Sample records for clay-based waste containment

  1. Comprehensive review of geosynthetic clay liner and compacted clay liner

    NASA Astrophysics Data System (ADS)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  2. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  3. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks.

    PubMed

    Belmonte, Louise Josefine; Ottosen, Lisbeth M; Kirkelund, Gunvor Marie; Jensen, Pernille Erland; Vestbø, Andreas Peter

    2016-11-10

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash brick discs obtained satisfactory densities (1669-2007 kg/m 3 ) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m 3 ) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more available after firing for all the investigated materials and that further optimisation is therefore necessary prior to incorporation in bricks.

  4. Long-term modeling of glass waste in portland cement- and clay-based matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra,more » Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.« less

  5. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  6. Cracking of Clay Due to Contact with Waste Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Otero, M.; Ayral, D.; Shipan, J.; Goltz, M. N.; Huang, J.; Demond, A. H.

    2012-12-01

    Clays are known to crack upon desiccation. Desiccation cracks of up to 3 cm wide have been reported in natural soils. This raises the question if a similar behavior is seen when a dense non-aqueous phase liquids (DNAPL) waste is in contact with clay. The contact with organic liquids causes the clay structure to shrink, leading to the formation of cracks. Moreover, DNAPL waste not only contains the organic liquid solvent but also includes surface-active solutes or surfactants. Such solutes can enhance the interaction of the organic solvents with the clay. This research will assess whether or not contact with chlorinated organic waste causes cracking. In order to evaluate the possibility of cracking in the clay, microcosms have been constructed that mimic aquifer systems, consisting of a saturated layer of sand, a saturated layer of bentonite clay and a 2.5 cm layer of either pure chlorinated solvents or DNAPL waste. The onset of cracking for the microcosm with tetrachloroethylene (PCE) waste as the DNAPL layer occurred after ten days of contact. Similarly, at eight days, cracks were observed in a microcosm containing trichloroethylene (TCE) waste . Forty-four days later, the length and number of cracks have grown considerably; with a total crack length of 50 cm on a surface of 80 cm2 in the microcosm containing PCE waste. On the other hand it took approximately 161 days for the clay layer in the microcosm containing pure PCE to crack. To quantity the degree of cracking, crack maps were developed using the image software, Image J. Characteristics like crack length, crack aperture, and the percentage of total length for a range of apertures were calculated using this software. For example, for the PCE waste microcosm, it was calculated that 3.7% of the crack length had an aperture of 100-300 microns, 15.1% of the crack length had an aperture of 300-500 microns, 29.7% of the crack length had an aperture of 500-700 microns, 40.1% of the crack length had an aperture of 700-900 microns, 6.3% had an aperture of 900-1,100 microns and 5.1% had an aperture of over 1,100 microns. These data suggest that aquitards in the field might crack when in contact with the DNAPL waste. Moreover, it is apparent that the waste contains solutes that accelerate the cracking of the clay layer. Thus, models examining the impact of storage in low permeability layers need to consider the possible impact of cracking.

  7. Underground Architecture and Layout for the Belgian High-Level and Long-Lived Intermediate-Level Radioactive Waste Disposal Facility- 12116

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cotthem, Alain; Van Humbeeck, Hughes; Biurrun, Enrique

    The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The sizemore » and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)« less

  8. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    PubMed

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  9. Application of mixed based membrane technology from component materials bintaro, zeolite and bentonite to reduction of songket waste liquid cloth

    NASA Astrophysics Data System (ADS)

    Dahlan, Muhammad Hatta; Saleh, Abdullah; Asip, Faisol; Makmun, Akbar; Defi

    2017-11-01

    Application of membrane technology based on clay mixture, Activated Carbon from Bintaro, Zeolite and Bentonit to process the waste water of Songket cloth is Palembang traditionally cloth. The applied research is into the superior field of industrial and household waste processing with membrane ceramic technology. The objective of this research is to design the liquid waste separation tool of jumputan cloth using better and simpler ceramic membrane so that it can help the artisans of Palembang songket or songket in processing the waste in accordance with the standard of environmental quality standard (BML) and Pergub Sumsel no. 16 in 2005. The specific target to be achieved can decrease the waste of cloth jumputan in accordance with applicable environmental quality standards the method used in achieving the objectives of this study using 2 processes namely the adsorption process using activated carbon and the separation process using a ceramic membrane based on the composition of the mixture. The activated carbon from bintaro seeds is expected to decrease the concentration of liquid waste of Songket cloth. Bintaro seeds are non-edible fruits where the composition contains organic ingredients that can absorb because contains dyes and filler metals. The process of membranization in the processing is expected to decrease the concentration of waste better and clear water that can be used as recycled water for household use. With the composition of a mixture of clay-based materials: zeolite, bentonit, activated carbon from bintaro seeds are expected Find the solution and get the novelty value in the form of patent in this research

  10. Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories.

    PubMed

    Deniau, I; Devol-Brown, I; Derenne, S; Behar, F; Largeau, C

    2008-01-25

    Deep argillaceous formations are potential repositories for the long-term disposal of nuclear waste because of their low permeability and high sorption capacity with respect to radioelements and heavy metals. Such sedimentary rocks contain organic matter, mostly macromolecular and insoluble (kerogen). Upon temperature elevation related to high-level long-lived radioactive waste disposal, the kerogen may release significant quantities of gaseous and liquid effluents, especially oxygen-containing ones, which may influence the ability of the clay to retain radionuclides. The aim of the present study is to assess the global geochemical features and the thermal reactivity of the kerogens isolated from samples collected in the Bure and Tournemire sites, France (Callovo-Oxfordian Clay and Toarcian Shales, respectively) and to draw comparisons with data previously obtained for the Mol site, Belgium (Boom Clay). The study is based on a combination of elemental, spectroscopic (FTIR, solid state (13)C NMR) and pyrolytic (Rock-Eval pyrolysis, Curie point pyrolysis-gas chromatography/mass spectrometry) analyses. Different levels of maturity and resulting differences in the relative abundance of oxygen-containing groups were thus observed for the three kerogens. This is linked with differences in their ability to generate CO(2) and various oxygen-containing, low molecular weight, water-soluble compounds under thermal stress, decreasing from Mol to Bure and to Tournemire.

  11. Assessment study for multi-barrier system used in radioactive borate waste isolation based on Monte Carlo simulations.

    PubMed

    Bayoumi, T A; Reda, S M; Saleh, H M

    2012-01-01

    Radioactive waste generated from the nuclear applications should be properly isolated by a suitable containment system such as, multi-barrier container. The present study aims to evaluate the isolation capacity of a new multi-barrier container made from cement and clay and including borate waste materials. These wastes were spiked by (137)Cs and (60)Co radionuclides to simulate that waste generated from the primary cooling circuit of pressurized water reactors. Leaching of both radionuclides in ground water was followed and calculated during ten years. Monte Carlo (MCNP5) simulations computed the photon flux distribution of the multi-barrier container, including radioactive borate waste of specific activity 11.22KBq/g and 4.18KBq/g for (137)Cs and (60)Co, respectively, at different periods of 0, 15.1, 30.2 and 302 years. The average total flux for 100cm radius of spherical cell was 0.192photon/cm(2) at initial time and 2.73×10(-4)photon/cm(2) after 302 years. Maximum waste activity keeping the surface radiation dose within the permissible level was calculated and found to be 56KBq/g with attenuation factors of 0.73cm(-1) and 0.6cm(-1) for cement and clay, respectively. The average total flux was 1.37×10(-3)photon/cm(2) after 302 years. Monte Carlo simulations revealed that the proposed multi-barrier container is safe enough during transportation, evacuation or rearrangement in the disposal site for more than 300 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  13. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate saltmore » feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.« less

  14. Fe-SAPONITE and Chlorite Growth on Stainless Steel in Hydrothermal Engineered Barrier Experiments

    NASA Astrophysics Data System (ADS)

    Cheshire, M. C.; Caporuscio, F. A.; McCarney, M.

