Science.gov

Sample records for clay minerals

  1. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  2. Clay Mineral: Radiological Characterization

    NASA Astrophysics Data System (ADS)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  3. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  4. Clay Mineral: Radiological Characterization

    SciTech Connect

    Cotomacio, J. G.; Silva, P. S. C.; Mazzilli, B. P

    2008-08-07

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and {sup 40}K in these clay minerals.The objective of this work is to determine the concentrations of {sup 238}U, {sup 232}Th, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay.Measurement for the determination of {sup 238}U and {sup 232}Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for {sup 226}Ra, {sup 228}Ra, {sup 210}Pb and {sup 40}K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906{+-}340 Bq kg{sup -1} for {sup 40}K, 40{+-}9 Bq kg{sup -1} for {sup 226}Ra, 75{+-}9 Bq kg{sup -1} for {sup 228}Ra, 197{+-}38 Bq kg{sup -1} for {sup 210}Pb, 51{+-}26 Bq kg{sup -1} for {sup 238}U and 55{+-}24 Bq kg{sup -1} for {sup 232}Th, considering both kinds of clay.

  5. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    Color is a problem for scientific study. One aspect is the vocabulary one used to describe color. Mint green, bottle green, and Kelly green are nice names but not of great utility in that people's physical perception of color is not always the same. In some industries, such as colored fabric manufacture, current use is to send a set of standard colors which are matched by the producer. This is similar to the use of the Munsell color charts in geology. None of these processes makes use of physical optical spectral studies. The reason is that they are difficult to obtain and interpret. For a geologist, color is very important but we rarely have the possibility to standardize the method of our color perception. One reason is that color is both a reflective and transmission phenomenon. The thickness of the sample is critical to any transmission characteristics. Hence, a field color determination is different from one made by using a petrographic microscope. Green glauconite in a hand specimen is not the same color in 30 μm thick thin section seen with a microscope using transmitted light.A second problem is that color in a spectral identification is the result of several absorption emissions,with overlapping signal, forming a complicated spectrum. Interpretation depends very greatly on the spectrum of the light source and the conditions of transmission-reflection of the sample. As a result, for this text, we will not attempt to analyze the physical aspect of green in green clays. In the discussion which follows, reference is made concerning color, to thin section microscopic perception.Very briefly, green clay minerals are green, because they contain iron. This is perhaps not a great revelation to mineralogists, but it is the key to understanding the origin and stability of green clay minerals. In fact, iron can color minerals either red or green or in various shades of orange and brown. The color most likely depends upon the relative abundance of the iron ion valence

  6. Clay minerals for advanced ceramics

    SciTech Connect

    Murray, H.H. )

    1989-11-01

    The author describes new and improved beneficiation techniques available to allow the production of clay minerals of exceptionally high purity. This is particularly true for kaolins and smectites. Wet processing techniques include particle size separation, high intensity magnetic separation, chemical leaching, flotation, and selective flocculation. The blending of clay minerals with other minerals provides opportunities to make special ceramic materials such as cordierite and other minerals that have very special ceramic properties including low heat expansion, high fired strength, low absorption, and other desired qualities.

  7. Mineral resource of the Month: Clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  8. Hyperspectral analysis of clay minerals

    NASA Astrophysics Data System (ADS)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  9. Mineral resource of the month: clays

    USGS Publications Warehouse

    Virta, Robert

    2004-01-01

    Clays represent one of the largest mineral commodities in the world in terms of mineral and rock production and use. Many people, however, do not recognize that clays are used in an amazingly wide variety of applications. Use continues to increase worldwide as populations and their associated needs increase. Robert Virta, clay and shale commodity specialist for the U.S. Geological Survey, has prepared the following information about clays.

  10. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  11. Multifaceted role of clay minerals in pharmaceuticals.

    PubMed

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-11-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals.

  12. Surface Geochemistry of the Clay Minerals

    NASA Astrophysics Data System (ADS)

    Sposito, Garrison; Skipper, Neal T.; Sutton, Rebecca; Park, Sung-Ho; Soper, Alan K.; Greathouse, Jeffery A.

    1999-03-01

    Clay minerals are layer type aluminosilicates that figure in terrestrial biogeochemical cycles, in the buffering capacity of the oceans, and in the containment of toxic waste materials. They are also used as lubricants in petroleum extraction and as industrial catalysts for the synthesis of many organic compounds. These applications derive fundamentally from the colloidal size and permanent structural charge of clay mineral particles, which endow them with significant surface reactivity. Unraveling the surface geochemistry of hydrated clay minerals is an abiding, if difficult, topic in earth sciences research. Recent experimental and computational studies that take advantage of new methodologies and basic insights derived from the study of concentrated ionic solutions have begun to clarify the structure of electrical double layers formed on hydrated clay mineral surfaces, particularly those in the interlayer region of swelling 2:1 layer type clay minerals. One emerging trend is that the coordination of interlayer cations with water molecules and clay mineral surface oxygens is governed largely by cation size and charge, similarly to a concentrated ionic solution, but the location of structural charge within a clay layer and the existence of hydrophobic patches on its surface provide important modulations. The larger the interlayer cation, the greater the influence of clay mineral structure and hydrophobicity on the configurations of adsorbed water molecules. This picture extends readily to hydrophobic molecules adsorbed within an interlayer region, with important implications for clay-hydrocarbon interactions and the design of catalysts for organic synthesis.

  13. Dehydration-induced luminescence in clay minerals

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  14. Dehydration-induced luminescence in clay minerals

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  15. Surface geochemistry of the clay minerals

    PubMed Central

    Sposito, Garrison; Skipper, Neal T.; Sutton, Rebecca; Park, Sung-ho; Soper, Alan K.; Greathouse, Jeffery A.

    1999-01-01

    Clay minerals are layer type aluminosilicates that figure in terrestrial biogeochemical cycles, in the buffering capacity of the oceans, and in the containment of toxic waste materials. They are also used as lubricants in petroleum extraction and as industrial catalysts for the synthesis of many organic compounds. These applications derive fundamentally from the colloidal size and permanent structural charge of clay mineral particles, which endow them with significant surface reactivity. Unraveling the surface geochemistry of hydrated clay minerals is an abiding, if difficult, topic in earth sciences research. Recent experimental and computational studies that take advantage of new methodologies and basic insights derived from the study of concentrated ionic solutions have begun to clarify the structure of electrical double layers formed on hydrated clay mineral surfaces, particularly those in the interlayer region of swelling 2:1 layer type clay minerals. One emerging trend is that the coordination of interlayer cations with water molecules and clay mineral surface oxygens is governed largely by cation size and charge, similarly to a concentrated ionic solution, but the location of structural charge within a clay layer and the existence of hydrophobic patches on its surface provide important modulations. The larger the interlayer cation, the greater the influence of clay mineral structure and hydrophobicity on the configurations of adsorbed water molecules. This picture extends readily to hydrophobic molecules adsorbed within an interlayer region, with important implications for clay–hydrocarbon interactions and the design of catalysts for organic synthesis. PMID:10097044

  16. Scanning electron microscopy of clays and clay minerals

    USGS Publications Warehouse

    Bohor, B.F.; Hughes, R.E.

    1971-01-01

    The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units-interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis-also are uniquely revealed by the SEM. Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types. ?? 1971.

  17. Clay Mineral Crystal Structure Tied to Composition

    NASA Image and Video Library

    2016-12-13

    This diagram illustrates how the dimensions of clay minerals' crystal structure are affected by which ions are present in the composition of the mineral. Different clay minerals were identified this way at two sites in Mars' Gale Crater: "Murray Buttes" and "Yellowknife Bay." In otherwise identical clay minerals, a composition that includes aluminum and ferric iron ions (red dots) results in slightly smaller crystalline unit cells than one that instead includes magnesium and ferrous iron ions (green dots). Ferric iron is more highly oxidized than ferrous iron. Crystalline cell units are the basic repeating building blocks that define minerals. X-ray diffraction analysis, a capability of the Chemistry and Mineralogy (CheMin) instrument on NASA's Curiosity Mars rover, identifies minerals from their crystalline structure. http://photojournal.jpl.nasa.gov/catalog/PIA21148

  18. Ostwald ripening of clays and metamorphic minerals.

    PubMed

    Eberl, D D; Sacuterodonacute, J; Kralik, M; Taylor, B E; Peterman, Z E

    1990-04-27

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  19. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  20. Release kinetics of volatiles from clay minerals

    NASA Astrophysics Data System (ADS)

    Clausen, Pascal

    2007-03-01

    Smectite clay minerals are known to have interesting sorption properties, but the prediction of the kinetics of desorption of volatile molecules from such clays remains a challenge. The aim of this work is to relate the isothermal rate of desorption of volatile molecules from cation exchanged smectite clays to the chemical structures and geometries of the interacting species (clay platelet surface, type of counter-ion, type of volatile). It is thought that the rate of desorption of the volatiles at a given time is governed by their instantaneous diffusion in the clay and in the gas phase, which in turns is dependent on the volatile's interaction with its chemical and geometrical environment. Therefore, in addition to isothermal desorption rate measurements by thermogravimetry, activation energies of desorption are measured and calculated and the interacting compounds are characterized in terms of their chemical structure and geometry.

  1. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  2. Clay Mineral Structure Similar to Clays Observed in Mudstone on Mars

    NASA Image and Video Library

    2013-12-09

    This schematic shows the atomic structure of the smallest units that make up the layers and interlayer region of clay minerals. This structure is similar to the clay mineral in drilled rock powder collected by NASA Curiosity Mars rover.

  3. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  4. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    PubMed

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  5. Identification of clay minerals by infrared spectroscopy and discriminant analysis.

    PubMed

    Ritz, Michal; Vaculíková, Lenka; Plevová, Eva

    2010-12-01

    Identification of clay minerals based on chemometric analysis of measured infrared (IR) spectra was suggested. IR spectra were collected using the diffuse reflection technique. Discriminant analysis and principal component analysis were used as chemometric methods. Four statistical models were created for separation and identification of clay minerals. More than 50 samples of various clay mineral standards from different localities were used for the creation of statistical models. The results of this study confirm that the discriminant analysis of IR spectra of clay minerals could provide a powerful tool for identification of clay minerals. Differentiation of muscovite from illite and identification of mixed structures of illite-smectite were achieved.

  6. Feasibility of classification of clay minerals by using PAS

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Yoshida, Y.; Akiyama, Y.; Nishijima, S.

    2015-06-01

    After the nuclear power plant disaster, the evaluation of radioactive Cs kept in soil, especially in clay minerals and the elucidation of its movement are urgent subjects to promote decontamination. It is known that the extractable level of Cs depends on the sort of clay minerals. We tried to find the characteristics of clay minerals belonging to phillosilicate group using positron annihilation spectroscopy (PAS) and the relationship between the results of PAS and the amounts of substantially extracted Cs from the clay minerals. The results showed that each clay mineral was found to be distinguishable from other clay minerals by PAS and the extraction rate of Cs was different among those clay minerals, however the direct correlation between the results of PAS and the extraction rates of Cs was not found.

  7. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  8. Electrokinetics of pure clay minerals revisited

    SciTech Connect

    Sondi, I.; Biscan, J.; Pravdic, V.

    1996-03-25

    Clay minerals have long attracted the attention of colloid scientists. This paper considers, specifically, their important role in the transport of various contaminants from land to sea, e.g., metal ions and organic detrital and man-made material in watercourses. Advance in experimental techniques have enabled precise characterization of clays and then electrokinetic experiments at high electrolyte concentrations, such as in seawater. Three of the most important clay minerals encountered in suspended matter in natural waters, montmorillonite, illite, and chlorite, were prepared in a very pure state. Electrokinetic experiments were done in pure aqueous single and complex electrolyte solutions and in solutions in which natural organic matter was simulated using a humic substance, fulvic acid, of defined provenance and properties, typical of riverine waters. An isoelectric point was found at pH 5.0 {+-} 0.2 for chlorite; none were found for illite and montmorillonite. Only Ca{sup 2+} showed a charging effect on chlorite, indeed a reversal of sign from negative to positive at 1 {times} 10{sup {minus}3} mol dm{sup {minus}3}. Addition of fulvic acid affected only chlorite, illite less, and Na montmorillonite not at all.

  9. Prolonged triboluminescence in clays and other minerals

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    Samples of various clays and minerals were ground or fractured and monitored with a liquid scintillation spectrometer in order to obtain triboluminescent decay curves. Kaolinite samples displayed several million counts/min after grinding, with a surface area emission estimated at tens of billions of photons/sq cm of surface. The photon production rates varied with the origin of the sample, and kaolinite continually yielded higher production rates than bentonite. The addition of water to the samples slightly increased the count rate of emitted light, while the addition of the fluorescent molecule substance tryptofan significantly enhanced the count rate. Freezing smears of kaolinite and montmorillonite in liquid nitrogen and in a salt ice mixture also induced triboluminescence in the montmorillonite. A possible connection between powdery triboluminescent materials formed in mining industries and respiratory disorders among miners is suggested.

  10. Prolonged triboluminescence in clays and other minerals

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    Samples of various clays and minerals were ground or fractured and monitored with a liquid scintillation spectrometer in order to obtain triboluminescent decay curves. Kaolinite samples displayed several million counts/min after grinding, with a surface area emission estimated at tens of billions of photons/sq cm of surface. The photon production rates varied with the origin of the sample, and kaolinite continually yielded higher production rates than bentonite. The addition of water to the samples slightly increased the count rate of emitted light, while the addition of the fluorescent molecule substance tryptofan significantly enhanced the count rate. Freezing smears of kaolinite and montmorillonite in liquid nitrogen and in a salt ice mixture also induced triboluminescence in the montmorillonite. A possible connection between powdery triboluminescent materials formed in mining industries and respiratory disorders among miners is suggested.

  11. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  12. Late Precambrian oxygenation; inception of the clay mineral factory.

    PubMed

    Kennedy, Martin; Droser, Mary; Mayer, Lawrence M; Pevear, David; Mrofka, David

    2006-03-10

    An enigmatic stepwise increase in oxygen in the late Precambrian is widely considered a prerequisite for the expansion of animal life. Accumulation of oxygen requires organic matter burial in sediments, which is largely controlled by the sheltering or preservational effects of detrital clay minerals in modern marine continental margin depocenters. Here, we show mineralogical and geochemical evidence for an increase in clay mineral deposition in the Neoproterozoic that immediately predated the first metazoans. Today most clay minerals originate in biologically active soils, so initial expansion of a primitive land biota would greatly enhance production of pedogenic clay minerals (the "clay mineral factory"), leading to increased marine burial of organic carbon via mineral surface preservation.

  13. The systems containing clays and clay minerals from modified drug release: a review.

    PubMed

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied.

  14. Desorption of ciprofloxacin from clay mineral surfaces.

    PubMed

    Wu, Qingfeng; Li, Zhaohui; Hong, Hanlie; Li, Rongbiao; Jiang, Wei-Teh

    2013-01-01

    Desorption from soil clay components may affect the transport and fate of antibiotics in the environment. In this study, ciprofloxacin (CIP) desorption from a kaolinite and a montmorillonite was investigated under different pHs, different concentrations of metal cations of various valencies (Na(+), Ca(2+) and Al(3+)) and a cationic surfactant hexadecyltrimethylammonium (HDTMA), and different desorption cycles. Desorption of CIP from kaolinite and montmorillonite was strongly pH-dependent and desorption isotherms were well fitted with the Langmuir equation. The percentage of CIP desorbed increased with increasing initial CIP loadings, desorbing cation concentrations, and desorption cycles. Comparatively, CIP was more readily desorbed from kaolinite than from montmorillonite. Moreover, the hysteresis index values were all negative, suggesting that the presence of metal cations and HDTMA in solution promoted CIP desorption from clay minerals, owing to cation exchange. The XRD analyses indicated that desorption of CIP occurred from both external and interlayer surfaces of montmorillonite. Formation of Al-CIP complex on solid surface and then detachment of Al-CIP from the solid surface may contribute to the higher CIP desorption by Al(3+) in comparison to Na(+) and Ca(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. [Mechanism of tritium persistence in porous media like clay minerals].

    PubMed

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  16. The effect of clay minerals on diasterane/sterane ratios

    NASA Astrophysics Data System (ADS)

    van Kaam-Peters, Heidy M. E.; Köster, Jürgen; van der Gaast, Sjierk J.; Dekker, Marlèn; de Leeuw, Jan W.; Sinninghe Damsté, Jaap S.

    1998-09-01

    To examine the effect of clay minerals on diasterane/sterane ratios, the mineral compositions of three sample sets of sedimentary rocks displaying a wide range of diasterane/sterane ratios were analysed quantitatively. Diasterane/sterane ratios do not to correlate with clay content but depend on the amount of clay relative to the amount of organic matter (clay/TOC ratios). This correlation may explain the high diasterane/sterane ratios in crude oils and extracts derived from certain carbonate source rocks. Based on the concentrations of regular and rearranged steroids in the sample sets, it is proposed that diasterenes are partly reduced to diasteranes and partly degraded during diagenesis in a ratio largely determined by the availability of clay minerals. It is suggested that the hydrogen atoms required for reduction of the diasterenes originate from the water in the interlayers of clay minerals.

  17. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  18. Relationship between sediment clay minerals and total mercury.

    PubMed

    Kongchum, Manoch; Hudnall, Wayne H; DeLaune, R D

    2011-01-01

    A group of 262 sediment samples were collected from various lakes, rivers, reservoirs, and bayous of Louisiana. All samples were analyzed for total mercury. Twenty nine of the samples with total mercury content ranging from 11 to 401 ppb (μg/kg) were analyzed for clay minerals and other sediment physical and chemical properties. Clay content in sediments varied from 3 to 72%. Clay minerals were determined by X-ray diffraction (XRD) technique. Identification of clay minerals was determined by MacDiff software and quantification of clay minerals was obtained by Peak Height Percentage (PHP) calculation. The dominant clay mineral was Hydrated Interlayer Vermiculite (HIV), which represented 51-83% of the total clay mineral. Significant linear correlations were observed between Hg and total clay content (r=0.538**). However Smectite was the only individual clay type correlated (r=0.465**) with mercury in sediment. Cation exchange capacity (r=0.404*), organic matter (r=0.577**), and sulfur (r=0.676**) were also correlated significantly with mercury level in sediment.

  19. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  20. Microbe-Clay Mineral Reactions and Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.

    2008-12-01

    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides

  1. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  2. Identification of clay minerals in reservoir rocks by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong Khang, Vu; Korovkin, Mikhail V.; Ananyeva, Ludmila G.

    2016-09-01

    Clay minerals including kaolinite, montmorillonite and bentonite in oil and gas reservoir rocks are identified by absorption spectra obtained via Fourier Transform Infrared (FTIR) spectroscopy. Bands around 3695, 3666, 3650 and 3630 cm-1 and bands around 3620 and 3400 cm-1 are the most diagnostically reliable for kaolinite and montmorillonite, respectively; also absorption bands in the region of 1200...955 cm-1 are equally diagnostic for all the clay minerals studied.

  3. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    NASA Astrophysics Data System (ADS)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  4. Shock metamorphism of clay minerals on Mars by meteor impact

    NASA Astrophysics Data System (ADS)

    Michalski, Joseph R.; Glotch, Timothy D.; Friedlander, Lonia R.; Darby Dyar, M.; Bish, David L.; Sharp, Thomas G.; Carter, John

    2017-07-01

    A large fraction of clay minerals detected on Mars by infrared remote sensing represent materials exhumed from the subsurface by meteor impact, begging the question of whether the infrared features used to detect the clays are affected by shock associated with the impacts. We used X-ray diffraction and infrared and Mössbauer spectroscopy to evaluate the mineralogy of five clay minerals after experimentally shocking them to six shock pressures from 10 to 40 GPa. The shocked clays exhibit three main relevant shock effects: (1) an overall decrease in infrared spectral contrast in the impact-fragmented materials, (2) oxidation of Fe in ferrous clays, and (3) loss of some spectral structure in relatively well-ordered clays such as kaolinite. Other than the widespread oxidation of ferrous clays, shock metamorphism likely has little effect on the accurate interpretation of clay mineralogy on Mars from remote sensing data. However, we are able to identify rare cases of extreme shock in some Martian clay deposits.

  5. Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens

    NASA Astrophysics Data System (ADS)

    Earnest, C. M.

    The characterization of illite clay minerals by the use of the technique of differential thermal analysis (DTA), thermogravimetry (TG) and derivative thermogravimetry (DTG) is presented. This presentation is offered not only as a review of the thermal characteristics of this important group of clay materials but suggestions relative to the application of the thermal analysis techniques to contaminated illitic specimens; i.e., mineral mixtures, are included. Two commonly referenced illitic clay specimens, which have been widely distributed, were studied here. These were the American Petroleum Institute Reference Clay Specimen from Fithian, Illinois (API #35) and the Clay Mineral Society's Source Clay Specimen from Silver Hill, Montana (CMS-IMt). These clay specimens were studied using a modern computerized differential thermal analyzer which also contained a DSC mode of operation for peak energy assignment. Representative DTA thermal curves using both DTA and computerized DSC modes are given for both clay specimens. The effect of the variation of heating rate and sample size on the observed peak temperatures and resolution is demonstrated for both illite specimens.

  6. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  7. Microbial Impacts on Clay Mineral Transformation and Reactivity

    NASA Astrophysics Data System (ADS)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.

    2006-05-01

    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  8. INTERCALATION OF TRICHLOROETHENE BY SEDIMENT-ASSOCIATED CLAY MINERALS

    PubMed Central

    Matthieu, D.E.; Brusseau, M.L.; Johnson, G.R.; Artiola, J.L.; Bowden, M.L.; Curry, J.E.

    2012-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site in Tucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer d-spacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (~26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment. PMID:22921434

  9. Intercalation of Trichloroethene by Sediment-Associated Clay Minerals

    SciTech Connect

    Matthieu, Donald E.; Brusseau, Mark; Johnson, G. R.; Artiola, J. L.; Bowden, Mark E.; Curry, J. E.

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site inTucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer dspacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (*26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  10. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.

    PubMed

    Sánchez-Martín, M J; Dorado, M C; del Hoyo, C; Rodríguez-Cruz, M S

    2008-01-15

    Adsorption of three surfactants of different nature, Triton X-100 (TX100) (non-ionic), sodium dodecylsulphate (SDS) (anionic) and octadecyltrimethylammonium bromide (ODTMA) (cationic) by four layered (montmorillonite, illite, muscovite and kaolinite) and two non-layered (sepiolite and palygorskite) clay minerals was studied. The objective was to improve the understanding of surfactant behaviour in soils for the possible use of these compounds in remediation technologies of contaminated soils by toxic organic compounds. Adsorption isotherms were obtained using surfactant concentrations higher and lower than the critical micelle concentration (cmc). These isotherms showed different adsorption stages of the surfactants by the clay minerals, and were classified in different subgroups of the L-, S- or H-types. An increase in the adsorption of SDS and ODTMA by all clay minerals is observed up to the cmc of the surfactant in the equilibrium solution is reached. However, there was further TX100 adsorption when the equilibrium concentration was well above the cmc. Adsorption constants from Langmuir and Freundlich equations (TX100 and ODTMA) or Freundlich equation (SDS) were used to compare adsorption of different surfactants by clay minerals studied. These constants indicated the surfactant adsorption by clay minerals followed this order ODTMA>TX100>SDS. The adsorption of TX100 and ODTMA was higher by montmorillonite and illite, and the adsorption of SDS was found to be higher by kaolinite and sepiolite. Results obtained show the influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays, and they indicate the interest to consider the soil mineralogical composition when one surfactant have to be selected in order to establish more efficient strategies for the remediation of soils and water contaminated by toxic organic pollutants.

  11. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    SciTech Connect

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  12. Fluoride content of clay minerals and argillaceous earth materials

    USGS Publications Warehouse

    Thomas, J.; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ??5% at different levels of fluoride concentration. Data are presented for various clay minerals and for the <2-??m fractions of marine and nonmarine clays and shales. Fluoride values range from 44 ppm (0.0044%) for nontronite from Colfax, WA, to 51,800 ppm (5.18%) for hectorite from Hector, CA. In general, clays formed under hydrothermal conditions are relatively high in fluoride content, provided the hydrothermal waters are high in fluoride content. Besides hectorite, dickite from Ouray, CO, was found to contain more than 50 times as much fluoride (6700 ppm) as highly crystalline geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals. It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content. ?? 1977.

  13. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  14. Iodide interactions with clay minerals: Batch and diffusion studies

    NASA Astrophysics Data System (ADS)

    Miller, A. W.; Kruichak, J.; Mills, M.; Wang, Y.

    2012-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Iodine-129 is often the major driver of exposure risk from nuclear waste repositories at timescales >10,000 years. Therefore, understanding the geochemical cycling of iodine in clays is critical in developing defensible quantitative descriptions of nuclear waste disposal. Anions are not typically considered to interact with most clays as it is assumed that the fixed negative charge of clays actively repels the dissoloved anion. This is corroborated by many batch studies, but diffusion experiments in compacted clays have shown iodide retardation relative to chloride. The reasons for this are unknown; however, several possible hypotheses include: redox transformation controls on sorption behavior, complex surface charge environments due to overlapping charge domains, and sorption to ancillary minerals or weathering products. Seven different clay minerals have been examined using several techniques to chracterize the surface charge environment and iodide uptake. The use of a series of clays shifts the independent variable away from water chemistry characteristics (pH, contaminant concentration), and toward structural characterisitics of clay minerals including isomorphous substitution and clay texture. Iodide uptake batch experiments were completed with the clay minerals in a range of swamping electrolytes. The results give evidence for a novel uptake mechanism involving ion pair formation and iodide concentration within nano-confined environments. These results were further tested using diffusional columns where nano-confined regimes make up a larger proportion of the total porosity. These columns were compacted to different hydrostatic pressures and saturated with different ionic compositions. Porosity distributions were characterized with a fluoride tracer. Iodide diffusion characteristics were

  15. First direct detection of clay minerals on Mars

    NASA Astrophysics Data System (ADS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-04-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  16. First Direct Detection of Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  17. Nucleation of Salt Crystals in Clay Minerals: Molecular Dynamics Simulation.

    PubMed

    Dashtian, Hassan; Wang, Haimeng; Sahimi, Muhammad

    2017-07-20

    Nucleation of salt crystals in confined media occurs in many processes of high importance, such as injection of CO2 in geological formations for its sequestration. In particular, salt precipitation in clays, a main component of sedimentary rock, is an important phenomenon. The crystals precipitate on the pores' surface, modify the pore space morphology, and reduce its flow and transport properties. Despite numerous efforts to understand the mechanisms of nucleation of salt crystals in confined media, the effect of the clay's chemistry on the growth, distribution, and properties of the crystals is not well understood. We report the results of extensive molecular dynamics simulation of nucleation and growth of NaCl crystals in a clay pore using molecular models of two types of clay minerals, Na-montmorillonite and kaolinite. Clear evidence is presented for the nucleation of the salt crystals that indicates that the molecular structure of clay minerals affects their spatial distribution, although the nucleation mechanism is the same in both types of clays.

  18. Effect of proteins on reovirus adsorption to clay minerals.

    PubMed Central

    Lipson, S M; Stotzky, G

    1984-01-01

    Organic matter in sewage, soil, and aquatic systems may enhance or inhibit the infectivity of viruses associated with particulates (e.g., clay minerals, sediments). The purpose of this investigation was to identify the mechanisms whereby organic matter, in the form of defined proteins, affects the adsorption of reovirus to the clay minerals kaolinite and montmorillonite and its subsequent infectivity. Chymotrypsin and ovalbumin reduced the adsorption of reovirus to kaolinite and montmorillonite homoionic to sodium. Lysozyme did not reduce the adsorption of the virus to kaolinite, but it did reduce adsorption to montmorillonite. The proteins apparently competed with the reovirus for sites on the clay. As lysozyme does not adsorb to kaolinite by cation exchange, it did not inhibit the adsorption of reovirus to this clay. The amount of reovirus desorbed from lysozyme-coated montmorillonite was approximately 38% less (compared with the input population) than that from uncoated or chymotrypsin-coated montmorillonite after six washings with sterile distilled water. Chymotrypsin and lysozyme markedly decreased reovirus infectivity in distilled water, whereas infectivity of the virus was enhanced after recovery from an ovalbumin-distilled water-reovirus suspension (i.e., from the immiscible pelleted fraction plus supernatant). The results of these studies indicate that the persistence of reovirus in terrestrial and aquatic environments may vary with the type of organic matter and clay mineral with which the virus comes in contact. PMID:6497370

  19. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  20. Reactivity of clay minerals with acids and alkalies

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  1. Clay mineral evolution in the central Yellow Sea mud deposits

    NASA Astrophysics Data System (ADS)

    Cho, H. G.; Kim, D. C.; Yi, H.-I.

    2012-04-01

    The Yellow Sea, a typical epicontinental shelf located between China and Korea, has attracted by many researchers for the study of late Quaternary land-ocean interaction and paleoenvironmental changes. There are four main mudbelt deposits such as North Yellow Sea Mud (NWMD), Central Yellow Sea Mud (CYSM), Southeastern Yellow Sea Mud (SWYSM), and Southwestern Cheju Island Mud (SWCIM). These mudbelt deposits are mostly composed of fine-grained sediments with detrital origin, which mainly come from several rivers in China and Korea. In this study we reconstruct the evolution of clay mineral assemblages in Core YS11-PCL14 (35o 47.07'N, 124 o 06.89' E) retrieved from the Central Yellow Sea Mud. Clay mineral compositions of 67 samples taken at ~10 cm intervals from YS11-PLC14 core sediments and 31 river sediments flowed into the Yellow Sea were determined using the semi-quantitative X-ray diffraction analysis. The clay-mineral assemblage of core sediments are composed of illite (60~75%), chlorite (11~23%), kaolinite (10~15%), and smectite (1~7%), in decreasing order. The ratio (smectite/illite)*100 is abruptly decreases at depth around 200 cm, and is corresponded to abrupt increase in clay fraction. The lower part of core sediments having higher (smectite/illite)*100 ratio are derived ultimately from the Huanghe, because Huanghe only discharges sediments containing the higher (smectite/illite)*100 ratio among the rivers flowed into the Yellow Sea. According to age-dating in the adjacent Core 06-2 (35o 00'N, 124 o 25' E), the depth at abrupt change in clay fraction corresponds to about 5,000 yr. Clay mineral evolution in Central Yellow Sea Mud is closely related to changes in sediment provenance and paleoenvironment. Sea level rise and the strength of the Kuroshio Current control the dispersal and deposition of clays on the Yellow Sea shelf, and thus, determine the clay mineral compositions in the core sediments. Before 5,000 yr, sediments discharged from Huanghe have a

  2. Sorption of tylosin on clay minerals.

    PubMed

    Zhang, Qian; Yang, Chen; Huang, Weilin; Dang, Zhi; Shu, Xiaohua

    2013-11-01

    The equilibrium sorption of tylosin (TYL) on kaolinite and montmorillonite was measured at different solution pH using batch reactor systems. The results showed that all the sorption isotherms were nonlinear and that the nonlinearity decreased as the solution pH increased for a given clay. At a specific aqueous concentration, the single-point sorption distribution coefficient (KD) of TYL decreased rapidly as the solution pH increased. A speciation-dependent sorption model that accounted for the contributions of the cationic and neutral forms of TYL fit the data well, suggesting that the sorption may be dominated by both ion exchange and hydrophobic interactions. The isotherm data also fit well to a dual mode model that quantifies the contributions of a site-limiting Langmuir component (ion exchange) and a non-specific linear partitioning component (hydrophobic interactions). X-ray diffraction analyses revealed that the interlayers of montmorillonite were expanded due to the uptake of TYL. TYL molecules likely form a monolayer surface coverage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Selenium isotope fractionation during adsorption onto the modified clay minerals

    NASA Astrophysics Data System (ADS)

    Xu, W.; Jianming, Z.; Tan, D.; Qin, H.

    2016-12-01

    Currently, Selenium (Se) isotopes have been used as a paleoenvironmental proxy to trace Se evolution in Ancient Ocean. And many researchers considered the variation of Se isotopes in nature mainly result from the reduction of Se oxyanion, while Se isotope fractionation during adsorption onto minerals was rarely reported. Therefore, based on the previous studies [1, 2], we used three common clay minerals in supergene environment: montmorillonite, illite and kaolinite as an adsorbent to study Se isotope fractionation during adsorption. Before doing adsorption experiments, the adsorbent were modified as Na-clay minerals to remove the possibility of interference of Ca2+, Fe3+, Fe2+ as well as organic matters. A batch adsorption experiments were carried out at room temperature (23 ±2 °) under N2 atmosphere, initial Se concentration (SeO32-/ SeO42-) was respectively 200ng and 100ng, the solution ionic strength was 0.1mol/L NaCl; the ratio of liquid to solid is 2g / L, and pH = 5. Experimental results showed that adsorption reached a steady state during 48h, and the maximum adsorption for SeO32- was larger than SeO42-. The isotope data showed that SeO42- adsorbed onto three clay minerals didn't present obvious Se isotope fractionation, generally δ82/78Se is less than 0.1 ‰. Meanwhile, SeO32- during adsorption process also didn't show the significant fractionation, less than 0.3 ‰. However, interestingly, for SeO32- the δ82/78Se values of solution during adsorption onto kaolinite underwent a process of increasing by 0.5‰ compared to the initial solution and then decreasing to 0.3‰. We speculated the reason may not be related to the surface charge of the clay minerals, but mostly with the layered structure of clay minerals. Montmorillonite and illite are 2: 1; kaolinite is 1: 1 layered structure. The different layered structure may influence the isotope fraction between Se oxyanions and clay minerals. These still needs further and more experiments to definitely

  4. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  5. Water molecules in clay minerals: Thermodynamic functions and hydration

    NASA Astrophysics Data System (ADS)

    Gailhanou, Helène; Amouric, Marc; Olives, Juan; Rogez, Jacques; van Miltenburg, J. C.; van der Berg, G. J. K.; de Weireld, G.; Gaucher, E.; Blanc, P.

    2010-05-01

    Thermodynamic functions and adsorption of water molecules are very important properties for clay minerals. Smectite MX-80 and mixed-layer illite-smectite ISCz-1 were selected. They were first carefully characterized (HRTEM with EDX analysis), revealing original results. Then, the thermodynamic properties of water in clay were obtained by (i) comparison of the thermodynamic properties of anhydrous and hydrated minerals, between 0 and 350 K (adiabatic calorimetry, solution isothermal calorimetry), and (ii) water vapor adsorption isotherms, between 300 and 380 K (magnetic suspension thermobalance). Solution isothermal calorimetry is used to determine the enthalpies of formation of the minerals (1 bar and 298 K). Comparison of the results, for the anhydrous and the hydrated minerals, leads to the enthalpies of hydration at 298 K. Adiabatic calorimetry measurements give the heat capacities of the minerals from 5 to 350 K. Entropies, enthalpies of formation and Gibbs free energies of formation, for the anhydrous and the hydrated minerals, and then, entropies of hydration, enthalpies of hydration and Gibbs free energies of hydration, between 0 and 350 K, are finally obtained. Comparison of two close hydration states leads to the entropy, the enthalpy and the Gibbs free energy of the adsorption reaction: H2O free - H2O adsorbed. The Cp(T) curve, for the heat capacity of water in clay - i.e., the difference between the heat capacities of the hydrated and the anhydrous minerals -, shows that water in clay is a glass at low temperature, undergoes one or two continuous glass transitions between 150 and 270 K, and behaves as free liquid water above 273 K. The two glass transitions might correspond to two types of water molecules: (i) first adsorbed water molecules, bound to the interlayer cations of the clay mineral; (ii) last adsorbed water molecules, not bound to the interlayer cations. In addition, water vapor adsorption isotherms are obtained from 298 to 378 K (magnetic

  6. Ice nucleation efficiency of clay minerals in the immersion mode

    NASA Astrophysics Data System (ADS)

    Pinti, V.; Marcolli, C.; Zobrist, B.; Hoyle, C. R.; Peter, T.

    2012-07-01

    Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA), two illites (Illite NX and Illite SE) and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10). The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 Kclay minerals strongly depend on the amount of clay mineral present per droplet and on

  7. Geochemical dynamics of cesium sorption by selected clay minerals

    SciTech Connect

    Noll, M.R.

    1989-01-01

    This study focuses on the interactions of cesium with selected clay minerals. Cesium is of interest as it is a chief component of high level radioactive waste. Primarily, the thermodynamics and kinetics of Cs exchange reactions were investigated to determine the preference for Cs of a kaolinite, illite, and vermiculite. Thermodynamic studies indicated that Cs was most strongly preferred by Ca saturated clays. Of the three minerals studied, illite proved to be the most effective in adsorbing Cs as indicated by the Vanselow Selectivity Coefficients (k{sub v}). The k{sub v} values for illite ranged from 5.87 to over 10{sup 10}, depending on the mineral and saturating cation. Kinetics experiments proved to be the most interesting. On 2:1 clay minerals (illite and vermiculite), two simultaneous reactions are postulated. The first, and faster of the two reactions, is believed to correspond to Cs adsorption on surface planar sites. The second reaction may be the adsorption of Cs on interlayer and wedge exchange sites. Kaolinite only shows a single reaction since it is a 1:1 clay mineral. Rate coefficients were calculated and the first reaction was found to be on the order of one magnitude greater than the second reaction. The reactions on kaolinite were similar to this faster reaction. Desorption data indicated that the rate of desorption was one or more orders of magnitude less than the corresponding adsorption rate. It is important to note, however, that studies on the effect of temperature indicated that Arrhenius behavior is not followed in many of these experiments. It is postulated that changes in cation radius ratio, or the availability of exchange sites is causing this Anti-Arrhenius behavior. Finally, it is concluded that illite exhibits the greatest preference for the adsorption of Cs.

  8. Reversibility of soil forming clay mineral reactions induced by plant - clay interactions

    NASA Astrophysics Data System (ADS)

    Barré, P.; Velde, B.

