-containing clays and thermal analysis of porphyrin-clay complexes

    SciTech Connect

    Carrado, K.A.; Anderson, K.B.; Grutkoski, P.S.

    1991-01-01

    Synthetic TMA-montmorillonites have now been made in conjunction with synthetic porphyrin-hectorites reported earlier. In order to help progress towards preparation of porphyrin-containing aluminosilicate clays, the thermal stability of porphyrin-clay systems has been examined in detail. Results from TGA and Py-GC-MS indicate that the porphyrin nucleus is extremely stable in the present of clay minerals. Substituents on the nucleus such as pyridinium or anilinium are, on the other hand, slightly destabilized. In addition, the presence of transition metals like Fe(III) in metalloporphyrins appears to catalyze decomposition of the porphyrin nucleus to some degree. The use of Py-GC-MS in conjunction with TGA results greatly clarified the assignment of weight loss peaks. 18 refs., 3 figs.

  19. Dewatering of industrial clay wastes

    SciTech Connect

    Smelley, A.G.; Scheiner, B.J.; Zatko, J.R.

    1980-01-01

    As a part of research conducted to effect pollution a dewatering technique that allows for disposal of clay wastes, for reuse of water now lost with clays, and for reclamation of mined land was developed. The technique utilizes a high-molecular-weight nonionic polyethylene oxide polymer (PEO) that has the ability to flocculate and dewater materials containing clay wastes. In laboratory experiments, coal-clay waste, potash-clay brine slurry, phosphatic clay waste, uranium tailings, and talc tailings were successfully consolidated. Coal-clay waste was consolidated from 3.6 to 57%; potash-clay brine slurry was consolidated from 3.8 to 35%; phosphatic clay waste from 15.6 to 49%; uranium tailings from 15.4 to 67%; tailings from talc production from 9.7 to 53%; and an acidic TiO/sub 2/ slurr slurry from 1.68 to 30%.

  20. Induced polarization of clay-sand mixtures. Experiments and modelling.

    NASA Astrophysics Data System (ADS)

    Okay, G.; Leroy, P.

    2012-04-01

    The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite (mainly Na-Montmorillonite) in the frequency range 1.4 mHz - 12 kHz. The experiments were performed with various clay contents (1, 5, 20, and 100 % in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). Induced polarization measurements were performed with a cylindrical four-electrode sample-holder associated with a SIP-Fuchs II impedance meter and non-polarizing Cu/CuSO4 electrodes. The results illustrate the strong impact of the CEC of the clay minerals upon the complex conductivity. The quadrature conductivity increases steadily with the clay content. We observe that the dependence on frequency of the quadrature conductivity of sand-kaolinite mixtures is more important than for sand-bentonite mixtures. For both types of clay, the quadrature conductivity seems to be fairly independent on the pore fluid salinity except at very low clay contents. The experimental data show good agreement with predicted values given by our SIP model. This complex conductivity model considers the electrochemical polarization of the Stern layer coating the clay particles and the Maxwell-Wagner polarization. We use the differential effective medium theory to calculate the complex conductivity of the porous medium constituted of the grains and the electrolyte. The SIP model includes also the effect of the grain size distribution upon the complex conductivity spectra.

  1. Spectromicroscopy of Fe distributions in clay microcrystals

    SciTech Connect

    Grundl, T.; Cerasari, S.; Garcia, A.

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  2. The composition and origin of Ghana medicine clays

    PubMed Central

    van Dongen, Bart E.; Fraser, Sharon E.; Insoll, Timothy

    2011-01-01

    The mineral, organic and elemental composition of medicine clays from three shrines in the Tong Hills in northern Ghana (Gbankil, Kusanaab, and Yaane) are assessed to ascertain what additives they might contain and the implications for their recognition, for example in archaeological contexts. These are clays that are widely used for healing purposes being perceived efficacious in curing multiple ailments and which are given a divine provenance, but their collection is ascribed human agency. The Yaane clay is also supplied as part of the process of obtaining the right to operate the shrine elsewhere making it widely dispersed. Organic geochemical analyses revealed a predominance of plant-derived material with a substantial contribution of microbial origin. Based on these (supported by elemental and mineral analyses), no unnatural organic material could be detected, making an exogenous contribution to these clays unlikely. The implications are that these are wholly natural medicinal substances with no anthropogenic input into their preparation, as the traditions suggest. The very similar mineralogy of all the clays, including a non-medicine clay sampled, suggests that, unless the geology radically differed, differentiating between them analytically in an archaeological contexts would be doubtful. PMID:21810043

  3. Chemical and mineralogical characteristics of French green clays used for healing

    USGS Publications Warehouse

    Williams, L.B.; Haydel, S.E.; Giese, R.F.; Eberl, D.D.

    2008-01-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest. The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or 'flesh-eating' infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections. Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer. Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria. Copyright ?? 2008, The Clay Minerals Society.

  4. Moving Along: Sporting Clay.

    ERIC Educational Resources Information Center

    Hiller, Peter

    2002-01-01

    Presents a junior high school student art project where three-dimensional art sculptures of surfing, snow boarding, or dirt biking were created. Discusses how the students created their three-dimensional works of art using a clay-slab technique. (CMK)

  5. Rattles of Clay.

    ERIC Educational Resources Information Center

    Banning, Donna

    1983-01-01

    Using the rattles of Native American cultures as inspiration, students used pinching, coiling, and slab and molding techniques to form the bodies of rattles and clay pellets for sound. Surface decoration included glazed and unglazed areas as well as added handles, feathers, and leather. (IS)

  6. Modeling in Ceramic Clay

    ERIC Educational Resources Information Center

    Miller, Louis J.