    2012-12-01

    The United States recently has initiated the Used Fuel Disposition campaign to evaluate various generic geological repositories for the disposal of high-level, spent nuclear fuel within environments ranging from hard-rock, salt/clay, to deep borehole settings. Previous work describing Engineered Barrier Systems (EBS) for repositories focused on low temperature and pressure conditions. The focus of this experimental work is to characterize the stability and alteration of a bentonite-based EBS with different waste container materials in brine at higher heat loads and pressures. All experiments were run at ~150 bar and 125 to 300 C for ~1 month. Unprocessed bentonite from Colony, Wyoming was used in the experiments as the clay buffer material. The redox conditions for each system were buffered along the magnetite-iron oxygen fugacity univariant curve using Fe3O4 and Feo filings. A K-Na-Ca-Cl-based salt solution was chosen to replicate deep groundwater compositions. The experimental mixtures were 1) salt solution-clay; 2) salt solution -clay-304 stainless steel; and 3) salt solution -clay-316 stainless steel with a water/bentonite ratio of ~9. Mineralogy and aqueous geochemistry of each experiment was evaluated to monitor the reactions that took place. No smectite illitization was observed in these reactions. However, it appears that K-smectite was produced, possibly providing a precursor to illitization. It is unclear whether reaction times were sufficient for bentonite illitization at 212 and 300 C or whether conditions conducive to illite formation were obtained. The more notable clay mineral reactions occurred at the stainless steel surfaces. Authigenic chlorite and Fe-saponite grew with their basal planes near perpendicular to the steel plate, forming a 10 - 40 μm thick 'corrosion' layer. Partial dissolution of the steel plates was the likely iron source for chlorite/saponite formation; however, dissolution of the Feo/Fe3O4 may also have acted as an iron source, with the steel plates acting as a substrate for chlorite/saponite growth. Trace amounts of pyrite in the bentonite appeared to have reacted to form H2S gas and pentlandite ((Ni,Fe)8S9). Mineral growth on the waste containers was influenced by the container, buffer, and fluid compositions, in addition to pressure and temperature conditions. No significant mineralogical changes were apparent away from the steel-smectite interface. Results of this research show that the waste container may act as a substrate for mineral growth in response to corrosion. However, it is presently unknown whether chlorite and Fe-saponite will act as passivating agents or whether their presence will facilitate further corrosion of the waste containers. The role of these Fe-rich minerals on the stability of steel canisters at elevated heat loads is currently under investigation. LA-UR-12-23845

  15. SLIDE PRESENTATION: LIMITATIONS OF USE OF GEOSYNTHETIC CLAY LINERS (GCLS)

    EPA Science Inventory

    This presentation describes the design and construction issues pertaining to the use of geosynthetic clay liners (GCLSs) in waste containment. The presentation covers new materials, potential design and construction pitfalls and a summary of ongoing research.

  16. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibilitymore » for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)« less

  17. Valorisation of different types of boron-containing wastes for the production of lightweight aggregates.

    PubMed

    Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N

    2011-01-30

    Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. In situ clay formation : evaluation of a proposed new technology for stable containment barriers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Kathryn L.; DiGiovanni, Anthony Albert; Fredrich, Joanne T.

    2004-03-01

    Containment of chemical wastes in near-surface and repository environments is accomplished by designing engineered barriers to fluid flow. Containment barrier technologies such as clay liners, soil/bentonite slurry walls, soil/plastic walls, artificially grouted sediments and soils, and colloidal gelling materials are intended to stop fluid transport and prevent plume migration. However, despite their effectiveness in the short-term, all of these barriers exhibit geochemical or geomechanical instability over the long-term resulting in degradation of the barrier and its ability to contain waste. No technologically practical or economically affordable technologies or methods exist at present for accomplishing total remediation, contaminant removal, or destruction-degradationmore » in situ. A new type of containment barrier with a potentially broad range of environmental stability and longevity could result in significant cost-savings. This report documents a research program designed to establish the viability of a proposed new type of containment barrier derived from in situ precipitation of clays in the pore space of contaminated soils or sediments. The concept builds upon technologies that exist for colloidal or gel stabilization. Clays have the advantages of being geologically compatible with the near-surface environment and naturally sorptive for a range of contaminants, and further, the precipitation of clays could result in reduced permeability and hydraulic conductivity, and increased mechanical stability through cementation of soil particles. While limited success was achieved under certain controlled laboratory conditions, the results did not warrant continuation to the field stage for multiple reasons, and the research program was thus concluded with Phase 2.« less

  19. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance.

    PubMed

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-05

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m 2 and ~78 kW/m 2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  20. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    NASA Astrophysics Data System (ADS)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-12-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  1. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

    PubMed Central

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo

    2016-01-01

    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay. PMID:27917901

  2. Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan.

    PubMed

    Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard

    2015-07-01

    Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, E.E.

    Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet-rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite clay havemore » been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct-buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. A larger test was completed this year to simulate the work in more realistic conditions. (authors)« less

  4. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation

    PubMed

    Hussain; Dem&idot;rc&idot;; özbayoğlu

    1996-12-25

    There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.

  5. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.

    PubMed

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-04-15

    The peculiar challenge of effective disposing abundant spent shea waste and the excellent compositional variation tolerance of clay material offered an impetus to examine the incorporation of spent shea waste into clay material as an eco-friendly disposal route in making clay bricks. For this purpose, the chemical constituent, mineralogical compositions and thermal behavior of both clay material and spent shea waste were initially characterized from which modelled brick specimens incorporating 5-20 wt% of the waste into the clay material were prepared. The clay material showed high proportions of SiO 2 (52.97 wt%) and Al 2 O 3 (27.10 wt%) indicating their rich kaolinitic content: whereas, the inert nature of spent shea waste was exhibited by their low oxide content. The striking similarities in infrared absorption bands of pristine clay material and clay materials incorporated with 15 wt% of spent shea waste showed that the waste incorporation had no impact on bond formation of the clay bricks. Potential performance benefits of developing bricks from clay material incorporated with spent shea waste included improved fluxing agents, economic sintering and making of sustainable bricks. Consequently, the analytical results authenticate the incorporation of spent shea waste into clay materials for various desired benefits aside being an environmental correct route of its disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pyramiding tumuli waste disposal site and method of construction thereof

    DOEpatents

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  7. Analytical Expressions for Thermo-Osmotic Permeability of Clays

    NASA Astrophysics Data System (ADS)

    Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.

    2018-01-01

    In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.

  8. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.

    PubMed

    Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin

    2013-01-01

    This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.

  9. Experimental Study on the Interaction Between Contacting Barrier Materials for Containment of Radioactive Wastes

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chang, H. C.

    2017-12-01

    The disposal of low- and intermediate-level radioactive wastes requires use of multi-barriers for isolation of the wastes from the biosphere. Typically, the engineered barriers are composed of a concrete vault, buffer and backfill materials. Zhishin clay and Black Hill bentonite were used as raw clay material in making buffer and backfill materials in this study. These clays were compacted to make buffer material, or mixed with Taitung area argillite to produce backfill material for potential application as barriers for the disposal of low- and intermediate-level radioactive wastes. The interaction between concrete barrier and the buffer/backfill material is simulated by an accelerated migration test to investigate the effect of contacting concrete on the expected functions of buffer/backfill material. The results show buffer material close to the contact with concrete exhibits significant change in the ratio of calcium/sodium exchange capacity, due to the move of calcium ions released from the concrete. The shorter the distance from the contacting interface, the ratio of the calcium/sodium concentration in buffer/backfill materials increases. The longer the distance from the interface, the effect of the contact on alteration in clays become less significant. Also, some decreases in swelling capacity in the buffer/backfill material near the concrete-backfill interface are noted. Finally, a comparison is made between Zhisin clay and Balck Hill bentonite on the interaction between concrete and the two clays. Black Hill bentonite was found to be influenced more by the interaction, because of the higher content of montmorillonite. On the other hand, being a mixture of clay and sand, backfill material is less affected by the decalsification of concrete at the contact than buffer material.

  10. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107 day, ASTM C1308 testing (similar to ANSI/ANS 16.1 testing) was only performed on two fly ash geopolymer monoliths at 67-68 wt% FBSR loading and three clay geopolymer monoliths at 42 wt% FBSR loading. More clay geopolymers need to be made and tested at longer times at higher FBSR loadings for comparison to the fly ash monoliths. Monoliths made with metakaolin (heat treated) clay are of a more constant composition and are very reactive as the heat treated clay is amorphous and alkali activated. The monoliths made with fly ash are subject to the inherent compositional variation found in fly ash as it is a waste product from burning coal and it contains unreactive components such as mullite. However, both the fly ash and the clay based monoliths perform well in long term ASTM C1308 testing.« less

  11. Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke

    Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terrimore » URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository.« less

  12. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less

  13. Acid-Alkali Resistance of New Reclaimed Tiles Containing Sewage Sludge Ash and Waste Glass

    PubMed Central

    Lin, Deng-Fong; Lin, Kuo-Liang; Luo, Huan-Lin; Xu, Jia-Qin

    2016-01-01

    In this study, properties of newly developed reclaimed tiles in a harmful environment were investigated. A portion of clay used to manufacture tiles was replaced with sewage sludge ash (SSA) and waste glass to produce the new reclaimed tiles. To investigate the effects of SSA and waste glass on the properties of the tiles, different specimens were blended and placed in acid-alkali solutions. The reclaimed tile specimens were manufactured by clay, 10% SSA, and five different mixes of waste glass replacement, namely, 0%, 10%, 20%, 40%, and 60%. These specimens were calcined at 1000 °C and subsequently underwent a series of tests, including TGA/DTA (thermogravimetric analysis/differential thermal analysis), SEM (scanning electron microscopy), XRD (X-ray diffraction), bending strength, weight loss, and porosity. Test results show that shortcomings associated with the introduction of the sludge ash were improved by the admixture of waste glass, especially in the aspects of shrinkage and bending strength. The study showed that the new reclaimed tiles performed relatively well in acid-alkali resistance tests but appeared to have better alkali resistance than acid resistance. It was also found that the optimal mix of such reclaimed tiles was 10% SSA, 10% waste glass, and 80% clay. PMID:28773668

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, E.E.; Welty, B.D.

    Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite claymore » have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. (authors)« less

  15. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    PubMed

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  16. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    PubMed

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    EPA Science Inventory

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  18. Subseabed storage of radioactive waste

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The subject of the storage of nuclear wastes products incites emotional responses from the public, and thus the U.S. Subseabed Disposal Program will have to make a good case for waste storage beneath the ocean floor. The facts attendant, however, describe circumstances necessitating cool-headed analysis to achieve a solution to the growing nuclear waste problem. Emotion aside, a good case indeed is being made for safe disposal beneath the ocean floor.The problems of nuclear waste storage are acute. A year ago, U.S. military weapons production had accumulated over seventy-five million gallons of high-level radioactive liquid waste; solid wastes, such as spent nuclear fuel rods from reactors, amounted to more than 12,000 tons. These wastes are corrosive and will release heat for 1000 years or more. The wastes will remain dangerously radioactive for a period of 10,000 years. There are advantages in storing the wastes on land, in special underground repositories, or on the surface. These include the accessibility to monitor the waste and the possibility of taking action should a container rupture occur, and thus the major efforts to determine suitable disposal at this time are focused on land-based storage. New efforts, not to be confused with ocean dumping practices of the past, are demonstrating that waste containers isolated in the clays and sediments of the ocean floor may be superior (Environ. Sci. Tech., 16, 28A-37A 1982).

  19. Encapsulation/Fixation (E/F) Mechanisms.

    DTIC Science & Technology

    1984-06-18

    occurring. It has been reported that certain "reductant" solutions containing oxalic acid and/or other compounds containing the elements CHON may be...Thus, for Na2Sx + MX2 MSx + 2NaX 1Barney, G.S., wFixation of Radioactive Waste by Hydrothermal Reactions with Clays," Prepared for U.S. Atomic

  20. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications.

  1. Reactive Transport Modeling and Changes in Porosity at Reactive Interfaces in a HLW repository in Clay

    NASA Astrophysics Data System (ADS)

    Samper, J.; Mon, A.; Montenegro, L.; Naves, A.; Fernández, J.

    2016-12-01

    High-level radioactive waste disposal in a deep geological repository is based on a multibarrier concept which combines natural barriers such as the geological formation and artificial barriers such as metallic containers, bentonite and concrete buffers and sealing materials. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyperalkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyperalkaline plume at the concrete-clay interface. Here we present a nonisothermal reactive transport model of the long-term interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. This problem involves large pH changes with a hyperalkaline high-pH plume, complex mineral dissolution/precipitation patterns, cation exchange reactions and proton surface complexation. These reactions lead to large changes in porosity which can even lead to pore clogging. Model results show that magnetite, the main corrosion product, precipitates and reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The zones affected by pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces at 1 Ma are equal to 10, 25 and 25 mm thick, respectively. The results of our simulations share many of the features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Narrow alteration zones; and 2) Pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces.

  2. Effects of waste glass additions on quality of textile sludge-based bricks.

    PubMed

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  3. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  4. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  5. REQUIREMENTS FOR HAZARDOUS WASTE LANDFILL DESIGN, CONSTRUCTION AND CLOSURE

    EPA Science Inventory

    This publication contains edited versions of the material presented at ten Technology Transfer seminars conducted in 1988 on this subject. Sections are included on design of clay and flexible membrane liners, leachate collector systems, and landfill covers. Construction quality a...

  6. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment

    DOE PAGES

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; ...

    2015-10-26

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. Here, this balancesmore » the insufficient characterisation information and provides the means for future mechanical–physical–chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(VI) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(VI) diffusion the method is extended to account for sorption and convection. Finally, rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.« less

  7. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  8. Potential impact of Andrassy bentonite microbial diversity in the long-term performance of a deep nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Tadza, M. Y. Mohd; Tadza, M. A. Mohd; Bag, R.; Harith, N. S. H.

    2018-01-01

    Copper and steel canning and bentonite buffer are normally forseen as the primary containment component of a deep nuclear waste repository. Distribution of microbes in subsurface environments have been found to be extensive and directly or indirectly may exert influence on waste canister corrosion and the mobility of radionuclides. The understanding of clays and microbial interaction with radionuclides will be useful in predicting the microbial impacts on the performance of the waste repositories. The present work characterizes the culture-dependent microbial diversity of Andrassy bentonite recovered from Tawau clay deposits. The evaluation of microbial populations shows the presence of a number of cultivable microbes (e.g. Staphylococcus, Micrococcus, Achromobacter, Bacillus, Paecilomyces, Trichoderma, and Fusarium). Additionally, a pigmented yeast strain Rhodotorula mucilaginosa was also recovered from the formation. Both Bacillus and Rhodotorula mucilaginosa have high tolerance towards U radiation and toxicity. The presence of Rhodotorula mucilaginosa in Andrassy bentonite might be able to change the speciation of radionuclides (e.g. uranium) in a future deep repository. However, concern over the presence of Fe (III) reduction microbes such as Bacillus also found in the formation could lead to corrosion of copper steel canister and affect the overall performance of the containment system.

  9. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  10. Study on Fired Clay Bricks by Replacing Clay with Palm Oil Waste: Effects on Physical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sarani, N. A.; Abdullah, M. M. A. B.; Perju, M. C.; Sandu, A. V.

    2017-06-01

    Palm oil is one of the major agricultural industries in Malaysia. Due to the poor management system, the discarded palm oil waste has always been linked to the environment issues. During processing of palm oil, a considerable amount of solid waste by-products in the form of fibres, shells, empty fruit bunches and fly ashes are produce rapidly. Therefore, this study was conducted to incorporate 1%, 5% and 10% of palm oil waste into fired clay brick. Samples of brick were fired at 1050°C temperature with heating rates of 1°C/min. Manufactured bricks were tested with physical and mechanical properties including firing shrinkage, dry density, water absorption and compressive strength. The results demonstrated that the replacement of 1% up to 5% of palm oil waste had improved several properties, although, a decrease of performance in certain aspects has also been observed. As a result, palm oil waste can be utilized in an environmentally safe way into fired clay brick thus providing adequate properties of fired clay brick.

  11. Improved method and composition for immobilization of waste in cement-based material

    DOEpatents

    Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

    1987-10-01

    A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

  12. The impact of hazardous waste leachate on performance of clay liners.

    PubMed

    Mosavat, Nasim; Nalbantoglu, Zalihe

    2013-02-01

    Penetration of hazardous liquids through waste containment barriers exerts contamination and considerable alterations in geotechnical properties of clay liners. In general, these changes are attributed to the variation of the dielectric constant and the chemistry of the pore fluids which cause changes in soil structure. In the present study, a series of laboratory tests were performed on natural and contaminated clay soil permeated with different hazardous liquids: ethylene glycol and toluene which are generally found in petroleum-contaminated sites, possessing intermediate and low dielectric constants. Toluene was used in its pure form and ethylene glycol was used at various percentages of 0, 20, 40 and 60% by the volume of distilled water. In addition, natural sea water was also utilized as an inorganic fluid for permeation and salinization of the clay soil. The overall test results indicated that plasticity, sedimentation time, unconfined compressive strength, swell and compressibility generally decreased with increasing organic fluid/water concentration, while a slight increase in the permeability values was observed. Pure toluene resulted in diminution of plasticity and considerable flocculation of the particles which caused the soil to become granular. Sea water also caused particle flocculation and reduction in plasticity, swell potential and unconfined compressive strength, although it was noted that compressibility properties remained unchanged compared to distilled water. Finally, the correlation between the electrical resistivity and plasticity index values suggested that the electrical resistivity measurements can be used as a detecting technique for subsurface soil and waste barrier contamination.

  13. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes.

    PubMed

    Coronado, M; Segadães, A M; Andrés, A

    2015-12-15

    This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effects of mineral nutrition conditions on heat tolerance of chufa (Сyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2014-09-01

    The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.

  15. Sediment characteristics and configuration within the Otsego City Dam impoundment on the Kalamazoo River, Michigan, 2001-02

    USGS Publications Warehouse

    Rheaume, S.J.; Hubbell, D.L.; Rachol, C.M.; Simard, A.; Fuller, L.M.