    2012-04-01

    Recent data based upon observations of field experiments and laboratory experiments suggest that changes in phyllosilicate mineralogy, as seen by X-ray diffraction analysis, which is induced by plant action can be reversed in relatively short periods of time. Changes from diagenetic or metamorphic mineral structures (illite and chlorite) to those found in soils (mixed layered minerals in the smectite, hydroxy-interlayer mineral and illites) observed in Delaware Bay salt marsh sediments in periods of tens of years and observed under different biologic (mycorhize) actions in coniferous forests in the soil environment can be found to be reversed under other natural conditions. Reversal of this process (chloritisation of smectitic minerals in soils) has been observed in natural situations over a period of just 14 years under sequoia gigantia. Formation of smectite minerals from illite (potassic mica-like minerals) has been observed to occur under intensive agriculture conditions over periods of 80 years or so under intensive zea mais production. Laboratory experiments using rye grass show that this same process can be accomplished to a somewhat lesser extent after one growing season. However experiments using alfalfa for 30 year growing periods show that much of the illite content of a soil can be reconstituted or even increased. Observations on experiments using zea mais under various fertilizer and mycorhize treatments indicate that within a single growing season potassium can be extracted from the clay (illite layers) but at the end of the season the potassium can be restored to the clay structures and more replaced that extracted. Hence it is clear that the change in clay mineralogy normally considered to be irreversible, illite to smectite or chlorite to smectite observed in soils, is a reversible process where plant systems control the soil chemistry and the soil mineralogy. The changes in clay mineralogy concern mostly the chemical composition of the interlayer

  9. Some engineering aspects of homoionized mixed clay minerals.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2003-05-01

    Many studies have been conducted to investigate the physicochemical behavior of pure clay minerals and predict their engineering performance in the field. In this study, the physicochemical properties of an artificial mixture of different clay minerals namely, 40-50% montmorillonite, 20-30% illite and 10-15% kaolin were investigated. The mixture was homoionized with sodium, Na+; calcium, Ca2+; and aluminum, Al3+. The engineering properties studied were consistency limits, sediment volume, compressibility behavior, and hydraulic conductivity. The results revealed that the liquid, plastic and shrinkage limits of soil increased with increasing cation valence. The hydraulic conductivity of the soil also increased with an increase in the valence of the cation at any given void ratio. Aluminum and sodium treated clays had the highest and the lowest modified compression index values, respectively. Furthermore, trivalent cation saturated clayey soil consolidates three times faster than that of monovalent and two times faster than that of divalent. These properties of the soils determined were, in general, similar to those of kaolinite rather than those of montmorillonite. The comparison of the results obtained with the published data in the literature revealed that the physicochemical behavior of the tested clay soil was, in general, similar to that of kaolinite.

  10. Immersion freezing of clay minerals and bacterial ice nuclei

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Bingemer, Heinz; Bundke, Ulrich; Cziczo, Daniel J.; Danielczok, Anja; Ebert, Martin; Garimella, Sarvesh; Hoffmann, Nadine; Höhler, Kristina; Kanji, Zamin A.; Kiselev, Alexei; Raddatz, Michael; Stetzer, Olaf

    2013-05-01

    The immersion mode ice nucleation efficiency of clay minerals and biological aerosols has been investigated using the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber. Both monodisperse and polydisperse populations of (1) various clay dust samples as well as (2) Snomax® (a proxy for bacterial ice nucleators) and (3) hematite are examined in the temperature range between -4°C and -35°C. The temperature dependence of ice formation inferred by the INAS (Ice Nucleation Active Surface-Site) density is investigated and discussed as a function of cooling rate and by comparing to predicted nucleation rates (i.e., classical nucleation theory with θ-probability density function nucleation scheme). To date, we observe that maintaining constant AIDA temperature does not trigger any new ice formation during the immersion freezing experiments with clay dust samples and Snomax®, implying strong temperature dependency (and weak time dependency) within our time scales and conditions of experiments. Ice residuals collected through a newly developed PCVI (Pumped ounter-flow Virtual Impactor) with the 50% cut size diameter of 10 to 20 μm have also been examined by electron microscope analyses to seek the chemical and physical identity of ice nuclei in clay minerals. In addition to the AIDA results, complementary measurements with mobile ice nucleation counters are also presented.

  11. Role And Behaviour Of Clay Minerals In Alpine Debris Flows

    NASA Astrophysics Data System (ADS)

    Boivin, P.; Bardou, E.; Pfeiffer, H.

    2004-12-01

    The role of clay minerals is generally considered as negligible in alpine debris flow studies and experiments. This assumption is discussed on the basis of field and experimental data. In two neighbouring alpine catchments, with similar morphology and contrasted geology, the physical, mineralogical and chemical properties of the fine earth (<2mm fraction) of soils, debris flow deposits, and parent materials were compared. The clay minerals (clay and silt size) were extracted and characterized for mineralogy and cation exchange capacity (CEC). Their critical coagulation concentrations (CCC) were determined in laboratory experiments. The soil and surface solutions were sampled and monitored for chemical composition, which were compared to the experimental CCCs. The chemical equilibration time between soil solution and solid phase was tested on saturated paste extracts. It was observed that the fine earth of the debris flow deposits was not representative of the triggering materials in terms of fabric, density, particle size, particle shape and mineralogy. Results show that the particles were rounded, crushed and segregated during the flow. The parent materials were composed of platy particles with a small bulk density suggesting an edge-to edge fabric. It contained phyllosilicates of silt and clay size, coated with transformed organic matter. The deposits were composed of rounded particles with a large bulk density suggesting a close-packed fabric. Compared to the parent materials, the deposits contained a larger amount of large mono-crystalline particles of either quartz or calcite with round shape, and less small platy particles of phyllosilicates. The CEC of the fine earth and of the clay-size and silt-size particles was consequently about two times higher in the parent materials than in the deposits. This was interpreted as the results of two main phenomena, namely (i) the leaching of the suspended colloidal particles out of the deposits during the depositional

  12. Ice nucleation efficiency of clay minerals in the immersion mode

    NASA Astrophysics Data System (ADS)

    Pinti, V.; Marcolli, C.; Zobrist, B.; Hoyle, C. R.; Peter, T.

    2012-01-01

    Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. DSC (differential scanning calorimeter) measurements were performed on the kaolinites KGa-1b and KGa-2 from the Clay Mineral Society and kaolinite from Sigma-Aldrich; the montmorillonites SWy-2 and STx-1b from the Clay Mineral Society and the acid treated montmorillonites KSF and K-10 from Sigma Aldrich; the illites NX and SE from Arginotec. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites showed quite narrow standard peaks with onset temperatures 239 K < Tonstd < 242 K and best sites with averaged median freezing temperature Tmedbest = 257 K. Only the kaolinite from Sigma Aldrich featured a special peak with freezing onset at 248 K. The illites showed broad standard peaks with freezing onsets at 244 K < Tonstd < 246 K and best sites with averaged median freezing temperature Tmedbest = 262 K. Montmorillonites had standard peaks with onsets 238 K < Tonstd < 240 K and best sites with Tmedbest=257 K. SWy-2, M K10, and KSF featured special peaks with onsets at Tonspcl=247, 240, and 242 K, respectively. M K10 and KSF both from Sigma Aldrich had less intense standard peaks compared to the ones from the Clay Mineral Society suggesting that a fraction of the standard sites are lost by the acid treatment. The acid

  13. Deposition kinetics of MS2 bacteriophages on clay mineral surfaces.

    PubMed

    Tong, Meiping; Shen, Yun; Yang, Haiyan; Kim, Hyunjung

    2012-04-01

    The deposition of bacteriophage MS2 on bare and clay-coated silica surfaces was examined in both monovalent (NaCl) and divalent (CaCl(2) and MgCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). Two types of clay, bentonite and kaolinite, were concerned in this study. To better understand MS2 deposition mechanisms, QCM-D data were complemented by zeta potentials measurements and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction forces calculation. In both monovalent and divalent solutions, deposition efficiencies of MS2 increased with increasing ionic strength both on bare and clay-coated surfaces, which agreed with the trends of interaction forces between MS2 and solid surface and thus was consistent with DLVO theory. The presence of divalent ions (Ca(2+) and Mg(2+)) in solutions greatly increased virus deposition on both silica and clay deposited surfaces. Coating silica surfaces with clay minerals, either kaolinite or bentonite, could significantly increase MS2 deposition. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  15. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  16. Diagenesis and clay mineral formation at Gale Crater, Mars

    SciTech Connect

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  17. Diagenesis and clay mineral formation at Gale Crater, Mars.

    PubMed

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ∽7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  18. Diagenesis and clay mineral formation at Gale Crater, Mars

    DOE PAGES

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; ...

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less

  19. Diagenesis and clay mineral formation at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-01

    Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ~7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  20. Diagenesis and clay mineral formation at Gale Crater, Mars

    PubMed Central

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component. PMID:26213668

  1. Studies of clays and clay minerals using x-ray powder diffraction and the Rietveld method

    SciTech Connect

    Bish, D.L.

    1993-09-01

    The Rietveld method was originally developed (Rietveld, 1967, 1969) to refine crystal structures using neutron powder diffraction data. Since then, the method has been increasingly used with X-ray powder diffraction data, and today it is safe to say that this is the most common application of the method. The method has been applied to numerous natural and synthetic materials, most of which do not usually form crystals large enough for study with single-crystal techniques. It is the ability to study the structures of materials for which sufficiently large single crystals do not exist that makes the method so powerful and popular. It would thus appear that the method is ideal for studying clays and clay minerals. In many cases this is true, but the assumptions implicit in the method and the disordered nature of many clay minerals can limit titsapplicability. This chapter will describe the Rietveld method, emphasizing the assumptions important for the study of disordered materials, and it will outline the potential applications of the method to these minerals. These applications include, in addition to the refinement of crystal structures, quantitative analysis of multicomponent mixtures, analysis of peak broadening, partial structure solution, and refinement of unit-cell parameters.

  2. Transformation of anthracene on various cation-modified clay minerals.

    PubMed

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  3. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    PubMed Central

    Hashizume, Hideo

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components. PMID:25734235

  4. Clays and Clay Minerals and their environmental application in Food Technology

    NASA Astrophysics Data System (ADS)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  5. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  6. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.

    PubMed

    Luan, Fubo; Liu, Yan; Griffin, Aron M; Gorski, Christopher A; Burgos, William D

    2015-02-03

    Iron-bearing clay minerals are ubiquitous in the environment, and the clay-Fe(II)/Fe(III) redox couple plays important roles in abiotic reduction of several classes of environmental contaminants. We investigated the role of Fe-bearing clay minerals on the bioreduction of nitrobenzene. In experiments with Shewanella putrefaciens CN32 and excess electron donor, we found that the Fe-bearing clay minerals montmorillonite SWy-2 and nontronite NAu-2 enhanced nitrobenzene bioreduction. On short time scales (<50 h), nitrobenzene reduction was primarily biologically driven, but at later time points, nitrobenzene reduction by biologically formed structural Fe(II) in the clay minerals became increasingly important. We found that chemically reduced (dithionite) iron-bearing clay minerals reduced nitrobenzene more rapidly than biologically reduced iron-bearing clay minerals despite the minerals having similar structural Fe(II) concentrations. We also found that chemically reduced NAu-2 reduced nitrobenzene faster as compared to chemically reduced SWy-2. The different reactivity of SWy-2 versus NAu-2 toward nitrobenzene was caused by different forms of structural clay-Fe(II) in the clay minerals and different reduction potentials (Eh) of the clay minerals. Because most contaminated aquifers become reduced via biological activity, the reactivity of biogenic clay-Fe(II) toward reducible contaminants is particularly important.

  7. Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization.

    PubMed

    Paineau, Erwan; Michot, Laurent J; Bihannic, Isabelle; Baravian, Christophe

    2011-06-21

    We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties. © 2011 American Chemical Society

  8. Harnessing Water and Resources from Clay Minerals on Mars and Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2017-02-01

    Clay minerals provide a source of water, metals, and cations that can be harvested to provide resources for human exploration on Mars, asteroids, etc. Planning how to access these resources from clays could be a vital component of human exploration.

  9. Report on "Methodologies for Investigating Microbial-Mineral Interactions: A Clay Minerals Society Short Course"

    SciTech Connect

    Maurice, Patricia A.

    2010-02-08

    A workshop entitled, “Methods of Investigating Microbial-Mineral Interactions,” was held at the Clay Minerals Society meeting at the Pacific Northwest National Laboratory in Richland, WA on June 19, 2004. The workshop was organized by Patricia A. Maurice (University of Notre Dame) and Lesley A. Warren (McMaster University, CA). Speakers included: Dr. P. Bennett, Dr. J. Fredrickson (PNNL), Dr. S. Lower (Ohio State University), Dr. P. Maurice, Dr. S. Myneni (Princeton University), Dr. E. Shock (Arizona State), Dr. M. Tien (Penn State), Dr. L. Warren, and Dr. J. Zachara (PNNL). There were approximately 75 attendees at the workshop, including more than 20 students. A workshop volume was published by the Clay Minerals Society [Methods for Study of Microbe-Mineral Interactions (2006), CMS Workshop Lectures, vol 14(Patricia A. Maurice and Leslie A. Warren, eds.) ISBN 978-1-881208-15-0, 166 pp.

  10. Analysis of mixed-layer clay mineral structures

    USGS Publications Warehouse

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  11. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  12. Role of clay minerals in the transportation of iron

    USGS Publications Warehouse

    Carroll, D.

    1958-01-01

    The clay minerals have iron associated with them in several ways: 1. (1) as an essential constituent 2. (2) as a minor constituent within the crystal lattice where it is in isomorphous substitution and 3. (3) as iron oxide on the surface of the mineral platelets. Nontronite, "hydromica," some chlorites, vermiculite, glauconite and chamosite contain iron as an essential constituent. Kaolinite and halloysite have no site within the lattice for iron, but in certain environments iron oxide (goethite or hematite) is intimately associated as a coating on the micelles. Analyses of clay minerals show that the content of Fe2O3 varies: 29 per cent (nontronite), 7??3 per cent (griffithite), 4.5 per cent ("hydromica"), 5.5 per cent (chlorite), 4 per cent (vermiculite) and 18 per cent (glauconite). The FeO content is: 40 per cent (chamosite), 7.8 per cent (griffithite), 1-2 per cent ("hydromica"), 3 per cent (glauconite) and 2 per cent (chlorite). The iron associated with the clay minerals remains stable in the environment in which the minerals occur, but if either pH or Eh or both are changed the iron may be affected. Change of environment will cause: 1. (1) removal of iron by reduction of Fe3+ to Fe2+; 2. (2) ion-exchange reactions; 3. (3) instability of the crystal lattice. Experiments using bacterial activity to produce reducing conditions with kaolinite and halloysite coated with iron oxides and with nontronite in which ferric iron is in the octahedral position within the lattice showed that ferric oxide is removed at Eh +0??215 in fresh water and at Eh +0.098 in sea water. Hematite, goethite, and indefinite iron oxides were removed at different rates. Red ferric oxides were changed to black indefinite noncrystalline ferrous sulphide at Eh -0.020 but reverted to ferric oxide under oxidizing conditions. Nontronite turned bright green under reducing conditions and some of the ferrous iron remained within the lattice on a return to oxidizing conditions. Bacterial activity

  13. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  14. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    PubMed

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10(-2) g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may

  15. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals

    PubMed Central

    Crosson, Garry S.; Sandmann, Emily

    2013-01-01

    Abstract The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo–second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and −0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10−2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment

  16. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-03-09

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure.

  17. Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals.

    PubMed

    Samuels, Maya; Mor, Omer; Rytwo, Giora

    2013-04-05

    The influence of methylene blue adsorption to different clays on its photodegradation was studied. Methylene blue in solution was decomposed by sunlight in a zero-order process. Adsorption to some clay minerals (sepiolite and vermiculite) and a zeolite (clinoptilolite) accelerated the degradation process, and converted it to a first-order reaction. On the other hand, adsorption to other clay minerals (palygorskite and montmorillonite) stabilized the dye and prevented its degradation. Interestingly, in the clay-dye complexes that exhibited stability, clear metachromasy of the adsorbed methylene blue occurred, whereas the effect was not observed in the clay-dye complexes that underwent photodegradation.

  18. Modeling of cation binding in hydrated 2:1 clay minerals

    SciTech Connect

    Smith, D.E.

    1998-06-01

    'The primary focus of the research is the development of molecular theories of ion exchange on clay minerals, with a view toward understanding the mechanism of radionuclide transport through soils. The specific scientific goals of the study involve using molecular simulation methods to correlate clay-ion binding strengths with interlayer structure and swelling properties. This should build upon the fundamental understanding of clay behavior and allow for improvement in transport modeling of radionuclides in clay-rich soils.'

  19. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Origin of clay-mineral variation in Wisconsinan age sediments from the Lake Michigan basin

    SciTech Connect

    Monaghan, G.W. ); Larson, G.J. . Dept. of Geological Sciences)

    1994-04-01

    Drift samples collected in Wisconsin and Michigan from exposures representative of the Wisconsinan stratigraphy of the Lake Michigan Lobe indicate that clay mineral and shale lithology systematically vary between successive till sheets as a result of differential erosion of two unique source beds: shale bedrock, rich in 10[angstrom] clay (illite) and pre-existing drift (particularly lacustrine clay), depleted in 10[angstrom] clay. A general increase in relative amounts of 10[angstrom] clay and shale clasts begins with early or middle Wisconsinan (Altonian) Glenn Shores till and continues through late Wisconsinan (Woodfordian) Ganges-New Berlin till and Saugatuck-Oak Creek till. Both 10[angstrom] clay and shale decrease in post Mackinaw (late Woodfordian) Interstade Ozaukee-Haven and Two Rivers tills. Clay minerals in till rich in 10[angstrom] clay (Saugatuck-Oak Creek) were derived mainly from extensive erosion and comminution of shale whereas those in tills depleted in 10[angstrom] clay (Ganges-New Berlin, Ozaukee-Haven, and Two Rivers) were eroded mainly from lacustrine clay. Because it is compositionally dissimilar to either the shale or lake clay source and relatively rich in kaolinite, clay minerals in early-middle Wisconsinan Glenn Shores till may have been derived from Sangamon saprolite eroded during an early post-Sangamon ice advance. Variations in source bed erosion and subsequent changes in till lithology result either from depletion of the source bed (Glenn Shores till) or from progressively eroding drift mantling shale outcrops (unroofing) during successive late Wisconsinan ice advances.

  1. Clay Minerals in Mawrth Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold.

    The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green.

    The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter.

    Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars.

    CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  2. Clay Minerals in Mawrth Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold.

    The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green.

    The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter.

    Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars.

    CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  3. A general evaluation of the frequency distribution of clay and associated minerals in the alluvial soils of ceylon

    USGS Publications Warehouse

    Herath, J.W.; Grimshaw, R.W.

    1971-01-01

    Clay mineral analyses were made of several alluvial clay materials from Ceylon. These studies show that the soil materials can be divided into 3 clay mineral provinces on the basis of the frequency distribution of clay and associated minerals. The provinces closely follow the climatic divisions. The characteristic feature of this classification is the progressive development of gibbsite from Dry to Wet Zone areas. Gibbsite has been used as a reliable indicator mineral. ?? 1971.

  4. [Effects of temperature on organic carbon mineralization in paddy soils with different clay content].

    PubMed

    Ren, Xiu-E; Tong, Cheng-Li; Sun, Zhong-Lin; Tang, Guo-Yong; Xiao, He-Ai; Wu, Jin-Shui

    2007-10-01

    An incubation test with three kinds of paddy soil (sandy loam, clay loam, and silty clay soils) in subtropical region was conducted at 10, 15, 20, 25 and 30 degrees C to examine the response of the mineralization of soil organic carbon (SOC) to temperature change. The results showed that during the period of 160 d incubation, the accumulative mineralized amount of SOC in sandy loam, clay loam, and silty clay soils at 30 degrees C was 3.5, 5.2 and 4.7 times as much as that at 10 degrees C, respectively. The mineralization rate was lower and relatively stable at lower temperatures (< or = 20 C), but was higher at the beginning of incubation and decreased and became stable as the time prolonged at higher temperatures (> or = 25 degrees C). During incubation, the temperature coefficient (Q10) of SOC mineralization in test soils fluctuated, with an average Q10 in sandy loam, clay loam, and silty clay soils being 1.92, 2.37 and 2.32, respectively. There was a positive exponential correlation between SOC mineralization constant k and temperature (P < 0.01), and the response of SOC mineralization to temperature change was in the order of clay loam soil > silty clay soil > sandy loam soil.

  5. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  6. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    NASA Technical Reports Server (NTRS)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  7. Geochemistry of clay minerals for uranium exploration in the Grants mineral belt, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookins, D. G.

    1982-03-01

    Clay mineralogy studies of ore rocks versus barren rocks in the Grants mineral belt, New Mexico, show that some combination of chlorite (rosette form), illite, mixed-layer illite-montmorillonite, (±Mg-montmorillonite) are penecontemporaneous with uranium minerals in trend ore; these same clay minerals plus kaolinite are related to the roll-type ore near the main redox front of the Grants mineral belt. Clay minerals from barren rocks are characterized by a greater abundance of Na-montmorillonite, kaolinite, and face-to-edge form chlorite. Chlorites from ore zones contain much more vanadium than do chlorites from barren rocks. Trend orr probably formed from southeasterly flowing waters following paleochannels in the Late Jurassic. These deposits are found almost entirely in reduced rocks, and organic carbon may have been an important reductant to remove U-V-U-V-Se-Mo from solution as carbonate from ore zones contains some organic carbon based on stable isotope studies. Uplift, remobilization, and reprecipitation of some of the trend ore resulted in the formation of redistributed ore, some of which possesses a roll-type geometry. Mineralization for the roll-type ore was apparently controlled by sulfide-sulfate equilibria at or near the main redox front in the Grants mineral belt. Trend and roll-type ore possess different assemblages of clay minerals and different trace element abundances. Laramide-age faults cut both trend ore and some roll-type ores. Stack ore is found in Laramide-age fault zones. Limited oxygen isotopic data from clay minerals collected from two mines at Ambrosia Lake in reduced rocks indicate probable preservation of ancient, formational waters and show no evidence of infiltration by young meteoric waters. This information, plus the pre-Laramide-age faults, suggest, but do not unequivocally prove, that the main redox front has been relatively stable since its formation, probably some time in the Cretaceous. Younger encroachment of the redox front

  8. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    ERIC Educational Resources Information Center

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  9. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, T. F.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W.; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    One of the primary science goals of Mars Science Laboratory (MSL) is to investigate layered clay mineral-bearing deposits outcropping in the lower NW slopes of Aeolis Mons (Mt. Sharp) detected from orbit. Martian clay mineral-bearing layered rocks are of particular interest because they are potential markers of sedimentary deposits formed in habitable aqueous environments. The CheMin X-ray diffraction (XRD) instrument aboard MSL has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. Previously, the high concentrations of clay minerals (approximately 20 wt.%) detected in drill powders of mudstone (Sheepbed member) at Yellowknife Bay (YKB) allowed their detailed characterization. Drill powders recovered from lacustrine mudstones of the Sheepbed member at YKB contain smectite clay minerals. Based on the position of 02l reflections in XRD patterns, which serve as an indicator of octahedral occupancy, the smectites are Fe-bearing, trioctahedral species analogous to ferrian saponites from terrestrial deposits. The smectites are thought to have been formed through a process of isochemical aqueous alteration of detrital olivine close to the time of sediment deposition under anoxic to poorly oxidizing conditions. The clay minerals are key indicators that the lake waters were benign and habitable at the time. Clay minerals were detected at other locations during MSL's traverse, including samples from the Pahrump Hills, but lower abundances and overlapping peaks from crystalline phases in XRD patterns hamper in-depth analysis.

  10. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiangyu; Jin, Chunsheng; Liu, Caicai; Li, Shihu

    2015-01-01

    Clay minerals and Al-substituted haematite (Al-hm) usually coexist in soils and sediments. However, effects of clay minerals on Al-hm during thermal magnetic measurements in argon environment have not been well studied. In order to quantify such effects, a series of Al-hm samples were synthesized, and were then mixed with clay minerals (illite, chlorite, kaolinite and Ca-montmorillonite). The temperature dependence of magnetic susceptibility curves in an argon environment showed that Al-substituted magnetite was produced during the thermal treatment via the reduction of Al-hm by the clay mineral, which leads to a significant magnetic enhancement of the thermal products. In addition, the reductive capacity varies among different types of clay minerals, that is, illite > chlorite > kaolinite > Ca-montmorillonite. Furthermore, the iron content in the clay minerals and Al content of Al-hm are two predominant factors controlling the reduced haematite content. The iron is released from the clay minerals and provides the reducing agent, while Al decreases the crystallinity of haematite and thus facilitates the chemical reaction. Therefore, the thermal magnetic measurements can be used to quantify the Al content of Al-hm in natural samples. Our study provides significant information for palaeomagnetism and environmental magnetism studies, such as thermal magnetic analysis and palaeomagnetic intensity reconstruction using ancient pottery and kilns.

  11. [Species Determination and Spectral Characteristics of Swelling Clay Minerals in the Pliocene Sandstones in Xinghai, Qinghai].

    PubMed

    Wang, Chao-wen; Chen, Jiang-jun; Fang, Qian; Yin, Ke; Hong, Han-lie

    2015-10-01

    X-ray diffraction (XRD) and Fourier infrared absorption spectroscopy (FTIR) were conducted to deepen our research on specific species and spectral characteristics of swelling clay minerals in the Pliocene sandstones in Xinghai, Qinghai province. XRD results show that swelling clay minerals are dominant clay minerals in the sandstones, which can be up to 97% in percentage. XRD patterns show 060 reflections of the samples occur both remarkably at 1.534 Å and 1.498 Å, indicating the samples contain physical mixtures of trioctahedral and dioctahedral swelling clay minerals, respectively. Further treatment of Li-300 degrees C heat and glycerol saturation shows the swelling clay minerals collapse to 9.3-9.9 Å with a partial expansion to -18 Å. This indicates the swelling clay minerals dominate montmorillonite and contain minor saponite. The montmorillonite shows no swelling after Li-300 degrees C heat and glycerol saturation because of Li+ inserting into the octahedral layers, which balances the layer charge caused by the substitution of Mg to Al. FTIR results show the samples are composed of a kind of phyllosilicate with absorbed and structural water, which is in agreement with the results of XRD. Absorbed peaks at 913, 842, 880 cm(-1), corresponding to OH associated with Al-Al, Al-Mg, and Al-Fe pairs, further indicates the minerals are dominant dioctahedron in structure. Meanwhile, absorbed peaks at 625 and 519 cm(-1), corresponding to coupled Si-O and Al-O-Si deformation, indicates parts of Si is replaced by Al in tetrahedron. The spectral characteristics of the samples are against the presence of beidellite and nontronite based on the results of XRD and FTIR, while demonstrating an,existence of montmorillonite. This study, to distinguish the specific species of swelling clay species in clay minerals, would be of great importance when using clay mineralogy to interpret provenance and climatic information.

  12. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.

    PubMed

    Pu, Xunchi; Cutright, Teresa J

    2006-08-01

    Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.

  13. Impact of clay minerals on sulfate-reducing activity in aquifers

    USGS Publications Warehouse

    Wong, D.; Suflita, J.M.; McKinley, J.P.; Krumholz, L.R.

    2004-01-01

    Previous studies have shown that sulfate-reduction activity occurs in a heterogeneous manner throughout the terrestrial subsurface. Low-activity regions are often observed in the presence of clay minerals. Here we report that clays inhibit sulfate reduction activity in sediments and in a pure culture of Desulfovibriovulgaris. Clay minerals including bentonite and kaolinite inhibited sulfate reduction by 70–90% in sediments. Intact clays and clay colloids or soluble components, capable of passing through a 0.2-µm filter, were also inhibitory to sulfate-reducing bacteria. Other adsorbent materials, including anion or cation exchangers and a zeolite, did not inhibit sulfate reduction in sediments, suggesting that the effect of clays was not due to their cation-exchange capacity. We observed a strong correlation between the Al2O3content of clays and their relative ability to inhibit sulfate reduction in sediments (r2 = 0.82). This suggested that inhibition might be a direct effect of Al3+ (aq) on the bacteria. We then tested pure aluminum oxide (Al2O3) and showed it to act in a similar manner to clay. As dissolved aluminum is known to be toxic to a variety of organisms at low concentrations, our results suggest that the effects of clay on sulfate-reducing bacteria may be directly due to aluminum. Thus, our experiments provide an explanation for the lack of sulfate-reduction activity in clay-rich regions and presents a mechanism for the effect.

  14. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  15. Clay Minerals as Solid Acids and Their Catalytic Properties.

    ERIC Educational Resources Information Center

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  16. Evaluation of the medicinal use of clay minerals as antibacterial agents.

    PubMed

    Williams, Lynda B; Haydel, Shelley E

    2010-07-01

    . Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall.

  17. [Destruction of hexamethylenediamine by a Bacillus subtilis culture in a medium with clay minerals].

    PubMed

    Garbara, S V; Rotmistrov, M N

    1982-01-01

    The object of this work was to study the effect of clay minerals of the montmorillonite group on the oxidative and destructive activity of Bacillus subtilis 21/3 utilizing hexamethylene diamine (HMD) in metabolic processes. HMD destruction by the culture accelerated when clay minerals were added to the chemically defined medium. The respiration activity of Bac. subtilis 21/3 was studied, and the rate of HMD oxidation was found to increase in the presence of montmorillonite.

  18. Extracellular enzymes and soil carbon dynamics: exploring the effects of soil clay minerals

    NASA Astrophysics Data System (ADS)

    Olagoke, Folasade; Kalbitz, Karsten; Vogel, Cordula

    2017-04-01

    The importance of extracellular enzymes (EEs) in soil biogeochemical processes is well established. EEs are particularly decisive for carbon cycling through decomposition of organic matter (OM). The effectiveness of EEs in the soil depends on a number of factors including the amount and composition of clay minerals. However, the impact of interactions between clay minerals and EEs on the turnover rate of soil OM vis-a-vis carbon cycling in the soil is still poorly understood. Effects of clay minerals on activities of EEs have been mostly studied using clay minerals isolated from the soil matrix. Thus, it is not well elucidated how representative these results are for in-situ conditions. In this study, we analyzed the effect of different amounts of clay minerals added to soil on the activities of EEs towards understanding the role of interaction between clay minerals and EEs in soil carbon dynamics. We investigated three enzymes, α-glucosidase (AG), β-glucosidase (BG) and cellobiohydrolase (CB), which are important for soil carbon cycling. All assay preparations and measurements were carried out using fluorometric methods (MUF based substrates). A clay mineral (montmorillonite) was added to soil materials at four levels increasing the clay content in a logarithmic scale: +0% (control); +0.1%; +1% and +10%. The effects of clay minerals on EEs were analysed in two phases: firstly, the effects on the enzymes present in the soil were determined, and secondly the effect on a commercial enzyme (AG) added to the soil was tested. First results revealed that increasing the clay content in the soil led to a reduction in the activity of EEs. For AG and BG, significant reduction in activity was noted (P < 0.05) when the soil enriched with clay minerals was compared to the control (no clay addition). The CB, on the other hand, showed no statistical differences between the control and all treatments with addition of clay minerals. Similarly, in the second experiment with the

  19. Thermal neutron absorption cross section and clay mineral content for Miocene Carpathian samples

    PubMed

    Woznicka

    2000-12-01

    A correlation between the thermal neutron absorption cross section and the clay volume for samples from the chosen geological region is discussed. A comparison of the calculated and measured absorption cross sections as a function of clay volume allows an estimate to be made on the presence of highly absorbing impurities in clays. From the example presented, it was deduced that 105 ppm of B or 25 ppm of Gd in the clay minerals in the samples tested would be sufficient to explain the difference between the experimental and calculated cross sections.

  20. Evaluation of the medicinal use of clay minerals as antibacterial agents

    PubMed Central

    Williams, Lynda B.; Haydel, Shelley E.

    2010-01-01

    process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  1. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    NASA Astrophysics Data System (ADS)

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-07-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  2. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-07-28

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  3. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    PubMed Central

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  4. Clay mineral particles as effficient carriers of methylene blue used for antimicrobial treatment.

    PubMed

    Bujdák, Juraj; Jureceková, Jana; Bujdákova, Helena; Lang, Kamil; Sersen, Frantisek

    2009-08-15

    There is a strong demand to identify new strategies for disinfection and treatment of human, animal, and plant pathogens. The presented work shows the potential of clay minerals to contribute to the development of novel disinfection materials. Enhanced antimicrobial effect of a photoactive organic dye, methylene blue (MB), in the colloids of clay mineral was observed. Singlet oxygen (1O2) formed upon visible light irradiation was detected directly using luminescence measurements atthe near-infrared region and by spin-trapping method. While MB adsorbed on clay colloid particles lost the ability to produce 1O2 due to molecular aggregation, surprisingly, the antimicrobial activity was significantly enhanced. Under visible light irradiation, MB/clay minerals dispersions prevented the sporulation of A. niger and Penicillium sp. and inhibited the growth of C. albicans by an additional 6-15% when compared with MB solution. In the experiments with E. coli, the efficiency of MB was increased by the reduction of surviving cells by 27 and 33%. S. aureus proved to be the most susceptible to MB/clay dispersions. Only less than 20% cells survived with respect to the control experiment at the low MB concentration (1.1 x 10(-6) mol dm(-3)). The contradiction between the significant antimicrobial properties of MB in clay colloidal systems and low 1O2 formation can be explained in terms of the photosensitization mechanism. The role of clay particles is most likely to promote the contact between microorganism cells and photoactive MB. Although the dye directly bound to the clay surface exhibits significantly reduced photoactivity, the presence of clay mediates the delivery of dye molecules on the surface or inside cells. The results indicate new perspectives of potential implementations of clay minerals as parts of complex disinfection materials for industrial applications or in understanding similar processes in nature.

  5. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    PubMed

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  6. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  7. Potential bioavailability of mercury in humus-coated clay minerals.

    PubMed

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils. Copyright © 2015. Published by Elsevier B.V.

  8. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  9. Detecting a Difference in Clay Minerals at Two Gale Crater Sites

    NASA Image and Video Library

    2016-12-13

    Data graphed here from the Chemistry and Camera (CheMin) instrument on NASA's Mars Curiosity rover show a difference between clay minerals in powder drilled from mudstone outcrops at two locations in Mars' Gale Crater: "Yellowknife Bay" and "Murray Buttes." CheMin's X-ray diffraction analysis reveals information about the crystalline structure of minerals in the rock. The intensity peaks marked with dotted vertical lines in this chart indicate that the crystalline structure of the two sites' clay minerals differs. The difference can be tied to a compositional difference in the clay minerals, as depicted in a diagram at PIA21148. The Yellowknife Bay site is on the floor of Gale Crater. The Murray Buttes site is on lower Mount Sharp, the layered mound in the center of the crater. http://photojournal.jpl.nasa.gov/catalog/PIA21147

  10. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  11. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was first order with respect to both the initial Al concentration and the clay surface area. Changes in pH within this narrow range had virtually no effect on adsorption rate. This zero order reaction dependence suggested that the H/sup +/, compared to Al, has a weak affinity for the surface. The rates of adsorption decreased in the order of montmorillonite > kaolinite > vermiculite when compared on the basis of equal surface areas, but changed to kaolinite > montmorillonite > vermiculite when the clays were compared on an equal exchange capacity basis. The calculated apparent activation energies were < 32 kJ mol/sup -1/, indicating that over the temperature range of the study the adsorption process is only marginally temperature sensitive. The mechanism is governed by a simple electrostatic cation exchange involving outer sphere complexes between adsorbed Al and the clay surface. Vermiculite, may have a second reaction step governed by both electrostatic attraction and internal ion diffusion. Equilibrium constants for the formation of an adsorbed Al clay complex were also estimated and are 10/sup 5.34/, 10/sup 5.18/, and 10/sup 4.94/ for kaolinite, montmorillonite, and vermiculite, respectively, suggesting that these clays could play a significant role in controlling soil solutions Al concentrations.

  12. The Efficiency of 24 Minerals as Deposition Ice Nuclei: Focus on Feldspars, Clays and Metals

    NASA Astrophysics Data System (ADS)

    Yakobi-Hancock, J.; Ladino Moreno, L.; Abbatt, J.

    2013-12-01

    While the ice nucleating abilities of clay minerals have been extensively studied, those of the more minor mineralogical components of mineral dust have not been as widely examined. As a result, the deposition ice nucleating abilities of 24 atmospherically-relevant mineral samples were investigated using the University of Toronto continuous flow diffusion chamber at -40.0 × 0.3oC, using the same particle size (200nm) and preparation procedure throughout. The pure minerals' ice nucleating efficiencies were compared to those of complex mixtures (Arizona Test Dust and Mojave Desert Dust) and to that of lead iodide, which in the past was a prospective cloud seeding agent. Requiring a relative humidity with respect to ice (RHi) of 122.0 × 2.0% to activate 0.1% of the particles, lead iodide was the most efficient ice nucleus (IN) considered. Mojave Desert Dust (RHi 126.3 × 3.4%) and Arizona Test Dust (RHi 129.5 × 5.1%) exhibited lower but comparable activities. Through the analysis of a series of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and other metal-containing species), and feldspar minerals (orthoclase, plagioclase) it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 × 6.3% and 136.2 × 1.3%, respectively. The presence of feldspars (most notably orthoclase) may play a large role in the deposition IN efficiencies of mineral dusts in spite of their lower percentage in composition relative to clay minerals. By contrast, most metal oxides, sulfide and sulfates were poor ice nuclei.

  13. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf.

    PubMed

    Hein, James R; Dowling, Jennifer S; Schuetze, Anthony; Lee, Homa J

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 microm-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Niño years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  14. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    USGS Publications Warehouse

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The <2 ??m-size fraction was isolated, Mg-saturated, and glycolated before analysis by X-ray diffraction. Semi-quantitative percentages of smectite, illite, and kaolinite plus chlorite were calculated using peak areas and standard weighting factors. Most fine-grained sediment is supplied to the shelf by rivers during major winter storms, especially during El Nin??o years. The largest sediment fluxes to the region are from the Santa Ynez and Santa Clara Rivers, which drain the Transverse Ranges. The mean clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does

  15. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    NASA Astrophysics Data System (ADS)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  16. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    SciTech Connect

    Smith, David E.

    2000-09-14

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  17. Estimation of the standard molal heat capacities, entropies and volumes of 2:1 clay minerals

    NASA Astrophysics Data System (ADS)

    Ransom, Barbara; Helgeson, Harold C.