    1976-01-01

    Modeling is an additive process of building up a sculpture with some plastic material like clay. It affords the student an opportunity to work in three dimensions, a creative relief from the general two-dimensional drawing and design activities that occupy a large segment of time in the art curriculum. (Author/RK)

  7. Clay-based geothermal drilling fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  8. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  9. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea

    NASA Astrophysics Data System (ADS)

    Yu, Zhaojie; Wan, Shiming; Colin, Christophe; Yan, Hong; Bonneau, Lucile; Liu, Zhifei; Song, Lina; Sun, Hanjie; Xu, Zhaokai; Jiang, Xuejun; Li, Anchun; Li, Tiegang

    2016-07-01

    Clay mineralogical analysis and scanning electron microscope (SEM) analysis were performed on deep-sea sediments cored on the Benham Rise (core MD06-3050) in order to reconstruct long-term evolution of East Asian Summer Monsoon (EASM) rainfall in the period since 2.36 Ma. Clay mineralogical variations are due to changes in the ratios of smectite, which derive from weathering of volcanic rocks in Luzon Island during intervals of intensive monsoon rainfall, and illite- and chlorite-rich dusts, which are transported from East Asia by winds associated with the East Asian Winter Monsoon (EAWM). Since Luzon is the main source of smectite to the Benham Rise, long-term consistent variations in the smectite/(illite + chlorite) ratio in core MD06-3050 as well as ODP site 1146 in the Northern South China Sea suggest that minor contributions of eolian dust played a role in the variability of this mineralogical ratio and indicate strengthening EASM precipitation in SE Asia during time intervals from 2360 to 1900 kyr, 1200 to 600 kyr, and after 200 kyr. The EASM rainfall record displays a 30 kyr periodicity suggesting the influence of El Niño-Southern Oscillation (ENSO). These intervals of rainfall intensification on Luzon Island are coeval with a reduction in precipitation over central China and an increase in zonal SST gradient in the equatorial Pacific Ocean, implying a reinforcement of La Niña-like conditions. In contrast, periods of reduced rainfall on Luzon Island are associated with higher precipitation in central China and a weakening zonal SST gradient in the equatorial Pacific Ocean, thereby suggesting the development of dominant El Niño-like conditions. Our study, therefore, highlights for the first time a long-term temporal and spatial co-evolution of monsoonal precipitation in East Asia and of the tropical Pacific ENSO system over the past 2.36 Ma.

  10. The stabilization of a clay suspension with sulfonated humates of earth and compact lignites

    SciTech Connect

    Girina, L.V.; Sharanova, I.E.

    1995-12-31

    Lignite humates are used as chemical reagents for regulating the properties of dispersed systems, in particular for stabilizing clay and coal-water suspensions. We have performed a comparative analysis of the cation stability of modified humates obtained from earth and compact lignite and of the efficiency of stabilization of highly mineralized clay suspensions. 18 refs., 2 figs., 2 tabs.

  11. Implications of cation exchange on clay release and colloid-facilitated transport in porous media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Column experiments were conducted to study chemical factors that influence the release of clay (kaolinite and quartz minerals) from saturated Ottawa sand of different sizes (710, 360, and 240 µm). A relatively minor enhancement of clay release occurred when the pH was increased (5.8 to 10) or the i...

  12. Clay Animals and Their Habitats

    ERIC Educational Resources Information Center

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  13. Minerals yearbook, 1991: Massachusetts. Annual report

    SciTech Connect

    Harrison, D.K.; Sinnott, J.A.

    1993-05-01

    The value of nonfuel mineral production in 1991 was $111.6 million, a decrease of $16 million compared with the 1990 value. The decrease in 1991 was largely attributable to lower sales of construction sand and gravel and crushed stone, the State's two leading mineral commodities. Other mineral commodities produced included common clay, industrial sand, dimension stone, lime, and peat. Nationally, the State ranked 41st in the production of nonfuel minerals. It ranked fifth of 34 States that produced dimension stone.

  14. Clay Mineralogy and Organic Carbon Burial in Proterozoic Basins

    NASA Astrophysics Data System (ADS)

    Tosca, N. J.; Johnston, D. T.; Mushegian, A.; Rothman, D. H.; Knoll, A. H.

    2008-12-01

    Pedogenic, or soil-derived, clay minerals have long been implicated in the efficiency of organic matter (OM) burial and coincident accumulation of atmospheric oxygen. As diagenesis and metamorphism obscure pedogenic clays in many Precambrian rocks, clay mineralogy and its role in OM burial through much of geologic time remains incompletely understood. In this study we analyzed the mineralogy and total organic carbon (TOC) of a number of organic rich shales deposited in Late Archean to Early Cambrian sedimentary basins. Across all samples, diagenetic transformation of pre-existing smectite minerals has led to the predominance of glauconite and the diagenetic 1M and 1Md illite polytypes, which, collectively, can be thought of as "proto-smectite". The correlations between TOC and illite crystallinity suggest that OM burial and preservation in the Proterozoic proceeded by the physical aggregation of OM and pedogenic clays upon deposition. This association, in turn, led to the interference of OM with the illitization process, resulting in the ubiquitous relationship between high surface area (or, finely crystalline) material and high TOC. This interpretation is consistent with suggestions that the preservation of OM after burial proceeds by physical exclusion, with mineral surfaces effectively isolating OM from enzymatic breakdown. Together, it appears that the deposition of pedogenic clays has remained broadly constant over Proterozoic time and into the Early Cambrian, which is incompatible with the hypothesis that late Neoproterozoic oxygenation was influenced by increases in pedogenic clay production. As no clear temporal relationship exists between clays and OM, Precambrian oxygenation was likely controlled by other mechanisms.

  15. Time Effects on the Stress/Strain Properties of Clay Consolidated in the Laboratory.

    DTIC Science & Technology

    1980-11-01

    has also been suggested as the approximate decayj length for a presumably "steric" stabilizing water structure on mica surfaces ( DERJAGUIN & CHURAEV...clay plates in illite clay is at least 50 -75 A. A close approach between particles, which may even result in mineral/mineral contacts, is most readily...eauilibria of force , which results in larger average distances than in the former intra-aggregate contacts. A certain net gain in strength may arise from

  16. Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay.