    2004-01-01

    The removal of the Otsego City Dam on the Kalamazoo River at Otsego, Mich., is under consideration by the Michigan Department of Environmental Quality and the city of Otsego. The historical discharge of papermill waste containing polychlorinated biphenyls from sources upstream from the dam has led the U.S. Environmental Protection Agency to designate the Kalamazoo River from Morrow Dam near Comstock to its mouth near Saugatuck as a Federal Superfund site. The papermill waste is concentrated in organic sediment and kaolinite clay, with the sediment containing as much as 94 milligrams per kilogram polychlorinated biphenyls. This contaminated sediment could move if the dam is removed; therefore, it is necessary to estimate the characteristics and configuration of the sediment before removal plans begin. Data from augered sections and sediment cores show that the current Otsego City impoundment sediments were deposited in two distinctly different sedimentary environments: (1) lacustrine sediments consisting of organic-rich silt and clay, fine to medium sand, and some gravel deposited in a repetitive, cyclic fashion related to former stream velocities when the Otsego City impoundment water levels were 2-4 feet higher (1880s-1960s), and from downstream movement of lacustrine sediments during the removal of the upstream Plainwell Dam superstructure in the 1980s; and (2) more recent (1980s-2002) coarse-grained alluvium deposited on top of the lacustrine sediments. The volume of instream sediment contained within the Otsego City impoundment is estimated to be about 457,270 cubic yards. This estimate is based on the composite thicknesses of the lacustrine deposits and overlying alluvium, which were determined to contain PCBs, and does not include bank or flood-plain deposits.

  16. Dynamics of confined reactive water in smectite clay-zeolite composites.

    PubMed

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  17. [A laboratory and field study on the disposal of domestic waste water based on soil permeation].

    PubMed

    Yamaura, G

    1989-02-01

    The present study was conducted to get information necessary for the disposal of domestic waste water by soil permeation. The clarifying ability of soil was examined by conducting laboratory experiments using soil columns and making inquiries about practical disposal facilities based on soil permeation using trenches. In the column experiment, soil columns were prepared by packing polyvinyl chloride pipes with volcanic-ash loam, river sand, or an equivolume mixture of both, and secondary effluent of domestic waste water was poured into each soil column at a daily rate of 100 l/m2. In this experiment, loam and sand loam, both containing fine silt and clay, gave BOD removals of over 95% when the influent BOD load per 1 m3 of soil was less than 10 g/d and gave the coliform group removals of 100% when the influent coliform group load per 1 m3 soil was less than 10(9)/d. Loam and sand loam gave T-P removals of over 90%. The P adsorption capacity of soil was limited to less than 12% of the absorption coefficient of phosphoric acid. All the soils gave low T-N removals, mostly less than 50%. The trench disposal gave high removals of 90-97% for BOD, 90-97% for T-P, and 94-99% for the coliform group but low removals of 11-49% for T-N, showing a trend similar to that of the column disposal. Thus, we can roughly estimate the effectiveness of actual soil permeation disposal from the results of the column experiments. In the waste water permeation region, the extent of waste water permeation exceeded 700 cm horizontally from the trench, but the waste water load within 100 cm laterally from the trench occupied 60.3% of the total. The concentrations of T-C and T-N at almost all observation spots in the permeation region were lower than in the control region, and were not caused to accumulate in soil by waste water loading. In contrast, T-P was accumulated concentratively in the depth range from 50-100 cm right below the trench. The conditions for effective disposal of domestic waste water by soil permeation have been estimated to be: (1) the soil should contain more than 30% silt and clay, (2) the absorption coefficient of phosphoric acid should be more than 1000, (3) the permeation rate should be 1.0-1.8 mm/min, and (4) the soil volume to be permeated should be more than 6.86 m3/person.

  18. Why consider subseabed disposal of high-level nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, G. R.; Hollister, C. D.; Anderson, D. R.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of yearsmore » of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.« less

  19. Use of boron waste as an additive in red bricks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uslu, T.; Arol, A.I

    2004-07-01

    In boron mining and processing operations, large amounts of clay containing tailings have to be discarded. Being rich in boron, the tailings do not only cause economical loss but also pose serious environmental problems. Large areas have to be allocated for waste disposal. In order to alleviate this problem, the possibility of using clayey tailings from a borax concentrator in red brick manufacturing was investigated. Up to 30% by weight tailings addition was found to improve the brick quality.

  20. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.

    PubMed

    Adazabra, A N; Viruthagiri, G; Shanmugam, N

    2017-06-01

    This work studies the reuse of spent shea waste as an economic construction material in improving fired clay bricks manufacture aside providing a novel approach to ecofriendly managing its excessive generated from the shea agroindustry. For this purpose, the influence of spent shea waste addition on the chemical, mineralogical, molecular bonding and technological properties (i.e. compressive strength and water absorption) of the fired clay bricks were extensively investigated. The results indicated that the chemical, mineralogical, phase transformations, molecular bonding and thermal behavior of the produced bricks were practically unaffected by the addition of spent shea waste. However, spent shea waste addition increased the compressive strengths and water absorptions of the brick products. Potential performance benefits of reusing spent shea waste was improved fluxing agents, energy-contribution reaction, excellent porosifying effect, reduced thermal conductivity and enhanced compressive strengths of the brick products. This research has therefore provided compelling evidence that could create newfound route for the synergistic ecofriendly reuse of spent shea waste to enhance clay brick construction aside being a potential mainstream disposal option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at pH < 5.0. These results suggested that the contaminated sediments might either contain other more reactive clay minerals such as smectite, or that the long-term acid-leaching process might have altered the surface reactivity of the original sediments. Further studies are needed to identify more reactive mineral facies and understand the effects of acid leaching on the surface reactivity of the sediments.

  2. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.« less

  3. In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory

    NASA Astrophysics Data System (ADS)

    Garavito, A. M.; De Cannière, P.; Kooi, H.

    Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low-permeability plastic formation such as the Boom Clay. The osmotic efficiency of Boom Clay is high under undisturbed chemical conditions ( σ = 0.41 at 0.014 M NaHCO 3), but rapidly decreases when the dissolved salts concentration increases ( σ = 0.07 at 0.14 M NaHCO 3). A semi-permeable membrane behaviour of the Boom Clay (high efficiencies) may be expected for the disposal of nitrate-bearing radioactive waste. However, the presently observed osmotically induced pressure is too low to have a significant mechanical impact on the host rock. Finally, the short duration of the osmosis test performed suggests that the shut-in test method used is effective for osmosis testing.

  4. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  5. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  6. The applicability of different waste materials for the production of lightweight aggregates.

    PubMed

    Ducman, V; Mirtic, B

    2009-08-01

    The applicability of different waste materials for the production of lightweight aggregates has been studied. The following waste materials were investigated: silica sludge, superfluous clay in the quarry, waste glass, and residue from the polishing process of different types of stone. SiC and MnO(2) were selected as foaming agents. Feldspar containing minerals and scrap glass were added in order to lower the softening point of the waste materials. The granules were prepared by mixing together finely ground waste with one or both of the selected foaming agents. The granules were then fired at different temperatures above the softening point of the glassy phase within the temperature range from 1150 to 1220 degrees C, where the foaming agent degasses, and the resulting gasses remain trapped in the glassy structure. The foaming process was observed by hot-stage microscopy. The properties of the so-obtained granules, such as their apparent density and compressive strength, were determined, and their microstructures were evaluating using SEM and polarizing microscopy. With the addition to clay of polishing residue from granite-like rocks, after firing at 1220 degrees C homogeneously porous granules with a density down to 0.42 g/cm(3) were obtained, whereas with the addition to waste silica sludge of polishing residue from granite-like rocks and waste glass with a foaming agent, after firing at 1220 degrees C densities from 0.57 to 0.82 g/cm(3) were obtained.

  7. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  8. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  9. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  10. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    PubMed

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  11. 77 FR 18270 - Acceptance Decision for the Unrestricted Use of the Former Michigan Chemical Company-Breckenridge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    .... Louis plant generated a dense, clay-like waste known as ``filter cake,'' which contained elevated levels of uranium and thorium, two naturally- occurring radioactive materials. The radioactive filter cake was buried at the BDS. Burial of the filter cake at the BDS was permitted under AEC license number SMB...

  12. Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.