    1994-11-01

    The dearth of accurate values of the thermodynamic properties of 2:1 clay minerals severely hampers interpretation of their phase relations, the design of critical laboratory experiments and geologically realistic computer calculations of mass transfer in weathering, diagenetic and hydrothermal systems. Algorithms and strategies are described below for estimating to within 2% the standard molal heat capacities, entropies, and volumes of illites, smectites and other 2:1 clay minerals. These techniques can also be used to estimate standard molal thermodynamic properties of fictive endmembers of clay mineral solid solutions. Because 2:1 clay minerals like smectite and vermiculite are always hydrated to some extent in nature, contribution of interlayer H 2O to their thermodynamic properties is considered explicitly in the estimation of the standard molal heat capacities, entropies, and volumes of these minerals. Owing to the lack of accurate calorimetric data from which reliable values of the standard molal heat capacity and entropy of interlayer H 2O can be retrieved, these properties were taken in a first approximation to be equal to those of zeolitic H 2O in analcite. The resulting thermodynamic contributions per mole of interlayer H 2O to the standard molal heat capacity, entropy, and volume of hydrous clay minerals at 1 bar and 25°C are 11.46 cal mol -1, 13.15 cal mol -1 K -1 and 17.22 cm 3 mol, respectively. Estimated standard molal heat capacities, entropies and volumes are given for a suite of smectites and illites commonly used in models of clay mineral and shale diagenesis.

  18. Characterization of Clay Minerals and Kerogen in Alberta Oil Sands Geological End Members

    NASA Astrophysics Data System (ADS)

    Zheng, Limin

    The high degree of variability of oil sands ores can be attributed to a mixture of different geological end members, i.e., estuarine sand, estuarine clay, marine sand and marine clay. This study focused on the mineralogy, especially of clay minerals, and toluene insoluble organic matter, referred to as kerogen, in different oil sands end members. Clays and kerogens will likely have a significant impact on solvent recovery from the gangue following non-aqueous bitumen extraction. The bitumen-free solids were subjected to mineralogical and geochemical analysis. Kerogens were isolated and analyzed by various characterization methods. The types of clays were identified in oriented samples by X-ray diffraction analysis. The nitrogen to carbon ratio in the isolated kerogens is found to be higher than in bitumen. There are more type III kerogens in estuarine samples and more type II kerogens in marine samples.

  19. Molecular dynamics simulations of water, solution, and clay mineral-water systems (Invited)

    NASA Astrophysics Data System (ADS)

    Kawamura, K.

    2009-12-01

    Clays and clay minerals together with zeolites are major mineral components in the earth's surface environment. These minerals interact with the atmosphere, natural water, inorganic and organic components in soils, etc. Physicochemical processes in the surface region are generally complex and difficult to understand because of the complicated "molecular" structures and the ambient conditions under wet circumstances. We have investigated the structure and physical/dynamical properties of the mineral-gas/liquid systems by means of molecular simulation methods; molecular dynamics and Metropolis Monte Carlo methods. Swelling of smectite and adsorption of inorganic molecules in clay minerals and zeolites, etc. were simulated and analyzed on the basis of the atomic and molecular processes. We have developed atomic and molecular interaction models of inorganic systems. The models compose of electrostatic, short range repulsive, van der Waals and covalent (radial and angular) terms with respect to all the elements appeared in the mineral-water systems. All of our molecular dynamics simulations (MD) were performed with full degree of freedom of atom motions. Using the model for H2O molecule, the structure and physical properties such as density, diffusion coefficients, etc. of ice polymorphs and water are well reproduced. Alkaliharide aqueous solutions and gas hydrates and their (hydrophobic) solutions are also reasonably simulated. Clay mineral-water interactions are particularly important to understand the mechanical and chemical processes in the environments, in order to develop nano-composite materials, and to use clays in engineering applications. Absorption and swelling are the most remarkable properties of clay minerals, specially smectite. We have investigate these properties by means of molecular simulation methods using various clay minerals-water/solution systems. The swelling curves, the relation between humidity and the basal spacings, were reproduced

  20. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  1. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    NASA Astrophysics Data System (ADS)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  3. Interaction of surface-modified silica nanoparticles with clay minerals

    NASA Astrophysics Data System (ADS)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-11-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  4. Clay minerals in Northern Plains coal overburden as measured by X-ray diffraction

    SciTech Connect

    Klages, M.G.; Hopper, R.W.

    1982-03-01

    Mathematical models were tested for changing x-ray diffraction data to percentages of clay minerals in coal overburden. Various factors for adjusting peak areas were tested on 50 eastern Montana samples that contained smectite, illite, and daloinite, with lesser amounts of other minerals. Cation exchange capacities (CEC) of the clays were estimated from the calculated mineral percentages and correlated against measured CEC. The best model gave in r/sup 2/ of 0.89. It was used for estimating clay mineralogy at six mine sites in the Northern Great Plains. Average mineral contents in the surface 8 to 38 m of five of seven drill holes in the Montana-Wyoming border area were 40% smectite, with 20% each of illite and kaolinite. Clays from greater depths in the same area had no smectite and an average of 50% each of illite and kaolinite. All samples from a mine in central North Dakota were high in swelling clay, with an average of 60% smectite and 10% vermiculite.Samples from four holes at a mine in eastern Wyoming were all high in kaolinite, having an average of 50% with 30% illite and 10% interstratified smectite-vermiculite.

  5. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    PubMed

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  6. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  7. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra

    NASA Astrophysics Data System (ADS)

    Viscarra Rossel, R. A.

    2011-12-01

    Clay minerals are the most reactive inorganic components of soils. They help to determine soil properties and largely govern their behaviors and functions. Clay minerals also play important roles in biogeochemical cycling and interact with the environment to affect geomorphic processes such as weathering, erosion and deposition. This paper provides new spatially explicit clay mineralogy information for Australia that will help to improve our understanding of soils and their role in the functioning of landscapes and ecosystems. I measured the abundances of kaolinite, illite and smectite in Australian soils using near infrared (NIR) spectroscopy. Using a model-tree algorithm, I built rule-based models for each mineral at two depths (0-20 cm, 60-80 cm) as a function of predictors that represent the soil-forming factors (climate, parent material, relief, vegetation and time), their processes and the scales at which they vary. The results show that climate, parent material and soil type exert the largest influence on the abundance and spatial distribution of the clay minerals; relief and vegetation have more local effects. I digitally mapped each mineral on a 3 arc-second grid. The maps show the relative abundances and distributions of kaolinite, illite and smectite in Australian soils. Kaolinite occurs in a range of climates but dominates in deeply weathered soils, in soils of higher landscapes and in regions with more rain. Illite is present in varied landscapes and may be representative of colder, more arid climates, but may also be present in warmer and wetter soil environments. Smectite is often an authigenic mineral, formed from the weathering of basalt, but it also occurs on sediments and calcareous substrates. It occurs predominantly in drier climates and in landscapes with low relief. These new clay mineral maps fill a significant gap in the availability of soil mineralogical information. They provide data to for example, assist with research into soil

  8. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    SciTech Connect

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce W.; Kovarik, Libor

    2014-05-15

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  9. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    NASA Astrophysics Data System (ADS)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  10. Geochemical constraints on the presence of clay minerals in the Burns formation, Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Cino, C. D.; Dehouck, E.; McLennan, S. M.

    2017-01-01

    Burns formation sandstones, deposited by aeolian processes and preserved at Meridiani Planum, Mars, contain abundant sulfate minerals. These sedimentary rocks are thought to be representative of a sulfate-rich geological epoch during late Noachian - early Hesperian time that followed an earlier clay-rich epoch. Twenty Burns formation targets, abraded by the Rock Abrasion Tool (RAT) and for which alpha-particle X-ray spectrometry (APXS) and Mössbauer spectroscopy data are available, were selected for geochemical modeling. A linear unmixing modeling approach was employed. Mineralogical constituents quantitatively constrained by Mössbauer and Mini-TES spectroscopy and interpreted to be chemically precipitated from aqueous fluids during deposition and/or early diagenesis were subtracted from the bulk chemistry. Resulting residual chemical compositions, interpreted to be dominated by detrital siliciclastic components and representing ∼21-35% of the rocks, were then geochemically evaluated to constrain the potential for the presence of clay minerals or their poorly-crystalline or non-crystalline precursors/chemical equivalents. Calculations incorporated a robust estimate of the uncertainties in mineral abundances. On Al2O3 - (CaO+Na2O) - K2O (A-CN-K) and Al2O3 - (CaO+Na2O+K2O) - (FeOtotal+MgO) (A-CNK-FM) molar ternary diagrams, removal of chemical constituents resulted in a shift from igneous-like compositions to compositions consistent with secondary mineral assemblages containing significant aluminous clay mineral components. All of the residual compositions are corundum-normative, further supportive of the presence of highly aluminous phases. On the A-CNK-FM diagram, clay minerals plotting closest to the residual field are natural montmorillonites but could also represent mixtures of various Mg/Fe-rich phyllosilicates, such as nontronite or saponite, and other more Al-rich minerals such as Al-montmorillonite, kaolinite or illite. Depending on the age of clay

  11. Implications of Clay Mineral-RNA Interactions for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Stephenson, J. D.; Ditzler, M. A.

    2014-12-01

    Due to its ability to both store information and catalyze reactions, RNA is considered by many to have been the dominant biopolymer at the origin of life. We are screening a large, random RNA population for catalytic activity in the presence and absence of prebiotically relevant clay minerals, to investigate the effect of RNA-clay mineral interactions on RNA function. There is an extensive precedent for screening RNA populations for enzymatic functions such as ligation, cleavage and binding in the laboratory. While several environmental parameters have been explored, previous screens have not considered geological interactions. This is surprising as the role of clay minerals has featured prominently in many origin of life theories. Recent empirical evidence demonstrating that clay minerals can adsorb and protect RNA molecules as well as catalyze RNA polymerization has specifically reinvigorated the proposed importance of clay mineral-RNA interactions. Although the identity of the first true biomolecules remains uncertain, interaction between emerging life and its geological environment appears inevitable. We therefore consider understanding the effect of geological-biological interactions to be of crucial importance when considering the earliest biopolymers at the origin of life. Our screens are from a random population of 10^14 unique random RNA sequences and are conducted with and without montmorillonite clay. We are screening for the ability of sequences to self cleave, one of the most basic enzymatic functions considered important to the earliest biopolymers. Our RNA function screens will therefore illuminate the effect of geological interactions at a crucial stage of early evolution.

  12. Atomic-level studies of the depletion in reactive sites during clay mineral dissolution

    NASA Astrophysics Data System (ADS)

    Sanders, Rebecca L.; Washton, Nancy M.; Mueller, Karl T.

    2012-09-01

    Clay mineral dissolution rates can continuously decrease over time as reactive sites located on edges are preferentially depleted under certain pH conditions. Changes in reactive surface area and the difficulties in quantifying this elusive variable have been cited as one key reason for the complexity in developing accurate rate equations for the dissolution of clay minerals. Recently, a solid-state nuclear magnetic resonance (NMR) method has been proposed for counting the number of reactive surface sites on a defined quantity of a clay mineral. Using this solid-state NMR proxy, changes in reactive surface area were monitored for a series of batch dissolution experiments of low-defect kaolinite KGa-1b and Ca-rich bentonite STx-1b, a montmorillonite-rich clay containing an opal-CT impurity, at 21 °C and initial pH 3. Kaolinite specific surface area as determined from BET gas isotherm data did not change within error during 80 days of dissolution whereas bentonite specific surface area decreased rapidly to about 50% of the original value as interlayer cation concentrations changed. The solid-state NMR proxy revealed decreases in the number of reactive surface sites per gram of kaolinite and bentonite as a function of dissolution time, presumed to be from the preferential dissolution of reactive sites on edges at initial pH 3. This depletion of reactive edge sites can be tied to a concomitant decrease in the rates of release of Si and Al into solution. The quantity of reactive sites can be used to estimate the dissolution rates of kaolinite and bentonite as well as estimate trends in dissolution rates of other clay minerals. These results further highlight the need to quantify the number of reactive sites present on a per gram basis as well as characterize their depletion with time to develop and use dissolution rate models for clay minerals and other heterogeneous materials in the environment.

  13. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.

    PubMed

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César

    2013-09-10

    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water.

  14. Experimental Constraints on Microbial Liberation of Structural Iron from Common Clay Minerals in Marine Sediments

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S. W.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2013-12-01

    Iron is a limiting nutrient in many marine settings. The marine Fe-cycle is complex because Fe may be used as an electron donor or acceptor and cycled many times before ultimate burial in sediments. Thus, the availability of iron plays a large role in the marine carbon cycle, influencing not only the extent of primary productivity but also the oxidation of organic matter in sediments. The primary constituents of marine sediments are clay minerals, which commonly contain lattice-bound Fe in octahedral sites. In marine settings, the pool of Fe bound within silicate mineral lattices has long been considered reactive only over long timescales, and thus non-bioavailable. In vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe (III) from the crystal lattice of nontronite, an uncommon but particularly Fe-rich (> 12 wt.%) smectite. Importantly, this process is capable of liberating Fe (II) to solution, where it is available to biotic processes as an electron donor. In order to constrain the capacity of naturally-occurring marine bacteria to liberate structurally-coordinated Fe from the lattices of common clay minerals, we exposed a suite of 16 different clay minerals (0.8-13.9 wt.% Fe) to lab cultures of known Fe-reducer S. onenidensis MR-1 and to a natural consortium of Fe-reducing microbes from the San Pedro and Santa Monica Basins over timescales ranging from 7-120 days. Clay minerals were treated with Na-dithionite to extract surface-bound Fe prior to exposure. Crystallographic data and direct measurements of Fe in solution demonstrate the release of structural Fe from all clay minerals analyzed. Neoformation of illite and amorphous quartz were observed. The array of clay minerals and microbes used in this experiment complement past findings and suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly

  15. Clay minerals in Alpine Fault gouge: First results from the DFDP-1B pilot hole

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.

    2012-12-01

    Clay mineralization is increasingly recognized as a key process along fault systems in the upper crust. The Alpine Fault in New Zealand is a major active fault zone with locally large earthquakes. Samples from this fault zone offer excellent opportunity to investigate recent and ancient rupture zones, and the mechanical role of clay mineral transformations and fluid-rock interactions in particular. The Alpine Fault drilling project (DFDP-project) on the South Island of New Zealand sampled two shallow pilot holes; DFDP-1A was drilled down to 100.6 m and DFDP-1B drilled down to 151.4 m. Five samples from borehole DFDP-1B have been investigated by X-ray diffraction, X-ray texture goniometry and electron microscopy. These samples were taken at ~143.3 m (sections 69_2 to 69_2) and ~128.1 m depth (sections 59_1 to 59_1); the latter is the area of principal slip. The bulk rock mineralogy shows similar compositions in all samples with quartz, phyllosilicates (muscovite, chlorite), calcite, zeolite and clay minerals; the dominant clay phases in all samples are illite and chlorite. Importantly, abundant discrete smectite is uniquely present in gouge zones at sections 69_2 (~143.4 m) and 59_1 (~128.1 m). Smectite was likely formed by dissolution-precipitation reactions during displacement and movement of aqueous fluids along permeable fractures, at the expense of host rock minerals. Electron microscopy of fault gouge at section 69_2 shows small illite and smectite particles with pseudo-hexagonal shapes and variable amounts of K, Ca, Mg and Fe, growing adjacent to each other. Some distinct illite and smectite mineral veins form epitaxially on quartz-feldspar mineral surfaces. Clay fabric intensity, measured by X-ray goniometry, is higher outside the gouge zones (true cataclasite, section 69_1) with average fabric intensities of m.r.d. 3.5. Both gouge zones at sections 59_2 and 69_1 exhibit uniformly weak fabrics for illite and chlorite (m.r.d. ~2.5 on average). The weak

  16. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, T.F.; Blake, D. F..; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W..; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    The CheMin XRD instrument aboard Mars Science Laboratory (MSL) has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. The most recent samples, named Marimba, Quela and Sebina were acquired from the Murray Formation in the Murray Buttes region of lower Mt. Sharp. Marimba and Quela come from a approx. 30 m package of finely laminated lacustrine mudstones. Sebina comes from an overlying package of heterolithic mudstone-sandstones. Clay minerals make up approx.15-25 wt.% of the bulk rock with similar contributions to XRD patterns in all three samples. Broad basal reflections at approx. 10deg 2(theta) CoK(alpha) indicate the presence of 2:1 group clay minerals. The 02(lambda) clay mineral band lies at approx. 22.9deg 2(theta), a region typically occupied by Fe-bearing dioctahedral 2:1 clay minerals like nontronite or Fe-illite. The low humidity within the CheMin instrument, which is open to the martian atmosphere, promotes loss of interlayer H2O and collapse of smectite interlayers making them difficult to distinguish from illites. However, based on the low K content of the bulk samples, it appears that smectitic clay minerals are dominant. Peak dehydroxylation of the Marimba sample measured by the SAM instrument on MSL occurred at 610C and 780C. Fe-bearing smectites are not consistent with these dehydroxylation temperatures. Thus, we suggest that a mixture of dioctahedral and trioctahedral smectite phases are present giving the appearance of intermediate octahedral occupancy in XRD. Dioctahedral smectites have not previously been reported in Gale Crater by MSL. Earlier in the mission, relatively clay mineral rich samples (approx. 20 wt.%) from lacustrine mudstones in Yellowknife Bay (YKB) were found to contain ferrian saponites. It is proposed that YKB saponites formed via isochemical aqueous alteration of detrital olivine close to the time of sediment deposition, under anoxic to poorly oxidizing

  17. Cambrian burgess shale animals replicated in clay minerals

    PubMed

    Orr; Briggs; Kearns

    1998-08-21

    Although the evolutionary importance of the Burgess Shale is universally acknowledged, there is disagreement on the mode of preservation of the fossils after burial. Elemental mapping demonstrates that the relative abundance of elements varies between different anatomical features of the specimens. These differences reflect the compositions of the minerals that replicated the decaying organism, which were controlled by contrasts in tissue chemistry. Delicate morphological details are replicated in the elemental maps, showing that authigenic mineralization was fundamental to preserving these fossils, even though some organic remains are also present.

  18. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  19. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  20. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron availability

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Achterberg, E. P.

    2014-06-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. The nano-thin platelets included illite, smectite, illite-smectite mixed layers and their nanoscale mixtures (illite-smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on microgrids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than in Asian dust, while Asian dust was more enriched in chlorite. The average Fe / Si, Al / Si and Fe / Al molar ratios of the clay minerals, compared to previously reported chemistries of mineral dusts and leached solutions, indicated that dissolved Fe originated from clay minerals. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite are important sources of available Fe in

  1. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  2. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  3. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  4. Clay minerals in primitive meteorites and interplanetary dust 1

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  5. Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis

    NASA Astrophysics Data System (ADS)

    Churchman, G. Jock

    Data in the literature for soils that are dominated by each of the main types of clay minerals were examined and compared with those for reference clay minerals of the same types to determine the extent to which the nature and properties of clay-size minerals in soils could be explained by those of clay minerals with the same name from non-soil, ‘geological’ environments. Published information on soils from Australia, New Zealand and Iran was sourced for this study. The clay fractions of each of the soils are dominated by either one of the common phyllosilicates: kaolinite, halloysite, illite/mica, vermiculite, smectite, and palygorskite, or by the nanocrystalline mineral, allophane. Data for samples of kaolinite that had been extracted from soils from several countries (Australia, Thailand, Indonesia and Brazil) and purified before characterization have also been examined. In soils, each dominant clay mineral is generally associated with other materials, including iron oxides, other phyllosilicates and/or nanocrystalline minerals and organic matter. As the most studied example of an extracted phyllosilicate, kaolinite shows a wide range of properties in different soils, but a narrower range of properties within a particular locality. However, almost all of the soil kaolinites studied have larger specific surface areas and higher cation exchange capacities than reference kaolinites. The literature also reveals that, among phyllosilicates in soils, illites have a wide range of potassium contents, expandable minerals (vermiculites and smectites) may be interlayered by hydroxy-Al species particularly, and smectitic layers often occur interstratified with other layers, including those of illite, kaolinite and halloysite. The variability of soil phyllosilicates and their common association with other, often poorly crystallized but highly reactive minerals and compounds can be explained by their formation in the highly heterogeneous and dynamic soil environment

  6. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    PubMed Central

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  7. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  8. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content

    NASA Astrophysics Data System (ADS)

    Cherblanc, F.; Berthonneau, J.; Bromblet, P.; Huon, V.

    2016-06-01

    The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

  9. Clay mineral formation on Mars: Chemical constraints and possible contribution of basalt out-gassing

    NASA Astrophysics Data System (ADS)

    Berger, Gilles; Meunier, Alain; Beaufort, Daniel

    2014-05-01

    We focus on processes possibly occurring on Mars that could affect sufficiently large volumes of rocks to be detected by remote sensing techniques. When compared with the chemical modelling of water-rock interactions, the petrographic and mineralogical characteristics of clay deposited in the prismatic joints of a lava flow from the Parana basin (Brazil) suggest that the clay fraction of lava flows may be formed at least partly during an early post-magmatic stage associated with the degassing of acid volatiles. In view of the literature concerning other contexts, such as meteorites or experimental syntheses, we conclude that the crystallization of anhydrous mafic minerals and the formation of clay mineral are not systematically mutually exclusive phenomena. While clay formation is generally related to chemical reaction pathways, it is not necessarily due to the alteration of pre-existing silicates. Such post-magmatic reactions, even if they are likely to represent only a minor contribution to Martian clay formation limited to early Noachian times, require much lower amounts of water compared to conventional hydrothermal alteration or weathering systems. The products of these reactions can be detected over large surface areas, as in the case of the Mars sites, thus allowing us to envisage a greater diversity of paleogeographic scenarios for Early Mars.

  10. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    SciTech Connect

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

    2011-07-01

    99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0.4 %). The

  11. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    NASA Astrophysics Data System (ADS)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

    2011-09-01

    99Technetium ( 99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life ( t1/2 = 2.13 × 10 5 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe 2+) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both

  12. Genesis of clay mineral assemblages and micropaleoclimatic implications in the Tertiary Powder River Basin, Wyoming

    SciTech Connect

    Flores, R.M.; Weaver, J.N. ); Bossiroy, D.; Thorez, J. )

    1990-05-01

    An x-ray diffraction (XRD) study was undertaken on the clay mineralogy of the early Tertiary coal-bearing sequences of the Powder River basin. The vertical and lateral distribution of alternating fluvial conglomerates, sandstones, mudstones, shales, coals, and paleosols reveals a transition from alluvial fans along the basin margin to an alluvial plain and peat bogs basinward. Samples included unweathered shales and mudstones from a borehole and a variety of corresponding surface outcrop samples of Cambrian to Eocene age. Samples older than Tertiary were collected along the basin margin specifically to determine the potential source of parent material during Tertiary sedimentation. XRD analyses were performed on the <2-{mu}m fraction prepared as oriented aggregates. To investigate the materials in their natural state, no chemical pre-treatments the authors applied before the analysis. A series of specific post-treatments, consisting of catonic saturation (Li+, K+), a solution with polyalcohols, heating, acid attack and hydrazine saturation was selectively applied. These post-treatments permit a good discrimination between the mimetic clay minerals such as smectite and illite-smectite mixed layers that constitute the bulk of the clay fraction in the Tertiary rocks. When analyzed only using routine XRD, these swelling minerals are apparently uniformly distributed in the fluvial sedimentary rocks and are better interpreted as a single smectitic population. However, the post-treatments clearly differentiate both qualitatively and quantitatively this smectitic stock. Other clays include illite and kaolinite, which have different degrees of crystallinity, and minor interstratified clays (i.e., illite-chlorite, chlorite-smectite). The clay minerals in pre-Tertiary (and pedogenic) materials are different from those in the Tertiary rocks.

  13. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  14. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids

    NASA Astrophysics Data System (ADS)

    Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti

    2017-03-01

    Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10-200 mg l-1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution.

  15. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  16. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids

    PubMed Central

    Liu, Guangfei; Qiu, Shuang; Liu, Baiqing; Pu, Yiying; Gao, Zhanming; Wang, Jing; Jin, Ruofei; Zhou, Jiti

    2017-01-01

    Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10–200 mg l−1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution. PMID:28358048

  17. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei

    2006-06-30

    The adsorption of herbicide paraquat (as model adsorbate) in aqueous solution onto regenerated clay mineral from bleaching earth waste has been studied in a batch reaction system. The adsorption rate has been investigated under the controlled process parameters including initial pH, salinity and temperature. Based on the high affinity between cationic paraquat and clay mineral, a pseudo-second order model has been developed using experimental data to predict the rate constant of adsorption, and equilibrium adsorption capacity. The results showed that the adsorption process could be satisfactorily described with the reaction model and were reasonably explained by assuming a competitive adsorption mechanism in the ion exchange process. Further, the fitted adsorption capacity at equilibrium decreased with increasing temperature. It implied that the strong interaction might play an important role in the paraquat-clay system. Overall, the results from this study demonstrated that the clay resource regenerated from bleaching earth waste could be used as a low-cost mineral adsorbent for the removal of environmental cationic organic pollutants from the aqueous solution.

  18. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    PubMed Central

    Warr, Laurence N.; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J.; Basirico, Laura M.; Olson, Gregory M.

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  19. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  20. Leaching of clay minerals in a limestone environment

    USGS Publications Warehouse

    Carroll, D.; Starkey, H.C.

    1959-01-01

    Water saturated with CO2 at about 25??C was percolated through mixed beds of limestone or marble fragments and montmorillonite, "illite" and kaolinite in polyethylene tubes for six and fortyfive complete runs. The leachates were analysed for SiO2, A12O3 and Fe2O3, but only SiO2 was found. The minerals lost SiO2 in this order: montmorillonite > kaolinite > "illite". The differential removal of SiO2 during the short period of these experiments suggests a mechanism for the accumulation of bauxite deposits associated with limestones. ?? 1959.

  1. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars†

    PubMed Central

    Bristow, Thomas F.; Bish, David L.; Vaniman, David T.; Morris, Richard V.; Blake, David F.; Grotzinger, John P.; Rampe, Elizabeth B.; Crisp, Joy A.; Achilles, Cherie N.; Ming, Doug W.; Ehlmann, Bethany L.; King, Penelope L.; Bridges, John C.; Eigenbrode, Jennifer L.; Sumner, Dawn Y.; Chipera, Steve J.; Moorokian, John Michael; Treiman, Allan H.; Morrison, Shaunna M.; Downs, Robert T.; Farmer, Jack D.; Marais, David Des; Sarrazin, Philippe; Floyd, Melissa M.; Mischna, Michael A.; McAdam, Amy C.

    2016-01-01

    The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of

  2. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars.

    PubMed

    Bristow, Thomas F; Bish, David L; Vaniman, David T; Morris, Richard V; Blake, David F; Grotzinger, John P; Rampe, Elizabeth B; Crisp, Joy A; Achilles, Cherie N; Ming, Doug W; Ehlmann, Bethany L; King, Penelope L; Bridges, John C; Eigenbrode, Jennifer L; Sumner, Dawn Y; Chipera, Steve J; Moorokian, John Michael; Treiman, Allan H; Morrison, Shaunna M; Downs, Robert T; Farmer, Jack D; Marais, David Des; Sarrazin, Philippe; Floyd, Melissa M; Mischna, Michael A; McAdam, Amy C

    2015-04-01

    The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of

  3. Effect of clay minerals present in aquifer soils on the adsorption and desorption of hydrophobic organic compounds

    SciTech Connect

    Ghosh, D.R. ); Keinath, T.M. )

    1994-02-01

    Adsorption of hydrophobic organic compounds (HOCs) onto clay minerals and organic matter present in soils results in retarding their mobility. To study the impact of clay minerals on HOC sorption, kinetic and equilibrium studies were performed using naphthalene as a test surrogate contaminant. The results of these studies indicated that expandable clay minerals (clays that expand and expose large internal surface area on wetting), such as montmorillonite and vermiculite, had a significant impact on naphthalene partitioning. A mathematical model was developed from the equilibrium data which related clay mineral concentrations with the naphthalene partition coefficient. Equilibrium desorption studies were also performed by adding a micellar solution of a surfactant mixture (50:50) of Tween 20 and Aerosol AY-65 to mobilize the adsorbed naphthalene. The surfactant mixture was generally unable to mobilize the sorbed contaminant due to sorption irreversibility and adsorption hysteresis. 36 refs., 1 fig., 5 tabs.

  4. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  5. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  6. Laboratory studies on the heterogeneous chemistry of clay minerals in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Mashburn, Courtney Dyan

    Atmospheric mineral aerosol is a potentially important reactive surface that may provide a heterogeneous sink for gas phase species such as nitric acid and oxygenated organic compounds in the Earth's troposphere. Smectite clays, such as montmorillonite, are particularly interesting reactive surfaces because they are commonly found in the atmosphere and have a unique ability to swell. The swelling properties of montmorillonite allow for substantial adsorbed water under humid conditions, possibly promoting further reactivity. The heterogeneous uptake of water, nitric acid and a series of small organic acids on Na-montmorillonite clay under upper tropospheric temperatures and humidities was studied in a high vacuum chamber equipped with a quadrupole mass spectrometer (MS) and a transmission Fourier transform infrared (FT-IR) spectrometer used to detect the gas and condensed phases, respectively. Water adsorption on montmorillonite clay was measured using FT-IR as a function of relative humidity (RH) with respect to liquid water at temperatures from 212 to 232 K. The specific surface area and adsorbed water content of the swollen clay were determined and are consistent with previous results from gravimetric methods at room temperature. Thus, water adsorption appears to be independent of temperature down to upper tropospheric temperatures. However, the amount of adsorbed water and swollen surface area was found to increase significantly as the RH was raised. Na-montmorillonite was found to contain 10% water by mass at 50% RH and the observed growth curve is comparable to that of ammonium sulfate, a well characterized hygroscopic species. Thus, swelling clays entrained in the Earth's atmosphere may be important cloud condensation nuclei and may indirectly affect the Earth's climate. The heterogeneous uptake of the C1 to C4 organic acids on Na-montmorillonite clay was studied at 212 K as a function of RH, from 0% to 45% RH, organic acid pressure and clay mass. While the

  7. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.

    PubMed

    Wang, Xiaoli; Li, Yu

    2011-05-30

    Clay minerals in surficial sediment samples, collected from the Songhua River in China, were separated via sedimentation after removal of Fe/Mn oxides and organic materials; Cu and Zn adsorption onto the sediment components was then evaluated. Clay minerals were examined via X-ray diffraction and scanning electron microscopy. Clay minerals were found to consist mainly of illite, kaolinite, chlorite and an illite/smectite mixed layer. Non-clay minerals were dominated by quartz and orthoclase. The retention of Cu and Zn by clay minerals was 1.6 and 2.5 times, respectively, greater than that of the whole, untreated surficial sediment. Compared to the other critical components in sediments related to metal sorption (Mn oxides, Fe oxides and organic materials), the adsorption capacity of clay minerals was found to be relatively lower on a unit mass basis. These data suggest that, although clay minerals may be important in the adsorption of heavy metals to aquatic sediments, their role is less significant than Fe/Mn oxides and organic materials.

  8. Reactive Clay Minerals in a land use sequence of disturbed soils of the Belgian Loam Belt

    NASA Astrophysics Data System (ADS)

    Barao, Lucia; Vandevenne, Floor; Ronchi, Benedicta; Meire, Patrick; Govers, Gerard; Struyf, Eric

    2014-05-01

    Clay minerals play a key role in soil biogeochemistry. They can stabilize organic matter, improve water storage, increase cation exchange capacity of the soil (CEC) and lower nutrient leaching. Phytoliths - the biogenic silica bodies (BSi) deposited in cell walls of plants - are important Si pools in soil horizons due to their higher solubility compared to minerals. They provide the source of Si for plant uptake in short time scales, as litter dissolves within soils. In a recent study, we analyzed the BSi pool differences across a set of different land uses (forests, pastures, croplands) in 6 long-term disturbed (multiple centuries) soil sites in the Belgium Loam Belt. Results from a simultaneous chemical extraction in 0.5M NaOH of Si and Al, showed that soils were depleted in the BSi pool while showing high levels of reactive secondary clay minerals, mainly in the deeper horizons and especially in the forests and the croplands. During the extraction, clays were similar in reactivity to the biogenic pool of phytoliths. In order to study the kinetics in a more natural environment, batch dissolution experiments were conducted. Samples from different soil depths for each land use site (0.5 g) were mixed with 0.5 L of demineralised water modified to pH 4, 7 and 10. Subsamples of 2 ml were taken during 3 months. In the end of the period, results for pH 7 showed that in the pastures, where reactive clays were almost absent, the ratio Si/RSi (defined as the Si concentration in the end of the batch experiment divided by the reactive silica extracted from the soil with the alkaline extraction) was lower than 0.005%. The same ratio was higher in the mineral horizons of forests (Si/RSi>0.01%) and croplands (0.005% < Si/RSi <0.01%) where clay minerals were the dominant fraction. These preliminary results highlight the clay minerals' strong potential for Si mobilization. More attention should be paid to this important fraction as it can contribute strongly to Si availability

  9. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions.

    PubMed

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Kabra, Akhil N; Kurade, Mayur B; Lee, Dae S; Jeon, Byong-Hun

    2015-12-01

    Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.

  10. Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Khitrov, N. B.

    2016-12-01

    Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica-hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica-hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica-smectite interstratifications is higher. An eluvial-illuvial distribution of clay fraction in solonetzes is accompanied by the acid-alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10-30%) of smectitic phase represented by chlorite-smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30-50%) of smectitic phase represented by mica-smectite interstratifications, the similar decrease (by 10-20%) in the content of smectitic phase does not result in its

  11. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean.

    PubMed

    Kennedy, Martin J; Wagner, Thomas

    2011-06-14

    The majority of carbon sequestration at the Earth's surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m(2) g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m(-2) when compared to 0.4 mg-OC m(-2) for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10-18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land-sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic.

  12. Subsurface water and clay mineral formation during the early history of Mars.

    PubMed

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  13. Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra

    NASA Astrophysics Data System (ADS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2015-09-01

    Quantitative estimates of clay minerals on the martian surface, via remote sensing observations, provide constraints on activity, timing, duration, and extent of aqueous processes and the geochemical environment in martian history. We describe an analytical study to begin enabling quantitative estimates of phyllosilicates when mixed with martian analog materials. We characterize the chemistry, mineralogy, particle size distribution, and reflectance spectra of the end-member materials: saponite, montmorillonite, pyroxene, and palagonitic soil. Reflectance spectra were obtained for physical mixtures of saponite and montmorillonite with pyroxene, and saponite with palagonitic soil. We analyzed the diagnostic phyllosilicate spectral signatures in the 2.2-2.4 μm wavelength region in detail for the mixtures. This involved fitting the observed ∼2.3 or ∼2.2 μm band depth, associated with the presence of saponite and montmorillonite, respectively, as a function of the abundance of these materials in the mixtures. Based upon the band depth of the spectral features we find that 3-5 wt.% of the clay minerals in the mixture with pyroxene can be recognized and at 25 wt.% their presence is indisputable in the mixtures. When the saponite is mixed with the lower albedo palagonitic soil, its presence is clearly distinguishable via the 1.4 and 2.3 μm features at 25 wt.% abundance. These relationships, between abundance and band depth, provide an ability to quantitatively address the amount of these materials in mixtures. The trends described here provide guidance for estimating the presence of phyllosilicates in matrices on the martian surface.

  14. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  15. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    PubMed Central

    Hunter, W. R.; Battin, T. J.

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  16. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    PubMed

    Hunter, W R; Battin, T J

    2016-08-02

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  17. [Preliminary characterization of clay minerals from four typical soils of Northeast China].

    PubMed

    Juan, Ying-hua; Wu, Zhi-jie; Chen, Li-jun; Wang, Ren; Gong, Liang; Bao, Hong-jing; Liu, Yan

    2010-07-01

    The black soil, albic soil, brown soil and cinnamon soil in Northeast China were selected as research objects, and their mineral characteristics were evaluated with Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction spectroscopy (XRD), and scanning electron microscopy(SEM). The results showed that the mineral atlas of test soils were of montmorillonite type. Quartz was the main component of clay minerals in the four soils. Montmorillonite and high mountain stone had higher amounts in black soil and albic soil, and mica and high mountain stone were more in brown soil and cinnamon soil. Generally, the surface of mineral particles in black soil, brown soil and cinnamon soil seems to be of laminarization with significant un-uniformity, and compared with black soil, brown soil and cinnamon soil had more smooth surface. In contrast, the mineral particles in albic soil had distinct profile and smooth surface with some interstice. It was indicated that the components and characteristics of soil clay minerals could be analyzed by soil spectroscopy, and the related information to be obtained could be accurate and available.

  18. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites

    USGS Publications Warehouse

    May, Howard M.; Klnniburgh, D.G.; Helmke, P.A.; Jackson, M.L.

    1986-01-01

    Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ?? 0.35) ?? 107. The experimentally determined Gibbs free energy of formation (??Gf,2980) for the kaolinite is -3,789.51 ?? 6.60 kj mol-1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ??Gf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ??Gf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ??Gf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions. ?? 1986.

  19. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  20. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    NASA Astrophysics Data System (ADS)

    Jeong, G. Y.; Achterberg, E. P.

    2014-11-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. Chemical compositions and lattice fringes of the nano-thin platelets suggested that they included illite, smectite, illite-smectite mixed layers, and their nanoscale mixtures (illite-smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on micro-grids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than Asian dust, while Asian dust was more enriched in chlorite. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite, are probably important sources of Fe to remote marine ecosystems. Further detailed analyses of the mineralogy and chemistry of clay minerals in global mineral dusts are required to evaluate the

  1. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because

  2. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    NASA Astrophysics Data System (ADS)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  3. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    PubMed Central

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-01-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments. PMID:28233805

  4. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments.

    PubMed

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-24

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs(+) and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs(+) mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs(+) extractability measurements show that the increase of aluminization is accompanied by an increase in Cs(+) mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs(+) in vermiculite layers is poorly mobile, while the extractability of Cs(+) is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs(+) mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  5. Experimental study of Frictional property of siliceous shale from the viewpoint of clay mineral fabric

    NASA Astrophysics Data System (ADS)

    Wada, E.; Takemura, T.

    2015-12-01

    There exist slate cleavages in siliceous shale distributed in Tamba-belt located southwest Japan, belonging to Jurassic accretionary complexes, which is formed by a unique geological process. Tamba belt is classified into the complexes of the Type I and II Suites. It is well known that the siliceous shale mined from Type I Suite of Tamba belt is of high-quality as natural whetstone. In this study, we analyzed the relationship between the accretionary prism geology and topography of the study area in order to characterize the distribution of the siliceous shale. We measured illite crystallinity (IC) in order to consider the deformation process, metamorphic conditions, and clay mineral fabric. The value of IC and clay mineral fabric are deemed to be related to frictional properties.