    PubMed

    Phua, Si Lei; Yang, Liping; Toh, Cher Ling; Guoqiang, Ding; Lau, Soo Khim; Dasari, Aravind; Lu, Xuehong

    2013-02-01

    Inspired by the radical scavenging function of melanin-like materials and versatile adhesive ability of mussel-adhesion proteins, dopamine-modified clay (D-clay) was successfully incorporated into polypropylene (PP) using an amine-terminated PP oligomer as the compatibilizer. Although the PP/D-clay nanocomposites exhibit intercalated morphology, the incorporation of D-clay greatly improves the thermo-oxidative stability and UV resistance of PP owing to the strong radical scavenging ability of polydopamine (PDA) and large contact area between PP and the PDA coating on clay mineral. Moreover, the reinforcement effect brought by D-clay is fairly significant at very low clay loadings probably owing to the strong interfacial interactions between the layered silicates and the compatibilizer as well as that between the compatibilizer and the PP matrix. The work demonstrates that D-clay is a type of promising nanofiller for thermoplastics used for outdoor applications since it stabilizes and reinforces the polymers simultaneously.

  17. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  18. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    PubMed Central

    Longo, Simona; Mauro, Marco; Daniel, Christophe; Galimberti, Maurizio; Guerra, Gaetano

    2013-01-01

    Supercritical carbon dioxide (scCO2) treatments of a montmorillonite (MMT) intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT) led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS), have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals. PMID:24790956

  19. Modelling iron clay interactions in deep geological disposal conditions

    NASA Astrophysics Data System (ADS)

    Bildstein, O.; Trotignon, L.; Perronnet, M.; Jullien, M.

    In the context of deep geological disposal of high level radioactive wastes, the interactions between iron and clay-rich materials may lead to adverse transformations of clay minerals with a potential loss of confining properties such as swelling and capacity to exchange cations. Such transformations have been experimentally observed at temperatures starting at ca. 80 °C, where smectites contained in a mixture of bentonite and iron powder are transformed into iron-rich serpentine-type minerals. The reaction-transport code CRUNCH is used to investigate the iron-clay interactions at 50 °C over a period of 10,000 years, which are the conditions considered here to represent the mean temperature value and the expected timescale for the corrosion stage. The aim is to predict the nature and quantity of corrosion product, calculate the chemistry of water (essentially the pH) and the mineralogical transformation in the system containing the canister, an optional engineered barrier (bentonite) and the host-rock (argillite). The results of the calculations show that at the interface with the canister, where steel corrosion occurs, the iron is partly immobilized by the precipitation of iron oxides (essentially magnetite) and small amounts of siderite. The pH stabilizes at high values, between 10 and 11, at this location. In the bentonite or the argillite in contact with the container, the primary clay minerals are destabilized and iron-rich serpentine-like minerals precipitate as observed in the experiments (cronstedtite and berthierine). These minerals show low cation exchange and swelling capacities. The results also show that the interactions between iron and clay may lead to significant porosity changes in the system. A reduction of the porosity is predicted at the surface of the steel canister, due to the precipitation of iron oxides. Porosity increase is predicted in the clay material due to the dissolution of the primary clay minerals. The effect of these porosity

  20. Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay.

    PubMed

    Gu, Cheng; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2008-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) are ubiquitous and highly toxic environmental contaminants found in surface and subsurface soils and in clay deposits. Interestingly, the congener profiles of such PCDDs are inexplicably dissimilar to those of known anthropogenic (e.g., pesticide manufacture, waste incineration) or natural (e.g., forest fire) sources. Characteristic features of soil or clay-associated PCDDs are the dominance of octachlorodibenzo-p-dioxin (OCDD) as the most abundant congener and very low levels of polychlorinated dibenzofurans (PCDFs). These propensities led to the hypothesis of in situ PCDD formation in soils and geologic clay deposits. In this study, we demonstrate the formation of OCDD on the naturally occurring and widely distributed clay mineral montmorillonite under environmentally relevant conditions. When pentachlorophenol (PCP)was mixed with Fe(III)-montmorillonite, significant amounts of OCDD were rapidly (minutes to days) formed (approximately 5 mg OCDD/kg clay) at ambient temperature in the presence of water. This reaction is initiated by single electron transfer from PCP to Fe(III)-montmorillonite thereby forming the PCP radical cation. Subsequent dimerization, dechlorination, and ring closure reactions result in formation of OCDD. This study provides the first direct evidence for clay-catalyzed formation of OCDD supporting the plausibility of its in situ formation in soils.

  1. Porous networks derived from synthetic polymer-clay complexes

    SciTech Connect

    Carrado, K.A.; Thiyagarajan, P.; Elder, D.L.

    1995-05-12

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two neutral cellulosic polymers hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {Angstrom} along with less polymer incorporation (7.8 wt % organic) than the neutral polymers (18--22 wt % organic). Thermal analysis and small angle neutron scattering were used to further examine the polymer-clay systems. Clay platelets of the largest size and best stacking order occur when cationic PDDA polymer is used. PDDA also enhances these properties over the crystallites prepared for a control mineral, where no polymer is used. HEC acts to aggregate the silica, leaving less to react to form clay. The clay platelets which result from HEC are small, not stacked to a large degree, and oriented randomly. Neutral HPMC acts more like cationic PDDA in that larger clay platelets are allowed to form. The extended microstructure of the clay network remains undisturbed after polymer is removed by calcination. When no polymer is used, the synthetic hectorite has a N{sub 2} BET surface area of 200 M{sup 2}/gm, even after calcination. This increases by 20--50% for the synthetic polymer-hectorites after the polymer is removed by calcination.

  2. Cyclic voltammetry of aquocobalamin on clay-modified electrodes

    SciTech Connect

    Borek, V.; Morra, M.J.