  13. Generic Argillite/Shale Disposal Reference Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactivemore » waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).« less

  14. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Lee, D J; Hong, S Y

    2004-01-01

    The disposal of sludge from wastewater treatment presents highly complex problems to any municipality. Most of the sludge disposal methods have varying degrees of environmental impact. Hence, it is necessary to explore potential areas of reuse in order to alleviate sludge disposal problems and to conserve natural resources. Industrial sludge and marine clay are two forms of high-volume wastes. Using these wastes as a resource of raw materials to produce construction aggregates would enable large-scale sludge reuse. The aggregates were produced at various sludge-clay combinations containing 0, 20, 50, 80 and 100% clay contents, respectively. The pelletized aggregates displayed lower particle densities ranged between 1.48 and 2.25 g/cm3, compared to the density of granite at 2.56 g/cm3. Good 28-day concrete compressive strength of 38.5 N/mm2 achieved by the 100% sludge aggregate was comparable to the value of 38.0 N/mm2 achieved of the granite control specimens. The leachate contamination levels from the aggregates after 150 days were found acceptable when used in concrete, indicating insignificant environmental contamination. The heat flow study showed increases in heat flow at the temperatures of 480 degrees C and between 660 degrees C and 900 degrees C, indicating a need for the extension of heating time around these temperatures.

  15. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decamps, F.

    1993-12-31

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less

  16. The electrochemistry of carbon steel in simulated concrete pore water in boom clay repository environments

    NASA Astrophysics Data System (ADS)

    MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.

    2011-04-01

    The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.

  17. Ultrafiltration by a compacted clay membrane-II. Sodium ion exclusion at various ionic strengths

    USGS Publications Warehouse

    Hanshaw, B.B.; Coplen, T.B.

    1973-01-01

    Several recent laboratory studies and field investigations have indicated that shales and compacted clay minerals behave as semipermeable membranes. One of the properties of semipermeable membranes is to retard or prevent the passage of charged ionic species through the membrane pores while allowing relatively free movement of uncharged species. This phenomenon is termed salt filtering, reverse osmosis, or ultrafiltration. This paper shows how one can proceed from the ion exchange capacity of clay minerals and, by means of Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane. Reasonable agreement between theory and laboratory results were found. The concentration of the ultrafiltrate was always greater than predicted because of uncertainty in values of some parameters in the equations. Ultrafiltration phenomena may be responsible for the formation of some subsurface brines and mineral deposits. The effect should also be taken into consideration in any proposal for subsurface waste emplacement in an environment containing large quantities of clay minerals. ?? 1973.

  18. Intercalated layered clay composites and their applications

    NASA Astrophysics Data System (ADS)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...

  19. Polymer based nanocomposites with nanofibers and exfoliated clay

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Reneker, Darrell H.

    2005-01-01

    Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching clay sheets dispersed in water with electrospun nanofiber mats and by the deliberate removal of most of the polymer in the fibers. Thin, flexible gas barrier films, that are reasonably strong, were assembled from clay sheets and polymer nanofibers. Structure of composite films was characterized with scanning electron microscopy. Continuous film of clay sheets were physically attached to the surface of fiber mats. Spincoating film of polymer and clay sheets was reinforced by electrospun fiber scaffold. Certain alignment of clay sheets was observed in the vicinity of fibers.

  20. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less

  1. Safety-relevant hydrogeological properties of the claystone barrier of a Swiss radioactive waste repository: An evaluation using multiple lines of evidence

    NASA Astrophysics Data System (ADS)

    Gautschi, Andreas

    2017-09-01

    In Switzerland, the Opalinus Clay - a Jurassic (Aalenian) claystone formation - has been proposed as the first-priority host rock for a deep geological repository for both low- and intermediate-level and high-level radioactive wastes. An extensive site and host rock investigation programme has been carried out during the past 30 years in Northern Switzerland, comprising extensive 2D and 3D seismic surveys, a series of deep boreholes within and around potential geological siting regions, experiments in the international Mont Terri Rock Laboratory, compilations of data from Opalinus Clay in railway and motorway tunnels and comparisons with similar rocks. The hydrogeological properties of the Opalinus Clay that are relevant from the viewpoint of long-term safety are described and illustrated. The main conclusions are supported by multiple lines of evidence, demonstrating consistency of conclusions based on hydraulic properties, porewater chemistry, distribution of natural tracers across the Opalinus Clay as well as small- and large-scale diffusion models and the derived conceptual understanding of solute transport.

  2. Physical and mechanical properties of quarry dust waste incorporated into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Sarani, N. A.; Rahim, A. S. Abdul; Ismail, N.

    2017-04-01

    A large amount of quarry dust waste is dispose into landfills every year. This waste was obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. The increasing value of waste will have significant impact towards health and environment. Recycling such wastes by incorporating them into building materials is a practical solution for pollution problem. Therefore, this research was to examine the possibility of quarry dust to be incorporated in fired clay bricks. In this research, the composition and concentration of heavy metals were determined by using X-Ray Fluorescence Spectrometer (XRF). The research also consists of physical and mechanical properties of the fired clay bricks by utilizing quarry dust waste. Brick was manufactured by incorporating different percentages of quarry dust waste which are 0%, 10%, 20% and 30%. All bricks sample was tested with physical and mechanical properties which were density, shrinkage, initial rate of suction (IRS) and compressive strength of the fired bricks. Furthermore, the density and shrinkage were also in standard range. All physical and mechanical results were complied with the BS 3921:1985 standard. The comprehensive experimental work described in this research investigated the possibility of incorporating quarry dust into fired clay bricks. These materials could be an alternative low cost material for brick and at the same time provide a new disposal method for the waste.

  3. Temperature dependence of soil water potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.M.O.; Yong, R.N.; Cheung, S.C.H.

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed withinmore » the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.« less

  4. Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash.

    PubMed

    Singh, I B; Chaturvedi, K; Yegneswaran, A H

    2007-07-01

    In the present investigation thermal treatment of galvanizing waste with clay and fly ash has been carried out to immobilize Cr, Zn, Cu and other metals of the waste at temperature range 850 degrees C to 950 degrees C. Leaching of the metals from the waste and solidified product was analyzed using toxic characteristic leaching procedure (TCLP). Results indicated that the composition of waste and clay treatment temperature are the key factors in determining the stability of solidified product. After heating at 950 degrees C, the solidified specimens of 10% waste with clay have shown comparatively a high compressive strength and less water absorption. However, a decrease in compressive strength and increase in water absorption were noticed after addition of 15% of waste with clay. The leachability of all the metals present in the waste was found to reduce considerably with the increase of treatment temperature. In the case of Cr and Zn, their leachabilty was found at unacceptable levels from the treated product obtained after heating at 850 degrees C However, their leachability was reduced significantly within an acceptable level after treatment at 950 degrees C. The thermal treatment has shown an increase of re-oxidation trend of Cr (III) to Cr (VI) up to 900 degrees C of heating and this trend became almost zero after heating at 950 degrees C. Addition of fly ash did not show any improvement in strength, durability and leachability of metals from the thermally treated product. X-ray diffraction (XRD) analysis of the product confirmed the presence of mixed phases of oxides of toxic metals.

  5. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Zhao; Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University; Ling, Tung-Chai

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However,more » the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.« less

  6. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE PAGES

    Garitte, B.; Shao, H.; Wang, X. R.; ...

    2017-01-09

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  7. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitte, B.; Shao, H.; Wang, X. R.

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  8. Investigating the effectiveness of using agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane baggasse (SB) to produce low thermal conductivity clay bricks

    NASA Astrophysics Data System (ADS)

    Hamzah, Mohamad Hazmi; Deraman, Rafikullah; Saman, Nor Sarwani Mat

    2017-12-01

    In Malaysia, 45% of the average household electricity was consumed by air conditioners to create an acceptable indoor environment. This high energy consumption was mostly related to poor thermal performance of the building envelope. Therefore, selecting a low thermal conductivity of brick wall was of considerable importance in creating energy efficient buildings. Previously, numerous researchers reported the potential used of agricultural waste as an additive in building materials to enhance their thermal properties. The aim of this study is to examine how agricultural wastes from empty fruit bunch (EFB), coconut fibre (CF) and sugarcane bagasse (SB) can act as additive agents in a fired clay brick manufacturing process to produce a low thermal conductivity clay brick. In this study, these agricultural wastes were individually mixed with clay soil in different proportions ranging from 0%, 2.5%, 5%, 7.5% and 10% by weight. Physical and mechanical properties including soil physical properties, as well as thermal conductivity were performed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985 and ASTM C518. The results reveal that incorporating 5% of EFB as an additive component into the brick making process significantly enhances the production of a low thermal conductivity clay brick as compared to other waste alternatives tested. This finding suggests that EFB waste was a potential additive material to be used for the thermal property enhancement of the building envelope.

  9. U.S. Geological survey program on toxic waste--ground-water contamination; proceedings of the Second technical meeting, Cape Cod, Massachusetts, October 21-25, 1985

    USGS Publications Warehouse

    Ragone, S.E.