  6. Removal of methylene blue from aqueous solution by fibrous clay minerals.

    PubMed

    Hajjaji, M; Alami, A; El Bouadili, A

    2006-07-31

    Kinetics and equilibrium processes of the methylene blue (MB) retention from aqueous solution by a mixture of fibrous clay minerals, which was isolated from a naturally occurring clay, were investigated. For these purposes, the effects of contact time, initial adsorbate concentration, adsorbent content, pH and ionic strength were determined. The results show that the MB retention obeys a pseudo-first order equation and the process is a diffusion controlled solid-state reaction. Moreover, the isotherm data fitted the Langmuir equation and the MB binding process became more energetic with the increase of the adsorbent concentration. In addition, the augmentation of the clay content or the initial MB concentration reduced the adsorption capacity, presumably because of the clay particles microaggregation and/or the occurrence of MB deriving species. On the other hand, it is observed that the MB uptake limit is reduced in low acid pH, particularly below the PZC, as well as in ionic strengthen solutions. These facts are linked to the silanol group protonation and to the reduction of the electrostatic forces induced by the clay particles, respectively.

  7. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review.

    PubMed

    Ngulube, Tholiso; Gumbo, Jabulani Ray; Masindi, Vhahangwele; Maity, Arjun

    2017-04-15

    Dyes are growing to be a problematic class of pollutants to the environment. The disposal of dyes in water resources has bad aesthetic and health effects, hence the need to remove them from the environment. The need for treatment methods that are effective and low in price is rising hence a lot of research interest is being diverted towards adsorbents that are cheap, preferable naturally occurring materials like clays. In most reported dye adsorption studies, limited information on the relationship between characterization results with adsorbent performance on dye removal has been given. This review article seeks to report on the link between the adsorption characteristics of the clays and their adsorption capacities and to gather information on the modifications done on clays to improve their adsorption capacities. A critical analysis of the different mechanisms involved during the decolouration process and their application for dye removal has been discussed in detail in this up-to-date review. From a wide range of consulted literature review, it is evident that some clays have appreciable adsorption capacities on top of being widely available. It was also noted that several parameters like contact time, dosage, concentration, temperature and pH affect the removal of dyes. Furthermore, the application of clay minerals for decolourising water represents economic viable and locally available materials that can be used substantially for pollution control and management. Conclusions were also drawn and suggestions for future research perspectives are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Importance of Tetrahedral Iron during Microbial Reduction of Clay Mineral NAu-2

    NASA Astrophysics Data System (ADS)

    Shi, B.; Wu, L.; Liu, K.; Smeaton, C. M.; Li, W.; Beard, B. L.; Johnson, C.; Roden, E. E.; Van Cappellen, P.

    2015-12-01

    Transformations between Fe(II) and Fe(III) in ferruginous clay minerals significantly impact the physicochemical properties of soils and sediments, such as the ion exchange capacity and redox potential. An increasing number of studies have focused on clay minerals that undergo redox changes, however, none have so far addressed Fe isotope fractionation during these processes. In this study, Fe isotope fractionations were determined during microbial reduction of Fe(III) in nontronite NAu-2 with different concentrations of lactate. No secondary Fe-bearing minerals, including Fe oxides, were detected by SEM in over 100 days of incubation, suggesting that the measured fractionations only reflected the net isotope effect associated with the clay minerals. The initial reduction likely started from edge sites, and the reductive dissolution released aqueous Fe(II). Basal plane sorbed Fe(II) was detectable after the extent of Fe reduction exceeded 5% and extensive electron transfer and isotope exchange had occurred between basal plane sorbed Fe(II) and structural Fe(III). With lower concentrations of the lactate(40 mM), the maximum Fe isotope fractionation was larger (∆56Febasal Fe(II)-structure Fe(III)= -4.37‰), consistent with greater adsorption than in systems with more lactate. After the Fe in reactive sites was all reduced, isotope exchange between Fe(II) and structural Fe(III) was inhibited due to blockage of electron transfer pathways by the collapse of the clay layers. The results agree with another study in our group on microbial reduction of NAu-1, despite both the smaller extent of reduction (~10% vs. 22% max bioreduction for NAu-1 and NAu-2, respectively) and smaller isotope fractionation factor than for NAu-2. We speculate that tetrahedral Fe in NAu-2 may have accelerated the electron transfer between Fe atoms, thus inducing a higher extent of reduction and a larger Fe isotope fractionation compared to NAu-1.

  9. Application of short-wave infrared (SWIR) spectroscopy in quantitative estimation of clay mineral contents

    NASA Astrophysics Data System (ADS)

    You, Jinfeng; Xing, Lixin; Liang, Liheng; Pan, Jun; Meng, Tao

    2014-03-01

    Clay minerals are significant constituents of soil which are necessary for life. This paper studied three types of clay minerals, kaolinite, illite, and montmorillonite, for they are not only the most common soil forming materials, but also important indicators of soil expansion and shrinkage potential. These clay minerals showed diagnostic absorption bands resulting from vibrations of hydroxyl groups and structural water molecules in the SWIR wavelength region. The short-wave infrared reflectance spectra of the soil was obtained from a Portable Near Infrared Spectrometer (PNIS, spectrum range: 1300~2500 nm, interval: 2 nm). Due to the simplicity, quickness, and the non-destructiveness analysis, SWIR spectroscopy has been widely used in geological prospecting, chemical engineering and many other fields. The aim of this study was to use multiple linear regression (MLR) and partial least squares (PLS) regression to establish the optimizing quantitative estimation models of the kaolinite, illite and montmorillonite contents from soil reflectance spectra. Here, the soil reflectance spectra mainly refers to the spectral reflectivity of soil (SRS) corresponding to the absorption-band position (AP) of kaolinite, illite, and montmorillonite representative spectra from USGS spectral library, the SRS corresponding to the AP of soil spectral and soil overall spectrum reflectance values. The optimal estimation models of three kinds of clay mineral contents showed that the retrieval accuracy was satisfactory (Kaolinite content: a Root Mean Square Error of Calibration (RMSEC) of 1.671 with a coefficient of determination (R2) of 0.791; Illite content: a RMSEC of 1.126 with a R2 of 0.616; Montmorillonite content: a RMSEC of 1.814 with a R2 of 0.707). Thus, the reflectance spectra of soil obtained form PNIS could be used for quantitative estimation of kaolinite, illite and montmorillonite contents in soil.

  10. DE-FG02-06ER15364: Final Technical Report Nanoscale Reactivity of Clays, Clay Analogues (Micas), and Clay Minerals

    SciTech Connect

    Nagy, Kathryn L.

    2008-07-03

    The project objectives were to determine the nanoscale to molecular scale structure of the interface between muscovite mica and aqueous solutions containing various sorbates and to explore systematics that control the incorporation of inorganic and organic chemical components during aging of nanoparticles of iron-oxides and aluminosilicate clays. The basal surface of phyllosilicates is a primary sorbent of environmental contaminants, natural organic matter, and nutrients. Micas are also superb atomically-flat substrates used in materials science and surface physics applications. We applied X-ray scattering techniques using high brilliance synchrotron radiation to investigate molecular-scale details of mica’s interface structure in solutions containing common and toxic cations, anions, and natural organic molecules. Nanoparticles are ubiquitous in the environment and have a high capacity for sorbing contaminants through the combined effects of their high surface areas and pH-dependent surface charge. Aging of nanoparticles from metastable to stable phases can be inhibited by sorption of nonstructural components, but exact mechanisms are unknown. We synthesized Fe-oxides and aluminosilicate clay minerals from aqueous solutions in the presence of selected anions, and organic molecules, and quantified the uptake of these additives during aging and some implications for nanoparticle formation.

  11. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment

    NASA Astrophysics Data System (ADS)

    Chen, Yueh-Min; Gao, Jin-bo; Yuan, Yong-Qiang; Ma, Jun; Yu, Shen

    2016-08-01

    Clay minerals in surface sediments can affect the adsorption of heavy metals. However, few historical studies have focused on the influence of fine clay mineral characteristics on metal sorption. Since the reactions between heavy metals and fine clay minerals in sediments remain obscure, this study investigates the influence of fine clay mineral characteristics on metal sorption in a typical urbanizing small watershed. Clay minerals, including nanoparticles with various size fractions ranging from 1000 to 2000 (clay), 450-1000 (fine clay), and 220-450 (very fine clay) nm were used to demonstrate their transformation from well crystalline to poorly crystalline. The nanoparticles were collected and evaluated by determination of their surface area, X-ray diffraction, scanning electron microscopy (SEM) and chemical analyses. The relationship between metal content and properties of the surface sediments was also revealed by canonical correlation analysis. With smaller particle sizes, nanoparticles (very fine clay) were observed to be poorly crystalline, possibly indicating few repetitions of unit cells as a result of preferential structural disruption of other crystal planes caused by pressure-induced phase transition in the fine-size fractions. The first canonical matrix (M) variables of metal contents can be predicted by both surface area and pore volume, followed by kaolinite and illite contents. On the other hand, the category of metal, i.e., Cu, Cr, Zn, or Pb, was significantly correlated with the first 'M' canonical variables. The data obtained in the present study are of fundamental significance in advancing our understanding of the reactions between heavy metals and fine clay minerals in the terrestrial ecosystem.

  12. Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer

    USGS Publications Warehouse

    Shelobolina, Evgenya S.; Anderson, Robert T.; Vodyanitskii, Yury N.; Sivtsov, Anatolii V.; Yuretich, Richard; Lovely, Derek R.

    2004-01-01

    The availability of Fe(III)-bearing minerals for dissimilatory Fe(III) reduction was evaluated in sediments from a petroleum-contaminated sandy aquifer near Bemidji, Minnesota (USA). First, the sediments from a contaminated area of the aquifer, in which Fe(III) reduction was the predominant terminal electron accepting process, were compared with sediments from a nearby, uncontaminated site. Data from 0.5 m HCl extraction of different size fractions of the sediments revealed that the clay size fraction contributed a significant portion of the ‘bio-available’ Fe(III) in the background sediment and was the most depleted in ‘bio-available’ Fe(III) in the iron-reducing sediment. Analytical transmission electron microscopy (TEM) revealed the disappearance of thermodynamically unstable Fe(III) and Mn(IV) hydroxides (ferrihydrite and Fe vernadite), as well as a decrease in the abundance of goethite and lepidocrocite in the clay size fraction from the contaminated sediment. TEM observations and X-ray diffraction examination did not provide strong evidence of Fe(III)-reduction-related changes within another potential source of ‘bio-available’ Fe(III) in the clay size fraction – ferruginous phyllosilicates. However, further testing in the laboratory with sediments from the methanogenic portion of the aquifer that were depleted in microbially reducible Fe(III) revealed the potential for microbial reduction of Fe(III) associated with phyllosilicates. Addition of a clay size fraction from the uncontaminated sediment, as well as Fe(III)-coated kaolin and ferruginous nontronite SWa-1, as sources of poorly crystalline Fe(III) hydroxides and structural iron of phyllosilicates respectively, lowered steady-state hydrogen concentrations consistent with a stimulation of Fe(III) reduction in laboratory incubations of methanogenic sediments. There was no change in hydrogen concentration when non-ferruginous clays or no minerals were added. This demonstrated that Fe

  13. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters < 17 angstroms. Changes in micro porosity (relative to no heat treatment) are most significant for heat treatments 300 °C and above. Alterations are also seen in the chemical properties (CEC, XRD, iodide sorption) of clays, and like pore size distribution changes, are most significant above 300 °C. Overall, the results imply that changes seen in pores size distribution

  14. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis

    NASA Astrophysics Data System (ADS)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui

    2017-09-01

    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  15. Clay minerals as proxies of the late Quaternary East Asian monsoon evolution in the South China Sea revisited

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, X.; He, Z.; Colin, C.; Zhao, Y.

    2012-12-01

    Clay minerals have a significant role in sedimentation and paleoenvironment studies of the South China Sea. Many previous studies showed that the time series variation in late Quaternary clay mineral assemblages presents mostly glacial-interglacial cyclicity, and they were interpreted chemical weathering closely related to contemporaneous climatic changes of source areas. It is quite debatable whether clay minerals can directly indicate the East Asian monsoon evolution. To answer this question, we investigated sediment cores collected in various locations in the South China Sea during the MARCO POLO cruise in 2005, MD05-2904 (2066 m water depth, abbreviated w.d.) and MD05-2905 (1198 m w.d.) in the north, MD05-2901 (1254 m w.d.) and MD05-2899 (2393 m w.d.) in the west, and MD05-2895 (1982 m w.d.) in the south. Our results show that provenance supply and current transport directly control the clay mineralogical compositions in core and surface sediments, with various expression forms in different locations. In the north, the clay mineral assemblage indicates a relationship between surface current transport (for smectite) under the significant influence of the Kuroshio intrusion and deep water transport (for illite and chlorite). In the west, the East Asian monsoons forced surface currents and different clay-composition provenances affect the glacial-interglacial cyclicity of clay mineral variations. In the south, land-sea distribution variations controlled by the sea level change determine the sources of clay minerals. Our new studies suggest that the late Quaternary clay minerals in the South China Sea do not bear contemporaneous paleoclimatic features, and their implication for proxies of the East Asian monsoon evolution is realized through both the provenance supply and current transport processes.

  16. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    SciTech Connect

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 {+-} 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area.

  17. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  18. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    PubMed

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  19. Origin, Behavior and Texture of Clay Minerals in Mongolian Active Fault of Bogd and Comparison with SAFOD Fault Gouge

    NASA Astrophysics Data System (ADS)

    Wenk, H.; Buatier, M.; Chauvet, A.; Kanitpanyacharoen, W.

    2010-12-01

    Fault gouges are generally considered as the highly deformed zone corresponding to the localization of shear during seismic events. Clays are ubiquitous minerals in fault gouges but the origin is unclear. They can form as a result of break up of inherited phyllosilicates during faulting, or during co- or post- deformation events or even during interseismic creeping. In this study, we aim to characterize the origin and nature of the clay minerals, to observe the microtexture and preferred orientation of clay at various scales in order to understand the behavior of clay mineral in seismic faults. The investigation relied on x-ray powder patterns, SEM, TEM and high energy synchrotron x-ray diffraction. The major clay components are smectite, illite-smectite, illite-mica and kaolinite. Our observations suggest that the protolith and the fault rock of the Bogd and paleo-Bogd faults in Mongolia were highly altered by fluids. The fluid-rock interactions allows clay minerals to form and to precipitate kaolinite and smectite. Thus, newly formed clay minerals are heterogeneously distributed in the fault zone. The decrease of smectite component of the highly deformed samples suggests a dehydration process during deformation, leading to illite precipitation. From synchrotron diffraction images, volume fractions and preferred orientation were analyzed. Our analysis shows that texture strength of constituent clays is very weak ranging from 1.05 to 2.59 m.r.d., which is consistent with similar data from SAFOD fault gouge. The clays minerals of the Bogd fault favors the slip weakening behavior of the fault.

  20. Microbial reduction of structurally-coordinated iron in common clay minerals

    NASA Astrophysics Data System (ADS)

    Gaines, R. R.; Scott, S.; Crane, E.; Lackey, J.

    2009-12-01

    Experimental evidence has demonstrated the capacity of some iron reducing bacteria to reduce structurally bound Fe(III) within the crystal lattice of iron-rich smectite clays, releasing dissolved Fe(II) to solution. Here, we present experimental data which suggest that a large pool of lattice-bound iron in marine sediments is available for microbial reduction, and that this microbially-mediated process may constitute a major flux of iron from the geosphere to the biosphere. Prior studies have demonstrated that the Fe-reducing bacterium Shewanella is capable of reducing structurally-coordinated iron from the clay mineral nontronite, a smectite that is unusually iron rich, but is rare in natural settings. Clay minerals are the most abundant materials found at Earth’s surface, but it has remained unclear whether structurally-bound iron in common clay minerals is available for biological processes. It has also remained unclear whether microbial consortia in marine sediments are capable of structural iron reduction as is the lab strain Shewanella. To investigate the potential for microbial reduction of structurally bound iron in common clay minerals, four different clay minerals with iron contents ranging from low (0.8 wt.%; smectite-illite mixed layer ICSz-1) to high (13.9 wt.%; nontronite NAu-1) were exposed to the iron reducer Shewanella oneidensis MR-1 and also to an unknown iron reducing microorganism(s) cultured from anaerobic marine sediments of the San Pedro Basin. Control samples of each mineral were exposed to microwave-killed bacterial cells. After time increments ranging from 7 to 120 days, the degree of structural Fe-reduction in each sample was assessed by measuring the concentration of Fe(II) in solution. Microbially-induced changes in mineralogy were characterized using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The concentration of Fe(II) in solution was observed to increase in all samples. X

  1. Effect of Several Clay Minerals and Humic Acid on the Survival of Klebsiella aerogenes Exposed to Ultraviolet Irradiation1

    PubMed Central

    Bitton, Gabriel; Henis, Y.; Lahav, N.

    1972-01-01

    The effect of various clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet (UV) irradiation was investigated. A protective effect was observed and found to depend on the specific light absorption and light scattering properties of the clay minerals and the humic acid used. The higher the specific absorption, the better was the survival of K. aerogenes after UV irradiation. Bacterial survival was lower in clays saturated with divalent cations (Ca, Zn) than in those homoionic to monovalent cations (K). PMID:5031559

  2. Preferred Orientation and Anisotropy of Clay minerals and Pores in Posidonia Shales

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Chen, K.; Wenk, H.

    2010-12-01

    Shales compose a large part of sedimentary basins and form the seal and source rocks for hydrocarbon reservoirs. They are also of great interest in context of repositories for nuclear waste and carbon sequestration. A comprehensive study of shale properties is thus crucial for seismic prospecting, particularly due to high elastic anisotropy that is contributed by the alignment of constituent clay minerals during compaction and diagenesis. In this study, we quantitatively analyze composition, crystal preferred orientation (or texture), and the 3D porosity structure in four Posidonia shales from Germany using high energy synchrotron x-rays. We can infer texture information from x-ray diffraction images relying on the Rietveld method, as well as determine the 3D porosity structure from tomography images. We observed that quartz and calcite are dominating phases while illite-smectite, illite-mica and kaolinite are the major clay minerals. The texture strength of clays range from 4.22 to 6.12 m.r.d. A comparison of shallow Posidonia shales with deep shales from the North Sea, Saudi Arabia, and the Gulf of Mexico documents that P-wave anisotropy increases with increasing phyllosilicate content (mainly illite-smectite and kaolinite) and increasing burial. Low absorption features in microtomography images indicate porosity (including kerogen and fractures), which is estimated at 1 vol% and observed to be anisotropic, mainly organized parallel to bedding with little connectivity of flat pores in direction perpendicular to the bedding plane.

  3. Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

    PubMed

    Lombardi, Kátia Cylene; Mangrich, Antonio Salvio; Wypych, Fernando; Rodrigues-Filho, Ubirajara Pereira; Guimarães, José L; Schreiner, Wido H

    2006-03-01

    This paper describes the interaction among soil organic matter components with kaolinite, an important clay mineral present in tropical soils, especially in Brazil. XPS data show that the soil organic matter adsorbed on kaolinite has aromatic and aliphatic structures, with phenolic and/or alcoholic functions and carbonyl carbons (CO) of amide and/or carboxylic groups. The N1s spectrum of the kaolinite shows an asymmetric peak that is assigned to amide and protonated ammines probably from humin. The interaction between them is strong enough to resist chemical oxidative or reductive attack besides loose amide functionalities. EPR data show that reductive treatment reduces some Fe3+ of the kaolinite structure, loosing organic components. A schematic representation of the reduction of structural Fe3+ in the concentrated domains and consequently increased concentration of Fe3+ ions in diluted domains of the spectrum is presented. This reinforces the hypothesis that humin is a stable carbon sink in soils when adsorbed to clays.

  4. Solid state vibrational circular dichroism towards molecular recognition: chiral metal complexes intercalated in a clay mineral.

    PubMed

    Sato, Hisako; Tamura, Kenji; Takimoto, Kazuyoshi; Yamagishi, Akihiko

    2017-09-13

    Vibrational circular dichroism (VCD) spectroscopy was applied to study chirality recognition in the interlayer space of a clay mineral. Clay intercalation compounds including two kinds of chiral molecules were prepared. Firstly a cationic metal complex, Δ- or Λ-[Ru(phen)3](2+) (phen = 1,10-phenanthroline), was ion-exchanged into sodium montmorillonite. Thereafter a neutral organic molecule, R- or S-1,1'-bi-2-naphthol (denoted as R- or S-BINOL), was co-adsorbed. The solid state VCD spectra were recorded on the hybrid compounds thus prepared. The intensity of VCD peaks in the region of 1300-1400 cm(-1), which were assigned to the bending vibrations of OH groups in BINOL, was remarkably dependent on the chirality relation between the two intercalated species. This implied that BINOL took a different conformation in response to the chirality of co-existing [Ru(phen)3](2+).

  5. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  6. Cesium Diffusion through Angstrom-Scale Open Spaces in Clay Minerals

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koichiro; Sato, Kiminori; Nakata, Masataka

    2017-03-01

    Saponite clay minerals possess the local molecular structures, where one and two nanosheets are inserted into interlayer spaces forming open spaces with their sizes of ˜3 and ˜9 Å, respectively. Here, Cs diffusion via the above-mentioned open spaces is highlighted based on the results of open space analysis using positronium (Ps) lifetime spectroscopy coupled with a conventional diffusion experiment. A population of Cs is found to significantly migrate in the saponite clay yielding a diffusion coefficient of ˜2.0 × 10-7 cm2 s-1 with an application of Fick's second law, which arises from overall diffusion contributed from open spaces with a variety of sizes. On the other hand, the diffusion coefficient solely attributable to the angstrom-scale open space is ˜2.5 × 10-8 cm2 s-1, which amounts to more than ˜10% than that of overall diffusion.

  7. Adsorption and Desorption of Cesium in Clay Minerals: Effects of Natural Organic Matter and pH

    NASA Astrophysics Data System (ADS)

    Yoon, Hongkyu; Ilgen, Anastasia; Mills, Melissa; Lee, Moo; Seol, Jeung Gun; Cho, Nam Chan; Kang, Hyungyu

    2017-04-01

    Cesium (Cs) released into the environment (e.g., Fukushima accident) poses significant environmental concerns and remediation challenges. A majority of Cs in the environment have remained within the surface soils due to the strong adsorption affinity of Cs towards clay minerals. Different clay minerals have different bonding sites, resulting in various adsorption mechanisms at nanometer scale. For example, the illite commonly has a basal spacing of 1.0 nm, but becomes wider to 1.4 nm once other cations exchange with K in the interlayer site. Cs adsorbs into these expanded wedged zone strongly, which can control its mobility in the environment. In addition, natural organic matter (NOM) in the surface soils can interact with clay minerals, which can modify the mechanisms of Cs adsorption on the clay minerals by blocking specific adsorption sites and/or providing Cs adsorption sites on NOM surface. In this work, three representative clay minerals (illite, vermiculite, montmorillonite) and humic acid (HA) are used to systematically investigate the adsorption and desorption behavior of Cs. We performed batch adsorption experiments over a range of Cs concentrations on three clay minerals with and without HA, followed by sequential desorption batch testing. We tested desorption efficiency as a function of initial adsorbed Cs concentration, HA content, sodium concentration, and pH. The sequential extraction results are compared to the structural changes in clay minerals, measured using extended X-ray absorption fine structure spectroscopy (EXAFS) and aberration-corrected (scanning) transmission electron microscopy (TEM) - energy dispersive X-ray spectroscopy (EDX). Hence, this work aims to identify the mechanisms of Cs fixation at the nanometer (or atomic-) scale as a function of the clay mineral properties (e.g. expandability, permanent surface charge) and varying organic matter content at different pH values and to enhance our atomic-scale mechanistic understanding of

  8. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  9. Evidence for microbial liberation of structurally-coordinated iron in clay minerals as a nutrient source in the world ocean

    NASA Astrophysics Data System (ADS)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.

    2012-12-01

    Clay minerals are the most abundant materials found at the surface of earth and they are the primary constituents of marine sediments. Iron, a limiting nutrient in many marine settings, is a common constituent of clay minerals. Recent in vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe from the crystal lattice of nontronite, an uncommon and particularly Fe-rich (> 12 wt.%) smectitie. Reduction of structurally-coordinated Fe results in both the liberation of Fe(II) to solution, where it is available for other biotic processes, as well as the transformation of smectite to illite. However, it remains unclear: 1. whether Fe-reducers are able to access structurally coordinated Fe found at low wt.% in common clay minerals; and 2. if naturally occuring populations of Fe-reducers are able to reduce structurally coordinated Fe as are some lab strains. In order to address these questions, we conducted in vitro experiments using a suite of sixteen clay minerals with low (0.8 wt.%) to high (13.9 wt.%) Fe concentrations. Clays were treated with Na-dithionite solution to remove surface-bound Fe, isolating for study Fe sourced from within the clay crystal lattice. Experimental evidence clearly indicates that, under in vitro conditions, Fe(III) bound in common clay minerals is available for reduction by the lab strain Shewanella oneidensis MR-1 as well as by naturally-occuring consortia of Fe-reducers cultured from the San Pedro and Santa Monica Basins. Our findings suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly to biogeochemical cycling of Fe and C.

  10. Clay minerals on Mars: Riotinto mining district (Huelva, Spain) as Earth analogue for acidic alteration pathways

    NASA Astrophysics Data System (ADS)

    Mavris, C.; Cuadros, J.; Bishop, J. L.; Nieto, J. M.; Michalski, J. R.

    2015-12-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages indicating processes for which Earth analogues exist. Among them, aluminous clay-sulfate assemblages have been observed, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue site for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration. The oxidation of an extensive pyrite-rich orebody provided mild to extreme acidic fluxes that leached the surrounding rocks for over 20 million years. The mineral assemblages are strongly dependent on their acidic alteration intensity. The observed mineralogical parageneses and leaching conditions for our sites at Riotinto are consistent with three alteration sequences: i) Mild: containing a range of clay minerals from vermiculite to kaolinite, with a wide variety of crystal order and mixed-layering; ii) Intermediate: containing smectite to kaolinite with jarosite-group phases; iii) Advanced: containing kaolinite, jarosite-group phases, and iron oxides. Our findings suggest that, even within this general scheme, the specific alteration pathways can be different.

  11. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  12. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  13. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  14. Quantitative XRD HW-IR plot for clay mineral domain size and lattice strain analyses

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Chen, D. Z.; Zhou, J.; Chen, T.; Wang, H.; Zhang, Z. Q.

    2003-04-01

    Based on integral-breadth method, the one of three basic XRD methods (Klug &Alexander, 1974), authors (2000) proposed a qualitative half width (HW)-intensity ratio (IR) plot for clay mineral domain size and lattice strain analyses. In this study, the quantitative HW-IR plot is further developed on the basis of i) the curve relation between the Voigt function and the Pearson VII function; ii) the relationship between the Kübler index and the Weaver index. By numerical simulating, it is derived a curve relation between shape indexes k of the Voigt function and u of the Pearson VII function. With this curve relation, k and u can be converted each other in an accuracy of ten thousandth and therefore the domain size and the lattice strain contributions can be precisely separated from an XRD peak according to Langford's (1978) formula. For micaceous minerals, the HW-IR plot requires only a pair of values of the Kübler index and the Weaver index from 1nm reflection. For other clay minerals, the plot needs a pair of values of the (00l) peak's half width and intensity ratio IR. IR is a ratio of peak maximum to the intensity at the position of maximum minus 0.422oΔ2Θ in CuKα radiation. This quantitative plot renders a mean dimension of clay particles perpendicular to the reflection plane (00l) and an approximate upper limit strain normal to d001. The accuracy for domain size analysis reaches one tenth of nanometre and that for the lattice strain analysis is in ten thousandth respectively. This plot method can be widely used with any digital X-ray diffractometer, whose XRD data can be converted into text format. Excel 5.0 or latter versions in both English and Chinese can well support the HW-IR plot. This study was supported by NNSFC (Grant No 40272022)

  15. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE PAGES

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  16. Radiation Sensitivity of Natural Organic Matter: Clay Mineral Association Effects in the Callovo-Oxfordian Argillite

    SciTech Connect

    Schäfer, T.; Michel, P; Claret, F; Beetz, T; Wirick, S; Jacobsen, C

    2009-01-01

    Clay-rich low-organic carbon formations (e.g., Callovo-Oxfordian argillite in France and Opalinus Clay in Switzerland) are considered as host rocks for radioactive waste disposal. The clay-organic carbon has a strong impact on the chemical stability of the clays. For this reason, the nature of the clay-organic carbon, the release of hydrophilic organic compounds, namely, humic (HA) and fulvic acids (FA) and the radiation sensitivity of the undisturbed host rock organics was investigated. The clay sample originates from Oxfordian argillite (447 m depth, borehole EST 104). HA and FA were extracted following the standard International Humic Substance Society (IHSS) isolation procedure. Synchrotron based (C-, K-, Ca-, O- and Fe-edge XANES) scanning transmission X-ray microscopy (STXM) and FT-IR microspectroscopy was used to identify under high spatial resolution the distribution of clay-organic matter with different functionality using principal component and cluster analysis. The results show that in this old (Jurassic) geological formation, small parts of the organic inventory (1-5%) keeps the structure/functionality and can be mobilized as hydrophilic humic substance type material (HA and FA). Target spectra analysis shows best correlation for isolated humic acids with organics found in smectite-rich regions, whereas the extractable FA has better spectral similarities with the illite mixed layer minerals (MLM) regions. After radiation of 1.7 GGy under helium atmosphere the same rock sample area was investigated for radiation damage. Radiation damage in the smectite and illite-MLM associated organic matter is comparably low with 20-30% total oxygen mass loss and 13-18% total carbon mass loss. A critical dose dc of 2.5 GGy and a optical density after infinite radiation (OD?) of 54% was calculated under room temperature conditions. C(1s) XANES show a clear increase in Cdouble bond; length as m-dashC bonds especially in the illite-MLM associated organics. This results

  17. Clay minerals in surface sediment of the north Yellow Sea and their implication to provenance and transportation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, An-Chun; Huang, Peng; Xu, Fang-Jian; Zheng, Xu-Feng

    2014-11-01

    The clay minerals in surface sediments of the north Yellow Sea have been identified with X-ray diffraction analysis and scanning electron microscope and energy dispersive X-ray spectrometer analysis to constrain the provenance and sediment transportation system in the area. Illite, with an average abundance of 58%, is the dominant mineral, followed by smectite (20% on average), chlorite (16% on average) and kaolinite (6% on average). The result of the a K-mean clustering analysis for the clay minerals show a close relationship between sedimentary types and clay mineral assemblages: there is more kaolinite and smectite in the muddy area in the western part of the north Yellow Sea and more chlorite in the sandy area in the eastern part. The Huanghe (Yellow River) is considered to provide most of the clay minerals, and in particular, rich kaolinite and smectite to the muddy area, whereas the Yalujiang provides large amounts of illite and chlorite. The spatial distribution characteristics of the clay minerals are closely related with the local circulation system, including the Shandong Coastal Current and Yellow Sea Warm Current. The former transports the outflow of the Huanghe to the north Yellow Sea, whereas the intrusion of the latter in wintertime is responsible for the annular enrichment of smectite in central part, as well as poor classification near Dalian Bay.

  18. Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral.

    PubMed

    da Fonseca, Maria G; de Oliveira, Michelle M; Arakaki, Luiza N H

    2006-09-01

    Vermiculite, a 2:1 clay mineral, was applied as adsorbent for removal of cadmium, zinc, manganese, and chromium from aqueous solutions. Parameters such as time of reaction, effect of pH and cation concentration were investigated. All isotherms were L type of the Gilles classification, except zinc (type S). The adsorbent showed good sorption potential for these cations. The experimental data was analyzed by Langmuir isotherm model showing reasonable adjustment. The quantity of adsorbed cations was 0.50, 0.52, 0.60, and 0.48 mmol g(-1) of Cd(2+), Mn(2+), Zn(2+), and Cr(3+), respectively.

  19. Effects of Natural Microbial Preparations on the Electrokinetic Potential of Bacterial Cells and Clay Minerals

    PubMed Central

    Kiremidjian, Lidia; Stotzky, G.

    1973-01-01

    A complex mixture of fermentation residues and eutrophication products used commercially as a soil amendment and in various phases of sewage treatment was effective in reducing the electrophoretic mobility of clay minerals (kaolinite and montmorillonite) and cells of Agrobacterium radiobacter. The active fraction(s), which is active at very low concentrations, appears to be a stable (to heat, dialysis, concentration, and storage), net negatively charged polymer which may have several positively charged sites. The material does not significantly alter the viscosity or surface tension of aqueous systems and is probably a microbial metabolite(s). PMID:16349962

  20. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.

    PubMed

    Freedman, Miriam Arak

    2015-10-01

    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials.

  1. Laboratory experiments on ammoniated clay minerals with relevance for asteroid (1) Ceres

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; Stefani, Stefania; De Sanctis, Maria Cristina; Piccioni, Giuseppe; Ammannito, Eleonora

    2017-04-01

    Recent observations with VIR spectrometer onboard Dawn spacecraft [1] have suggested the presence of ammoniated phyllosilicates widespread on the surface of asteroid (1) Ceres [2,3]. The global surface composition of Ceres as suggested by VIR average infrared spectrum in the 1-4 micron range appears to be due to a mixture of NH4-bearing phyllosilicates, serpentine, carbonates and a dark absorbing phase (magnetite or amorphous carbon) [2]. An absorption feature occurring near 3.1 micron in the average spectrum is considered the main evidence for the presence of NH4-bearing phase; nevertheless in the past several authors tried to explain this feature, as observed with telescopic spectra, invoking the presence of brucite, cronstedtite, water ice or clays [4]. In this project we are carrying out laboratory experiments with the aim of studying ammoniated phyllosilicates in the visible-infrared range. A suite of 9 clay minerals has been used for this study, including illite, nontronite and montmorillonite. In order to produce the ammoniated species we followed a modified procedure based on the one described in Bishop et al. (2002) [5]. All minerals were reduced in fine grain size (<36 micron), treated with ammonium hydroxide (NH4OH) and heated in oven at 200°C for 24 h at normal pressure conditions, before the measurements. Reflectance spectra were acquired with the Fourier Transform Infrared Spectrometer (FTIR) in use at INAF-IAPS/P-LAB, in the range 1-14 μm, on both clay minerals and NH4-treated clays. Almost all spectra of NH4-treated species are characterized by the occurrence of several new absorption features, appearing at different wavelengths near 2, 3, 6 and 7 micron. In some cases the spectral shape of already existent absorption bands resulted deeply modified. A few species did not show the appearance of new features. These results suggest that NH4+ ions fix in various ways in different minerals. Nontronite and montmorillonite appear to be the best

  2. Effects of natural microbial preparations on the electrokinetic potential of bacterial cells and clay minerals.

    PubMed

    Kiremidjian, L; Stotzky, G

    1973-06-01

    A complex mixture of fermentation residues and eutrophication products used commercially as a soil amendment and in various phases of sewage treatment was effective in reducing the electrophoretic mobility of clay minerals (kaolinite and montmorillonite) and cells of Agrobacterium radiobacter. The active fraction(s), which is active at very low concentrations, appears to be a stable (to heat, dialysis, concentration, and storage), net negatively charged polymer which may have several positively charged sites. The material does not significantly alter the viscosity or surface tension of aqueous systems and is probably a microbial metabolite(s).

  3. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.

    PubMed

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.

  4. Sorption of aromatic compounds to clay mineral and model humic substance-clay complex: effects of solute structure and exchangeable cation.

    PubMed

    Zhang, Yingjie; Zhu, Dongqiang; Yu, Hongxia

    2008-01-01

    Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.

  5. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  6. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; hide

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  7. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  8. Effects of heavy metals on the electrokinetic properties of bacteria, yeast, and clay minerals

    SciTech Connect

    Collins, Y.E.

    1987-01-01

    The electrokinetic patterns of four bacteria (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae, Canida albicans), and two clay minerals (montmorillonite, kaolinite) in the presence of the chloride salts of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and of Na and Mg were determined by microelectrophoresis. The cells and clays were net negatively charged at pH values above their isoelectric point (pI) in solutions of Na, Mg, Hg, and Pb with an ionic strength (..mu..) of 3 x 10/sup -4/. However, at pH values above pH 5.0, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn. The charge of the bacteria and S. cerevisiae also reversed in solution of Ni and Cu with a ..mu.. > 3 x 10/sup -4/, whereas there was no reversal in solutions with a ..mu.. < 3 x 10/sup -4/. The clays became net positively charged when the ..mu.. of Cu was > 3 x 10/sup -4/ and that of Ni was > 1.5 x 10/sup -4/. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (..mu.. = 3 x 10/sup -4/). The pI of the cells in the presence of some heavy metals, especially Ni and Cr, was at higher pH values than in the presence of Na and Mg.

  9. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    PubMed

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  10. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk.

  11. The association of soil organic matter with mineral surfaces depends on clay content in an arable Cambisol

    NASA Astrophysics Data System (ADS)

    Schweizer, Steffen A.; Angelika, Koelbl; Hoeschen, Carmen; Mueller, Carsten W.; Koegel-Knabner, Ingrid

    2017-04-01

    The amount and distribution of mineral-associated soil organic matter (MOM) depends on the availability of adsorptive mineral surface area. In soils with low content of fine-sized mineral particles, the available mineral surface is limited in comparison to soils with high content of fine-sized mineral particles. Accordingly, the spatial distribution of MOM from soils with various contents of fine-sized mineral particles should reflect different structural organization of organo-mineral associations. In this study, we analyzed MOM and further indicators of its binding in the topsoil (020 cm) of an arable Cambisol. The sampled site showed a gradient in the content of clay-sized particles (6-35 %) under similar soil management and biomass input. We obtained fine silt-sized (26.3 μm) and clay-sized (0.22 μm) mineral-associated (>1.6 g cm3) fractions from a combined density and size fractionation. We measured solid-state 13C nuclear magnetic resonance spectra and analyzed the specific surface area of the fractions by N2-BET with and without NaOCl oxidation. The spatial distribution of MOM was determined by nanoscale secondary ion mass spectrometry (NanoSIMS) at a lateral resolution of approximately 100 nm. We found that the mineral-associated carbon concentration of the fine silt and clay-sized fractions decreased from 80 to 40 mg g-1 when the content of clay-sized particles increased from 6 to 15 %. In the clay-rich soils the mineral-associated carbon remained constant at approximately 40 mg g-1 for higher contents of clay-sized particles from 15 to 30 %. In addition, the 12C and 12C14N ion distributions obtained from NanoSIMS indicated a much higher coverage of mineral surface with MOM in the sandy soils than in the clay-rich soils. Our data shows that both the concentration and coverage of MOM is increased in soils with a lower content of fine-sized mineral particles, when the input of organic material to the soil is similar.