    1998-07-15

    Halogenated synthetic compounds are widespread contaminants of the environment. Although corrinoids reductively dehalogenate synthetic contaminants in solution, the redox behavior of sorbed tetrapyrroles has received limited attention. Colloidal clay suspensions were prepared as Ca{sup 2+} forms of hectorite (SHCa-1), montmorillonite (SWy-1, Syn-1, and SAz-1), and vermiculite (VTx-1) and spin coated on platinum electrodes. Cyclic voltammetry was performed with the clay-modified electrodes immersed in buffered solutions containing 1.0 mM aquocobalamin. Aquocobalamin in the presence of vermiculite-coated electrodes displayed the same cathodic and anodic peak potentials as unmodified electrodes immersed in aquocobalamin solutions. All other clay-modified electrodes shifted cathodic peaks to more negative values, while anodic peak shifts varied with the clay. Hectorite caused the largest shift in formal redox potential as compared to aquocobalamin in solution. The redox behavior of aquocobalamin as modified by sorption to clay minerals potentially affects dehalogenation rates of synthetic organic compounds in the environment. Clays lowering the formal redox potential of the tetrapyrrole create a potentially more efficient catalyst for pollutant degradation. However, thermodynamic data as obtained using cyclic voltammetry cannot be used to make definitive predictions about the kinetics of contaminant dehalogenation. Reductive dehalogenation will be a function of altered electrochemical properties of the tetrapyrrole as well as rates of contaminant diffusion to the site of tetrapyrrole sorption.

  3. [Extinguishment of harmful algae by organo-clay].

    PubMed

    Cao, Xihua; Yu, Zhiming

    2003-07-01

    Periodic and widespread algal blooms have caused a variety of problems for aquatic life and human activity throughout the world. Currently, the only remedial practice employed for removing algal blooms is to spread clay on the surface of the water. But, the algal removal efficiency by the crude minerals are not really ideal, and how to improve the capability of clays to remove algae is now the technological focus, which also is fatal to the practical value of clays. In this study, hexadecyltrimethyleamine bromide (HDTMAB), one kind of cationic organo-surfactants, was chosen to improve kaolin by surface sorption and cationic exchange, and was tested to remove Prorocentrum donghaiense, a red tide organism in Donghai Sea. The results indicated that organo-clay had an excellent ability to extinguish red tide organisms, even under the application of 0.01 g.L-1, and could subside more than 95% red tide organisms in 24 h. The efficient algae removal by organo-clay might be from the reversal of the surface electric charge on clay particles, the "net capture" by the long lipoid chains of HDTMAB, and the local high density of HDTMAB on particles surface, which could effectively kill algal cells.

  4. Toward Accurate Adsorption Energetics on Clay Surfaces

    PubMed Central

    2016-01-01

    Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem. PMID:27917256

  5. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  6. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  7. The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-12-01

    In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms (species of the genus Eisenia), as well as the effect of those amendments on carbon mineralization after application to soil. We added two different doses of clay, biochar or their mixture to pre-composted green wastes and monitored carbon mineralization over 21 days in the absence or presence of worms. The resulting co-composts and vermicomposts were then added to a loamy Cambisol and the CO2 emissions were monitored over 30 days in a laboratory incubation. Our results indicated that the addition of clay or clay/biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose. The effect of the amendments on carbon mineralization after addition to soil was small in the short term. Overall, composts increased OM mineralization, whereas vermicomposts had no effect. The presence of biochar reduced OM mineralization in soil with respect to compost and vermicompost without additives, whereas clay reduced mineralization only in the composts. Our study indicates a significant role of the conditions of composting on mineralization in soil. Therefore, the production of a low CO2 emission amendment requires optimization of feedstocks, co-composting agents and worm species.

  8. Investigating the Influence of Clay Mineralogy on Stream Bank Erodibility

    NASA Astrophysics Data System (ADS)

    Ambers, R. K.; Stine, M. B.

    2005-12-01

    Soil scientists concerned with erosion of agricultural fields and geotechnical engineers concerned with the mechanical behavior of soils under different conditions have both examined the role of clay mineralogy in controlling soil/sediment properties. Fluvial geomorphologists studying stream channel erosion and stability have focused more on the effects of particle-size distribution, vegetation and rooting. The clay mineralogy of bed and bank sediment has the potential to influence cohesiveness and erodibility, however. The goal of this study is to determine the influence of clay mineralogy on the erodibility of natural stream bank sediment, utilizing techniques drawn from pedology and soil mechanics. Bank samples were collected from eleven sites in small watersheds in central and western Virginia. To obtain sediment containing a range of different clay minerals, watersheds with different types of bedrock were chosen for sampling. Rock types included mafic to felsic metamorphic and igneous rocks, shale, sandstone, and limestone. Where stream bank materials were clearly stratified, different layers were sampled separately. X-ray diffraction of the clay-fraction of the sediment indicates the presence of kaolinite, illite, vermiculite, and mixed-layer clay minerals in various abundances in the different samples. Clay content is 9-46%, as determined by the hydrometer method, and textures range from silty clay and silt loam to clay loam and sandy loam. Organic mater contents range from 1-5% by the loss-on-ignition method. Bulk density of intact sediment samples averages 1.5 g/cc. Liquid limits range from 23-41 with one sample having a value of 65; plasticity indices range from 15-22. While these tests predict that the samples would show a range of mechanical behaviors, the channel morphology at the sampling sites was not strikingly different, all having steep cut banks eroded primarily by scour with no evidence of mass movement and most having a width/depth ratio around

  9. CHEMICAL AND MINERALOGICAL CHARACTERISTICS OF FRENCH GREEN CLAYS USED FOR HEALING

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.; Giese, Rossman F.; Eberl, Dennis D.

    2008-01-01

    The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest. The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections. Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer. Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria. PMID:19079803

  10. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon.

    PubMed

    Londono, Sandra Carolina; Williams, Lynda B

    2016-04-01

    Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay's antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4-6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m(2)/g) and much higher total surface area (278.82 m(2)/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.