    1988-01-01

    This study characterizes the clay minerals in sediments associated with a plume of creosote-contaminated groundwater. The plume of contaminated groundwater near Pensacola, FL, is in shallow, permeable, Miocene to Holocene quartz sand and flows southward toward Pensacola Bay. Clay-size fractions were separated from 41 cores, chiefly split-spoon samples at 13 drill sites. The most striking feature of the chemical analyses of the clay fractions from uncontaminated site 2 and contaminated sites 4,5,6, and 7 is the variability of iron oxide (species in some samples as Fe2O3); total iron oxide abundance is lowest (2.5%) in uncontaminated sample 2-40, but is > 4.5% (4.5 to 8.5%) in the remaining assemblages. One feature suggesting interaction between the indigenous clays and the waste plume is the presence of nontronite-rich smectite. Nontronite commonly has been identified as the product of hydrothermal alteration and deep-sea weathering of submarine basalts; it is not a common constituent of Cenozoic Gulf Coast sediments. At the Pensacola site, relatively abundant nontronitic smectite is confined to contaminated sands or associated muds; it is least abundant or absent in sands and muds peripheral to the waste plume. The geochemistry of the waste plume, its substantial dissolved, (chiefly ferrous iron), mildly acidic (pH 5-6), and low redox composition, provides an environment similar to that previously determined for the low-temperature synthesis of nontronite. Data from clay-size fractions confirm conclusions that neoformed pyrite in some grain coatings occurs in an assemblage with excess iron over that required in the pyrite. Continuing studies to evaluate these tentative conclusions include: (1) chemical analysis of clay fractions from remaining sites to further examine the apparent relation between iron content and abundance of nontronitic smectite; (2) clay separation and analysis, and pore fluid extraction (squeezing or ultracentrifugation) and analysis from a continuous core through the mud lens to determine pore fluid composition (presence or absence of waste fluid), and character of associated clay minerals; and (3) clay separation and analysis in both permeable sands and the intervening mud lens that are clearly outside the limits of the waste plume to further document the effects of the plume. (See also W90-00022) (Lantz-PTT)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludgesmore » that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.« less

  11. Investigating the Potential Barrier Function of Nanostructured Materials Formed in Engineered Barrier Systems (EBS) Designed for Nuclear Waste Isolation.

    PubMed

    Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl

    2018-02-21

    Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3  years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Incorporation of gypsum waste in ceramic block production: Proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process.

    PubMed

    Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M

    2012-01-01

    Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Geological repository for nuclear high level waste in France from feasibility to design within a legal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voizard, Patrice; Mayer, Stefan; Ouzounian, Gerald

    Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, ANDRA has submitted the 'Dossier 2005 Argile' (clay) and 'Dossier 2005 Granite' to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried outmore » at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the 'Dossier 2005' made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the 'new', June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025. (authors)« less

  14. Use of a Dual-Structure Constitutive Model for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository

    DOE PAGES

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...

    2015-12-31

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less

  15. Effects of fines content on hydraulic conductivity and morphology of laterite soil as hydraulic barrier

    NASA Astrophysics Data System (ADS)

    Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan

    2018-03-01

    Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.

  16. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward

    Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.« less

  17. Modification of hydraulic conductivity in granular soils using waste materials.

    PubMed

    Akbulut, S; Saglamer, A

    2004-01-01

    This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.

  18. Leachability of fired clay brick incorporating with sewage sludge waste

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Sewage sludge is sewerage from wastewater treatment plants that generates millions tons of sludge ever year. Regarding this activity, it causes lack management of waste which is harmful to the surrounding conditions. Therefore, this study is focuses on the incorporation of sewage sludge waste into fired clay brick to provide an option of disposal method, producing adequate quality of brick as well as limiting the heavy metal leachability to the environment. Sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, 20% and 30% of sewage sludge waste (SSW). Heavy metals of crushed SSB were determined by using Toxicity Characteristic Leaching Procedure (TCLP) according to Method 1311 of United State Environment Protection Agency (USEPA) standard. From the results obtained, up to 20% of SSW could be incorporated into fired clay brick and comply with the USEPA standard. Therefore, this study revealed that by incorporating SSW into fired clay brick it could be an alternative method to dispose the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  19. Characterization study on secondary sewage sludge for replacement in building materials

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.

  20. The clays of the United States east of the Mississippi River

    USGS Publications Warehouse

    Ries, Henrich

    1903-01-01

    Since clays vary mineralogically they vary also chemically, but the plasticity may remain the same through a wide range of chemical composition, and this property is evidently not dependent on the chemical composition alone, but is due rather to some physical cause. The plasticity may be destroyed by heating the clay to a sufficiently high temperature to drive off the chemically combined water. Although varying in their mineral composition, most clays are supposed to contain more or less of the mineral kaolinite (a hydrated silicate of alumina), which is commonly referred to as the clay base or clay substance. The adoption of the latter term has probably arisen from the fact that many have 'considered this mineral to be the cause of plasticity, an idea now known to be somewhat incorrect, because some of the most plastic clays contain but small quantities of kaolinite, and vice versa. 

  1. Interactions Between Chlorinated Waste Solvents and Clay Minerals in Low Permeability Subsurface Layers

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero-Diaz, M.; Demond, A. H.

    2014-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. These layers may have a different mineralogical make up than the surrounding geologic media; specifically, they may be characterized by a high clay content. Although these layers are often considered inert, interactions may occur between the clay minerals and the waste liquids that may influence transport. Measurements of the basal spacing of Na-montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that it is similar to that with water; however, its basal spacing in contact with waste chlorinated liquids was reduced, leading to cracking. In fact, the basal spacing in contact with the waste chlorinated liquids was closer to that in contact with air than in contact with water. The observation that contact with pure organic liquids did not cause cracking, but contact with chlorinated wastes obtained from the field did, suggests that other components of the waste are critical to the basal spacing reduction process. Screening experiments indicated that the presence of a binary mixture of surfactants, a nonionic and an anionic surfactant, in the chlorinated solvent were necessary to cause the cracking at the same rate and magnitude as the chlorinated wastes obtained from the field. Fourier transform infrared (FT-IR) spectroscopy measurements suggest that the mixture alters the adsorbed water OH-bending band, implying a displacement of adsorbed water. Coupling these results with sorption and x-ray diffraction (XRD) measurements, a hypothesis of component conformation in the clay interlayer space that leads to cracking can be constructed.

  2. Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue

    NASA Astrophysics Data System (ADS)

    Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin

    2017-08-01

    Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.

  3. The influence of clay fineness upon sludge recycling in a ceramic matrix

    NASA Astrophysics Data System (ADS)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  4. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  5. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    NASA Astrophysics Data System (ADS)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  7. NMR imaging and cryoporometry of swelling clays

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey V.; Szutkowski, Kosma; Petrov, Oleg V.; Furó, István.

    2010-05-01

    Compacted bentonite clay is currently attracting attention as a promising "self-sealing" buffer material to build in-ground barriers for the encapsulation of radioactive waste. It is expected to fill up the space between waste canister and surrounding ground by swelling and thus delay flow and migration from the host rock to the canister. In environmental sciences, evaluation and understanding of the swelling properties of pre-compacted clay are of uttermost importance for designing such buffers. Major goal of present study was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during different physical processes in an aqueous environment such as swelling, dissolution, and sedimentation on the time scale from minutes to years. The propagation of the swelling front during clay expansion depending on the geometry of the confining space was also studied. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were adapted and used as main experimental techniques. With this approach, spatially resolved movement of the clay/water interface as well as clay particle distributions in gel phase can be monitored [1]. Bulk samples with swelling in a vertical tube and in a horizontal channel were investigated and clay content distribution profiles in the concentration range over five orders of magnitude and with sub-millimetre spatial resolution were obtained. Expansion rates for bulk swelling and swelling in narrow slits were compared. For sodium-exchanged montmorillonite in contact with de-ionised water, we observed a remarkable acceleration of expansion as compared to that obtained in the bulk. To characterize the porosity of the clay a cryoporometric study [2] has been performed. Our results have important implications to waste repository designs and for the assessment of its long-term performance. Further research exploring clay-water interaction over a wide variety of clay composition and water ionic strength as well as investigating the effect of the confining geometry and material surface properties seem to be worth to pursue. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. References: [1] Dvinskikh S. V., Szutkowski K., Furó I. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198, 146 (2009). [2] Petrov O. V., Furó I. NMR cryoporometry: Principles, applications and potential. Prog. Nucl. Magn. Reson. Spec. 54, 97 (2009).