  12. Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, Richard K.; Rytuba, James J.

    1979-01-01

    Volcaniclastic sediments deposited in the moat of the collapsed McDermitt caldera complex have been altered chiefly to zeolites and potassium feldspar. The original rhyolitic and peralkaline ash-flow tuffs are included in conglomerates at the caldera rims and grade into a lacustrine series near the center of the collapse. The tuffs show a lateral zeolitic alteration from almost fresh glass to clinoptilolite, clinoptilolite-mordenite, and erionite; to analcime-potassium feldspar; and finally to potassium feldspar. Vertical zonation is in approximately the same order. Clay minerals in associated mudstones, on the other hand, show little lateral variation but a distinct vertical zonation, having a basal dioctahedral smectite, a medial trioctahedral smectite, and an upper dioctahedral smectite. The medial trioctahedral smectite is enriched in lithium (as much as 6,800 ppm Li). Hydrothermal alteration of the volcaniclastic sediments, forming both mercury and uranium deposits, caused a distinct zeolite and clay-mineral zonation within the general lateral zonation. The center of alteration is generally potassium feldspar, commonly associated with alunite. Potassium feldspar grades laterally and vertically to either clinoptilolite or clinoptilolite-mordenite, generally associated with gypsum. This zone then grades vertically and laterally into fresh glass. The clay minerals are a dioctahedral smectite, a mixed-layer clay mineral, and a 7-A clay mineral. The mixed-layer and 7-A clay minerals are associated with the potassium feldspar-alunite zone of alteration, and the dioctahedral smectite is associated with clinoptilolite. This mineralogical zonation may be an exploration guide for mercury and uranium mineralization in the caldera complex environment.

  13. Clay mineral weathering and contaminant dynamics in a casutic aqueous sytem II. Mineral transformation and microscale partitioning

    SciTech Connect

    Choi, Sunkyung; Crosson, Garry S.; Mueller, Karl T.; seraphin, supapan; Chorover, Jon

    2005-04-08

    Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m AlT, 2 m Na*, 1 m NO3 *, pH *14, Cs* and Sr2* present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10*5 to 10* mol kg*. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.

  14. Clay mineral weathering and contaminant dynamics in a caustic aqueous system. II. Mineral transformation and microscale partitioning

    NASA Astrophysics Data System (ADS)

    Choi, Sunkyung; Crosson, Garry; Mueller, Karl T.; Seraphin, Supapan; Chorover, Jon

    2005-09-01

    Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m Al T, 2 m Na +, 1 m NO 3-, pH ˜14, Cs + and Sr 2+ present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs] 0 and [Sr] 0 concentrations from 10 -5 to 10 - mol kg -. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.

  15. Spatial distribution of clay minerals in agrochernozems of erosional and denudational plains in the Stavropol region

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Godunova, E. I.; Shkabarda, S. N.; Samsonova, A. A.; Malueva, T. I.

    2012-09-01

    The distribution pattern of the fine fractions (<1.0 and 1-5 μm) and the mineralogical composition of the agrochernozems formed on the erosional-denudational plains of the Stavropol region have been studied. Erosion and denudation caused the redistribution of the fine material within the catena with its maximal accumulation on the lowermost part of the slope. The same processes favored the formation of surface deposits slightly differing in the composition of the principal mineral phases, i.e., complex disordered mixedlayered micas-smectites with varying combinations of micaceous and smectite layers in crystallites and di- and trioctahedral hydromicas. Imperfect kaolinite and magnesium-ferric chlorite are accompanying minerals. An increase in the amount of mixed-layered minerals with smectite layer is observed down the profile. In addition to the mentioned minerals, the individual smectite and clinoptilolite, which are components of Tertiary deposits, are identified in the lower parts of the agrochernozem profiles. The fine-silt fractions consist of (in decreasing order) di- and tri-octahedral micas, quartz, feldspars, plagioclase, and an admixture of phyllosilicates (kaolinite, chlorite, and mixed-layered chlorite-smectites). The maximal amount of the fine fraction, as well as the maximal amount of mica in it, is registered in the soils in the lower part of the slope. The phyllosilicates are decomposed in this fraction in the upper horizons. The seven-year-long application of mineral fertilizers intensified the peptization of the soil mass in the arable horizons, which increased the content of clay particles in them. A more contrasting distribution of the mixed-layered formations in the profiles, a considerable decrease in their reflection intensities, an increase in the structural disorder of the minerals, and a certain increase in the content of the fine-dispersed quartz are observed.

  16. Microorganism-induced weathering of clay minerals in a hydromorphic soil

    NASA Astrophysics Data System (ADS)

    Hong, Hanlie; Fang, Qian; Cheng, Liuling; Wang, Chaowen; Churchman, Gordon Jock

    2016-07-01

    In order to improve the understanding of factors influencing weathering in hydromorphic soils, the clay mineral and chemical compositions, iron (hydr)oxides, organic compounds, and Sr and Nd isotopic compositions, of hydromorphic soils on the banks of the Liangzi Lake, Hubei province, south China, were investigated. The B horizon in the lower profile exhibits a distinct net-like pattern, with abundant short white veins within the red-brown matrix. Their various 87Sr/86Sr and 143Nd/144Nd isotopic compositions showed only small variations of 0.7270-0.7235 and 0.51200-0.51204, respectively, consistent with the composition of Yangtze River sediments, indicating that the soils were all derived from alluvium from the catchment. The white veins contained notably more SiO2, Al2O3, TiO2, and mobile elements relative to the red-brown matrix, while they both showed similar values for the chemical index of alteration of 86.7 and 87.1, respectively, and displayed similar degrees of weathering. The clay minerals in A, AE, and E horizons of the soil profile were illite, kaolinite, and mixed-layer illite-smectite. These same three clay minerals comprised the white net-like veins in the soil B horizon, whereas only illite and kaolinite were observed in the red-brown matrix. Iron (hydr)oxides in A, AE, and E horizons of the soil profile were hematite and goethite, whereas in the red-brown matrix of the B horizon they were hematite, goethite, and ferrihydrite. Different organic compounds were observed for the white vein and the red-brown matrix in the soil B horizon: an 18:2 fatty acid biomarker for fungi in the net-like vein, but not in the red-brown matrix. Compared with the red-brown matrix, the white net-like vein also clearly contained more mono-unsaturated fatty acids, which are sometimes associated with bacteria that have the capacity to reduce Fe(III). Thus, migration of iron and the formation of the net-like veins involved the participation of biota during the hydromorphic

  17. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.

    PubMed

    Neumann, Anke; Olson, Tyler L; Scherer, Michelle M

    2013-07-02

    Despite the importance of Fe redox cycling in clay minerals, the mechanism and location of electron transfer remain unclear. More specifically, there is some controversy whether electron transfer can occur through both basal and edge surfaces. Here we used Mössbauer spectroscopy combined with selective chemical extractions to study electron transfer from Fe(II) sorbed to basal planes and edge OH-groups of clay mineral NAu-1. Fe(II) sorbed predominantly to basal planes at pH values below 6.0 and to edge OH-groups at pH value 7.5. Significant electron transfer occurred from edge OH-group bound Fe(II) at pH 7.5, whereas electron transfer from basal plane-sorbed Fe(II) to structural Fe(III) in clay mineral NAu-1 at pH 4.0 and 6.0 occurred but to a much lower extent than from edge-bound Fe(II). Mössbauer hyperfine parameters for Fe(II)-reacted NAu-1 at pH 7.5 were consistent with structural Fe(II), whereas values found at pH 4.0 and 6.0 were indicative of binding environments similar to basal plane-sorbed Fe(II). Reference experiments with Fe-free synthetic montmorillonite SYn-1 provided supporting evidence for the assignment of the hyperfine parameters to Fe(II) bound to basal planes and edge OH-groups. Our findings demonstrate that electron transfer to structural Fe in clay minerals can occur from Fe(II) sorbed to both basal planes and edge OH-groups. These findings require us to reassess the mechanisms of abiotic and microbial Fe reduction in clay minerals as well as the importance of Fe-bearing clay minerals as a renewable source of redox equivalents in subsurface environments.

  18. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    PubMed

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  19. Investigation of frayed edge site formation in high structural charge clay minerals by Molecular Dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kulasinski, K.; Bourg, I. C.; Lammers, L. N.

    2016-12-01

    The 2:1 clay minerals contribute a significant fraction of the ion exchange capacity in soils and are characterized by their layered structure with negative net charge. The edge regions of relatively high structural charge or "micaceous" clays (e.g. illites) exhibit a high affinity for radiocesium ions, which are a major environmental contaminant. Previous studies showed a clear (but unexplained) dependence of ion accessibility to edge sites on the aqueous solution composition, which may be related to the influence of interlayer thickness (d-spacing) on the kinetics of ion exchange at the edge. In particular, the presence of aqueous Ca2+ increases the availability of high-affinity frayed edge sites. We use atomistic Molecular Dynamics (MD) simulations to investigate in detail the impact of solution composition on the structure and energetics of frayed edges in micaceous clay. Our MD model is a several nm-wide K-illite particle immersed in NaCl or CaCl2 electrolyte solutions (Fig. 1a). Unconstrained MD simulations show that the near-edge d-spacing does not depend on salinity but does depend on the valence of solvated cations adsorbed at basal surfaces due to additional Coulombic repulsion. Steered MD simulations (Umbrella Sampling, Potential of Mean Force) were used to investigate the mechanism of frayed edge site formation. We find that the energy barrier for Ca2+ to enter the edge (Fig. 1b) strongly depends on the configuration of neighboring cations. Additionally, we observe the spontaneous hydration of interlayer Ca ions inserted near the edge. Exchange of hydrated ions in the near-edge region of otherwise anhydrous clay minerals makes the d-spacing increase, creating the wedge region characteristic of a frayed edge site. This exchange increases the accessibility of the interlayer to subsequent K-Cs exchange. In short, our simulations provide molecular scale insight into the formation of frayed edge sites and its dependence on solution chemistry, particularly on

  20. Quality-assured evaluation of effective porosity using fit-for-purpose estimates of clay-mineral volume fraction

    NASA Astrophysics Data System (ADS)

    Worthington, Paul F.

    2010-05-01

    Reservoirs that contain dispersed clay minerals traditionally have been evaluated petrophysically using either the effective or the total porosity system. The major weakness of the former is its reliance on "shale" volume fraction ( Vsh) as a clay-mineral indicator in the determination of effective porosity from well logs. Downhole clay-mineral indicators have usually delivered overestimates of fractional clay-mineral volume ( Vcm) because they use as a reference nearby shale beds that are often assumed to comprise clay minerals exclusively, whereas those beds also include quartzitic silts and other detritus. For this reason, effective porosity is often underestimated significantly, and this shortfall transmits to computed hydrocarbons in place and thence to estimates of ultimate recovery. The problem is overcome here by using, as proxy groundtruths, core porosities that have been upscaled to match the spatial resolutions of porosity logs. Matrix and fluid properties are established over clean intervals in the usual way. Log-derived values of Vsh are tuned so that, on average, the resulting log-derived porosities match the corresponding core porosities over an evaluation interval. In this way, Vsh is rendered fit for purpose as an indicator of clay-mineral content Vcm for purposes of evaluating effective porosity. The method is conditioned to deliver a value of effective porosity that shows overall agreement with core porosity to within the limits of uncertainty of the laboratory measurements. This is achieved through function-, reservoir- and tool-specific Vsh reduction factors that can be applied to downhole estimates of clay-mineral content over uncored intervals of similar reservoir character. As expected, the reduction factors can also vary for different measurement conditions. The reduction factors lie in the range of 0.29-0.80, which means that in its raw form, log-derived Vsh can overestimate the clay-mineral content by more than a factor of three. This

  1. Long-term variations of clay mineral composition in the Andaman Sea (IODP Exp. 353 Site U1447): preliminary result

    NASA Astrophysics Data System (ADS)

    Lee, J.; Khim, B. K.; Cho, H. G.; Kim, S.; 353 Scientists, I. E.

    2016-12-01

    Clay mineral studies in the Bengal Fan have allowed the reconstruction of the erosional history of the Himalayan-Tibetan complex since the Early Miocene. Several factors such as climate change and tectonic activity are important for the erosion rate of the Himalaya-Tibet complex. IODP Expedition 353 Site U1447 (10°47.4'N, 93°00'E; 1391 mbsl) was drilled on a ridge 45 km offshore Little Andaman Island in the Andaman Sea, penetrating to total depths of 738 m. Riverine sediments supplied mainly by the Irrawaddy and Salween (draining the Indo-Burman Ranges; smectite-rich) and the Ganga/Brahmaputra (draining the Himalaya; illite-rich) via the surface currents have been known to deposit in the Andaman Sea. We measured clay minerals of 38 sediment samples collected from 150 to 737 m CSF-A at Site U1447 in order to reveal long-term variation patterns of clay minerals and their controlling factors. Age reconstruction of Site U1447 aided by shipboard biostratigraphic and paleomagnetic data defined the study interval spanning from the Late Miocene ( 10 Ma) to Early Pleistocene ( 1.25 Ma). At this interval, clay minerals consist mainly of smectite (28-61% with an average of 47%) followed by illite (20-41% with an average of 29%), kaolinite (9-19% with an average of 14%), and chlorite (5-15% with an average of 10%). Variation of clay mineral compositions is divided into three stages; almost consistent variations of all clay minerals (from 750 to 570 m CSF-A; 10.0 to 7.5 Ma), gradual decrease of smectite and increase of illite and chlorite (from 570 to 400 m CSF-A; 7.5 to 4.5 Ma), and great fluctuation of all clay minerals (from 400 to 150 m CSF-A; 4.5 to 1.1 Ma). Such long-term clay mineral changes may be related to provenance switches, tectonic evolution of the source regions, climatic variations, degree of volcanism with basin evolution, sedimentation history by sea level changes or some combination of these factors.

  2. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve

    2013-01-01

    the last three varieties may be contemporaneous. One sample shows agate (alpha- quartz) that was precipitated between the episodes of deposition of the fine-grained and coarse-grained 'griffithite.' 'Griffithite' is not unique as a possible terrestrial analog - some clay minerals from the Doushantou formation, China, have similar 02L diffraction bands, and many basalts contain smectites in vesicles and as replacements after olivine. Similar trioctahedral smectites occur also in the nakhlite martian meteorites - as veinlets and replacements of olivine. By understanding the formation of these terrestrial clays, we hope to constrain the nature and mechanism of formation of the Sheepbed clay mineral.

  3. First-principles study of cesium adsorption to weathered micaceous clay minerals

    NASA Astrophysics Data System (ADS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  4. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    PubMed

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  5. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure.

    PubMed

    Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong

    2017-04-01

    Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd(2+)) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd(2+) sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R(2) > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd(2+), in particular zeolite, and the percentage decreases for Cd(2+) sorption increased with increasing concentrations of Cd(2+) as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd(2+), however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd(2+) concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd(2+) sorption. The adsorbed form was found to inhibit Cd(2+) sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd(2+) sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd(2+) sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils. Copyright © 2017 Elsevier

  6. Provenance of deglacial IRD and clay minerals in the Chukchi Plateau, western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Park, K. K.; Khim, B. K.; Ohkushi, K.

    2012-04-01

    A gravity core PC01 with a multiple core PL01 was collected from the Chukchi Plateau in the western Arctic Ocean on the R/V Mirai Cruise MR09-03. Core PL01 was compensated for the top-loss of core PC01, which represents a complete composite core. Age of the composite core was estimated by correlation of geochemical properties and IRD abundance with well-dated cores in the western Arctic Ocean, because AMS 14C dates of bulk sediments were contaminated by old carbon. The distinct deglacial interval of the composite core was characterized by high CaCO3 and TOC contents, high C/N ratios, and low δ13C values, which clearly indicates the increased terrestrial contribution. Based on the microscope and SEM observation, the major IRD constituents are composed of carbonate minerals, supporting the high CaCO3 content at the deglacial interval. These deglacial IRDs including carbonate minerals are possibly originated from the Canadian Arctic Archipelago. Clay mineral data at the high IRD interval show high kaolinite/chlorite ratios due to the increase of kaolnite that may be derived from the northern Alaskan margin of the North America. Therefore, the deglacial interval with high IRD abundance and increase of kaolinite/chlorite ratios indicates the intensified Beaufort Gyre system that played an important role in the sediment delivery.

  7. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    NASA Astrophysics Data System (ADS)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  8. Interactions Between Chlorinated Waste Solvents and Clay Minerals in Low Permeability Subsurface Layers

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero-Diaz, M.; Demond, A. H.

    2014-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. These layers may have a different mineralogical make up than the surrounding geologic media; specifically, they may be characterized by a high clay content. Although these layers are often considered inert, interactions may occur between the clay minerals and the waste liquids that may influence transport. Measurements of the basal spacing of Na-montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that it is similar to that with water; however, its basal spacing in contact with waste chlorinated liquids was reduced, leading to cracking. In fact, the basal spacing in contact with the waste chlorinated liquids was closer to that in contact with air than in contact with water. The observation that contact with pure organic liquids did not cause cracking, but contact with chlorinated wastes obtained from the field did, suggests that other components of the waste are critical to the basal spacing reduction process. Screening experiments indicated that the presence of a binary mixture of surfactants, a nonionic and an anionic surfactant, in the chlorinated solvent were necessary to cause the cracking at the same rate and magnitude as the chlorinated wastes obtained from the field. Fourier transform infrared (FT-IR) spectroscopy measurements suggest that the mixture alters the adsorbed water OH-bending band, implying a displacement of adsorbed water. Coupling these results with sorption and x-ray diffraction (XRD) measurements, a hypothesis of component conformation in the clay interlayer space that leads to cracking can be constructed.

  9. NMR spectroscopic investigations of surface and interlayer species on minerals, clays and other oxides

    SciTech Connect

    Kirkpatrick, R.J.; Yeongkyoo Kim; Weiss, C.A.; Cygan, R.T.

    1996-07-01

    The behavior of chemical species adsorbed on solid surfaces and exchanged into clay interlayers plays a significant role in controlling many natural and technologically important processes, including rheological behavior, catalysis, plant growth, transport in natural pore fluids and those near anthropogenic hazardous waste sites, and water-mineral interaction. Adsorption and exchange reactions have been the focus of intense study for many decades. Only more recently, however, have there been extensive spectroscopic studies of surface species. Among the spectroscopic methods useful for studying surface and exchanged species (e.g., infrared, X-ray photoelectron spectroscopy [XPS] and X-ray absorption spectroscopy [XAS]), nuclear magnetic resonance spectroscopy (NMR) has the considerable advantage of providing not only structural information via the chemical shift and quadrupole coupling constant but dynamical information in the Hz-mHz range via lineshape analysis and relaxation rate measurements. It is also possible to obtain data in the presence of a separate fluid phase, which is essential for many applications. This paper illustrates the range of applications of NMR methods to surface and exchanged species through review of recent work from our laboratory on Cs in clay interlayers and Cs, Na and phosphate adsorbed on oxide surfaces. The substrate materials used for these experiments and our long-term objectives are related to problems of geochemical interest, but the principals and techniques are of fundamental interest and applicable to a wide range of technological problems.

  10. Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Hamann, Yvonne; Ehrmann, Werner; Schmiedl, Gerhard; Kuhnt, Tanja

    2009-05-01

    The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.

  11. Sedimentary processes on the Mekong subaqueous delta: Clay mineral and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Xue, Zuo; Paul Liu, J.; DeMaster, Dave; Leithold, Elana L.; Wan, Shiming; Ge, Qian; Nguyen, Van Lap; Ta, Thi Kim Oanh

    2014-01-01

    Sedimentary processes on the inner Mekong Shelf were investigated by examining the characteristics of sediments sampled in gravity cores at 15 locations, including grain size, clay mineralogy, sediment accumulation rates, and the elemental and stable carbon isotopic composition of organic matter (atomic C/N ratios and δ13C). Deltaic deposits exhibit contrasting characteristics along different sides of the delta plain (South China Sea, SCS hereafter, to the east and Gulf of Thailand, GOT hereafter, to the west) as well as on and off the subaqueous deltaic system. On one hand, cores recovered from the subaqueous delta in the SCS/GOT are consisted of poorly/well sorted sediments with similar/different clay mineral assemblage with/from Mekong sediments. Excess 210Pb profiles, supported by 14C chronologies, indicate either "non-steady" (SCS side) or "rapid accumulation" (GOT side) processes on the subaqueous delta. The δ13C and C/N ratio indicate a mixture of terrestrial and marine-sourced organic matter in the deltaic sediment. On the other hand, cores recovered from areas with no deltaic deposits or seaward of the subaqueous delta show excess 210Pb profiles indicating "steady-state" accumulation with a greater proportion of marine-sourced organic matter. Core analysis's relevance with local depositional environment and previous acoustic profiling are discussed.

  12. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; hide

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  13. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; Franz, H. B.; Glavin, D. P.; Jones, J. H.; McAdam, A. C.; Pavlov, A. A.; Trainer, M. G.; Williford, K. H.

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  14. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations

    NASA Astrophysics Data System (ADS)

    Dümig, Alexander; Häusler, Werner; Steffens, Markus; Kögel-Knabner, Ingrid

    2012-05-01

    Interactions between organic and mineral constituents prolong the residence time of organic matter in soils. However, the structural organization and mechanisms of organic coverage on mineral surfaces as well as their development with time are still unclear. We used clay fractions from a soil chronosequence (15, 75 and 120 years) in the foreland of the retreating Damma glacier (Switzerland) and from mature soils outside the proglacial area (>700 and <3000 years) to elucidate the evolution of organo-mineral associations during initial soil formation. The chemical composition of the clay-bound organic matter (OM) was assessed by solid-state 13C NMR spectroscopy while the quantities of amino acids and neutral sugar monomers were determined after acid hydrolysis. The mineral phase was characterized by X-ray diffraction, oxalate extraction, specific surface area by N2 adsorption (BET approach), and cation exchange capacity at pH 7 (CECpH7). The last two methods were applied before and after H2O2 treatment. We found pronounced shifts in quantity and quality of OM during aging of the clay fractions, especially within the first one hundred years of soil formation. The strongly increasing organic carbon (OC) loading of clay-sized particles resulted in decreasing specific surface areas (SSA) of the mineral phases and increasing CECpH7. Thus, OC accumulation was faster than the supply of mineral surfaces and cation exchange capacity was mainly determined by the OC content. Clay-bound OC of the 15-year-old soils showed high proportions of carboxyl C and aromatic C. This may point to remnants of ancient OC which were inherited from the recently exposed glacial till. With increasing age (75 and 120 years), the relative proportions of carboxyl and aromatic C decreased. This was associated with increasing O-alkyl C proportions, whereas accumulation of alkyl C was mainly detected in clay fractions from the mature soils. These findings from solid-state 13C NMR spectroscopy are in

  15. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    PubMed

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A comparison of heavy mineral assemblage between the loess and the Red Clay sequences on the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin; Wang, Zhao; Song, Yougui; Pfaff, Katharina; Luo, Zeng; Nie, Junsheng; Chen, Wenhan

    2016-06-01

    QEMSCAN-based (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) heavy mineral analysis has recently been demonstrated an efficient way to allow a rapid extraction of provenance information from sediments. However, one key issue to correctly obtain a provenance signal using this technique is to clearly separate effects of diagenetic alteration on heavy minerals in sediments, especially in fine-grained loess. Here we compare heavy mineral assemblages of bottom Quaternary loess (L33) and upper Pliocene Red Clay of three sites on the Chinese Loess Plateau (CLP). Two sites (Chaona and Luochuan) with similar modern climate conditions show similar heavy mineral assemblages but contain much less of the unstable heavy mineral amphibole than the drier Xifeng site. This result provides strong evidence supporting that climate-caused diagenesis is an important factor controlling heavy mineral assemblages of fine-grained loess. However, heavy mineral assemblages are similar for loess and paleosol layers deposited after 0.5 Ma on the Chinese Loess Plateau regardless of climate differences, suggesting that time is also a factor controlling heavy mineral assemblages of loess and Red Clay. Our high resolution sampling of the upper Miocene-Pliocene Chaona Red Clay sequence reveals similar heavy mineral compositions with a minor amphibole content, different from the drier Xifeng site results of the same age. This result indicates that the monsoonal climate pattern might have been maintained since the late Miocene. Furthermore, it indicates that the heavy mineral method is promising in tracing provenance for sites northwest of the Xifeng site on the Loess Plateau.

  17. Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals

    USGS Publications Warehouse

    Kerns, R.L.; Mankin, C.J.

    1968-01-01

    Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet. Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density. The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration. Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies. ?? 1968.

  18. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation

    NASA Astrophysics Data System (ADS)

    Zhao, Linduo; Dong, Hailiang; Edelmann, Richard E.; Zeng, Qiang; Agrawal, Abinash

    2017-03-01

    In pedogenic and diagenetic processes, clay minerals transform from pre-existing phases to other clay minerals via intermediate interstratified clays. Temperature, pressure, chemical composition of fluids, and time are traditionally considered to be the important geological variables for clay mineral transformations. Nearly ten years ago, the role of microbes was recognized for the first time, where microbial reduction of structural Fe(III) in smectite resulted in formation of illite under ambient conditions within two weeks. However, the opposite process, the oxidation of structural Fe(II) in illite has not been studied and it remains unclear whether or not this process would result in the back reaction, e.g., from illite to smectite. The overall objective of this study was to investigate biological oxidation of structural Fe(II) in illite coupled with nitrate reduction and the effect of this process on clay mineral transformation. Laboratory incubations were set up, where structural Fe(II) in illite served as electron donor, nitrate as electron acceptor, and Pseudogulbenkiania sp. strain 2002 as mediator. Solution chemistry and gas composition were monitored over time. Mineralogical transformation resulting from bio-oxidation was characterized with X-ray diffraction and scanning and transmission electron microscopy. Our results demonstrated that strain 2002 was able to couple oxidation of structural Fe(II) in illite with reduction of nitrate to N2 with nitrite as a transient intermediate. This oxidation reaction resulted in transformation of illite to smectite and ultimately to kaolinite (illite → smectite → kaolinite transformations). This study illustrates the importance of Fe redox process in mediating the smectite-illite mineral cycle with important implications for Fe redox cycling and mineral evolution in surficial earth environments.

  19. The role of clay minerals in the preservation of organic matter in sediments of qinghai lake, NW China

    USGS Publications Warehouse

    Yu, B.; Dong, H.; Jiang, H.; Lv, G.; Eberl, D.; Li, S.; Kim, J.

    2009-01-01

    The role of saline lake sediments in preserving organic matter has long been recognized. In order to further understand the preservation mechanisms, the role of clay minerals was studied. Three sediment cores, 25, 57, and 500 cm long, were collected from Qinghai Lake, NW China, and dissected into multiple subsamples. Multiple techniques were employed, including density fractionation, X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), total organic carbon (TOC) and carbon compound analyses, and surface area determination. The sediments were oxic near the water-sediment interface, but became anoxic at depth. The clay mineral content was as much as 36.8%, consisting mostly of illite, chlorite, and halloysite. The TEM observations revealed that organic matter occurred primarily as organic matter-clay mineral aggregates. The TOC and clay mineral abundances are greatest in the mid-density fraction, with a positive correlation between the TOC and mineral surface area. The TOC of the bulk sediments ranges from 1 to 3% with the non-hydrocarbon fraction being predominant, followed by bitumen, saturated hydrocarbon, aromatic hydrocarbons, and chloroform-soluble bitumen. The bimodal distribution of carbon compounds of the saturated hydrocarbon fraction suggests that organic matter in the sediments was derived from two sources: terrestrial plants and microorganisms/algae. Depthrelated systematic changes in the distribution patterns of the carbon compounds suggest that the oxidizing conditions and microbial abundance near the water-sediment interface promote degradation of labile organic matter, probably in adsorbed form. The reducing conditions and small microbial biomass deeper in the sediments favor preservation of organic matter, because of the less labile nature of organic matter, probably occurring within clay mineral-organic matter aggregates that are inaccessible to microorganisms. These results have important implications for our

  20. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals.

    PubMed Central

    Collins, Y E; Stotzky, G

    1992-01-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher p

  1. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite

    SciTech Connect

    Fernandez, Rodrigo; Martirena, Fernando; Scrivener, Karen L.

    2011-01-15

    This paper investigates the decomposition of three clayey structures (kaolinite, illite and montmorillonite) when thermally treated at 600 {sup o}C and 800 {sup o}C and the effect of this treatment on their pozzolanic activity in cementitious materials. Raw and calcined clay minerals were characterized by the XRF, XRD, {sup 27}Al NMR, DTG and BET techniques. Cement pastes and mortars were produced with a 30% substitution by calcined clay minerals. The pozzolanic activity and the degree of hydration of the clinker component were monitored on pastes using DTG and BSE-IA, respectively. Compressive strength and sorptivity properties were assessed on standard mortars. It was shown that kaolinite, due to the amount and location of OH groups in its structure, has a different decomposition process than illite or montmorillonite, which results in an important loss of crystallinity. This explains its enhanced pozzolanic activity compared to other calcined clay-cement blends.

  2. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals.

    PubMed

    Lin, Y; Munroe, P; Joseph, S; Ziolkowski, A; van Zwieten, L; Kimber, S; Rust, J

    2013-03-01

    In this study biochar mixtures comprising a Jarrah-based biochar, chicken litter (CL), clay and other minerals were thermally treated, via torrefaction, at moderate temperatures (180 and 220 °C). The objectives of this treatment were to reduce N losses from CL during processing and to determine the effect of both the type of added clay and the torrefaction temperature on the structural and chemical properties of the final product, termed as an enhanced biochar (EB). Detailed characterisation indicated that the EBs contained high concentrations of plant available nutrients. Both the nutrient content and plant availability were affected by torrefaction temperature. The higher temperature (220 °C) promoted the greater decomposition of organic matter in the CL and dissociated labile carbon from the Jarrah-based biochar, which produced a higher concentration of dissolved organic carbon (DOC). This DOC may assist to solubilise mineral P, and may also react with both clay and minerals to block active sites for P adsorption. This subsequently resulted in higher concentrations of plant available P. Nitrogen loss was minimised, with up to 73% of the initial total N contained in the feedstock remaining in the final EB. However, N availability was affected by both torrefaction temperature and the nature of the clay minerals added. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.

    PubMed

    El-Bayaa, A A; Badawy, N A; Alkhalik, E Abd

    2009-10-30

    It is important to assess the effects of ionic strength when studying adsorption of metal ions on clay mineral because the background salt may complex metals and compete for adsorption sites. The sorption behavior of vermiculite pure clay mineral has been studied with respect to copper and chromium as a function of ionic strength in single metal ion solutions. Background electrolytes used in these experiments were KCl, NaCl and NH4Cl. The studies were conducted by a batch method at temperature 25 degrees C. The adsorption capacity and adsorption energy for each metal ion were calculated from the Langmuir adsorption isotherm. Also the competitive adsorption behavior of some heavy metal ions such as Cr(III), Cu(II), Ni(II) and Co(II) by vermiculite pure clay mineral was studied. The result shows the competition between coexisting heavy metal cations for the same adsorption sites of an adsorbent. However, when trivalent metal was added to the solution it competitively replaced divalent ions that had been previously adsorbed onto the vermiculite pure clay mineral, resulting in the desorption of these metals into the solution.

  4. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  5. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  6. Lithium, a preliminary survey of its mineral occurrence in flint clay and related rock types in the United States

    USGS Publications Warehouse

    Tourtelot, H.A.; Brenner-Tourtelot, E. F.

    1978-01-01

    Maximum concentrations of lithium found in samples of flint clay and associated rocks of Pennsylvanian age in different States, in parts per million (ppm), are: Missouri, 5100; Pennsylvania-Maryland, 2100; Kentucky, 890; Ohio, 660; Alabama, 750; and Illinois, 160. Lithium-bearing kaolin deposits are distributed in the Coastal Plain province from New Jersey to Texas, and one occurs in Idaho; maximum lithium concentrations in samples from these deposits range from 64 to 180 ppm. The maximum concentration found in the Arkansas bauxite region is 460 ppm and that in flint clay in Colorado is 370 ppm. Samples from areas other than Pennsylvania, Maryland, Kentucky and Missouri are relatively few in number, represent mostly commercially valuable clays, and represent only a part of the refractory clay deposits in the United States. Data are not available on the clays associated with these deposits that may be unusable because they contain too much lithium as well as other deleterious elements. In both Pennsylvania and Missouri, lithium contents vary regionally between districts and locally between deposits. In samples containing more than 2000 ppm lithium, the lithium occurs in a dioctahedral chlorite mineral very similar to cookeite, which previously has not been recognized in sedimentary clays. The associated clays consist chiefly of well-crystallized kaolinite. The dioctahedral chlorite, however, seems to be most abundant where diaspore and boehmite occur along with the kaolinite. Barium, chromium, copper, phosphorus and strontium are present in some samples in amounts of several hundred pans per million or more, and may contribute to the failure of some clays to perform satisfactorily in firing tests. Lithium-rich clays could serve as a significant lithium resource in the very distant future. Clays that contain as much as 1% lithium may be common enough in Missouri or in Pennsylvania to be produced as a by-product to help support benefication costs for refractory clays

  7. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  8. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  9. Interplay between cataclasis, clay mineral diagenesis and porosity reduction in deformation bands in unconsolidated arkosic sands

    NASA Astrophysics Data System (ADS)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne

    2013-04-01

    . The dominant deformation mechanisms and the magnitude of porosity reduction in the carbonate-free lithologies are controlled by the initial mica content, mean grain size, level of alteration and albite content in the host rock. The studied deformation bands show a preferred fracturing of sericitized albite grains and the smearing of micas into the pore space. These processes increase the amount of phyllosilicates in the pore space and facilitate the growth of various authigenic clay minerals like smectite, vermiculite, kaolinite and illite. Because of the changed petrophysical properties the deformation bands show a different diagenetic evolution in comparison with the host rock. We identified 4 steps in the development from a high-porosity host rock to a low porosity deformation band. The measured reduction in porosity by up to 18% is associated with a permeability reduction, reflected in the retention of fluids along the deformation bands with the highest content of authigenic clay minerals.

  10. Changes of clay mineral assemblages in Lake Hovsgol (Mongolia) in the course of their transportation and sedimentation

    NASA Astrophysics Data System (ADS)

    Zhdanova, A.; Solotchina, E.; Krivonogov, S.

    2009-04-01

    As known, clay minerals of lake sediments sensitively indicate climatic and environmental changes. Composition of clay mineral assemblages depends on petrography and weathering pattern of parental rocks in lake catchments. Lake Hovsgol, the second large basin in the Baikal Rift Zone, differs from the first one by extremely small drainage area: its ratio to the lake surface is 1.8 (compare with 17 of Lake Baikal). This peculiarity of lake Hovsgol defines the amount of clay minerals deposited in bottom sediments and the value of their transformation in the course of transportation We studied a number of short sediment cores (up to 1.75 m long) obtained from different parts of the lake in the framework of the Hovsgol Drilling Project, 2001-2007. Regularities of modern clay minerals transportation were studied in 80 samples from river mouths and piedmont slopes around the lake. Their mineral composition was determined by X-ray powder diffraction and IR-spectroscopy. For X-ray, we prepared the oriented mounts by transferring the suspension of bulk sample in distilled water onto a glass slide. Slides, dried at room temperature, then were solvated for about 24 hours with ethylene-glycol vapor in an evacuated desiccator. Measurements were conducted on an automated powder diffractometer with CuKα radiation, graphite monochromator. The comparative analysis of clay minerals and their crystallochemical parameters were performed by the original method of modeling X-ray diffraction profiles, based on the calculation of the interference function of the one-dimensional disordered crystals with finite thickness and using a specially developed optimization procedure. Quantitative estimations of the composition of minerals such as quartz, plagioclase, carbonate were made by IR-spectroscopy. Samples were prepared using the KBr pellet method. It was established that the mineral association in bottom sediments includes illite, smectite, chlorite, chlorite-smectite, muscovite, kaolinite

  11. Are Clay Minerals a Climate Constraint? A Review of Prior Data and New Insights on Martian "Weathering Sequences"

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Dundar, M.