  11. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-11-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  12. Feldspar minerals as efficient deposition ice nuclei

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J. D.; Ladino, L. A.; Abbatt, J. P. D.

    2013-06-01

    Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at -40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  13. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    PubMed

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods.

  14. Effect of red clay on diesel bioremediation and soil bacterial community.

    PubMed

    Jung, Jaejoon; Choi, Sungjong; Hong, Hyerim; Sung, Jung-Suk; Park, Woojun

    2014-08-01

    Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.

  15. Clay mineralogy of Pleistocene Lake Tecopa, Inyo County, California

    USGS Publications Warehouse

    Starkey, Harry C.; Blackmon, Paul D.

    1979-01-01

    Pleistocene Lake Tecopa in southeastern Inyo County, Calif., was formed when the Amargosa River was blocked at the southern end of its valley. The lake acted as a settling basin for detrital material being transported by the river. This detritus consisted of clays, quartz, feldspars, and micas which became mudstones and siltstones. These mudstones and siltstones, much eroded and dissected after the draining of the lake, extend over the entire basin and are interbedded with tuffs formed by the intermittent deposition of volcanic ashfalls in the former lake waters. These lightcolored mudstones and siltstones are tough and well indurated and break with a conchoidal fracture. The predominant clay mineral in these detrital beds is a lithiumbearing saponite, which is found not only in the lake beds but also in the area beyond the boundaries of the lake, especially in fluvial deposits in the drainage basin of the Amargosa River to the north. This saponite does not contain enough lithium to be classified as a hectorite, and we have observed no indications that this clay consists of a mixture of two phases, such as hectorite and a diluent. Some authigenic dioctahedral montmorillonite, found only in small quantities close to the tuffs, was formed by alteration of the volcanic glass of the tuffs and was then admixed with the overlying or underlying detrital clays. The only authigenic clay-type mineral found in any significant quantity is sepiolite, found near the edges of the lake basin and stratigraphically located mainly within a meter of the two uppermost tuffs. This sepiolite probably was precipitated when silica became available to the magnesium-bearing lake water through dissolution of the volcanic ash. Precipitation of sepiolite probably did not occur within the tuffs owing to the presence of alumina in solution. Zeolites were produced there and sepiolite formed outside the margins of the tuffs. Also formed by the high-pH lake waters were water-soluble minerals, which

  16. Probing the Nanoscale Architecture of Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Johnston, C. T.; Laird, D. A.; Li, H.; Teppen, B. J.; Boyd, S. A.

    2003-12-01

    Soil minerals have been shown recently to have an unexpectedly high affinity for certain types of organic molecules including pesticides, explosives and related environmental contaminants. Recent laboratory and field studies, for example, have shown that nitroaromatic compounds are strongly sorbed to certain types of expandable clay minerals. For these compounds, sorption by clay minerals may exceed that of soil organic matter and the molecular mechanisms underlying this preference have been the subject of recent investigation. Expandable clay minerals with a low surface charge density and exchanged with potassium ions have been shown to have the highest affinity for these types of organic solutes. Expandable clay minerals have generally been viewed as hydrophilic materials based on their high affinity for water. Recent evidence, however, has shown that the siloxane surface itself has some hydrophobic character. For exchangeable cations with lower hydration enthalpies, such as potassium, the sorbed organic solutes have an opportunity to interact with both the hydrophilic hydrated cation and with nonpolar regions of the siloxane surface. The combined interaction of these two types of surface sites appears to be important for the sorption of both large and small organic solutes. We have recently combined spectroscopic, structural, and quantum chemical methods with sorption isotherms to examine these types of solute-surface interactions in aqueous media for both specimen and soil clays. Examples of solute-hydrophilic and solute-hydrophobic surface site interactions using different probe molecules will be presented.

  17. Does the preferential microbial colonisation of ferromagnesian minerals affect mineral weathering in soil?

    PubMed

    Wilson, Michael J; Certini, Giacomo; Campbell, Colin D; Anderson, Ian C; Hillier, Stephen

    2008-09-01

    Fungal activity is thought to play a direct and effective role in the breakdown and dissolution of primary minerals and in the synthesis of clay minerals in soil environments, with important consequences for plant growth and ecosystem functioning. We have studied primary mineral weathering in volcanic soils developed on trachydacite in southern Tuscany using a combination of qualitative and quantitative mineralogical and microbiological techniques. Specifically, we characterized the weathering and microbiological colonization of the magnetically separated ferromagnesian minerals (biotite and orthopyroxene) and non-ferromagnesian constituents (K-feldspar and volcanic glass) of the coarse sand fraction (250-1,000 microm). Our results show that in the basal horizons of the soils, the ferromagnesian minerals are much more intensively colonized by microorganisms than K-feldspar and glass, but that the composition of the microbial communities living on the two mineral fractions is similar. Moreover, X-ray diffraction, optical and scanning electron microscope observations show that although the ferromagnesian minerals are preferentially associated with an embryonic form of the clay mineral halloysite, they are still relatively fresh. We interpret our results as indicating that in this instance microbial activity, and particularly fungal activity, has not been an effective agent of mineral weathering, that the association with clay minerals is indirect, and that fungal weathering of primary minerals may not be as important a source of plant nutrients as previously claimed.

  18. [Kinetics and mechanism of removing Microcystis aeruginosa using clay flocculation].