  8. Mass Wasting during the Cretaceous/Tertiary Transition in the North Atlantic: Relationship to the Chicxulub Impact?

    NASA Astrophysics Data System (ADS)

    Mateo, Paula; Keller, Gerta; Adatte, Thierry; Spangenberg, Jorge

    2015-04-01

    Deep-sea sections in the North Atlantic are claimed to contain the most complete sedimentary records and ultimate proof that the Chicxulub impact is Cretaceous-Tertiary boundary (KTB) in age and caused the mass extinction. A multi-disciplinary study of North Atlantic DSDP Sites 384, 386 and 398, based on high-resolution planktonic foraminiferal biostratigraphy, carbon and oxygen stable isotopes, clay and whole-rock mineralogy and granulometry, reveals the age, stratigraphic completeness and nature of sedimentary disturbances. Results show a major KTB hiatus at Site 384 with zones CF1, P0 and P1a missing, spanning at least ~540 ky, similar to other North Atlantic and Caribbean localities associated with tectonic activity and Gulf Stream erosion. At Sites 386 and 398, discrete intervals of disturbed sediments with mm-to-cm-thick spherule layers have previously been interpreted as KTB age impact-generated earthquakes destabilizing continental margins prior to settling of impact spherules. However, improved age control based on planktonic foraminifera indicates deposition in the early Danian zone P1a(2) (upper Parvularugoglobigerina eugubina zone) more than 100 ky after the KTB. At Site 386, two intervals of white chalk contain very small (<63 μm) early Danian zone P1a(2) (65%) and common reworked Cretaceous (35%) species, in contrast to the in situ red-brown and green abyssal clays that are devoid of carbonate. In addition, high calcite, mica and kaolinite and upward-fining are observed in the chalks, indicating downslope transport from shallow waters and sediment winnowing via distal turbidites. At Site 398, convoluted red to tan sediments with early Danian and reworked Cretaceous species represent slumping of shallow water sediments as suggested by dominance of mica and low smectite compared to in situ deposition. We conclude that mass wasting was likely the result of earthquakes associated with increased tectonic activity in the Caribbean and the Iberian Peninsula during the early Danian well after the Chicxulub impact.

  9. Radiation-stability of smectite.

    PubMed

    Sorieul, Stéphanie; Allard, Thierry; Wang, Lumin M; Grambin-Lapeyre, Caroline; Lian, Jie; Calas, Georges; Ewings, Rodney C

    2008-11-15

    The safety assessment of geological repositories for high-level nuclear waste and spent nuclear fuel requires an understanding of the response of materials to high temperatures and intense radiation fields. Clays, such as smectite, have been proposed as backfill material around waste packages, but their response to intense radiation from short-lived fission products and alpha decay of sorbed actinides remains poorly understood. Cumulative doses may amorphize clays and may alter their properties of sorption, swelling, or water retention. We describe the amorphization of smectites induced by electron and heavy ion irradiations to simulate ionizing radiation and alpha recoil nuclei, respectively. A new "bell-shaped" evolution of the amorphization dose with temperature has been determined. The maximum dose for amorphization occurs at about 300-400 degrees C, showing that temperature-induced dehydroxylation enhances amorphization. The exact shape of the bell-shaped curves depends on the interlayer cation. At ambient temperature, ionizing radiation and alpha-decay events do not show the same efficiency. The former results in amorphization at doses between 10(10)-10(11) Gy which are greater than the total radiation dose expected for radioactive waste over 10(6) years. In contrast, alpha-decay events amorphize clays at doses as low as 0.13-0.16 displacements per atom, i.e. doses consistent with nuclear waste accumulated over approximately 1000 yrs. However, the limited penetration of alpha particles and recoil nuclei, in the 100 nm - 20 microm range, will minimize damage. Clays will not be amorphized unless the waste package is breached and released actinides are heavily sorbed onto the clay overpack.

  10. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  11. Influence of nanoclay on properties of HDPE/wood composites

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu

    2007-01-01

    Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...

  12. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.

    PubMed

    Eliche-Quesada, D; Leite-Costa, J

    2016-02-01

    Olive pomace bottom ash was used to replace different amounts (10-50wt%) of clay in brick manufacturing. The aim of this study is both studying bricks properties and showing a new way of olive pomace bottom ash recycling. Properties of waste bricks were compared to conventional products following standard procedures in order to determine the maximum waste percentage. The amount of olive pomace bottom ash is limited to 20wt%, obtaining bricks with superior engineering properties when 10wt% of waste is added. Adding higher amount of waste (30-50wt%) resulted in bricks with water absorption and compressive strength values on the edge of meeting those established by standards. Therefore, the addition of 10 and 20wt% of olive pomace bottom ash produced bricks with a bulk density of 1635 and 1527kg/m(3) and a compressive strength of 33.9MPa and 14.2MPa, respectively. Fired bricks fulfil standards requirements for clay masonry units, offering, at the same time, better thermal insulation of buildings due to a reduction in thermal conductivity of 14.4% and 16.8% respectively, compared to control bricks (only clay). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    NASA Astrophysics Data System (ADS)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  15. Development and characterization of clay facial mask containing turmeric extract solid dispersion.

    PubMed

    Pan-On, Suchiwa; Rujivipat, Soravoot; Ounaroon, Anan; Tiyaboonchai, Waree

    2018-04-01

    To develop clay facial mask containing turmeric extract solid dispersion (TESD) for enhancing curcumin water solubility and permeability and to determine suitable clay based facial mask. The TESD were prepared by solvent and melting solvent method with various TE to polyvinylpyrrolidone (PVP) K30 mass ratios. The physicochemical properties, water solubility, and permeability were examined. The effects of clay types on physical stability of TESD, water adsorption, and curcumin adsorption capacity were evaluated. The TESD prepared by solvent method with a TE to PVP K30 mass ratio of 1:2 showed physically stable, dry powders, when mixed with clay. When TESD was dissolved in water, the obtained TESD micelles showed spherical shape with mean size of ∼100 nm resulting in a substantial enhancement of curcumin water solubility, ∼5 mg/ml. Bentonite (Bent) and mica (M) showed the highest water adsorption capacity. The TESD's color was altered when mixed with Bent, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) indicating curcumin instability. Talcum (Talc) showed the greatest curcumin adsorption followed by M and kaolin (K), respectively. Consequently, in vitro permeation studies of the TESD mixed with Talc showed lowest curcumin permeation, while TESD mixed with M or K showed similar permeation profile as free TESD solutions. The developed TESD-based clay facial mask showed lower curcumin permeation as compared to those formulations with Tween 80. The water solubility and permeability of curcumin in clay based facial mask could be improved using solid dispersion technique and suitable clay base composed of K, M, and Talc.

  16. Consequences of the Thermal Transient on the Evolution of the Damaged Zone Around a Repository for Heat-Emitting High-Level Radioactive Waste in a Clay Formation: a Performance Assessment Perspective

    NASA Astrophysics Data System (ADS)

    Yu, Li; Weetjens, Eef; Sillen, Xavier; Vietor, Tim; Li, Xiangling; Delage, Pierre; Labiouse, Vincent; Charlier, Robert

    2014-01-01

    A proper evaluation of the perturbations of the host rock induced by the excavation and the emplacement of exothermic wastes is essential for the assessment of the long-term safety of high-level radioactive waste disposals in clay formations. The impact of the thermal transient on the evolution of the damaged zone (DZ) has been explored in the European Commission project TIMODAZ (thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks, 2006-2010). This paper integrates the scientific results of the TIMODAZ project from a performance assessment (PA) point of view, showing how these results support and justify key PA assumptions and the values of PA model parameters. This paper also contextualises the significance of the thermal impact on the DZ from a safety case perspective, highlighting how the project outcomes result into an improved understanding of the thermo-hydro-mechanical behaviour of the clay host rocks. The results obtained in the TIMODAZ project strengthen the assessment basis of the safety evaluation of the current repository designs. There was no evidence throughout the TIMODAZ experimental observations of a temperature-induced additional opening of fractures nor of a significant permeability increase of the DZ. Instead, thermally induced plasticity, swelling and creep seem to be beneficial to the sealing of fractures and to the recovery of a very low permeability in the DZ, close to that of an undisturbed clay host rock. Results from the TIMODAZ project indicate that the favourable properties of the clay host rock, which guarantee the effectiveness of the safety functions of the repository system, are expected to be maintained after the heating-cooling cycle. Hence, the basic assumptions usually made in PA calculations so far are expected to remain valid, and the performance of the system should not be affected in a negative way by the thermal evolution of the DZ around a radioactive waste repository in clay host rock.

  17. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    NASA Astrophysics Data System (ADS)

    Caporuscio, F. A.; Palaich, S. E. M.; Cheshire, M. C.; Jové Colón, C. F.

    2017-03-01

    The focus of this experimental work is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150-160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS2) and minor covellite (CuS) in the presence of H2S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this research show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. This supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material.

  18. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    DOE PAGES

    Caporuscio, F. A.; Palaich, Sarah E. M.; Cheshire, M. C.; ...