    2016-12-01

    Most clay minerals on Mars are Fe/Mg smectites or chlorites, which typically form from mafic protoliths in aqueous chemical systems that are relatively closed and thus require liquid water but not large amounts of water throughput and large-scale chemical leaching. They may thus form either in the subsurface or under select conditions at the surface. However, Al clay minerals, discovered in multiple locations on Mars (Arabia Terra, Northeast Syrtis, Libya Montes Terra Sirenum, Eridania, circum-Hellas, Valles Marineris) may provide evidence of substantial water throughput, if their protolith materials were basaltic. This is because formation of Al clays from a mafic protolith requires removal of Mg and either formation of accompanying Fe oxides or removal of Fe. Thus, the observed sequences of Al clays atop Fe/Mg clays were proposed to represent open system weathering and possibly a late climate optimum around the late Noachian/early Hesperian [1]. Later, they were comprehensively cataloged and reported to represent "weathering sequences" similar to those in terrestrial tropical environments [2]. However, key questions remain; in particular, how much water throughput over what time scale is required? The answer to this question has substantial bearing on the climate of early Mars. Recently, we employed a newly developed, non-parametric Bayesian algorithm [3,4] for semi-automatic identification of rare spectral classes on 139 CRISM images in areas with reported regional-scale occurrences of Al clays. Dozens of detections of the minerals alunite and jarosite were made with the algorithm and then verified by manual analysis. These sulfate hydroxides form only at low pHs, and thus their presence tightly constrains water chemistry. Here, we discuss the evidence for low pH surface waters associated with the weathering sequences and their implications for the cumulative duration of surface weathering. [1] Ehlmann et al., 2011, Nature | [2] Carter et al., 2015, Icarus | [3

  12. Controls on clay minerals assemblages in an early paleogene nonmarine succession: Implications for the volcanic and paleoclimatic record of extra-andean patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Raigemborn, María Sol; Gómez-Peral, Lucía E.; Krause, Javier Marcelo; Matheos, Sergio Daniel

    2014-07-01

    The distribution of the clay minerals of the Banco Negro Inferior-Río Chico Group succession (BNI-RC), a middle Danian-middle Eocene mainly continental epiclastic-pyroclastic succession exposed in the Golfo San Jorge Basin, extra-Andean Patagonia (∼46° LS), is assessed in order to determine the possible origin of clay and specific non-clay minerals using X-ray diffraction and scanning electron microscopy analyses. The control over the clay mineralogy of the sedimentary settings, contemporary volcanism, paleoclimate and weathering conditions is considered. A paleoclimatic reconstruction is provided and correlated with the main global warming events that occurred during the early Paleogene. Mineralogical analyses of BNI-RC demonstrate that smectite and kaolin minerals (kaolinite, halloysite and kaolinite/smectite mixed layers) are the main clay minerals, whereas silica polymorphs (volcanic glass and opal) are common non-clay minerals. Throughout the succession, smectite and kaolin minerals are arranged in different proportions in the three clay-mineral assemblages. These show a general vertical trend in which the smectite-dominated assemblage (S1) is replaced by the smectite-dominated assemblage associated with other clays (S2) and the kaolinite-dominated assemblage (K), and finally by S2 up-section. The detailed micromorphological analysis of the clay and non-clay minerals allows us to establish that the origins of these are by volcanic ash weathering, authigenic and pedogenic, and that different stages in the evolution of mineral transformations have occurred. The supply of labile pyroclastic material from an active volcanic area located to the northwest of the study area could have acted as precursor of the authigenic and volcanogenic minerals of the analyzed succession. Diverse fine-grained lithological facies (muddy and tuffaceous facies) and sedimentary settings (coastal swamp and transitional environments, and different fluvial systems) together with

  13. Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals

    SciTech Connect

    Collins, Y.E.; Stotzky, G. )

    1992-05-01

    The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength ([mu]) of 3 [times] 10[sup [minus]4]; montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 and then at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a [mu] of >3 [times] 10[sup [minus]4], whereas there was no reversal in solutions with a [mu] of <3 [times] 10[sup [minus]4]. The clays became net positively charged when the [mu] of Cu was >3 [times] 10[sup [minus]4] and that of Ni was >1.5 [times] 10[sup [minus]4]. The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measured the electrophoretic mobility did not affect their viability.

  14. Orientation and optical properties of methylene blue crystal for better understanding of interactions with clay mineral surface

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2013-04-01

    The properties of cationic dye Methylene blue (MB) adsorbed on diferent surfaces have been investigated intensively over the years and various models for the orientation of its cations have been proposed (Hang and Brindley, 1970; Bujdak et al., 2003; Li and Zare, 2004; Marr III et al., 1973; Bujdak, 2006).The main objective of this work is to investigate and determine orientation and optical properties of metylene blue crystal upon its crystallization on a glass slate and to use those findings in better understanding of interactions with clay minerals. Cationic dyes have very high affinity for clay surfaces and those interactions are easily detected, therefore these dyes are used to determine several properties of clay surfaces (morphology, layer charge, CEC). For this study, we have selected a group of MB crystal and carried out XRD analysis, polarized absorption spectra measurement (400 - 900 nm) and determination of optical properties (pleochroism, determination of twining and extinction angle) using polarizing microscope. Methylene blue crystals are exhibiting mostly needle like habitus with huge difference in width - length ratio. According to X-ray diffraction it is quite obvious that the y (b) axis is perpendicular to the crystal surface. The x (a) and z (c) axis lie in the crystal plane (010). Crystals exhibit prominent dichroism: from blue (E || elong.) to colorless. In accordance with current interpretation of MB spectra peaks at 647 and 570 nm can be assigned as dimer aggregation and peaks at 475 and 406 nm as higher level of aggregation. All of them exhibit pronounced polarization dependence. The group of peaks at lower energy (700 to 900 nm) do not show significant polarization dependence and they correspond to the J - aggregates. Peak at around 800 nm have been noticed as fluorescence active. In dependence with thickness of the crystals and vibration direction we have observed presence of polysynthetic twinning which can be compared with polysynthetic

  15. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2015-06-01

    A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.

  16. Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite.

    PubMed

    Pecini, Eliana M; Avena, Marcelo J

    2013-12-03

    The isoelectric point (IEP) of the edge surface of a montmorillonite sample was determined by using electrophoretic mobility measurements. This parameter, which is fundamental for the understanding of the charging behavior of clay mineral surfaces, was never measured so far because of the presence of permanent negative charges within the montmorillonite structure, charges that mask the electrokinetic behavior of the edges. The strategy was to block or neutralize the structural charges with two different cations, methylene blue (MB(+)) and tetraethylenepentaminecopper(II) ([Cu(tetren)](2+)), so that the charging behavior of the particles becomes that of the edge surfaces. Adsorption isotherms of MB(+) and [Cu(tetren)](2+) at different ionic strengths (NaCl) were performed to establish the uptakes that neutralize the cation exchange capacity (CEC, 0.96 meq g(-1)) of the sample. At high adsorptive concentrations, there was a superequivalent adsorption of MB(+) (adsorption exceeding the CEC) and an equivalent adsorption of [Cu(tetren)](2+) (adsorption reaching the CEC). In both cases, structural charges were neutralized at uptakes very close to the CEC. Zeta potential (ζ) vs pH data at different ionic strengths of montmorillonite with adsorbed MB(+) allowed to estimate an upper limit of the edge's IEP, 5.3 ± 0.2. The same kind of data obtained with adsorbed [Cu(tetren)](2+) provided a lower limit of the IEP, 4.0 ± 0.2. These values are in agreement with previously informed IEP and point of zero charge of pyrophyllite, which is structurally analogous to montmorillonite but carries no permanent charges. The importance of knowing the IEP of the edge surface of clay minerals is discussed. This value characterizes the intrinsic reactivity of edges, that is, the protonating capacity of edge groups in absence of any electric field generated by structural charges. It also allows us to correct relative edge charge vs pH curves obtained by potentiometric titrations and to

  17. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    PubMed Central

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the

  18. Curiosity's traverse through the upper Murray formation (Gale crater): ground truth for orbital detections of Martian clay minerals

    NASA Astrophysics Data System (ADS)

    Dehouck, Erwin; Carter, John; Gasnault, Olivier; Pinet, Patrick; Daydou, Yves; Gondet, Brigitte; Mangold, Nicolas; Johnson, Jeffrey; Arvidson, Raymond; Maurice, Sylvestre; Wiens, Roger

    2017-04-01

    Orbital observations from visible/near-infrared (VNIR) spectrometers have shown that hydrated clay minerals are widespread on the surface of Mars (e.g., Carter et al., JGR, 2013), but implications in terms of past environmental conditions are debated. In this context, in situ missions can play a crucial role by providing "ground truth" and detailed geological setting for orbital signatures. Since its landing in 2012, the Mars Science Laboratory rover Curiosity has found evidence for clay minerals in several sedimentary formations within Gale crater. The first clays were encountered at Yellowknife Bay, where results from the CheMin X-ray diffractometer (XRD) showed the presence of 20 wt% tri-octahedral, Fe/Mg-bearing smectites (Vaniman et al., Science, 2014). However, due to dust cover, this location lacks any signature of clay minerals in orbital VNIR observations. Smaller amounts of clay minerals were found later in the rover's traverse, but again at locations with no specific signature from orbit. More recently, Curiosity reached the upper Murray formation, a sedimentary layer consisting primarily of mudstones and belonging to the basal part of Aeolis Mons (or Mt Sharp), the central mound of Gale crater. There, for the first time, orbital signatures of clay minerals can be compared to laterally-equivalent samples that were analyzed by Curiosity's payload. Orbital VNIR spectra suggest the prevalence of di-octahedral, Al/Fe-bearing smectites, clearly distinct from the tri-octahedral, Fe/Mg-bearing species of Yellowknife Bay (Carter et al., LPSC, 2016). Preliminary results from XRD and EGA analyses performed by the CheMin and SAM instruments at Marimba, Quela and Sebina drill sites are broadly consistent with such interpretation. However, and perhaps unsurprisingly, in situ data show more complexity than orbital observations. In particular, in situ data suggest the possible presence of an illitic component as well as the possible co-existence of both di

  19. Adsorption of Aqueous Crude Oil Components on the Basal Surfaces of Clay Minerals: Molecular Simulations Including Salinity and Temperature Effects

    DOE PAGES

    Greathouse, J. A.; Cygan, R. T.; Fredrich, J. T.; ...

    2017-09-28

    Molecular simulations of the adsorption of representative organic molecules onto the basal surfaces of various clay minerals were used to assess the mechanisms of enhanced oil recovery associated with salinity changes and water flooding. Simulations at the density functional theory (DFT) and classical levels provide insights into the molecular structure, binding energy, and interfacial behavior of saturate, aromatic, and resin molecules near clay mineral surfaces. Periodic DFT calculations reveal binding geometries and ion pairing mechanisms at mineral surfaces while also providing a basis for validating the classical force field approach. Through classical molecular dynamics simulations, the influence of aqueous cationsmore » at the interface and the role of water solvation are examined to better evaluate the dynamical nature of cation-organic complexes and their co-adsorption onto the clay surfaces. The extent of adsorption is controlled by the hydrophilic nature and layer charge of the clay mineral. All organic species studied showed preferential adsorption on hydrophobic mineral surfaces. However, the anionic form of the resin (decahydro-2-naphthoic acid)—expected to be prevalent at near-neutral pH conditions in petroleum reservoirs—readily adsorbs to the hydrophilic kaolinite surface through a combination of cation pairing and hydrogen bonding with surface hydroxyl groups. Analysis of cation-organic pairing in both the adsorbed and desorbed states reveals a strong preference for organic anions to coordinate with divalent calcium ions rather than monovalent sodium ions, lending support to current theories regarding low-salinity water flooding.« less

  20. Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2004-05-10

    A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

  1. [Effect of acetic acid on adsorption of acid phosphatase by some soil colloids and clay minerals].

    PubMed

    Zhao, Zhenhua; Huang, Qiaoyun; Jiang, Xin; Yu, Guifen; Wang, Fang; Li, Xueyuan

    2004-03-01

    This paper studied the effect of acetic acid with different concentrations and pH values on the adsorption of acid phosphatase by some soil colloids and clay minerals (SCCM). The results showed that the pH values for the maximum adsorption of the enzyme were between the IEP of the enzyme and the PZC of SCCM. In the acetic acid systems, the amount of the enzyme adsorbed by SCCM was in the order of goethite > yellow brown soil > latosol > kaolinite > delta-MnO2. A remarkable influence of acetic acid concentration on the adsorption amount and the binding energy of the enzyme was observed. With the increase of the concentration from 0 to 200 mmol.L-1 in the system, acetic acid exhibited an enhanced effect, followed by an inhibition action on the adsorption of the enzyme on SCCM. The changes of the binding energy (K value) for the enzyme on SCCM were on the contrary to those of the maximum adsorption. The possible mechanisms for the influence of acetic acid on the adsorption of enzyme by SCCM were also discussed.

  2. Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals

    SciTech Connect

    Liu, A.; Gonzalez, R.D.

    1999-10-01

    Metal adsorption/desorption in a system consisting of humic acid, metal ions, and clay minerals is described. Montmorillonite and purified humic acid were selected as prototype materials for this study. At a constant ionic strength, the amount of humic acid adsorbed on montmorillonite decreases when pH is increased. A slight increase in humic acid adsorption on montmorillonite is observed when there are bivalent metals present in the system. The metal adsorption on montmorillonite does not correlate to the amount of humic acid adsorbed on montmorillonite. Montmorillonite with preadsorbed humic acid does not show a significant change in the capacity of adsorbed metal ions. An increase in the ionic strength at a pH of 6.5 results in an increase in the adsorption of lead on montmorillonite in the presence of humic acid, while at a lower pH, the increase in ionic strength results in a decrease in metal adsorption. The bridging of bivalent metal ions between montmorillonite and humic acid is proposed as the dominant adsorption mechanism.

  3. Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Rick, Johannes J.; Gray, Deric; Gould, Richard W.

    2017-04-01

    Particulate inorganic matter (PIM) is a key component in estuarine and coastal systems and plays a critical role in trace metal cycling. Better understanding of coastal dynamics and biogeochemistry requires improved quantification of PIM in terms of its concentration, size distribution, and mineral species composition. The angular pattern of light scattering contains detailed information about the size and composition of particles. These volume scattering functions (VSFs) were measured in Mobile Bay, Alabama, USA, a dynamic, PIM dominated coastal environment. From measured VSFs, we determined through inversion the particle size distributions (PSDs) of major components of PIM, amorphous silica and clay minerals. An innovation here is the extension of our reported PSDs significantly into the submicron range. The PSDs of autochthonous amorphous silica exhibit two unique features: a peak centered at about 0.8 μm between 0.2 and 4 μm and a very broad shoulder essentially extending from 4 μm to >100 μm. With an active and steady particle source from blooming diatoms, the shapes of amorphous silica PSDs for sizes <10 μm varied little across the study area, but showed more particles of sizes >10 μm inside the bay, likely due to wind-induced resuspension of larger frustules that have settled. Compared to autochthonous amorphous silica, the allochthonous clay minerals are denser and exhibit relatively narrower PSDs with peaks located between 1 and 4 μm. Preferential settling of larger mineral particles as well as the smaller but denser illite component further narrowed the size distributions of clay minerals as they were being transported outside the bay. The derived PSDs also indicated a very dynamic situation in Mobile Bay when a cold weather front passed through during the experiment. With northerly winds of speeds up to 15 m s-1, both amorphous silica and clay minerals showed a dramatic increase in concentration and broadening in size distribution outside the exit

  4. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    USGS Publications Warehouse

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  5. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    PubMed

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  6. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    PubMed Central

    HAYDEL, SHELLEY E.; REMENIH, CHRISTINE M.; WILLIAMS, LYNDA B.

    2008-01-01

    SYNOPSIS Objectives The capacity to properly address the worldwide incidence of infectious diseases lies in the ability to detect, prevent, and effectively treat these infections. Therefore, identifying and analyzing inhibitory agents are worthwhile endeavors in an era when few new classes of effective antimicrobials have been developed. The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases, including infections for which there are no effective antibiotics, such as Buruli ulcer and multi-drug resistant infections. Methods We have subjected two iron-rich clay minerals, which have previously been used to treat Buruli ulcer patients, to broth culture testing of antibiotic-susceptible and -resistant pathogenic bacteria to assess the feasibility of using clay minerals as therapeutic agents. Results One specific mineral, CsAg02, demonstrated bactericidal activity against pathogenic Escherichia coli, extended-spectrum β-lactamase (ESBL) E. coli, S. enterica serovar Typhimurium, Pseudomonas aeruginosa, and Mycobacterium marinum and a combined bacteriostatic/bactericidal effect against Staphylococcus aureus, penicillin-resistant S. aureus (PRSA), methicillin-resistant S. aureus (MRSA), and Mycobacterium smegmatis, while another mineral with similar structure and bulk crystal chemistry, CsAr02, had no effect on or enhanced bacterial growth. The <0.2 μm fraction of CsAg02 and CsAg02 heated to 200°C or 550°C retained bactericidal activity, while cation-exchanged CsAg02 and CsAg02 heated to 900°C no longer killed E. coli. Conclusions Our results indicate that specific mineral products have intrinsic, heat-stable antibacterial properties, which could provide an inexpensive treatment against numerous human bacterial infections. PMID:18070832

  7. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites.

    PubMed

    Gorski, Christopher A; Aeschbacher, Michael; Soltermann, Daniela; Voegelin, Andreas; Baeyens, Bart; Marques Fernandes, Maria; Hofstetter, Thomas B; Sander, Michael

    2012-09-04

    Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.

  8. Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Watkins, J.; Ehlmann, B. L.; Yin, A.

    2014-12-01

    Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals

  9. Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites

    USGS Publications Warehouse

    Foster, M.D.

    1953-01-01

    Determination of free silica by the method proposed made possible the derivation of logical formulas for several specimens of montmorillonites for which the formulas could not be derived from the analyses alone. Other montmorillonites, for which logical formulas could be derived from their analyses, were found to contain small amounts of free silica or free alumina. Others were found to contain neither free silica nor free alumina. The method consists of the following steps: (1) digestion of 1 g of the specimen with 0.5 N NaOH solution in a covered platinum crucible or dish on a steam bath for 4 hrs, stirring the mixture at 30-min intervals, (2) filtration of the undissolved material, followed by washing several times with 1% NaOH solution, (3) neutralization of the filtrate with HCl, addition of 5 ml HCl in excess and determination of SiO and Al2O3 in the usual way and (4) calculation of the amount of free SiO2 or free Al2O3 if any and the amount of attack of the clay structure by the treatment from the ratio of SiO2 to Al2O3 dissolved and the ratio of SiO2 to Al2O3 obtained on analysis. Tests with 5% Na2CO3 solution, the reagent formerly used for the solution of free SiO2 in rocks and minerals, showed that solution of opal by this reagent is always fractional, never complete, no matter how small the amount present or how long the period of treatment. Re-treatment of the sample results in 90-95% solution if 10 mg or less of opal is present, but for larger amounts of opal the percentage dissolved decreases as the amount present increases. On the other hand, 75 ml of 0.5 N NaOH completely dissolves as much as 400 mg of opal in 4 hrs digestion in a covered platinum crucible or dish, on a steam bath. However, a weaker solution or a shorter period of digestion does not effect complete solution. The same amount (75 ml) of 0.5 N NaOH also dissolves 90 mg of cristobalite and 57 mg of quartz having a grain size of less than 2 microns. Use of NaOH also permits determination

  10. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    DTIC Science & Technology

    2012-12-01

    processed clay that is commonly used as a catalyst in organic chemistry reactions. 32–34 The exact procedure used to modify this clay is proprietary but...Buffalo River sediment (SRM 8704), San Joaquin soil (SRM 2709), and three glass sands (SRM 165a, 81A, and 1413). A second catalyst -grade...sorption of VX with Suspengel 200. It was decided to focus the definitive study on the natural clay substrate and not the highly processed catalyst

  11. Geoscientific Applications of Particle Detection and Imaging Techniques withSpecial Focus on the Monitoring Clay Mineral Reactions

    NASA Astrophysics Data System (ADS)

    Warr, Laurence N.; Grathoff, Georg H.

    The combined use of focused X-ray, electron, and ion beams offers a diverse range of analytical capabilities for characterizing nanoscale mineral reactions that occur in hydrous environments. Improved image and microanalytical techniques (e.g., electron diffraction and energy-dispersive X-ray spectroscopy), in combination with controlled sample environments, are currently leading to new advances in the understanding of fluid-mineral reactions in the Earth Sciences. One group of minerals playing a key role in the containment of radioactive waste and the underground storage of CO2 is the clay minerals: these small, expandable, and highly adsorbent hydrous phyllosilicates form important low-permeable geological barriers by which waste can be safely deposited. In this article we summarize some of the state-of-the-art particle and imaging techniques employed to predict the behavior of both engineered and natural clay mineral seals in proposed storage sites. Particular attention is given to two types of low-permeability geomaterials: engineered bentonite backfill and natural shale in the subsurface. These materials have contrasting swelling properties and degrees of chemical stability that require detailed analytical study for developing suitable disposal or storage solutions.

  12. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.

    PubMed

    Shao, Hongbo; Ray, Jessica R; Jun, Young-Shin

    2010-08-01

    To ensure efficiency and sustainability of geologic CO2 sequestration (GCS), a better understanding of the geochemical reactions at CO2-water-rock interfaces is needed. In this work, both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on phlogopite (KMg3Si3AlO10(F,OH)2) surfaces under GCS conditions (368 K, 102 atm) in 1 M NaCl. Phlogopite served as a model for clay minerals in potential GCS sites. During the reaction, dissolution of phlogopite was the predominant process. Although the bulk solution was not supersaturated with respect to potential secondary mineral phases, interestingly, nanoscale precipitates formed. Atomic force microcopy (AFM) was utilized to record the evolution of the size, shape, and location of the nanoparticles. Nanoparticles first appeared on the edges of dissolution pits and then relocated to other areas as particles aggregated. Amorphous silica and kaolinite were identified as the secondary mineral phases, and qualitative and quantitative analysis of morphological changes due to phlogopite dissolution and secondary mineral precipitation are presented. The results provide new information on the evolution of morphological changes at CO2-water-clay mineral interfaces and offer implications for understanding alterations in porosity, permeability, and wettability of pre-existing rocks in GCS sites.

  13. Effects of Clay Mineral Provenance and Clay Diagenesis on the Hanging Wall of a Megasplay Fault: Results from Riser Drilling, Nankai Trough Seismogenic Zone Experiment

    NASA Astrophysics Data System (ADS)

    Underwood, M.; Song, C.

    2015-12-01

    IODP Expedition 348 set a new record for sampling depth by scientific ocean drilling. Cores were recovered from the Nankai accretionary prism (Site C0002) at depths of 2163-2218 mbsf; cuttings were recovered continuously to 3058 mbsf. Shallower strata near the top of the accretionary prism are as young as 5.6 Ma, but the deeper interval has an apparent depositional age of 9.56-10.73 Ma. The structural context is within the hanging wall of a megasplay fault. Quantitative analyses of the clay mineral assemblages (using X-ray diffraction) show that the most abundant clay mineral is smectite, followed by illite, chlorite, and kaolinite. The mudstones at Site C0002 contain significantly lower percentages of smectite (~40% of clay-size fraction) as compared to coeval Miocene strata at Sites C0011 and C0012 in the nearby subduction inputs of Shikoku Basin (>50% of clay-size fraction). One likely reason for the difference is an overprint of detrital assemblages by smectite-to-illite diagenesis, which results in a steady down-hole increase in illite within the I/S mixed-layer phase. Another possible reason, however, is a spatial shift in depositional environments and detrital provenance. The mud-dominant facies of the accretionary prism is enigmatic (when compared to the frontal prism), and its original depositional setting remains uncertain. The accreted mudstones might have been deposited in a trench during a period in which supplies of sandy sediment were restricted. Northwestward migration of a triple junction that joins the Japan, Izu-Bonin, and Nankai plate boundaries also might have played a role, either by reducing the rate of plate convergence at ~7-12 Ma or by shifting pre-accretion depositional settings from the NE side of the triple junction (subducting Pacific plate) to the SW side (Shikoku Basin, subducting Philippine Sea plate). Regardless of the exact paleogeography, we predict that lower initial percentages of detrital smectite and gradual diagenetic loss

  14. Intercalation of TCE by Sediment-Associated Clay Minerals and Implications for Low-Concentration Elution Tailing and Back Diffusion

    NASA Astrophysics Data System (ADS)

    Matthieu, D. E.; Brusseau, M. L.; Bowden, M. E.; Johnson, G. R.; Artiola, J. F.; Curry, J. E.

    2011-12-01

    Pump-and-treat systems are widely used to remediate hazardous waste sites wherein groundwater is contaminated by compounds such as TCE (trichloroethene). It is well known that removal of contaminant mass by pump and treat becomes less effective over time, with a persistent mass discharge causing greatly extended operational periods. One mechanism potentially responsible for this persistent mass discharge is "back diffusion", wherein dissolved contaminant stored in lower-permeability layers diffuses into the higher-permeability zones that are more readily swept via pump and treat. Because the lower-permeability layers typically contain high fractions of clay minerals, a question of great interest is whether contaminant-clay interactions may influence the back-diffusion process. For example, intercalation of TCE into the interlayer spaces of clay minerals could potentially exacerbate diffusive mass-transfer limitations. The primary objectives of this research were to evaluate the long-term elution of TCE from aquifer sediments, and to examine the potential for TCE intercalation. Sediment samples were collected from a TCE-contaminated field site in Tucson, AZ. A widely used Na- Montmorillonite specimen clay was used as a control. Miscible-displacement experiments were conducted to characterize TCE elution behavior. X-ray diffraction, conducted with a controlled environment chamber, was used to characterize smectite interlayer d-spacing for three treatments (bulk dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). Extensive elution tailing was observed for the column experiments. Results of the XRD analysis indicate a greater d-spacing for the samples treated with TCE-saturated synthetic groundwater for all field samples as well as the specimen clay.

  15. Deformation characteristics and associated clay-mineral variation in 2-3 km buried Hota accretionary complex, central Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Kameda, J.; Yamaguchi, H.

    2009-12-01

    Although deformation and physical/chemical properties variation in aseismic-seismic transition zone were essential to examine critical changes in environmental parameters that result in earthquake, they are poorly understood because the appropriate samples buried 2-4 km have not been collected yet (scientific drilling has never reached there and most of ancient examples experienced the deeper burial depth and suffered thermal and physical overprinting). The lower to middle Miocene Hota accretionary complex is a unique example of on land accretionary complex, representing deformation and its physical/chemical properties of sediments just prior to entering the seismogenic realm. The maximum paleotemperature was estimated approximately 55-70°C (based on vitrinite reflectance) indicative of a maximum burial depth about 2-3 km assuming a paleo-geothermal gradient as 25-35°C/km. Accretionary complex in this temperature/depth range corresponds with an intermediate range between the core samples collected from the modern accretionary prism (e.g. Nankai, Barbados, and so on) and rocks in the ancient accretionary complexes on land. This presentation will treat the detailed structural and chemical analyses of the Hota accretionary complex to construct deformation properties of décollement zone and accretionary complex in its 2-3 km depth range and to discuss the interrelation between the early diagenesis (hydrocarbon/cations generation and sediment dewatering, etc.) and transition of the deformation properties. The deformation in this accretionary complex is characterized by two deformation styles: one is a few centimeter-scale phacoidal deformation representing clay minerals preferred orientation in the outer rim, whereas random fabric in the core, quite similar texture to the rocks in the present-Nankai décollement. The other is S-C style deformation (similar deformation to the mélanges in ancient accretionary complex on land) exhibiting block-in-matrix texture and

  16. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  17. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.

    PubMed

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-06-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  18. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.

    PubMed

    Kavurmaci, Sibel Sen; Bekbolet, Miray

    2014-01-01

    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (<3 kDa) was more pronounced for sole HA rather than HA in the presence of clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters.

  19. Carbonation of Clay Minerals Exposed to scCO2/Water at 200 degrees and 250 degrees C

    SciTech Connect

    Sugama, T.; Ecker, L.; Gill, S.; Butcher, T.; Bour, D.

    2010-11-01

    To clarify the mechanisms of carbonation of clay minerals, such as bentonite, kaolinite, and soft clay, we exposed them to supercritical carbon dioxide (scCO2)/water at temperatures of 200 and 250 C and pressures of 1500 and 2000 psi for 72- and 107-hours. Bentonite, comprising three crystalline phases, montmorillonite (MMT), anorthoclase-type albite, and quartz was susceptible to reactions with ionic carbonic acid yielded by the interactions between scCO2 and water, particularly MMT and anorthoclase-type albite phases. For MMT, the cation-exchangeable ions, such as Na+ and Ca2+, present in its basal interplanar space, were replaced by proton, H+, from ionic carbonic acid; thereafter, the cations leaching from MMT directly reacted with CO32- as a counter ion of H+ to form carbonate compounds. Such in-situ carbonation process in basal space caused the shrinkage and breakage of the spacing structure within MMT. In contrast, the wet carbonation of anorthoclase-type albite, categorized as rock minerals, entailed the formation of three amorphous by-products, such as carbonates, kaolinite-like compounds, and silicon dioxide. Together, these two different carbonations caused the disintegration and corruption of bentonite. Kaolinite clay containing the amorphous carbonates and silicon dioxide was inert to wet carbonation. We noted only a gain in weight due to its water uptake, suggesting that kaolinite-like by-products generated by the wet carbonation of rock minerals might remain unchanged even during extended exposure. Soft clay consisting of two crystalline phases, dolomite and silicon dioxide, also was unaltered by wet carbonation, despite the uptake of water.

  20. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  1. A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis; modifications to Drever's filter-membrane peel technique

    USGS Publications Warehouse

    Pollastro, R.M.

    1982-01-01

    Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.

  2. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  3. [Mineralogy and genesis of mixed-layer clay minerals in the Jiujiang net-like red soil].

    PubMed

    Yin, Ke; Hong, Han-Lie; Li, Rong-Biao; Han, Wen; Wu, Yu; Gao, Wen-Peng; Jia, Jin-Sheng

    2012-10-01

    Mineralogy and genesis were investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) to understand the mineralogy and its genesis significance of mixed-layer clay minerals in Jiujiang red soil section. XRD and FTIR results show that the net-like red soil sediments are composed of illite, kaolinite, minor smectite and mixed-layer illite-smectite and minor mixed-layer kaolinite-smectite. HRTEM observation indicates that some smectite layers have transformed into kaolinite layers in net-like red soil. Mixed-layer illite-smectite is a transition phase of illite transforming into smectite, and mixed-layer kaolinite-smectite is a transitional product relative to kaolinite and smectite. The occurrence of two mixed-layer clay species suggests that the weathering sequence of clay minerals in net-like red soil traversed from illite to mixed-layer illite-smectite to smectite to mixed-layer kaolinite-smectite to kaolinite, which indicates that net-like red soil formed under a warm and humid climate with strengthening of weathering.

  4. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    SciTech Connect

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

  5. The effects of the biogeochemical properties of clay minerals on the Pb sorption and desorption in various redox condition

    NASA Astrophysics Data System (ADS)

    Koo, T. H.; Kim, J. Y.; Kim, J. W.

    2016-12-01

    The fate and transportation of hazardous trace metal in soil environment can be controlled by various factors including temperature, geological location, properties of bed rock or sediment, human behavior, and biogeochemical reactions. The sorption and desorption process is one of the major process for control the transportation of trace metal in soil-water system. Nonetheless, few studies were focused on the biological controlling parameters, particularly redox reaction of structural metal of clay minerals. Thus, the objective of the present study is to investigate the correlation between the sorption and desorption reaction of Pb and biogeochemical properties of clay minerals. The effects of redox state of structural Fe and layer charge of the minerals on the migration/speciation of Pb at the various geochemical environment will be elucidated. The Fe-rich smectite, nontronite (NAu-1), and bulk soil samples which were collected from abandoned mine areas were reduced by microbial respiration by Shewanella Oneidensis MR-1 and/or Na-dithionite to various oxidation state of structural Fe. Then the Pb-stock solution made with common lead and nitric acid were spiked into the mineral/soil slurry with various Pb concentration to test the sorption and desorption reaction upto 7 days. The reaction was stopped at each time point by freezing the pellet and supernatant separately after centrifugation. Then the concentration and stable isotope ratio of Pb in the supernatant were measured using Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Multicollector (MC)-ICP-MS. The structural as well as chemical modification on nontronite and bulk soil sample were measured using x-ray diffraction (XRD), scanning electron microscopy (SEM) and wet chemistry analysis. The changes in Pb species in supernatant by sorption and desorption and its consequences on the clay structural/biogeochemical properties will be discussed.

  6. Alteration of glass as a possible source of clay minerals on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Keil, K.

    1978-01-01

    Thermodynamic calculations show that, under present Martian surface conditions, favorable gas-solid weathering products of feldspar glasses should include beidellites (clays of the montmorillonite series) + carbonates + quartz. The gas-solid weathering of mafic silicate glass ( of volcanic or impact origin) may similarly favor the production of metastable Fe-rich montmorillonite clays. Simple mass-balance calculations suggest that gas-solid weathering of Martian proto-regolith containing 10% glass could conceivably produce a global blanket of clays at a rate of at least 0.4 cm/b.y. The production rate should be expected to increase significantly with the glass content and rate of reworking of the proto-regolith and with the availability of water. Complete extraction of altered glass from a lunar-like proto-regolith might yield a global Martian clay blanket about 10-100 cm in thickness.

  7. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  8. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite

    NASA Astrophysics Data System (ADS)

    Jaisi, Deb P.; Dong, Hailiang; Liu, Chongxuan

    2007-03-01

    Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeochemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Bioreduction experiments were performed in batch systems, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Shewanella putrefaciens CN32 as the mediator with and without an electron shuttle (AQDS). Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to old cultures (6 months), bioreduction resumed, and extents increased. Thus, cessation of Fe(III) bioreduction was not necessarily due to exhaustion of bioavailable Fe(III) in the mineral structure, but changes in cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, may have inhibited the extent of bioreduction. To investigate the effect of Fe(II) inhibition on CN 32 reduction activity, a typical bioreduction process (consisting of lactate, clay, cells, and AQDS in a single tube) was separated into two steps: (1) AQDS was reduced by cells in the absence of clay; (2) Fe(III) in clays was reduced by biogenic AH 2DS in the absence of cells. With this method, the extent of Fe(III) reduction increased by 45-233%, depending on the clay mineral involved. Transmission electron microscopy observation revealed a thick halo surrounding cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Similarly, the inhibitory effect of Fe(II) sorbed onto clay surfaces was assessed by presorbing a certain amount of Fe

  9. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    PubMed

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  10. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation

    PubMed Central

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-01-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant ‘seed bank'. PMID:25535940

  11. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

    PubMed

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (<1% CEC) for bentonite. Sorption to clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  12. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry].

    PubMed

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu

    2010-03-01

    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  13. Minerals and clay minerals assemblages in organic-rich facies: the case study of the Sinemurian-Pliensbachian carbonate deposits of the western Lusitanian Basin (Portugal)

    NASA Astrophysics Data System (ADS)

    Caniço, Ana; Duarte, Luís V.; Silva, Ricardo L.; Rocha, Fernando; Graciano Mendonça Filho, João

    2015-04-01

    The uppermost Sinemurian-Pliensbachian series of the western part of the Lusitanian Basin is composed by hemipelagic carbonates particularly enriched in organic matter. Great part of this succession, considered to be one of the most important potential source rock intervals of Portugal, crops out in the S. Pedro de Moel and Peniche sectors, belonging to the Água de Madeiros and Vale das Fontes formations. In this study, supported by a detailed and integrated stratigraphic framework, we analyzed 98 marly samples (whole-rock mineralogy and clay minerals assemblages) from the aforementioned formations in the S. Pedro de Moel and Peniche sectors. X-ray Diffraction analysis followed the standard procedures and the semi-quantification of the different mineral phases was calculated using MacDiff 4.2.6. The goals of this work are to demonstrate the vertical variability of the mineral composition of these two units and investigate the relationship between the clay minerals assemblages and the content in organic matter (Total organic carbon: TOC). Besides the abundance of calcite and phyllosilicates, whole-rock mineralogy revealed the presence of quartz, potassium feldspar, dolomite, and pyrite (trace amounts). Other minerals like anhydrite, barite and gypsum occur sporadically. The clay minerals assemblages are dominated by illite+illite/smectite mixed-layers (minimum of 59%), always associated with kaolinite (maximum of 37%) and chlorite (maximum of 25%); sporadically smectite occurs in trace amounts. Generally, high TOC levels (i.e., black shale facies with TOC reaching up to 22 wt.% in both units, see Duarte et al., 2010), show a major increase in chlorite and kaolinite (lower values of illite+illite/smectite mixed layers). A kaolinite enrichment is also observed just above the Sinemurian-Pliensbachian boundary (base of Praia da Pedra Lisa Member of Água de Madeiros Formation; values varying between 30 and 37%). This event is associated with a second-order regressive

  14. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    PubMed Central

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall. Images PMID:3954340

  15. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe.

    PubMed

    Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H

    2002-04-15

    This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.

  16. Crystal growth of a layered silicate clay mineral as revealed by atomic force microscopy

    SciTech Connect

    Carrado, K.A.; Song, Kang; Zajac, G.W.

    1997-12-31

    Non-contact atomic force microscopy, commonly referred to as {open_quotes}tapping mode{close_quotes} AFM, has been used to scan primarily the morphological features of growing hectorite clay crystallites synthesized in the presence of organo-ammonium cations. The use of such cations allows larger crystals to form in this system, making study by AFM feasible. This is the first time that actual temporal {open_quotes}snapshots{close_quotes} of a clay`s nucleation and crystallization processes have been presented. The observed view does not support the perhaps predicted scene of small crystallites slowly ripening into larger and larger plates. Instead, larger and larger aggregates appear to coalesce from a larger number of small crystallites that are closely associated in globular networks similar in appearance to {open_quotes}strings of pearls{close_quotes} at the initial stages of crystallization.

  17. The possible role of nannobacteria (dwarf bacteria) in clay-mineral diagenesis and the importance of careful sample preparation in high-magnification SEM study

    SciTech Connect

    Folk, R.L.; Lynch, F.L.

    1997-05-01

    Bacterial textures are present on clay minerals in Oligocene Frio Formation sandstones from the subsurface of the Corpus Christi area, Texas. In shallower samples, beads 0.05--0.1 {micro}m in diameter rim the clay flakes; at greater depth these beads become more abundant and eventually are perched on the ends of clay filaments of the same diameter. The authors believe that the beads are nannobacteria (dwarf forms) that have precipitated or transformed the clay minerals during burial of the sediments. Rosettes of chlorite also contain, after HCl etching, rows of 0.1 {micro}m bodies. In contrast, kaolinite shows no evidence of bacterial precipitation. The authors review other examples of bacterially precipitated clay minerals. A danger present in interpretation of earlier work (and much work of others) is the development of nannobacteria-looking artifacts caused by gold coating times in excess of one minute; the authors strongly recommend a 30-second coating time. Bacterial growth of clay minerals may be a very important process both in the surface and subsurface.

  18. Fundamental Studies of Clay and Clay-rich Mineral Reactions with H2O-CO2 Fluids: Application to Geological Carbon Dioxide Sequestration

    NASA Astrophysics Data System (ADS)

    Chizmeshya, A. V.