    PubMed

    Pan, Gang; Zhang, Mingming; Yan, Hai; Zou, Hua; Chen, Hao

    2003-09-01

    Twenty-six natural clays were studied for their kinetics of flocculating and removing algal cells of Microcystis aeruginosa. According to the 8 h equilibrium removal efficiencies and removal rates at a clay-loading of 0.7 g.L-1, all the 26 clays were classified into three categories. Type-I clay, which includes talc, ferric oxide, sepiolite, ferroferric oxide, and kaolinite, has an equilibrium removal efficiency greater than 90%, a t50 (time needed to remove 50% of the algae) of less than 30 min, and a t80 (time needed to remove 80% of the algae) of less than 2.5 h. Type-II clay, which includes argillanceous rocks, attapulgite, rectorite, illite, and argil, etc., has an equilibrium removal efficiency of 50%-80%, a t50 of less than 2.5 h, and a t80 of more than 5 h. Type-III clay consists of 14 minerals, including laterite, zeolite, mica, clinoptilolite, pumice, tripoli, feldspar and quartz, etc. with the removal efficiency less than 50%, and t50 > > 8 h. When the clay loading was decreased to 0.1-0.2 g.L-1, the 8 h equilibrium removal efficiencies for 25 clays declined to below 60%, except for sepiolite, a Type-I clay, which maintained around 90%. After the sepiolite was modified with Fe3+ to increase its surface charge (Zeta potential from -24.0 mV to +0.43 mV at pH 7.4), the initial removal rate was increased remarkably although its 8 h equilibrium removal efficiency was not improved substantially. As a comparison, the 8 h equilibrium removal efficiency of PAC was no greater than 40% at loadings of 0.02-0.2 g.L-1. Following the analysis of the flocculation mechanism it was concluded that the effect of bridging and netting may play a key role in the clay-algae flocculation processes, which may be important for selecting and modifying clays to improve significantly the removal efficiency.

  19. Lead removal from aqueous solutions by a Tunisian smectitic clay.

    PubMed

    Chaari, Islem; Fakhfakh, Emna; Chakroun, Salima; Bouzid, Jalel; Boujelben, Nesrine; Feki, Mongi; Rocha, Fernando; Jamoussi, Fakher

    2008-08-15

    The adsorption of Pb(2+) ions onto Tunisian smectite-rich clay in aqueous solution was studied in a batch system. Four samples of clay (AYD, AYDh, AYDs, AYDc) were used. The raw AYD clay was sampled in the Coniacian-Early Campanian of Jebel Aïdoudi in El Hamma area (South of Tunisia). AYDh and AYDs corresponds to AYD activated by 2.5 mol/l hydrochloric acid and 2.5 mol/l sulphuric acid, respectively. AYDc corresponds to AYD calcined at different temperatures (100, 200, 300, 400, 500 and 600 degrees C). The raw AYD clay was characterized by X-ray diffraction, chemical analysis, infrared spectroscopy and coupled DTA-TGA. Specific surface area of all the clay samples was determined from nitrogen adsorption isotherms. Preliminary adsorption tests showed that sulphuric acid and hydrochloric acid activation of raw AYD clay enhanced its adsorption capacity for Pb(2+) ions. However, the uptake of Pb(2+) by AYDs was very high compared to that by AYDh. This fact was attributed to the greater solubility of clay minerals in sulphuric acid compared to hydrochloric acid. Thermic activation of AYD clay reduced the Pb(2+) uptake as soon as calcination temperature reaches 200 degrees C. All these preliminary results were well correlated to the variation of the specific surface area of the clay samples. The ability of AYDs sample to remove Pb(2+) from aqueous solutions has been studied at different operating conditions: contact time, adsorbent amount, metal ion concentration and pH. Kinetic experiments showed that the sorption of lead ions on AYDs was very fast and the equilibrium was practically reached after only 20 min. The results revealed also that the adsorption of lead increases with an increase in the solution pH from 1 to 4.5 and then decreases, slightly between pH 4.5 and 6, and rapidly at pH 6.5 due to the precipitation of some Pb(2+) ions. The equilibrium data were analysed using Langmuir isotherm model. The maximum adsorption capacity (Q(0)) increased from 25 to 25

  20. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Baldermann, A.; Warr, L. N.; Letofsky-Papst, I.; Mavromatis, V.

    2015-11-01

    In much of the global ocean, iron is a limiting nutrient for marine productivity. The formation of pyrite has been considered the most important sink of reactive iron in modern, organic-rich sediments. However, clay mineral transformations can also lead to long-term sequestration of iron during late diagenesis and in hydrothermal settings. Here we present evidence for substantial iron sequestration during the early diagenetic formation of ferruginous clay minerals, also called green-clay authigenesis, in the deep-sea environment of the Ivory Coast-Ghana Marginal Ridge. Using high-resolution electron microscopic methods and sequential sediment extraction techniques, we demonstrate that iron uptake by green-clay authigenesis can amount to 76 +/- 127 μmol Fe cm-2 kyr-1, which is on average six times higher than that of pyrite in suboxic subsurface sediments 5 m below the sea floor or shallower. Even at depths of 15 m below the sea floor or greater, rates of iron burial by green clay and pyrite are almost equal at ~80 μmol Fe cm-2 kyr-1. We conclude that green-clay formation significantly reduces the pore water inventory of dissolved iron in modern and ancient pelagic sediments, which challenges the long-standing conceptual view that clay mineral diagenesis is of little importance in current biogeochemical models of the marine iron cycle.

  1. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan.

    PubMed

    Nakao, Atsushi; Ogasawara, Sho; Sano, Oki; Ito, Toyoaki; Yanai, Junta

    2014-01-15

    Relationships between Radiocesium Interception Potential (RIP) and mineralogical characteristics of the clay fraction isolated from 97 paddy soils (Hama-dori, n = 25; Naka-dori, n = 36; Aizu, n = 36) in Fukushima Prefecture, Japan were investigated to clarify the mineralogical factors controlling the (137)Cs retention ability of soils (half-life 30.1 y). Of all the fission products released by the Fukushima accident, (137)Cs is the most important long-term contributor to the environmental contamination. The RIP, a quantitative index of the (137)Cs retention ability, was determined for the soil clays. The composition of clay minerals in the soil clays was estimated from peak areas obtained using X-ray diffraction (XRD) analyses. The predominant clay mineral was smectite in soils from Hama-dori and Aizu, while this was variable for those from Naka-dori. Native K content of the soil clays was found to be an indicator of the amount of micaceous minerals. The average RIP for the 97 soil clays was 7.8 mol kg(-1), and ranged from 2.4 mol kg(-1) to 19.4 mol kg(-1). The RIP was significantly and positively correlated with native K content for each of the geographical regions, Hama-dori (r = 0.76, p < 0.001), Naka-dori (r = 0.43, p < 0.05), and Aizu (r = 0.76, P < 0.001), while it was not related to the relative abundance of smectite. The linear relationship between RIP and native K content not only indicate a large contribution of micaceous minerals to the (137)Cs retention ability of the soil clays, but also could be used to predict the (137)Cs retention ability of soil clays for other paddy fields in Fukushima and other areas.