    2016-12-01

    Geological sequestration is currently being actively developed as a near-term, large-scale carbon sequestration technology in which supercritical carbon dioxide (scCO2) is injected below-ground into saline aquifers, depleted and existing oil and gas reservoir. Implementation strongly depends on the specific geological profile of each candidate injection site. Caprock formations that contain swellable clay minerals are of particular concern, since interaction with injected CO2 may produce complex local structural effects related to shrinkage, desiccation, and plastic response leading to CO2 escape. The current knowledge-base on rock-brine-CO2 interactions often relies on semi-empirical geochemical modeling and autoclave experiments, which necessitate quenching (de-gassing) to ambient conditions for characterization. To avoid these effects we used a moissanite-based microreaction system (Diefenbacher, J et al Rev. Mod. Inst., 76 15103 (2005)) which enables in situ synchrotron characterization of interactions under constant CO2 activity. Synchrotron studies were performed at the GSECARS sector of the Argonne National Lab APS to systematically determine the response of representative Ca- and Na-montmorillonites (STx-1, SWy-1) clays to dry/wet scCO2 (H2O-rich) fluids at T and P encountered in typical aquifers. Our main findings for hydrated STx-1 are that desiccation occurs spontaneously on the scale of minutes-hours over a wide range of conditions in dry scCO2 via release of H2O with volume changes as large as 19% in relation to the initial volume. Desiccation was not observed in wet scCO2, or in corresponding saline solutions containing 1-3 M NaCl, but quenching to ambient conditions from low-pressures leads to re-hydration in STx-1 suggesting a pressure-dependent diffusion barrier for H2O from the clay into bulk scCO2. Similar desiccation transitions with smaller volume changes of 5-9% were also observed in SWy-1 at P 140 atm and T 40 C. At high pressures ( 200 atm

  19. The titration of clay minerals I. Discontinuous backtitration technique combined with CEC measurements.

    PubMed

    Tournassat, Christophe; Greneche, Jean-Marc; Tisserand, Delphine; Charlet, Laurent

    2004-05-01

    Previous experimental studies on clay potentiometric titration have been unable to distinguish inorganic cation exchange in the interlayer and on basal plane surfaces from specific pH-dependent sorption of cations and anions on the edges. In this study, we refined a titration technique, combining discontinuous backtitration and cation exchange capacity (CEC) measurements, and applied it to the potentiometric titration of Na- and Ca-conditioned montmorillonites. This technique can be used to accurately measure cation exchange, edge surface proton charge, dissolution of clay, and precipitation of new phases. Thus, a precise measurement of the variations of net proton surface charge is possible. This has important implications for clay surface modeling (see part II of this article) and for processes that depend on the clay surface charge, e.g., alteration, rheological processes, and contamination retention applications. In addition, this study confirms the adsorption of ionic pairs such as CaCl+ in exchange site positions and shows that CaOH+ could behave like CaCl+. This result, together with the evidence of precipitation of a Ca?Si phase over a short time-scale (1 week) at high pH and low temperature, can be used to model clay-concrete interactions more accurately. We confirmed and quantified the H+/Na+ exchange reaction at low pH. Finally, we demonstrate that both the edge surface charge and the permanent structural charge are compensated for by the nonspecific sorption of cations from solution across the entire pH range from 4 to 11. Under these conditions, the surface potential is fully screened and does not need to be invoked in modeling sorption processes on clay particles in dilute suspensions.

  20. Modeling of cation binding in hydrated 2:1 clay minerals. Progress report, September 15, 1996--September 14, 1997

    SciTech Connect

    Smith, D.E.

    1997-01-01

    'The primary focus of the research is the development of molecular theories of ion binding to clay minerals, with a view toward understanding the mechanism of radionuclide transport through soils. The overall aim of the research and the computational methods employed are essentially unchanged from those originally proposed. The research is split conceptually into three phases, based on the radionuclides considered. The first, cesium phase has an estimated completion time of 1.5 years from the project initiation. This phase is ongoing at this time. The second, strontium and third, uranium phases will be addressed in the second half of the project period. Phase 1 Accomplishments Code Development: A computer simulation code for the treatment of hydrated smectite and vermiculite clays with varying water content has been developed. This version of the code enables calculations under conditions of constant interlayer spacing or constant applied pressure, and for the complete series of interlayer alkali-metal ions. Final development of the code for (i), calculations of exchange free energies, and (ii), calculations at constant water chemical potential should be completed within the next month. This will allow the most important scientific issues of phase 1 to be fully addressed. Hydrated Clay Structure: The molecular structures of Cs{sup +}- and Na{sup +}-montmorillonite (a common swelling clay) have been investigated. The observed layer spacings versus water content of both clays agree well with experimental swelling curves. 1,2 This has provided validation of the simulation models. Comparison of cesium and sodium structures indicate that cesium preferentially forms inner-sphere complexes with the clay surface. The relationship of this structural observation to Na{sup +} Cs{sup +} exchange thermodynamics is presently under investigation. Dry Cs{sup +}-Montmorillonite Structure: It is thought that dry, cesium-substituted montmorillonites exist as mixed-layer structures

  1. Cation diffusion in the interlayer space of swelling clay minerals - A combined macroscopic and microscopic study

    NASA Astrophysics Data System (ADS)

    Tertre, Emmanuel; Delville, Alfred; Prêt, Dimitri; Hubert, Fabien; Ferrage, Eric

    2015-01-01

    This study investigates the diffusion process of calcium cations confined in the interlayer space of 5 mm disks of vermiculite swelling clay minerals during the Na-for-Ca exchange process. Diffusion experiments were performed at four NaCl salinities (3 × 10-3, 5 × 10-2, 0.1 and 1 M) of the exchanger solution. A macroscopic analysis of the diffusion process based on the aqueous calcium concentrations released in the solution and on Ca-profiles obtained in the solid was performed using a pore diffusion model that has been classically used in the literature. The results obtained at the macroscopic scale showed that the apparent diffusion coefficients describing both aqueous and profiles data for Ca depend on the diffusion time and salinity of the aqueous reservoir. Such variations suggested that interlayer diffusion was driven by (1) the gradient of the sorbed species in the interlayer, which depends on the diffusion time due to the ion exchange equilibrium; and (2) the discontinuity, due to Donnan equilibrium, existing at the limit between the "internal disk border" and the "external disk border" in contact with the aqueous reservoir. Then, a set of molecular and Brownian dynamics simulations was used to (1) assess such interpretations and (2) quantitatively predict aqueous and profile data obtained at the macroscopic scale. For an aqueous reservoir with high salinity (1 M NaCl), a good agreement was obtained between the macroscopic data and the predictions obtained from Brownian dynamics simulations, confirming the role played by the gradient of the interlayer species that is suggested at the macroscopic scale and which is at the basis of the "surface diffusion models" published in literature. In addition, for aqueous reservoirs with lower salinity (5 × 10-2 M), the results obtained by Brownian dynamics simulations and normalized to the exchange rate measured at infinite time showed that the diffusion properties of the species in the aqueous reservoir cannot be

  2. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  3. ADSORPTION, DESORPTION AND OXIDATION OF ARSENIC AFFECTED BY CLAY MINERALS AND AGING PROCESS

    EPA Science Inventory

    Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very litt...

  4. ADSORPTION, DESORPTION AND OXIDATION OF ARSENIC AFFECTED BY CLAY MINERALS AND AGING PROCESS

    EPA Science Inventory

    Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very litt...

  5. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral

  6. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about

  7. Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated.

    PubMed

    Gardner, Courtney M; Gunsch, Claudia K

    2017-05-01

    The cultivation and consumption of transgenic crops continues to be a widely debated topic, as the potential ecological impacts are not fully understood. In particular, because antibiotic resistance genes (ARGs) have historically been used as selectable markers in the genetic engineering of transgenic crops, it is important to determine if the genetic constructs found in decomposing transgenic crops persist long enough in the environment and if they can be transferred horizontally to indigenous microorganisms. In the present study, we address the question of persistence. Others have also estimated the DNA adsorption capacity of various clays, but have done so by manipulating the surface charge and size of particles tested which may overestimate sorption and underestimate the DNA available for horizontal transfer. In the present study, isotherms were generated using model Calf Thymus DNA and transgenic maize DNA without surface modification. Montmorillonite, kaolinite, and 3 soil mixtures with varying clay content were used in this study. The adsorption capacity of pure montmorillonite and kaolinite minerals was found to be one to two orders of magnitude less than previously estimated likely due to the distribution of clay particle sizes and heteroionic particle surface charge. However, it appears that a substantial amount of DNA is still able to adsorb onto these matrices (up to 200 mg DNA per gram of clay) suggesting the potential availability of free transgenic DNA in the environment may still be significant. Future studies should be conducted to determine the fate of these genes in agricultural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  9. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products.

    PubMed

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed

    2015-09-01

    A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40°C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na(+) cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20°C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2017-08-01

    The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.

  11. Estimation of landslide-triggering factors using clay minerals, ASTER satellite image and GIS in the Busan area, southeastern Korea

    NASA Astrophysics Data System (ADS)

    Jeong, G. C.; Kim, M. G.; Choi, J. J.; Ryu, J. O.; Nho, J. G.; Choo, C. O.

    2016-12-01

    This study aims at estimating landslide-inducing factors such as extreme rainfall, slope, and geological factors in Busan city, southeastern Korea, using clay mineralogy, DM analysis and DB construction in order to develop the landslide evaluation standards suitable for the country. GIS-based data collected from the study area include geological maps, topological maps, soil maps, forest maps and others in the DB construction. Data extraction and processing for landslide-induced factors consist of expandable clay minerals identified using XRD, along with XRF and weathering sensitivity analysis and fundamental soil analysis on 38 bulk samples composed of weathered rocks and soils. Finally landslide sensibility maps were constructed using ArcGIS, together with ASTER satellite images for identifying clay minerals on regional areas helpful for saving time and money. In Mt. Cheonma, 16 samples are composed of quartz, albite, illite, vermiculite, and kaolinite, with little difference in mineralogy. In Mt. Hwangryeong and Mt. Geumryeun, 12 samples consist of quartz, albite, illite, vermiculite, kaolinite and hornblende, with little difference in mineralogy. In Mt. Songhak, 10 samples are composed of quartz, illite, vermiculite, and kaolinite. Quartz, albite and illite are abundant in most samples, regardless of sites studied. IDW interpolation method was applied to the Busan area. The resolution of space grids consists of 5 m x 5 m. Especially, illite was used as the most effective factor that induces landslide using IDW interpolation and ASTER satellite images. In conclusion, sensibility maps constructed using 16 layers including illite content, weathered sensibility are well in accordance with the real sites where landslides took place, showing that areas with high sensibility are closely related to the high frequencies of landslide. This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded

  12. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    NASA Astrophysics Data System (ADS)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  13. Stability in a high radiation field of nucleic acid bases and their nucleosides adsorbed in a clay mineral. Implications to chemical evolution studies

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen; Negron-Mendoza, Alicia; Ramirez-Navarro, Leonardo; Chacon-Baca, Elizabeth; Ramos-Bernal, Sergio

    Chemical evolution is a physical and chemical preamble prior to the appearance of life. Today, there is a large variety of experimental data to support the hypothesis for the abiotic formation of organic compounds. Although much knowledge has been gain, still many questions remain. Clay minerals might have played an important role on the early Earth. They are considered the most likely inorganic material to promote organic reactions at the interface of the hydrosphere and lithosphere. The relevance of clay minerals in the emergency of the origin of life is due to their ancient origin, wide distribution and especially for their physico-chemical properties. Clays are known to have a high affinity for organic compounds. John D. Bernal (1951) suggested several roles for the clays: as concentrators of biological precursor molecules, as catalysis and may be clays may protect these molecules from high-energy radiation. On the other hand, nucleic acid bases and their derivatives are important compounds in biological systems. Their synthesis and stability in environmental conditions is of paramount importance in chemical evolution. To ensure that organic compounds endured in the primitive Earth there are several possibilities: a) their synthesis was continuous and they reach steady state concentration. b) The compounds present a long half-life in the environmental conditions of the primitive Earth. c) Solid surfaces protect the organic compound adsorbed in the clay, as Bernal suggested (1951). Our aim is to extent the knowledge of the of role of clays in the prebiotic epoch, related to the adsorption and co-adsorption of nucleic acid bases and nucleotides in clays, their site of binding and their behavior under gamma irradiation adsorbed in the clays. To this end, we determine the survival of bases and their corresponding nucleosides exposed to a high radiation field in an aqueous solution and adsorbed in a clay mineral. The results showed the protection role of the clay

  14. The 1.7- to 4.2-micron spectrum of asteroid 1 Ceres - Evidence for structural water in clay minerals

    NASA Technical Reports Server (NTRS)

    Lebofsky, L. A.; Feierberg, M. A.; Larson, H. P.; Johnson, J. R.; Tokunaga, A. T.

    1981-01-01

    A high-resolution Fourier spectrum (1.7-3.5 microns) and medium-resolution spectrophotometry (2.7-4.2 microns) were obtained for Asteroid 1 Ceres. The presence of the 3-micron absorption feature due to water of hydration was confirmed. The 3-micron feature is compared with the 3-micron bands due to water of hydration in clays and salts. It is concluded that the spectrum of Ceres shows a strong absorption at 2.7-2.8 microns due to structural OH groups in clay minerals. The dominant minerals on the surface of Ceres are therefore hydrated clay minerals structurally similar to terrestrial montmorillonites. There is also a narrow absorption feature at 3.1 microns which is attributable to a very small amount of water ice on Ceres. This is the first evidence for ice on the surface of an asteroid.

  15. Interactions between clay minerals and siderophores affect the respiration of Histoplasma capsulatum.

    PubMed Central

    Lavie, S; Stotzky, G

    1986-01-01

    The reduction in the respiration of Histoplasma capsulatum in broth culture caused by montmorillonite appeared to be the result, in part, of the interference by the clay with the iron nutrition of the fungus. This interference was apparently the result of the adsorption by the clay of the iron-transporting siderophore (deferricoprogen B) produced by the fungus, as the reduction in respiration was partially alleviated by the addition of foreign siderophores. Neither kaolinite nor attapulgite (palygorskite) appeared to adsorb significant amounts of the siderophores, probably because of the low cation exchange capacity and specific surface area of kaolinite and the inaccessibility of adsorption sites in the fibrous attapulgite. These observations, in addition to the adhesion of montmorillonite to the hyphae, suggest mechanisms that may explain the discrete geographic distribution of this fungus, which is pathogenic to humans and which has been isolated essentially only from soils that do not contain montmorillonite. PMID:2937365

  16. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  17. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    PubMed

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  18. Effect of pH on the heavy metal-clay mineral interaction

    SciTech Connect

    Altyn, O.; Oezbelge, H.O.; Dogu, T.; Oezbelge, T.A.

    1997-12-31

    Adsorption and ion exchange of Pb and Cd on the surface of kaolinite and montmorillonite were studied with a strong emphasis on the pH values of solutions containing heavy metal ions. The pH range studied was 2.5 - 9. For kaolinite at a clay/solution ratio of 1/10 (w/w), Pb removal changes from 20 to 30% for an initial Pb concentration of 1640 ppm, and Cd removal changes from 10 to 20% for an initial Cd concentration of 1809 ppm. Due to its high exchange capacity, montmorillonite can remove more heavy metal than kaolinite. Removal rates for montmorillonite can reach up to 90% for both Pb and Cd. In the pH range of 3-6, there is a plateau for the removal rates. At pH values higher than 6, removal seems to increase artificially due to the precipitation of heavy metals. Under similar conditions for both clays, the rate of removal of Pb is always higher than that of Cd. As the pH value decreases for montmorillonite, there is a strong tendency for decreased surface area and swelling, as indicated by BET surface area measurements, adsorbed layer thickness and pore size distribution data. In the range of pH values studied, X-ray diffraction analysis showed the appearance of a characteristic (001) peak for montmorillonite, indicating that the crystalline structure of the clay was intact during the experiments.

  19. Effect of chlorine in clay-mineral specimens prepared on silver metal-membrane mounts for X-ray powder diffraction analysis

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, J.A.; Pense, G.M.

    1989-01-01

    Silver metal-membrane filters are commonly used as substrates in the preparation of oriented clay-mineral specimens for X-ray powder diffraction (XRD). The silver metal-membrane filters, however, present some problems after heat treatment if either the filters or the samples contain significant amounts of chlorine. At elevated temperature, the chloride ions react with the silver substrate to form crystalline compounds. These compounds change the mass-absorption coefficient of the sample, reducing peak intensities and areas and, therefore, complicating the semiquantitative estimation of clay minerals. A simple procedure that eliminates most of the chloride from a sample and the silver metal-membrane substrate is presented here.

  20. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: use in clay mineral studies

    USGS Publications Warehouse

    Crowley, J.K.; Vergo, N.

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the same spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. -from Authors

  1. Stability of guanine adsorbed in a clay mineral under gamma irradiation at temperatures (77 and 298 K): Implications for chemical evolution studies

    NASA Astrophysics Data System (ADS)

    Meléndez-López, A. L.; Ramos-Bernal, S.; Ramírez-Vázquez, M. L.

    2014-07-01

    Chemical evolution is a physical and chemical preamble prior the appearance of life. In these processes, clay minerals might have played an important role on the early Earth. The relevance of these solids in the emergence of life is due to their ancient origin, wide distribution, and especially, their physico-chemical properties. Clays, therefore, are considered the most likely inorganic materials to promote organic reactions in the primitive Earth. John D. Bernal suggested clays as concentrators of biological precursor molecules, as catalysis and clays might protect these molecules from high-energy radiation. On the other hand, nucleic acid bases and their derivatives are important compounds in biological systems. Their synthesis and stability in environmental conditions are of paramount importance in chemical evolution. The aim of this work is to extend the knowledge of the role of clays in the prebiotic epoch in relation to the behavior of guanine, a nucleic acid base, adsorbed in a clay mineral. To this end, we studied its adsorption in clays, its site of binding, and its survival under a high radiation field and at different temperatures and pH. The results showed guanine adsorption onto clays increased with the decreasing of the pH. This result could be explained by electrostatic forces between guanine positively charged at an acid pH and the negatively charged interlamellar channel of the clay. X-ray diffractograms showed that guanine is adsorbed onto the clay at the interlayer channel. To study the survival of guanine in a high radiation field, the system guanine-clay was irradiated under different irradiation doses, temperatures, and pH. The results showed that more than 90% of the guanine survives, and when the radiolysis is made without clay, the decomposition of this molecule occurs at low irradiation doses. The radiolysis performed at 77 K showed very low decomposition, which is important in cometary chemistry. These results show the protection role of

  2. Effects of clay minerals on transport of graphene oxide in saturated porous media.

    PubMed

    Lu, Taotao; Xia, Tianjiao; Qi, Yu; Zhang, Chengdong; Chen, Wei

    2017-03-01

    The presence of kaolinite, montmorillonite, and illite in packed quartz sand inhibited the transport of graphene oxide to different degrees. Transport inhibition was exerted mainly by the presence of positively charged sites on clay edges (which served as favorable deposition sites), whereas the effects on the overall particle-collector interaction energy and flow path were small. Kaolinite exhibited the most significant transport-inhibition effects because of its high percentage of edge area. Environ Toxicol Chem 2017;36:655-660. © 2016 SETAC. © 2016 SETAC.

  3. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    SciTech Connect

    Gueven, N.; Landis, C.R.; Jacobs, G.K.

    1988-10-01

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs.

  4. Mars atmosphere. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars.

    PubMed

    Mahaffy, P R; Webster, C R; Stern, J C; Brunner, A E; Atreya, S K; Conrad, P G; Domagal-Goldman, S; Eigenbrode, J L; Flesch, G J; Christensen, L E; Franz, H B; Freissinet, C; Glavin, D P; Grotzinger, J P; Jones, J H; Leshin, L A; Malespin, C; McAdam, A C; Ming, D W; Navarro-Gonzalez, R; Niles, P B; Owen, T; Pavlov, A A; Steele, A; Trainer, M G; Williford, K H; Wray, J J

    2015-01-23

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  5. Kinetics and thermodynamics studies of copper exchange on Na-montmorillonite clay mineral.

    PubMed

    El-Batouti, Mervette; Sadek, Olfat M; Assaad, Fayez F

    2003-03-15

    The kinetics of Cu ion exchange on Na-montmorillonite clay has been investigated at 20, 30, and 40 degrees C in water, methanol, and ethanol. The reaction is endothermic in nature. Solvent effects on the reaction rate have been discussed. The thermodynamic activation parameters were calculated and discussed in terms of solvation effects. A multiple reaction rate order equation was used to describe the adsorption process. Lower rates and higher activation energies (Ea) were observed in aqueous solution than in either of the alcohols. The Ea values ranged from 20.88 kJmol(-1) in water to 9.20 kJmol(-1) in ethanol, while at 20 degrees C the rate constant (k) varied from 0.111 ppm(-1)s(-1) in water to 0.205 ppm(-1)s(-1) in ethanol. The main factor influencing the rate of the adsorption process is the mobility of the adsorbed Cu cations, which is apparently larger in alcohols than in water, due to the difference in the molar activation energy of the solvent. The determined isokinetic temperature indicates that the reaction is enthalpy-controlled, where the interaction between solvent and clay surface plays an important role. A reaction mechanism that describes the solvent effect on the rate of Cu ion exchange is proposed.

  6. Cesium and Strontium Uptake to Clay Minerals and Their Weathering Products in a Caustic Waste

    SciTech Connect

    Choi, Sunkyung; Amistadi, Mary Kay; Seraphin, Supapan; Chorover, Jon

    2004-03-28

    Weathering behavior and contaminant (Sr and Cs) uptake by specimen clays (illite, vermiculite, montmorillonite and kaolinite) and their secondary solid phase products were studied in batch systems under geochemical conditions characteristic of leaking tank waste at the Hanford Site in WA (0.05 M AlT, 2 M Na+, 1 M NO3 -, pH {approx}14, Cs+ and Sr2+ present as co-contaminants). Time series experiments were conducted from 0 to 369 days, with initial Cs+ and Sr2+ concentrations ranging from 10-5 to 10-3 M. Cesium sorption after 369 d reaction was the greatest in the order of vermiculite, illite, montmorillonite and kaolinite at 10-3 M Cs/Sr. In the case of Sr, vermiculite showed highest Sr sorption and was followed by kaolinite, montmorillonite and illite at highest loading Cs/Sr after 369 d. Secondary phase products were feldspathoid sodium aluminum nitrate silicate, sodium aluminum nitrate silicate hydrate, Na-Al chabazite and zeolite X in weathered clays. Discrete Sr single phases were found in kaolinite and illite systems after 369 d at 10-3 M Cs/Sr.

  7. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.

    PubMed

    Cai, Peng; He, Xiaomin; Xue, Aifang; Chen, Hao; Huang, Qiaoyun; Yu, Jun; Rong, Xinming; Liang, Wei

    2011-01-30

    Adsorption, desorption and degradation by Pseudomonas putida of methyl parathion (O,O-dimethyl O-p-nitrophenyl phosphorothioate) on montmorillonite, kaolinite and goethite were studied. Metabolic activities of methyl parathion-degrading bacteria P. putida in the presence of minerals were also monitored by microcalorimetry to determine the degradation mechanism of methyl parathion. Montmorillonite presented higher adsorption capacity and affinity for methyl parathion than kaolinite and goethite. The percentage of degradation of methyl parathion adsorbed on minerals by P. putida was in the order of montmorillonite>kaolinite>goethite. The presence of minerals inhibited the exponential growth and the metabolic activity of P. putida. Among the examined minerals, goethite exhibited the greatest inhibitory effect on bacterial activity, while montmorillonite was the least depressing. The biodegradation of adsorbed methyl parathion by P. putida is apparently not controlled by the adsorption affinity of methyl parathion on minerals and may be mainly governed by the activity of the methyl parathion-degrading bacteria. The information obtained in this study is of fundamental significance for the understanding of the behavior of methyl parathion in soil environments.

  8. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Zolensky, M. E.

    1991-01-01

    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  9. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Zolensky, M. E.

    1991-01-01

    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  10. Experimental Determination of Clay Mineral Reactions in Clastic Reservoir Rock Resulting from the Injection of Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Mangini, S. A.; Shaw, C. A.; Skidmore, M. L.

    2013-12-01

    The Cretaceous Frontier Formation of the Powder River Basin, WY has been considered as a potential reservoir for storing anthropogenic CO2. The reservoir zones are composed of fine-grained quartz and potassium feldspar rich sandstones, cemented with clay minerals (kaolinite and interlayered illite and montmorillonite). The purpose of these experiments is to determine whether susceptible minerals such as illite, montmorillonite, and potassium feldspar undergo in-situ 'weathering' reactions when exposed to the high concentrations of carbonic acid generated by the dissolution of supercritical CO2 in formation water. The transformation of these minerals has the potential to: 1.) open up pore space through dissolution; 2.) reduce pore space and/or close pore throats by precipitating new minerals, or 3.) cause little change if the reactions take place slowly. Core samples of the Frontier Formation were obtained from the USGS Core Repository in Denver, CO and their physical and mineralogical properties analyzed. Porosity and permeability of the cores have been determined by helium porosimetry and gas permeability testing. Pore space distribution was analyzed by CT scan. Mineralogy was determined by thin section analysis, X-Ray diffraction, and Scanning Electron Microscopy. Ongoing experiments will expose the cores to CO2 saturated brine in a flow-through reactor at conditions similar to those found in the subsurface (100oC and 15MPa). Changes to the chemical composition of the brine will be determined by withdrawing samples at regular intervals during the experiment and analyzing their contents with ion chromatography and colorimetry. The physical and mineralogical properties of the cores will be analyzed after each experiment and compared to the initial conditions. We will report on the results of these experiments.

  11. Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance

    Treesearch

    Jason R. Price; Michael A. Velbel; Lina C. Patino

    2005-01-01

    Rates of clay formation in three watersheds located at the Coweeta Hydrologic Laboratory, western North Carolina, have been determined from solute flux-based mass balance methods. A system of mass balance equations with enough equations and unknowns to allow calculation of secondary mineral formation rates as well as the more commonly determined primary-...

  12. Interactions between extracellular polymeric substances and clay minerals affect soil aggregation

    NASA Astrophysics Data System (ADS)

    Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten

    2017-04-01

    Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.

  13. Swellable clay minerals in weathering products of volcanic sediments related to landslides by 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Torii, M.

    2016-12-01

    2016 Kumamoto Earthquake triggered numerous landslides in Aso caldera area, Japan and incurred heavy casualties. Landslides occurred not only on steep slopes at the caldera cliffs or the barranco but also on relatively gradual slopes at the side of the central cones in the Aso caldera. The Aso volcano is a volcanic complex with huge caldera formed by catastrophic eruption at approximately 90ka and central cones formed by subsequent activities to recent years. The central cones are volcanic peaks contain various rocks including basaltic, andesitic and rhoyolitic lavas and pyroclastic materials. In this study, we analyzed the samples collected from the bottom surface of landslides occurred at the gradual hillside on the western flank of the Aso central cones. The subsurface geology of the site is Takanoobane rhyolite lava, 51ka, covered by dark silty or pelitic tuffs and black soil strata including Kusasenri pumice layer, 31ka. The bottom plane of the landslides can be seen as flat surfaces at boundaries between units in the Kusasenri pumice or bottom of the Kusasenri pumice on the pelitic tuff with charcoaled plants. The Kusasenri pumice layer is a coarse grained and highly permeable but poorly continuous. X-ray diffraction analysis revealed that the main component of the samples is halloysite (10Å). Halloysite (10Å) is alteration product of fine grained volcanic ash, and swellable clay with interlayer water molecules which bring sticky and deformable characteristics. The landslides caused by 2016 Kumamoto Earthquake occurred without precipitation within a week. Strong earthquake may fluidize swellable clay layers in gradual slopes and triggered heavy landslides.

  14. An Investigation of the Effects of Deposit Feeding Invertebrates on the Structural Properties of Clay Minerals.

    DTIC Science & Technology

    1981-07-01

    water for three weeks compared to montmorillonite ingested by the marine intertidal harpacticoid copepod , Ti riopus californicus . Although not...specimens of Tigriopus californicus when compared to their original illite. In all cases, illite appears more resistant to chemical or[structural change...400. Syvitski, J. P. M. and A. Lewis (1980) Sediment ingestion by Tigriopus californicus and other zooplankton: Mineral transfono and sedimentological

  15. Clay mineral weathering and contaminant dynamics in a caustic aqueous system I. Wet chemistry and aging effects

    SciTech Connect

    Choi, Sunkyung; Amistadi, Mary K.; Chorover, Jon

    2005-04-08

    Caustic high level radioactive waste induces mineral weathering reactions that can influence the fate of radionuclides released in the vicinity of leaking storage tanks. The uptake and release of CsI and SrII were studied in batch reactors of 2:1 layer-type silicates?illite (Il), vermiculite (Vm) and montmorillonite (Mt)?under geochemical conditions characteristic of leaking tank waste at the Hanford Site in WA (0.05 mAlT, 2 m Na*, 1 m NO3 *, pH *14, Cs and Sr present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10*5 to 10*3 mol kg*1. Clay mineral type affected the rates of (1) hydroxide promoted dissolution of Si, Al and Fe, (2) precipitation of secondary solids and (3) uptake of Cs and Sr. Initial Si release to solution followed the order Mt * Vm * Il. An abrupt decrease in soluble Si and/or Al after 33 d for Mt and Vm systems, and after 190 d for Il suspensions was concurrent with accumulation of secondary aluminosilicate precipitates. Strontium uptake exceeded that of Cs in both rate and extent, although sorbed Cs was generally more recalcitrant to subsequent desorption and dissolution. After 369 d reaction time, reacted Il, Vm and Mt solids retained up to 17, 47 and 14 mmol kg*1 (0.18, 0.24 and 0.02 *mol m*2) of Cs, and 0, 27 and 22 mmol kg*1 (0, 0.14 and 0.03 *molm*2) Sr, respectively, which were not removed in subsequent Mg exchange or oxalic acid dissolution reactions. Solubility of Al and Si decreased with initial Cs and Sr concentration in Mt and Il, but not in Vm. High co-contaminant sorption to the Vm clay, therefore, appears to diminish the influence of those ions on mineral transformation rates.

  16. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology.

    PubMed

    Fang, Hongwei; Cui, Zhenghui; He, Guojian; Huang, Lei; Chen, Minghong

    2017-12-15

    Particle morphology plays an important role in solid-water interface adsorption, which affects the fate and behavior of phosphorus (P) in rivers and lakes and the resulting eutrophication. In this paper, three minerals including kaolinite, montmorillonite and hematite were considered to investigate the contributions of particle morphology to P adsorption using adsorption experiments and microscopic examinations. The Taylor expansion method is applied to quantitatively characterize the heterogeneity of surface morphology. The results reveal that local concave or convex micro-morphology characterized by the second order term of Taylor expansion F2, can affect the local adsorption capacity due to its effect on the distribution of surface charge and reactive sites. Moreover, the adsorbed P at different F2 here fits to a Weibull distribution, which can further define the representative average adsorption onto individual particles. A weighted average morphology factor F2a is derived to characterize the surface heterogeneity, and correlated with average P adsorption of particular mineral particles. In addition, the Sips model can successfully fit the experimental data of different minerals, and the heterogeneity parameters γ and adsorption capacity Qm in the model are proved to be functions with the basic mineral properties, including particle size, surface site density and morphology characterization as well. It is concluded that the complex surface morphology plays a significant role in particle adsorption and the morphological role need to be considered in the adsorption model in order to better describe the adsorption in system with heterogeneous solid surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model

    PubMed Central

    Seim, Gretchen L.; Ahn, Cedric I.; Bodis, Mary S.; Luwedde, Flavia; Miller, Dennis D.; Hillier, Stephen; Tako, Elad; Glahn, Raymond P.; Young, Sera L.

    2014-01-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1:16 ratio, sample:WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14571) μg/g and mean Fe concentration in the clay minerals was 2791 (± 1782) μg/g. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg/g). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some geophagic earth and clay mineral

  18. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model.

    PubMed

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L

    2013-08-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some

  19. Clay mineral contribution from various provenances in the northern South China Sea over the past 400 kyr: implications for the East Asian monsoon evolution

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Liu, Zhifei; Xie, Xin; Kissel, Catherine

    2014-05-01

    Clay mineralogy of Core MD12-3432 taken at 2125 m water depth (CIRCEA cruise on board the R.V. Marion Dufresne, IPEV) in the northern South China Sea was investigated in order to understand the time series contribution of terrigenous sediments from various provenances. With calibration of a low-resolution analysis on carbonate concentration and major elements, we converted the XRF core scanned calcium data into a high-resolution carbonate content records. Through referring to the well-dated carbonate record of nearby Core MD05-2904, we established a reliable age model, indicating about 400 kyr ago at the bottom of Core MD12-3432. The clay mineral assemblage is dominated by smectite (23-59%) and illite (22-43%), with minor chlorite (13-27%) and kaolinite (4-13%). The time series variation of clay mineral assemblages indicates strong glacial-interglacial cyclicity. In general, the variation in smectite content is similar to that of carbonate concentration, with higher values during interglacials than during glacials, while illite and chlorite contents showing opposite patterns. The change in kaolinite content shows an independent pattern with high values during glacials, corresponding well with the illite crystallinity variation. The provenance analysis of these clay minerals suggests three end-member sources: all smectites derive from Luzon, all kaolinites originate from the Pearl River, and illite and chlorite are coming from both the Pearl River and Taiwan. Using the linear separation method of illite crystallinity, a time series of the clay mineral contribution from the three major provenances to the northern South China Sea was reconstructed. Combined with spectral analyses, we suggest the clay mineral contribution from Pearl River was mainly influenced by sea level change, while the East Asian summer monsoon controlled the contribution from Luzon. The strong precipitation rate related to intensive East Asian summer monsoon would have enhanced the denudation and

  20. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay

    NASA Astrophysics Data System (ADS)

    Charlet, L.; Scheinost, A. C.; Tournassat, C.; Greneche, J. M.; Géhin, A.; Fernández-Martínez, A.; Coudert, S.; Tisserand, D.; Brendle, J.

    2007-12-01

    surface H 2 species, and are then available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, we derived an average particle size of this precipitate which does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters.

  1. Lead exchange into zeolite and clay minerals: A [sup 29]Si, [sub 27]Al, [sup 23]Na solid-state NMR study

    SciTech Connect

    Liang, J.J.; Sherriff, B.L. )

    1993-08-01

    Chabazite, vermiculite, montmorillonite, hectorite, and kaolinite were used to remove Pb, through ion exchange, from 0.01 M aqueous Pb(NO[sub 3])[sub 2] solutions. These minerals contained 27 (Na-chabazite), 16, 9, 9, and 0.5 wt % of Pb, respectively, after equilibration with the solutions. Ion exchange reached equilibrium within 24 h for Na-chabazite and vermiculite, but in less than 5 min for montmorillonite and hectorite. Na-chabazite took up more Pb than natural (Ca, Na)-chabazite (7 wt % Pb), whereas no such difference was observed in different cation forms of the clay minerals. Calcite impurities, associated with the clay minerals, effectively removed Pb from the aqueous solutions by the precipitation of cerussite (PbCO[sub 3]). [sup 29]Si, [sup 27]Al, and [sup 23]Na magic angle spinning (MAS) nuclear magnetic resonance (NMR), [sup 23]Na double rotation (DOR) NMR, and [sup 23]Na variable-temperature MAS NMR were used to study the ion exchange mechanisms. In Na-chabazite, cations in all three possible sites take part in the fast chemical exchange. The chemical exchange passes from the fast exchange regime to the slow regime at [minus]80 to [minus]100[degrees]C. One site contains a relatively low population of exchangeable cations. The other two more shielded sites contain most of the exchangeable cation. The exchangeable cations in chabazite and vermiculite were found to be close to the SiO[sub 4] and AlO[sub 4] tetrahedra, while those in the other clay minerals were more distant. Two sites (or groups of sites) for exchangeable cations were observed in hectorite. Lead tended to occupy the one which corresponds to the [minus]8 ppM peak on the [sup 23]Na MAS NMR spectrum. The behavior of the exchangeable cations in the interlayer sites was similar in all the clay minerals studied. 27 refs., 7 figs., 4 tabs.

  2. Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modelling

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Berger, G.; Simoni, E.; Castet, S.; Giffaut, E.; Loubet, M.; Catalette, H.

    2006-09-01

    The sorption of Eu(III) onto kaolinite and montmorillonite was investigated up to 150 °C. The clays were purified samples, saturated with Na in the case of montmorillonite. Batch experiments were conducted at 25, 40, 80 and 150 °C in 0.5 M NaClO 4 solutions to measure the distribution coefficients (Kd) of Eu as a trace element (<10 -6 mol/L) between the solution and kaolinite. For the Na-montmorillonite, we used Kd results from a previous study [Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental study of adsorption of Ni 2+, Cs + and Ln 3+ onto Na-montmorillonite up to 150 °C. Geochim. Cosmochim. Acta69, 4937-4948] obtained under exactly the same conditions. The number and nature of the Eu species sorbed onto both clay minerals were investigated by time resolved laser fluorescence spectroscopy (TRLFS) in specific experiments in the same temperature range. We identified a unique inner-sphere complex linked to the aluminol sites in both clays, assumed to be dbnd AlOEu 2+ at the edge of the particles, and a second exchangeable outer-sphere complex for montmorillonite, probably in an interlayer position. The Kd values were used to adjust the parameters of a surface complexation model (DLM: diffuse layer model) from 25 to 150 °C. The number of Eu complexes and the stoichiometry of reactions were constrained by TRLFS. The acidity constants of the amphoteric aluminol sites were taken from another study [Tertre, E., Castet, S., Berger, G., Loubet, M., Giffaut, E. Acid/base surface chemistry of kaolinite and Na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta, in press], which integrates the influence of the negative structural charge of clays on the acid/base properties of edge sites as a function of temperature and ionic strength. The results of the modelling show that the observed shift of the sorption edge towards low pH with increasing temperature results solely from the contribution of the

  3. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A (14)C-tracer study.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A(14)C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field.

  4. Origin of clay minerals in Early Eocene volcanic paleosols on King George Island, Maritime Antarctica.

    PubMed

    Spinola, Diogo Noses; Pi-Puig, Teresa; Solleiro-Rebolledo, Elizabeth; Egli, Markus; Sudo, Masafumi; Sedov, Sergey; Kühn, Peter

    2017-07-25

    The paleoclimate during the Early Eocene in Maritime Antarctica is characterized by cool conditions without a pronounced dry season. Soils formed on volcanic material under such climate conditions in modern analogue environments are usually Andosols rich in nanocrystalline minerals without pedogenic smectite. The paleosols formed on volcanic material on King Georges Island are covered by basalts, dated by 6 new (40)Ar/(39)Ar datings to 51-48 Ma, and are rich in smectite. A pedogenic origin of the smectites would suggest a semi-arid rather than a wet non-seasonal humid paleoclimate. To investigate the origin of the smectites in these paleosols we used X-ray diffraction and microscopic techniques. Minor mineralogical changes between the volcanic parent material and the paleosols and a homogenous distribution of smectites throughout the paleosol horizons indicate that these smectites were mainly inherited from the pyroclastic parent material, which was altered prior to surficial weathering. Nevertheless, the mineralogical properties, such as degree of crystallinity and octahedral site occupancy, of these smectites were modified during the ancient soil formation. Our findings highlight that trioctahedral smectites were a product of deuteric alteration of pyroclastic rocks and were progressively transformed to dioctahedral smectites during weathering in a soil environment on King George Island.

  5. Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, Northwestern Argentina)

    NASA Astrophysics Data System (ADS)

    Do Campo, Margarita; del Papa, Cecilia; Nieto, Fernando; Hongn, Fernando; Petrinovic, Ivan

    2010-07-01

    Variations in clay-mineral assemblages in ancient continental deposits are frequently used to reconstruct past climate changes. In active settings, volcanic events can supply highly labile volcaniclastic material, which can easily be transformed into smectite via diagenesis, which can produce a noticeable footprint in clay-mineral assemblages. Southern Central Andean foreland deposits are appropriate case studies to ascertain whether the climatic signal was preserved in the clay assemblages of their fine-grained sediments as tectonic uplift, volcanism, and sedimentation have been interacting since the Cretaceous. We have studied a 1400-m-thick coarsening-upward Palaeogene succession of the Tin Tin basin (northern Calchaquí Valley, Argentina), applying X-ray diffraction (XRD), electron microscopy, and detailed sedimentary facies analysis with the aim of comparing tendencies in the vertical fluctuations of clay minerals with evidence from sedimentological facies. Illite-muscovite plus smectite account for 78% to 100% of the clay minerals in the fine fraction, with kaolinite and chlorite in subordinate amounts. The vertical variation of sedimentary settings from an overbank/lacustrine domain to fluvial braided plains and an aeolian dune field suggests a gradual increase in aridity upsection. However, smectite abundances do not show a gradual decreasing trend compatible with progressively lower hydrolyzing conditions; their relative abundances vary widely throughout the section, depicting pulse-like, abrupt fluctuations. Despite the absence of field evidence for volcanic influence, several indications of volcanic and volcaniclastic material have been found under scanning electron microscopy (SEM) in levels with high smectite abundances from the middle to the top of the succession. They include quartz crystals showing embayments and skeletal forms, with smectite filling the voids, microcrystalline silica, as well as heulandite crystals in close association with

  6. Fluid Sources and Timing of Surface-Localized Mineralization in Clay Gouge of the Central Alpine Fault Zone (New Zealand)

    NASA Astrophysics Data System (ADS)

    Boles, A.; van der Pluijm, B.

    2016-12-01

    Mineralogical and isotopic study of the clay mineral population in gouge from the central Alpine Fault Zone (New Zealand) can test models of fault-related fluid flow, including fluid timing and provenance. Electron backscatter diffraction (EBSD) mapping of fault gouges identified sites of chlorite mineralization for electron microprobe analysis (EMPA) and chlorite chemical geothermometry. The latter gives a temperature range for chlorite retrogradation between 210-296°C, corresponding to depths of 3-5 km. Rietveld method-based quantitative X-ray powder diffraction is utilized in a modified version of illite polytype analysis to constrain the H isotopic composition of individual chlorite and illite populations. 40Ar/39Ar geochronology of illite gives low initial 40Ar, indicating recent authigenesis with an estimated age of <0.5 Ma. The δD in 6 of 8 samples yields a chlorite-rich end-member composition in the range of -86 to -100‰. The δD of authigenic illite (at equilibration temperatures between 80-90°C, depths of 1-2 km) in all samples is similar, with a range of -86 to -105‰. These results correspond to fluid values between -55 and -75‰, which matches the range of modern surface fluid values in the area. Footwall fault and hanging wall fault isotopic compositions differ by -14‰, further indicating a long-term memory of fault sealing behavior. The isotopic compositions of the chlorite-rich end-member of two samples are -67 and -76‰, representing fluid values of -36 and -45‰, respectively, which reflects significant (older?) metamorphic fluid input. A dominant meteoric fluid signal in all but two samples is consistent with a young, active hydrothermal system at this plate boundary fault system, resulting in a near-complete surficial overprint. The observations of recent, surficial mineralization on this locked fault suggest that similar illitization is not present at depth, in contrast to results of core from the creeping section of the San Andreas

  7. Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals

    PubMed Central

    2014-01-01

    We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the

  8. Clay mineral distribution along the southern and western Svalbard continental margin in association with contouritic deposition: insights for environmental and oceanographic reconstruction

    NASA Astrophysics Data System (ADS)

    Musco, Maria Elena; Caricchi, Chiara; Giulia Lucchi, Renata; Princivalle, Francesco; GIorgetti, Giovanna; Caburlotto, Andrea

    2017-04-01

    The Kveithola and Storfjorden troughs are two glacial depositional systems, situated South of the Svalbard Archipelago (North Western Barents Sea), that during the last glaciation (MIS-2) have hosted ice streams, which contributed to the build-up of the relative Trough Mouth Fans (TMFs) on the continental slope. The sedimentary record contained in TMFs provides several proxies that can be useful for reconstructing the ice-streams dynamics during glacial periods, the onset of deglaciation and the climatic variability during interglacials. The TMF slopes facing the two troughs have been investigated during several international oceanographic cruises: SVAIS onboard R/V BIO Hespérides; EGLACOM, onboard R/V OGS Explora; PNRA Project CORIBAR, onboard R/V Maria S. Marien; Eurofleets-2 PREPARED, onboard RV-G.O. Sars. For this study we have focused on XRD analyses on clay minerals, collected from seven cores, taken during these cruises, and XRF analyses have also been conducted on the whole length of the cores. Clay mineral assemblages are controlled by source rock composition, physical-chemical weathering, transport and depositional mechanisms. In polar areas clay mineral analysis can be used also for reconstructing sedimentary processes, associated with glacial and interglacial conditions. Moreover in the North western Barents Sea smectite is considered a good proxy for reconstructing the North Atlantic Current strength, giving thus additional indication on the palaeoceanographic conditions associated with climatic changes. Here we present a first correlation among these cores, aiming to describe the clay mineral distribution in response to the climatic variations that followed the Last Glacial Maximum and describe the changes in ice-stream dynamics and related oceanographic/environmental changes along the margin.

  9. Clay minerals and gravels of late Pleistocene interstadial coastal sediments above the current sea level, south coast of Korea

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Kim, J. C.; Lim, J.; Yi, S.; Nahm, W. H.; Kim, J. Y.; Han, M.

    2015-12-01

    At nowadays, the severe greenhouse effect causes rapid sea level rise around the Korea Peninsula. Paleo-climate researches have been concentrating on hydrological activities during the mid-Holocene optimum and the last interglacial period to use the paleo-analogues data in predicting the future hydrological environments. The previous studies on the late Pleistocene interstadial coastal sediments have primarily been biased towards the terraces of the east coast in the Korean Peninsula. According to the results, the last interglacial marine terraces of the east coast were existed at 18 m in elevation. Uplift rate of them was presumed to be 0.1mm/year (Choi, 2006). Also, the stratigraphy of the Quaternary coastal deposits of the Yellow Sea has been suggested by Park et al. (1998) and Lim et al. (2003). In recent, Jang et al. (2014) reported the OSL dated Eemian marine deposit along the southwest coast of Korea. However, the age-equivalent outcrops of the south coast are not discovered yet. The first outcrops of the late Pleistocene interstadial coastal sediment above the present sea level were discovered at IJin-ri site of Haenam, south coast of Korea. It would be very useful for calculating the rates of Eemian sea level rise and uplift of south coast of Korea. 62 cubic samples were collected at 6 cm intervals from the section (4.8-8.83m in elevation). Four sedimentary units, from Unit 1 to 4 in ascending order, are distinguished based on sedimentary textures and grain size distribution as follows: Unit 1 (sand, 4.8 m-5.32 m in elevation), Unit 2 (silty clay, 5.32 m-6.8 m in elevation), Unit 3 (gravelly sand, 6.8m-7.8m in elevation) and, Unit 4(sandy gravel, 7.8m-8.83m in elevation). The sediments which included rounded or semi-rounded gravels are thought to be transported from marine. Also, the assemblages of clay minerals from the sections are similar to those of Yellow Sea. It shows the possibility that the sediments originated from marine during high sea level

  10. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.

    2014-12-01

    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  11. CLAYFORM: a FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula

    USGS Publications Warehouse

    Bodine, M.W.

    1987-01-01

    The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.

  12. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications.

  13. Insights into the Mechanism of Fe(II) Adsorption and Oxidation at Fe-Clay Mineral Surfaces from First-Principles Calculations

    SciTech Connect

    Alexandrov, Vitali Y.; Rosso, Kevin M.

    2013-10-02

    Interfacial reactivity of redox-active iron-bearing mineral surfaces plays a crucial role in many environmental processes including biogeochemical cycling of various elements and contaminants. Herein, we apply density-functional-theory (DFT) calculations to provide atomistic insights into the heterogeneous reaction between aqueous Fe(II) and the Fe-bearing clay mineral nontronite Fe2Si4O10(OH)2 by studying its adsorption mechanism and interfacial Fe(II)-Fe(III) electron transfer (ET) at edge and basal surfaces. We find that edge-bound Fe(II) adsorption complexes at different surface sites (ferrinol, silanol and mixed) may coexist on both (010) and (110) edge facets, with complexes at ferrinol FeO(H) sites being the most energetically favorable and coupled to proton transfer. Calculation of the ET activation energy suggests that interfacial ET into dioctahedral Fe(III) sheets is probable at the clay edges and occurs predominantly but not exclusively through the complexes adsorbed at ferrinol sites and might also involve mixed sites. No clear evidence is found for complexes on basal surface that are compatible with ET through the basal sheet despite this experimentally hypothesized ET interface. This study suggests a strong pH-dependence of Fe(II) surface complexation at basal versus edge facets and highlights the importance of the protonation state of bridging ligands and proton coupled electron transfer to facilitate ET into Fe-rich clay minerals.

  14. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid.

    PubMed

    Hizal, Jülide; Apak, Resat

    2006-03-01

    The aim of this study is to explain how clay minerals adsorb heavy metals individually and in the presence of humic acid, and to model heavy metal adsorption specifically based on surface-metal binary and surface-metal-ligand ternary complexation. The adsorption of Cu(II) and Pb(II) on kaolinite-based clay minerals has been modeled by the aid of the FITEQL3.2 computer program using single- and double-site binding models of the Langmuir approach. Potentiometric titrations and adsorption capacity experiments were carried out in solutions containing different concentrations of the inert electrolyte NaClO4; however, the modeling of binary and ternary surface complexation was deliberately done at high ionic strength (0.1 M electrolyte) for eliminating adsorption onto the permanent negatively charged sites of kaolinite. A "two-site, two pKa" model was adapted, and as for the two surface sites responsible for adsorption, it may be arbitrarily assigned that [triple bond]S1OH sites represent silanol and organic functional groups such as carboxyl having pKa values close to that of silanol, and [triple bond]S2OH sites represent aluminol and organic functional groups such as phenolics whose pKa values are close to that of aluminol, as all the studied clays contained organic carbon. Copper(II) showed a higher adsorption capacity and higher binding constants, while lead(II), being a softer cation (in respect to HSAB theory) preferred the softer basic sites with aluminol-phenol functional groups. Heavy metal cations are assumed to bind to the clay surface as the sole (unhydrolyzed) M(II) ion and form monodentate surface complexes. Cu(II) and Pb(II) adsorption in the presence of humic acid was modeled using a double-site binding model by the aid of FITEQL3.2, and then the whole system including binary surface-metal and surface-ligand and ternary surface-metal-ligand complexes was resolved with respect to species distributions and relevant stability constants. Electrostatic effects

  15. Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite.

    SciTech Connect

    Jaisi, D. P.; Dong, H.; Plymale, A. E.; Fredrickson, J. K.; Zachara, J. M.; Heald, S.; Liu, C.; Miami Univ.; PNNL

    2009-01-01

    {sup 99}Tc is formed mostly during nuclear reactions and is released into the environment during weapons testing and inadvertent waste disposal. The long half-life, high environmental mobility (as Tc(VII)O{sub 4}{sup -}) and its possible uptake into the food chain cause {sup 99}Tc to be a significant environmental contaminant. In this study, we evaluated the role of Fe(II) in biologically reduced clay mineral, nontronite (NAu-2), in reducing Tc(VII)O{sub 4}{sup -} to poorly soluble Tc(IV) species as a function of pH and Fe(II) concentration. The rate of Tc(VII) reduction by Fe(II) in NAu-2 was higher at neutral pH (pH 7.0) than at acidic and basic pHs when Fe(II) concentration was low (< 1 mmol/g). The effect of pH, however, was insignificant at higher Fe(II) concentrations. The reduction of Tc(VII) by Fe(II) associated with NAu-2 was also studied in the presence of common subsurface oxidants including iron and manganese oxides, nitrate, and oxygen, to evaluate the effect of these oxidants on the enhancement and inhibition of Tc(VII) reduction, and reoxidation of Tc(IV). Addition of iron oxides (goethite and hematite) to the Tc(VII)-NAu-2 system, where Tc(VII) reduction was ongoing, enhanced reduction of Tc(VII), apparently as a result of re-distribution of reactive Fe(II) from NAu-2 to more reactive goethite/hematite surfaces. Addition of manganese oxides stopped further Tc(VII) reduction, and in case of K{sup +}-birnessite, it reoxidized previously reduced Tc(IV). Nitrate neither enhanced reduction of Tc(VII) nor promoted reoxidation of Tc(IV). Approximately 11% of Tc(IV) was oxidized by oxygen. The rate and extent of Tc(IV) reoxidation was found to strongly depend on the nature of the oxidants and concentration of Fe(II). When the same oxidants were added to aged Tc reduction products (mainly NAu-2 and TcO{sub 2} {center_dot} nH{sub 2}O), the extent of Tc(IV) reoxidation decreased significantly relative to fresh Tc(IV) products. Increasing NAu-2 concentration

  16. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  17. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study

    PubMed Central

    2014-01-01

    Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578

  18. Clay Minerals in Soils as Evidence of Holocene Climatic Change, Central Indo-Gangetic Plains, North-Central India

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Parkash, Bramha; Pal, Dilip K.

    1998-11-01

    Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite-kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000-6500 yr B.P. and 3800-? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400-4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.

  19. Mineral catalysis of the formation of dimers of 5'-AMP in aqueous solution: The possible role of montmorillonite clays in the prebiotic synthesis of RNA

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Agarwal, Vipin

    1989-03-01

    The reaction of the 5'-AMP with water soluble carbodiimide (EDAC) in the presence of Na+-montmorillonite 22A results in the formation of 2',5'-(pA)2 (18.9%), 3',5'-(pA)2 (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5'-(pA)2 (15.5%), 3',5'-(pA)2 (3.7%) and AppA (14.9%). The 3',5'-cyclic dinucleotide, 3',5'-c(pA)2, is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. Products which contain the phophodiester bond are formed at different ionic strengths, pH and temperatures using Na+-montmorillonite. Phosphodiester bond formation was not observed when Cu2+-montmorillonite was used or when DISN was used in the place of EDAC. The extent catalysis of phophodiester bond formation varied with the particular clay mineral used. Those Na+-clays which bind 5'-AMP more strongly are better catalysts. Cu2+-montmorillonite, which binds 5'-AMP strongly, exhibits no catalytic activity.

  20. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: effect on forensic diagnostic ratios.

    PubMed

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2014-07-01

    The impact of modified montmorillonites on adsorption and biodegradation of crude oil C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. Consequently, the effect on C1-dibenzothiophenes/C1-phenanthrenes, C2-dibenzothiophenes/C2-phenanthrenes, 2+3-methyldibenzothiophene/4-methyldibenzothiophene and 1-methyldibenzothiophene/4-methyldibenzothiophene ratios commonly used as diagnostic ratios for oil forensic studies was evaluated. The clay mineral samples were treated to produce acid activated montmorillonite, organomontmorillonite and homoionic montmorillonite which were used in this study. The different clay minerals (modified and unmodified) showed varied degrees of biodegradation and adsorption of the C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes. The study indicated that as opposed to biodegradation, adsorption has no effect on the diagnostic ratios. Among the diagnostic ratios reviewed, only C2-dibenzothiophenes/C2-phenanthrenes ratio was neither affected by adsorption nor biodegradation making this ratio very useful in forensic studies of oil spills and oil-oil correlation.

  1. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility

    NASA Astrophysics Data System (ADS)

    Fan, Q. H.; Tanaka, M.; Tanaka, K.; Sakaguchi, A.; Takahashi, Y.

    2014-06-01

    The relationship between cesium (Cs) adsorption on clay minerals with various expandabilities and Cs mobility in environment was investigated using sequential extraction, batch adsorption, X-ray diffraction (XRD), generalized adsorption model (GAM), and Cs LIII-edge extended X-ray absorption fine structure (EXAFS) analyses with molecular simulations using the density functional theory (DFT). In particular, the difference between the affinities of illite (non-expansion) and vermiculite (intermediate expansion) for Cs and the effect of humic acid (HA) addition on the Cs/clay mineral system were highlighted in this study. These two factors affect Cs mobility and bioavailability in surface soil and sediments. The batch adsorption results showed that Cs adsorption was inhibited to some extent in the ternary clay + HA + Cs system because of (i) the blocked access of Cs to the frayed edge site (FES) and type II site [inner-sphere (IS) complex in GAM] by HA, and (ii) the reduced availability of the interlayer site in vermiculite. EXAFS analysis further confirmed that the adsorbed Cs in clay minerals was drastically changed by the sequential addition of HA. In addition, the dominant IS complex in the illite + Cs and illite + Cs + HA systems (in which HA was added after Cs adsorption on illite) can be converted to the outer-sphere (OS) complex largely in the illite + HA + Cs system (in which HA was added prior to Cs adsorption). These results are consistent with the sequential extraction and GAM results. The IS complex of dehydrated Cs+ mainly formed at the FES and interlayer site on illite (non-expansion) without resulting in any illite structural changes. However, on vermiculite (intermediate expansion), the dehydrated Cs+ can be adsorbed as an IS complex associated with the siloxane group of the di-trigonal cavity in the tetrahedral SiO4 sheet. This adsorption is accompanied by collapse of the layer, which can be easily coated by HA molecules to prevent Cs fixation

  2. Clay mineral assemblages of terrestrial records (Xining Basin, China) during the Eocene-Oligocene climate Transition (EOT) and its environmental implications

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Guo, Z.

    2013-12-01

    The Eocene-Oligocene Transition (EOT) between ~34.0 and 33.5 million years ago, where global climate cooled from 'greenhouse' to 'icehouse' at ~33.5 Ma ago, is one of the great events during Cenozoic climate deterioration. In contrast to the marine records of the EOT, significantly less research has focused on the continental climate change during this time, particularly in inner Asia. We present a comprehensive study of the upper Eocene to lower Oligocene succession with regular alternations of laterally continuous gypsum/gypsiferous layers and red mudstone beds in Tashan section of Xining Basin, which is located at the northeastern margin of the Tibetan Plateau. Clay minerals, which were extracted from this succession, were analyzed qualitatively and semi-quantitatively by using X-ray differaction (XRD). Base on detailed magnetostratigraphic time control, clay mineral compositions of this succession (33.1-35.5 Ma) are compared with open ocean marine records and Northern Hemisphere continental records to understand the process and characteristics of Asian climate change before, during and after EOT. Our results indicate that illite is the dominant clay mineral with less chlorite and variable smectite. Multi-parameter evidence suggests that the source areas of detrital inputs in Tashan have not changed and climate is the main control for the composition of the clay fraction. The characteristics of clay mineral concentrations suggest warm and humid fluctuations with cold and dry conditions and intense of seasonality during ~35.5-34.0 Ma in inner Asian. This changed to cold and dry condition at ~34 Ma and remained so from ~34-33.1 Ma. The comparisons between continental and marine records indicate that the climate changes experienced in the Xining basin region are more consistent with Northern Hemisphere rather than open oceans records. This indicates that paleoclimate changes for inner Asian before, during and after EOT was not controlled by Antarctic ice growth

  3. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones)

    NASA Astrophysics Data System (ADS)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude

    2015-06-01

    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  4. Elucidating the Physical and Chemical Structural Changes of Proteins on Clay Mineral Surfaces using Large-scale Molecular Dynamics Simulations in Tandem with NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.

    2014-12-01

    Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged

  5. CO2-Brine-Iron-bearing Clay Mineral Interactions: Surface Area Changes and Fracture-Filling Potentials in Geologic CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Jun, Y.; Hu, Y.

    2011-12-01

    Geologic carbon dioxide sequestration (GCS) is a promising option to reduce anthropogenic CO2 emission from coal-fired power plants. The injected CO2 in GCS sites can induce dissolution of rocks and secondary mineral formation, potentially change the physical properties of the geological formations, and thus influence the transport and injectivity of CO2. However, most of the relevant studies are based on hydrological transport, using simulation models rather than studying actual interfacial chemical reactions. The mechanisms and kinetics of interfacial reactions among supercritical CO2 (scCO2)-saline water-rock surfaces at the molecular scale and their impacts on CO2 leakage have not been well understood. This research investigated the effects of various environmental factors (such as temperature, pressure, salinity, and different metal ion and organic-containing brine) on the dissolution and surface morphological changes of clay minerals. In this work, iron-bearing clay mineral, biotite [K(Mg,Fe)3AlSi3O10(OH,F)2], was used for model clay minerals in potential GCS sites. Both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on clay mineral surfaces under GCS conditions in high salinity systems. Using atomic force microscopy (AFM) and scanning electron microscopy (SEM), the interfacial surface morphology changes were observed. Shortly after a CO2 pressure of 102 atm is applied at 95oC, in situ pH of solutions was 3.15 ± 0.10. The early intrinsic dissolution rates of biotite were 8.4 ± 2.8 × 10-13 and 11.2 ± 3.0 × 10-13 mol Si m-2s-1 in water and NaCl solution, respectively. At the early stage of reaction, fast growth of fibrous illite on biotite basal planes was observed. After 22-70 h reaction, the biotite basal surface cracked, resulting in illite detaching from the surfaced. Later, the cracked surface layer was released into solution, thus the inner layer was exposed as a renewed

  6. Synthesis and structural characterization of ferrous trioctahedral smectites: Implications for clay mineral genesis and detectability on Mars

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Nickerson, Ryan D.; Morris, Richard V.; Agresti, David G.; Catalano, Jeffrey G.

    2015-06-01

    Widespread detections of phyllosilicates in Noachian terrains on Mars imply a history of near-surface fluid-rock interaction. Ferrous trioctahedral smectites are thermodynamically predicted products of basalt weathering on early Mars, but to date only Fe3+-bearing dioctahedral smectites have been identified from orbital observations. In general, the physicochemical properties of ferrous smectites are poorly studied because they are susceptible to air oxidation. In this study, eight Fe2+-bearing smectites were synthesized from Fe2+-Mg-Al silicate gels at 200°C under anoxic conditions. Samples were characterized by inductively coupled plasma optical emission spectrometry, powder X-ray diffraction, Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy, and visible/near-infrared (VNIR) reflectance spectroscopy. The range of redox states was Fe3+/ΣFe = 0 to 0.06 ± 0.01 as determined by both XAS and, for short integration times, Mössbauer. The smectites have 060 distances (d(060)) between 1.53 and 1.56 Å, indicating a trioctahedral structure. d(060) and XAS-derived interatomic Fe-(Fe,Mg,Al) distance scaled with Fe content. Smectite VNIR spectra feature OH/H2O absorption bands at 1.4 and 1.9 µm, (Fe2+,Mg,Al)3-OH stretching bands near 1.4 µm, and Fe2+Fe2+Fe2+-OH, MgMgMg-OH, AlAl(Mg,Fe2+)-OH, and AlAl-OH combination bands at 2.36 µm, 2.32 µm 2.25 µm, and 2.20 µm, respectively. The spectra for ferrous saponites are distinct from those for dioctahedral ferric smectites, permitting their differentiation from orbital observations. X-ray diffraction patterns for synthetic high-Mg ferrosaponite and high-Mg ferrian saponite are both consistent with the Sheepbed saponite detected by the chemistry and mineralogy (CheMin) instrument at Gale Crater, Mars, suggesting that anoxic basalt alteration was a viable pathway for clay mineral formation on early Mars.

  7. Cerium sequestration and accumulation in fractured crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals

    NASA Astrophysics Data System (ADS)

    Yu, Changxun; Drake, Henrik; Mathurin, Frédéric A.; Åström, Mats E.

    2017-02-01

    considerable amounts of Mn. These spectroscopic and microscopic features led us to suggest that the remarkable accumulation of Ce(IV) in this fracture is a result of repeated formation and dissolution of Mn oxides, that is, formation of Mn oxide followed by oxidative scavenging of Ce as Ce oxide nanoparticles, which largely remained during the subsequent reductive dissolution of the Mn oxides. In addition, the XANES data indicate that goethite has the capability to oxidize Ce at near-neutral pH under our experimental conditions (goethite reacted with 0.001 M Ce for 48 h in a glove box with O2 <1 ppm). This previously unrecognized Ce oxidation pathway also seems to contribute to a minor extent to the oxidative scavenging of Ce in the fracture network. Trivalent Ce in the fracture coatings, in particular below 2.5 m, is mainly sorbed as inner-sphere complexes on clay minerals. Taking into account the facts that Ce in the present groundwater is scarce and modeled to be largely complexed with humic substance, it is argued that the inner-sphere complexes were mainly formed from past (Paleozoic) hydrothermal fluids.

  8. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study.

    PubMed

    Ryan, P C; Hillier, S; Wall, A J

    2008-12-15

    Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 (+/-1) % of ripidolite, 19 (+/-1) % of saponite, and 19 (+/-3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases.

  9. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences

    NASA Astrophysics Data System (ADS)

    Clauer, Norbert; Zwingmann, Horst; Liewig, Nicole; Wendling, Raymond

    2012-10-01

    The 40K/40Ar (K-Ar) and 40Ar/39Ar dating methods are applied here to the same, very small, micrometric illite-type particles that crystallized under low-temperature (< 175 °C) hydrothermal conditions in deeply buried Rotliegend (Permian) gas-bearing sandstones of NW Germany. Four samples with a total of fifteen size fractions from < 2 to 20-40 μm yield K-Ar ages that range from 166.0 ± 3.4 to 214.0 ± 5.9 Ma. The same size fractions dated by the 40Ar/39Ar method give total-gas ages ranging from 173.3 ± 2.0 to 228.8 ± 1.6 Ma. Nearly all 40Ar/39Ar total-gas ages are slightly older, which cannot be explained by the recoil effect only, the impact of which being amplified by the inhomogeneous shape of the clay minerals and their crystallographic characteristics, with varied crystallinity indices, and a particle width about 10 times large than thickness. The 40Ar/39Ar data outline some advantages, such as the plateaus obtained by incremental step heating of the various size fractions, even if not translatable straight as ages of the illite populations; they allow identification of two generations of authigenic illite that formed at about 200 and 175 Ma, and one detrital generation. However, 40Ar/39Ar dating of clay minerals remains challenging as technical factors, such as the non-standardized encapsulation, may have potential unexpected effects. Both dating methods have their limitations: (1) K-Ar dating requires relatively large samples (ca. 10-20 mg) incurring potential sample homogeneity problems, with two aliquots required for K and Ar analysis for an age determination, also inducing a higher analytical uncertainty; (2) an identified drawback of 40Ar/39Ar dating is Ar recoil and therefore potential loss that occurs during neutronic creation of 39Ar from 39K, mostly in the finer mineral particles. If all the recoiled 39Ar is redistributed into adjacent grains/minerals, the final 40Ar/39Ar age of the analyzed size fraction remains theoretically identical, but it

  10. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  11. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Part of the 2003 industrial minerals review. The legislation, production, and consumption of common clay and shale are discussed. The average prices of the material and outlook for the market are provided.

  12. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  13. Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: an XRD and HRTEM-AEM study

    NASA Astrophysics Data System (ADS)

    Vázquez, M.; Nieto, F.; Morata, D.; Droguett, B.; Carrillo-Rosua, F. J.; Morales, S.

    2014-08-01

    HRTEM textural evidence shows that clay minerals in the Tinguiririca geothermal field (Andean Cordillera, central Chile) are the result of direct alteration of former volcanic glass and minerals by hydrothermal fluids at similar temperatures to the present day. They show the classical pattern of diagenetic transformation from smectite at the top to illite at the bottom, with the progressive formation of corrensite and chlorite. The high fluid/rock ratio, disposability of necessary cations and absence of previous detrital phyllosilicates allow the consideration of this area as a natural laboratory to establish the extreme ideal conditions for very low-T reactions. Transformations from smectite to R1 illite-smectite (I-S) and from these to R3 mixed-layers occur respectively at 80-120 °C and 125-180 °C. In spite of ideal genetic conditions, the new-formed minerals show all the defective character and lack of textural and chemical equilibrium previously described in the literature for diagenetic and hydrothermal low-temperature assemblages. Chemistry of smectite-illite phases evolves basically through a diminution of the pyrophyllitic component toward a theoretical muscovite (Si4 + + □ -> Al3 ++ K+). However, a second chemical vector (Si4 ++ Mg2 + → Al3 ++ Al3 +), that is, decreasing of the tschermack component, also contributes to the evolution toward the less Si-more Al rich muscovite in relation to the original smectite. Residual Mg (and Fe) from the latter reaction is consumed in the genesis of chloritic phases. Nevertheless, as a consequence of the lack of chemical equilibrium (probably because of the short time-scale of the geothermal alteration processes), the composition of clay minerals is highly heterogeneous at the level of a single sample. Consequently, the respective fields of smectite, R1 I-S and R3 I-S overlap each other, making the distinction among these three phases impossible based exclusively on chemical data.

  14. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  15. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  16. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2012-09-04

    Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.

  17. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  18. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    PubMed

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.

  19. Discoloration and mineralization of Orange II by using a bentonite clay-based Fe nanocomposite film as a heterogeneous photo-Fenton catalyst.

    PubMed

    Feng, Jiyun; Hu, Xijun; Yue, Po Lock

    2005-01-01

    Discoloration and mineralization of an azo dye Orange II was conducted by using a bentonite clay-based Fe nanocomposite (Fe-B) film as a heterogeneous photo-Fenton catalyst in the presence of UVC light and H(2)O(2). Under optimal conditions (pH=3.0, 10 mM H(2)O(2), and 1 x 8W UVC), 100% discoloration and 50-60% TOC removal of 0.2 mM Orange II can be achieved in 90 and 120 min, respectively. The mineralization kinetics of 0.2 mM Orange II is much slower than the corresponding discoloration kinetics. Under the same conditions, the Fe leaching from the Fe-B-coated catalyst film is very low. The Fe-B-coated catalyst film could be used in the pre-treatment of wastewater for an integrated system consisting of a photochemical reactor and a biological reactor. Multi-run experimental results reveal that the Fe-B-coated catalyst film could have a long-term stability for the discoloration and mineralization of Orange II. A comparison between the performance of the Fe-B-coated catalyst film and a suspended Fe-B catalyst in the discoloration and mineralization of Orange II was also discussed.

  20. Comment on "Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates," by L. N. Warr and D. R. Peacor

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Drits, V.A.

    2003-01-01

    A recent paper by Warr and Peacor (2002) suggested that our use of the Bertaut-Warren-Averbach technique (MudMaster computer program) for studying changes in crystallite thickness distributions (CTDs) of clay minerals during diagenesis and very low-grade metamorphism is not reliable because it is dependent on many variables which can not be fully controlled. Furthermore, the authors implied that the measured shapes of CTDs cannot be used with confidence to deduce crystal growth mechanisms and histories for clays, based on our CTD simulation approach (using the Galoper computer program). We disagree with both points, and show that the techniques are powerful, reliable and useful for studying clay mineral alteration in rocks. ?? 2003 Schweiz. Mineral. Petrogr. Ges.

  1. Dioxin congener patterns in commercial catfish from the United States and the indication of mineral clays as the potential source.

    PubMed

    Huwe, J K; Archer, J C

    2013-01-01

    Since 1991 the US Department of Agriculture (USDA) has conducted annual surveys of pesticide residues in foods under the Agricultural Marketing Service's Pesticide Data Program (PDP). To assess chemical residues in domestically marketed catfish products, 1479 catfish samples were collected during the 2008-2010 PDPs. A subset of 202 samples was analysed for 17 toxic polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). The average pattern of the individual PCDD/F congener concentrations in the catfish was rather unique in that it had almost no measurable amounts of polychlorinated dibenzofurans (PCDFs), but all PCDDs were present. This pattern was more dominant in the domestically produced catfish products than in the imported products (China/Taiwan). Comparison of the pattern to known sources of PCDD/Fs showed strong similarities to the pattern of PCDD/Fs found in kaolin clays which have often been used as anti-caking agents in animal feeds. To investigate whether catfish feeds may be the source of the PCDD/Fs found in the catfish, archived catfish feed data from a US Food and Drug Administration (USFDA) database were examined. In 61 out of 112 feed samples, the PCDD concentrations were 50 times higher than the PCDF concentrations and resembled the pattern found in the catfish products and in clays mined in the south-eastern United States. Although the source of PCDD/Fs in domestically marketed catfish products cannot be definitively established, mined clay products used in feeds should be considered a likely source and, given the wide concentration range of PCDD/Fs that has been found in clays, a critical control point for PCDD/Fs entrance to the food supply.

  2. Prospecting for clay minerals within volcanic successions: Application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Longo, V.; Testone, V.; Oggiano, G.; Testa, A.

    2014-12-01

    Electrical resistivity tomography (ERT) is applied to prospect for and characterise a bentonitic clay deposit in northern Sardinia. Sardinian bentonites derived from the hydrothermal alteration of thick successions of pyroclastic flows and epiclastites are associated with the Oligo-Miocene calc-alkaline volcanic cycle. The alteration of these rocks is generally controlled by faults that control the local circulation of hydrothermal fluids. Two-dimensional ERT investigations were performed close to a faulted area to define the location, thickness and lateral continuity of the clayey body, and determine how it relates to faulting and stratigraphy. A line-based three-dimensional ERT data acquisition was carried out in a selected area to estimate the available clay reserves. The reliability of these resistivity models was assessed by comparison with local borehole data. Finally, the interpretation of the ERT results was optimised through synthetic modelling of the electrical resistivity imaging technique. The results define the extent and geometry of the bentonitic deposit with good accuracy and outline the scenarios where the ERT method may provide optimal results when prospecting for clay deposits.

  3. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  4. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  5. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  6. Fluid-rock interaction controlling clay-mineral crystallization in quartz-rich rocks and its influence on the seismicity of the Carboneras fault area (SE Spain)

    NASA Astrophysics Data System (ADS)

    Jimenez-Espinosa, R.; Abad, I.; Jimenez-Millan, J.; Lorite-Herrera, M.

    2009-04-01

    The Carboneras Fault zone is one of the longest fault in the Betic Cordillera (SE Spain) and it would be a good candidate to generate large magnitude earthquakes (Gracia et al., 2006). Seismicity in the region is characterised by low to moderate magnitude events, although large destructive earthquakes have occurred, which reveals significant earthquake and tsunami hazards (Masana et al., 2004). Due to the internal architecture of the fault zone, shear lenses of post-orogenic sediments of Miocene and Pliocene age including marls and sandstones sequences are juxtaposed to the predominant slaty gouges of the Alpine basement. Microcataclasites and gouges of the quartz-rich post-orogenic sediments are also developed as cm- to m-scale bands, allowing the comparison between the deformed materials and their protoliths. Red, yellow and white sandstones and their respective cataclasites can be identified. This communication is concerned with the clay mineral crystallization events in these materials and its possible influence on the seismicity model of the region. The presence of phyllosilicates in fault zones as either neoformed or inherited clays is commonly related with fluid circulation and a mechanically weak fault behaviour (e.g., Wang, 1984). A critical factor for the understanding of the mechanical role of clays in fault rocks is to determine the timing of formation of mineral assemblages and microstructure of fault rocks and protolith. The effects of post-faulting alteration limit inferences about fault behaviour that can be made from exhumed rocks. The Carboneras fault zone provides good opportunities to study mineral processes enhanced by deformation, given that it is located in a region of arid climate and shows outcroppings of quartzitic rocks included in slaty rocks. Combined XRD, optical microscopy and SEM analyses reveal that deformed quartzitic rocks are enriched in phyllosilicates, increasing especially the amount of chlorite. The samples strongly damaged

  7. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II.

    PubMed

    Feng, Jiyun; Hu, Xijun; Yue, Po Lock

    2004-01-01

    A novel bentonite clay-based Fe-nanocomposite (Fe-B) was successfully developed as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of an azo-dye Orange II. X-ray diffraction (XRD) analysis clearly reveals that the Fe-B nanocomposite catalyst mainly consists of Fe2O3 (hematite) and SiO2 (quartz) crystallites, and the Fe concentration of the Fe-B catalyst determined by X-reflective fluorescence (XRF) is 31.8 wt %. The catalytic activity of the Fe-B was evaluated in the discoloration and mineralization of Orange II in the presence of H2O2 and UVC light (254 nm). It was found that the optimal Fe-B catalyst dosage is around 1.0 g/L, and the efficiency of discoloration and mineralization of Orange II increases as initial Orange II concentration decreases or reaction temperature increases. In addition, at optimal conditions (10 mM H2O2, 1.0 g of Fe-B/L, 1 x 8W UVC, and pH = 3.0), complete discoloration and mineralization of 0.2 mM Orange II can be achieved in less than 60 and 120 min, respectively. The result strongly indicates that the Fe-B nanocomposite catalyst exhibits a high catalytic activity not only in the photo-Fenton discoloration of Orange II but also in the mineralization of Orange II. The reaction kinetics analysis illustrates that the photo-Fenton discoloration of Orange II in the first 15 min obeys the pseudo-first-order kinetics. The reaction activation energy calculated was 9.94 kJ/mol, indicating that the photo-Fenton discoloration of Orange II is not very sensitive to reaction temperature.

  8. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, four companies including H.C. Spinks Clay, Kentucky-Tennessee Clay, Old Hickory Clay and Unimin mined ball clay in four states. Based on a preliminary survey of the ball clay industry, production reached 1.32 Mt valued at $53.3 million. Tennessee was the leading ball clay producer state with 61% of domestic production, followed by Texas, Mississippi and Kentucky.

  9. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay.

    PubMed

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2016-04-15

    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Clay-based Nanocomposites Possibilities and Limitations

    NASA Astrophysics Data System (ADS)

    Papoulis, Dimitris

    2011-09-01

    In the last decades,