  2. Effect of iron diagenesis on the transport of colloidal clay in an unconfined sand aquifer

    SciTech Connect

    Ryan, J.N.; Gschwend, P.M. )

    1992-04-01

    The role of Fe diagenesis in the transport of clay colloids was investigated in the Cohansey Sand, an Fe(III) oxide-coated quartz arenite that covers most of the New Jersey Coastal Plain. Based on the authors' past work, they hypothesized that clay had been transported into the sediments, that the clay distribution was controlled by attachment to surface Fe(III) oxides, and that anoxic water infiltrating from a swamp had dissolved Fe(III) oxides and released clay colloids into flowing groundwater. Sediment cores were collected from upland and swamp terrains, and the composition and distribution of the clay-sized and heavy mineral fractions were examined by X-ray diffraction, optical and electron microscopy, separations, and elemental analyses. The clay-sized content of the oxidized sediments was roughly double that of the reduced sediments. Electron microscopy revealed that coatings on the quartz grains had the appearance of infiltrated clay particles. The relationship between clay and surface Fe content indicated that the onset of reducing conditions below the swamp remobilized clay colloids by dissolving Fe(III) oxide cement. Surface Fe(III) oxides were derived from weathering of ilmenite and pseudorutile, Fe-Ti oxides found in the heavy mineral fraction. In the oxidized sediments, Fe was transported from the Fe-Ti oxide grains to quartz surfaces, where it was deposited as surface Fe(III) oxides mixed with kaolinite. Thus, the weathering of Fe-bearing minerals and the formation and dissolution of secondary Fe(III) oxides influenced the mobility of colloidal clay in the Cohansey Sand.

  3. Mineral resource of the month: Vermiculite

    USGS Publications Warehouse

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  4. Clay Formation and Fabric Development in the DFDP-1 Borehole, Central Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Sutherland, R.; Townend, J.; Toy, V.; van der Pluijm, B.

    2015-12-01

    Samples retrieved by shallow drilling into two principal slip zones of the central Alpine Fault, New Zealand, offer an excellent opportunity to investigate clay formation, fabric development and fluid-rock interaction in an active fault zone. Here, we provide lithological and structural observations of five samples from borehole DFDP-1B, drilled during Phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011. Each sample's mineralogical composition was determined by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Furthermore, the preferred orientation of the clays was analyzed by x-ray texture goniometry (XTG). The dominant clay mineral phases are illite and chlorite/kaolinite. Newly formed smectitic clays are observed solely in the cm-thick zones of fault gouge, indicating that these mineral reactions are restricted to the fault zone. We observe that smectite forms by transformation of very fine-grained material produced by cataclasis during slip. Clay fabric intensity of both illite and chlorite reveal that relatively strong fabrics are present in the cataclasites above the principal slip zone, but that the clay minerals in the gouge have a very weak preferred orientation. The weak fabric supports the notion that clay orientation is a result of authigenic mineral growth and not of strain-induced particle reorientation. It also indicates that fluids are able to pass through the gouge, presumably along variably spaced and interconnected fracture networks or between particle boundaries. Our analysis of samples retrieved by DFDP-1 drilling and sampling demonstrates intimate association of localized shear, comminution, and rapid fluid-rock interaction. It thus contributes to a growing body of evidence that alteration processes, particularly formation of frictionally weak smectitic clay minerals, may be a significant weakening mechanism within active shallow faults.

  5. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect

    Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward; Kuhlman, Kristopher L.; Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, James; Caporuscio, Florie Andre; Cheshire, Michael; Palaich, Sarah; Norskog, Katherine E.; Zavarin, Mavrik; Wolery, Thomas J.; Jerden, James L.; Copple, Jacqueline M.; Cruse, Terry; Ebert, William L.

    2015-09-04

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive

  6. Detailed mineralogical characterization of the Bullfrog and Tram members USW-G1, with emphasis on clay mineralogy

    SciTech Connect

    Bish, D.L.

    1981-10-01

    The detailed mineralogy of the Bullfrog and Tram Members of the Crater Flat Tuff from drill hole USW-G1 has been examined, primarily to characterize fully the amounts and types of clay minerals in the tuffs and the possible effects clay minerals have on rock properties. Results of bulk sample x-ray diffraction analyses agree closely with previous determinations, although slightly higher clay mineral contents were found in this study. X-ray diffraction analysis of fine fractions revealed that the clay minerals in the tuffs are sodium-saturated montmorillonite-beidellites with typical layer charges and no high-charge layers. These smectites are found in virtually all samples of the Bullfrog and Tram, and there is no correlation between the amounts of smectites and the amounts of zeolite, quartz, and feldspar. Smectites are present in both welded and nonwelded horizons and are scarce in some zones with slight-to-absent welding.

  7. Water recovery and disposal of clay waste slimes

    SciTech Connect

    Scheiner, B.J.; Smelley, A.G.

    1980-12-01

    As a part of research conducted in its mission to effect pollution abatement, the Bureau of Mines, U.S. Department of the Interior, is developing a dewatering technique that allows for disposal of mineral wastes, for reuse of water now lost with these wastes, and for reclamation of mined land. The technique utilizes a high-molecular-weight nonionic polyethylene oxide polymer (PEO) that has the ability to flocculate and dewater materials containing clay wastes. A variety of different clay wastes have been successfully dewatered in laboratory experiments. Coal-clay waste was consolidated from 4 to 57 weight-percent; potash-clay brine waste from 20 to 62 weight-percent; phosphatic clay waste from 16 to 49 weight-percent; uranium mill tailings from 15 to 67 weight-percent; talc tailings from 10 to 53 weight-percent. The consolidated materials can be handled by mechanical devices such as trucks and conveyors for disposal in mined-out areas.

  8. Geochemical survey of the Adams Gap and Shinbone Creek Roadless Areas, Clay County, Alabama

    USGS Publications Warehouse

    Robinson, G.R.; Klein, T.L.; Lesure, F.G.; Hanley, J.T.

    1984-01-01

    Reports covering the mineral resources of Clay County and vicinity include Brewer (1896) and Adams (1930) on gold, Prouty (1923) on graphite, and Heinrich and Olson (1953) on mica. The mineral resources of the Talladega National Forest were evaluated by Gilbert and Smith (1973). The mineral resource potential of the two roadless areas is detailed in Robinson and others (1983) and an accompanying geologic report is given in Robinson and others (in press).

  9. Degradation of vanillin in soil-clay mixtures treated with simulated acid rain

    SciTech Connect

    Bewley, R.J.F.; Stotzky, G.

    1984-06-01

    Significant vanillin degradation occurred only in soil amended with 9% montmorillonite and not in soil amended with 9% kaolinite or in soil without addition of clay minerals. Progressively decreasing amounts of vanillin were mineralized in the montmorillonite-amended soil with increasing acidification with H/sub 2/SO/sub 4/, and complete inhibition of mineralization occurred at a soil pH of 1.6. 16 references, 1 table.

  10. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    NASA Astrophysics Data System (ADS)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  11. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    SciTech Connect

    Scherer, Michelle

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations using a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.

  12. Clay and pillard clay membranes: Synthesis, characterization and transport properties

    NASA Astrophysics Data System (ADS)

    Vercauteren, Sven

    In this work, the preparation and characterization of ceramic multilayer membranes with an Alsb2Osb3-pillared montmorillonite (Al-PILC) and a Laponite separating layer have been studied. Al-PILC is a pillared clay prepared by intercalation of polyoxo cations of aluminium between the montmorillonite clay sheets, followed by a thermal treatment (400sp°C) to obtain rigid oxide pillars. The free spacing between the clay plates is about 0.8 nm. Laponite is a synthetic clay with a pore structure formed by the stacking of very small clay plates. To deposit an Al-PILC top layer on a macro- or mesoporous aluminiumoxide support membrane, two preparation routes were considered. According to the standard preparation route of a pillared clay, the easiest way is to use a suspension of clay mixed with the pillaring solution in which the support membrane is dipped. However, it is not possible to deposit uniform and crack-free top layers in this way because of the formation of unstable suspensions. A second preparation route is based on an indirect pillaring procedure. By dipping a support membrane in a stable clay suspension, a thin clay film is deposited in a first step. Pillaring is achieved via immersion of the supported clay film in the pillaring solution in a second step. After a washing procedure, the membrane is dried and calcined at 400sp°C. Laponite membranes were simply prepared by dipping a support membrane in a suspension of this synthetic clay in water. Afterwards a drying at room temperature and a calcination at 400 ar 500sp°C is performed. Both membrane types were tested for gas separation and pervaporation purposes. Transport of permanent gases (He, N2) occurs by means of Knudsen diffusion. Diffusion is kinetically controlled and for a binary mixture, the maximum separation factor is determined by the difference in molecular weight of both components. From pervaporation experiments with water/alcohol mixtures it was found that Al-PILC membranes can be used for

  13. Reaction of Photochemically Generated Organic Cations with Colloidal Clays.

    DTIC Science & Technology

    1983-05-01

    University of Notre Dame. IS. KEY WORDS (Continue on reverse aide if neceary end identify by block number) Chemistry of colloidal montmorillonite Absorption...Centlws m ftves n N mee.iy mi Identify by block number) Qi Organic radical cations will dimerize when adsorbed to the surface D of montmorillonite in...1 The Nature and Chemistry of Micelles .... 2 The Nature and Chemistry of Clay Minerals 5 Montmorillonite Catalyzed Color

  14. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    PubMed Central

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    2016-01-01

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe2+ and Al3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show that Al3+ misfolds cell membrane proteins, while Fe2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe3+-oxides as biomolecular damage proceeds. Discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents. PMID:26743034

  15. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    NASA Astrophysics Data System (ADS)

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    2016-01-01

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe2+ and Al3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show that Al3+ misfolds cell membrane proteins, while Fe2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe3+-oxides as biomolecular damage proceeds. Discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.

  16. Can clays ensure nuclear waste repositories?

    PubMed Central

    Zaoui, A.; Sekkal, W.

    2015-01-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation. PMID:25742950

  17. Can clays ensure nuclear waste repositories?

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Sekkal, W.

    2015-03-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  18. Can clays ensure nuclear waste repositories?

    PubMed

    Zaoui, A; Sekkal, W

    2015-03-06

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  19. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    PubMed

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral.

  20. Crystal chemistry and Mössbauer spectroscopic analysis of clays around Riyadh for brick industry

    NASA Astrophysics Data System (ADS)

    Khalil, Mutasim I.

    2013-04-01

    A total of 30 clay samples were collected from the area around Riyadh city, Saudi Arabia. A complete chemical analysis was carried out using different techniques. X-ray diffraction studies showed that the clay samples were mainly of the smectite group with traces of the kaolinite one. The samples studied were classified as nontronite clay minerals. One of the clay fraction has been studied by Mössbauer spectroscopy as raw clay fraction and after being fired at 950-1,000 °C. The Mössbauer spectra showed accessory iron compounds in the form of hematite and goethite. The structural iron contents disintegrate on firing transforming into magnetic iron oxide and a paramagnetic small particles iron oxide.