    2016-12-29

    The focus of this experimental paper is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150–160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS 2) and minor covellite (CuS) in the presence of H 2S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this researchmore » show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. Finally, this supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material.« less

  19. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  20. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    USGS Publications Warehouse

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  1. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, E.J.

    1997-07-31

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in themore » Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ``as low as reasonably achievable`` (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford`s OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types.« less

  2. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C protection up to a certain clay/organic matter ratio. This strategy could be used to enhance the stability of organic amendments and increase soil carbon sequestration.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.H.; Li, L.; Zheng, L.

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding amore » variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.« less

  4. Field trip guidebook on environmental impact of clays along the upper Texas coast

    NASA Technical Reports Server (NTRS)

    Garcia, Theron D.; Ming, Douglas W.; Tuck, Lisa Kay

    1991-01-01

    The field trip was prepared to provide an opportunity to see first hand some the environmental hazards associated with clays in the Houston, Texas area. Because of the very high clay content in area soils and underlying Beaumont Formation clay, Houston is a fitting location to host the Clay Mineral Society. Examinations were made of (1) expansive soils, (2) subsidence and surface faulting, and (3) a landfill located southeast of Houston at the Gulf Coast Waste Disposal Authority where clay is part of the liner material.

  5. Utilization of sewage sludge in the manufacture of lightweight aggregate.

    PubMed

    Franus, Małgorzata; Barnat-Hunek, Danuta; Wdowin, Magdalena

    2016-01-01

    This paper presents a comprehensive study on the possibility of sewage sludge management in a sintered ceramic material such as a lightweight aggregate. Made from clay and sludge lightweight aggregates were sintered at two temperatures: 1100 °C (name of sample LWA1) and 1150 °C (name of sample LWA2). Physical and mechanical properties indicate that the resulting expanded clay aggregate containing sludge meets the basic requirements for lightweight aggregates. The presence of sludge supports the swelling of the raw material, thereby causing an increase in the porosity of aggregates. The LWA2 has a lower value of bulk particle density (0.414 g/cm(3)), apparent particle density (0.87 g/cm(3)), and dry particle density (2.59 g/cm(3)) than it is in the case of LWA1 where these parameters were as follows: bulk particle density 0.685 g/cm(3), apparent particle density 1.05 g/cm(3), and dry particle density 2.69 g/cm(3). Water absorption and porosity of LWA1 (WA = 14.4 %, P = 60 %) are lower than the LWA2 (WA = 16.2 % and P = 66 %). This is due to the higher heating temperature of granules which make the waste gases, liberating them from the decomposition of organic sewage sludge. The compressive strength of LWA2 aggregate is 4.64 MPa and for LWA1 is 0.79 MPa. Results of leaching tests of heavy metals from examined aggregates have shown that insoluble metal compounds are placed in silicate and aluminosilicate structure of the starting materials (clays and sludges), whereas soluble substances formed crystalline skeleton of the aggregates. The thermal synthesis of lightweight aggregates from clay and sludge mixture is a waste-free method of their development.

  6. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis. Copyright © 2016. Published by Elsevier Ltd.

  7. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    NASA Astrophysics Data System (ADS)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters < 17 angstroms. Changes in micro porosity (relative to no heat treatment) are most significant for heat treatments 300 °C and above. Alterations are also seen in the chemical properties (CEC, XRD, iodide sorption) of clays, and like pore size distribution changes, are most significant above 300 °C. Overall, the results imply that changes seen in pores size distribution correlate with cation exchange capacity and cation exchange processes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6352A.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less

  9. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs.

    PubMed

    Farías, Romina D; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-05-15

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  10. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    PubMed Central

    Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-01-01

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892

  11. Do scaly clays control seismicity on faulted shale rocks?

    NASA Astrophysics Data System (ADS)

    Orellana, Luis Felipe; Scuderi, Marco M.; Collettini, Cristiano; Violay, Marie

    2018-04-01

    One of the major challenges regarding the disposal of radioactive waste in geological formations is to ensure isolation of radioactive contamination from the environment and the population. Shales are suitable candidates as geological barriers. However, the presence of tectonic faults within clay formations put the long-term safety of geological repositories into question. In this study, we carry out frictional experiments on intact samples of Opalinus Clay, i.e. the host rock for nuclear waste storage in Switzerland. We report experimental evidence suggesting that scaly clays form at low normal stress (≤20 MPa), at sub-seismic velocities (≤300 μm/s) and is related to pre-existing bedding planes with an ongoing process where frictional sliding is the controlling deformation mechanism. We have found that scaly clays show a velocity-weakening and -strengthening behaviour, low frictional strength, and poor re-strengthening over time, conditions required to allow the potential nucleation and propagation of earthquakes within the scaly clays portion of the formation. The strong similarities between the microstructures of natural and experimental scaly clays suggest important implications for the slip behaviour of shallow faults in shales. If natural and anthropogenic perturbations modify the stress conditions of the fault zone, earthquakes might have the potential to nucleate within zones of scaly clays controlling the seismicity of the clay-rich tectonic system, thus, potentially compromising the long-term safeness of geological repositories situated in shales.

  12. Permeability of covers over low-level radioactive-waste burial trenches, West Valley, Cattaraugus County, New York

    USGS Publications Warehouse

    Prudic, David E.

    1980-01-01

    Among the facilities at the Western New York Nuclear Service Center, near the hamlet of West Valley in the northern part of Cattaraugus County, N.Y., is a State-licensed burial ground for commercial low-level radioactive wastes. The 11-acre burial ground contains a series of trenches excavated in a silty-clay till of low permeability that contains scattered pods of silt, sand, and gravel. Gas pressure in the unsaturated parts of radioactive waste burial trenches responds to fluctuations in atmospheric pressure. Measurements of atmospheric pressure and the differential pressure between the trench gas and the atmosphere on several dates in 1977-78 were used to calculate hydraulic conductivity of the reworked silty-clay till that covers the trenches. Generally the hydraulic conductivity of covers over trenches that had a history of rapidly rising water levels are higher, at least seasonally, than covers over trenches in which the water level remained low. This supports the hypothesis that recharge occurs through the cover, presumably through fractures caused by desiccation and (or) subsidence. Hydraulic conductivities of the cover as calculated from gas- and air-pressure measurements at several trenches were 100 to 1,000 times greater than those calculated from the increase in water levels in the trenches. This difference suggests that the values obtained from the air- and gas-pressure measurements need to be adjusted and at present are not directly usable in ground-water flux calculations. The difference in magnitude of values may be caused by rapidly decreasing hydraulic conductivity during periods of recharge or by the clogging of fractures with sediment washed in by runoff. (USGS)

  13. The effect of clay on the dissolution of nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher than the silica concentrations in equilibrium with the glass surface ( C ∗Si, saturation) that are found in absence of clay. Nevertheless, the glass dissolution proceeds at relatively high rate. C ∗Si, saturation seems to be increased by the presence of clay. To understand this, more knowledge is necessary concerning the fate of the released silica and the silica speciation in solution.

  14. Energy conservation: Industry. Citations from the NITS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-07-01

    The 335 citations, 37 of which are new entries, discuss potential methods of conserving energy. Many abstracts deal with reports that also cover processes used, amount of energy consumed, and environmental considerations of energy conserving options. Industries covered include food, paper, chemical, cement, metals, petroleum refining, contract construction, synthetic rubber, plastics, drug manufacturing, and stone, clay, and glass. Energy conservation through the use of waste heat is covered in a related Published Search entitled Waste Heat Utilization.

  15. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  16. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Enrichment of trace elements in the clay size fraction of mining soils.

    PubMed

    Gomes, Patrícia; Valente, Teresa; Braga, M Amália Sequeira; Grande, J A; de la Torre, M L

    2016-04-01

    Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.

  18. Performance and durability of concrete made with demolition waste and artificial fly ash-clay aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakaria, M.; Cabrera, J.G.

    1996-12-31

    Demolition aggregates and artificial aggregates made with waste materials are two alternatives being studied for replacement of natural aggregates in the production of concrete. Natural aggregate sources in Europe are increasingly scarce and subject to restrictions based on environmental regulations. In many areas of the developing world sources of good quality aggregates are very limited or practically not available and therefore it has become necessary to study alternative materials. This paper presents a laboratory study on the use of demolition bricks and artificial aggregates made from fly ash-clay as coarse aggregates to make concrete. The concretes made either with demolitionmore » bricks or artificial aggregates are compared with a control mix made with natural gravel aggregates. The strength and durability characteristics of these concretes are evaluated using as a criteria compressive strength and transport properties, such as gas and water permeability. The results show clearly that concretes of good performance and durability can be produced using aggregates from demolition rubble or using artificial aggregates made with wastes such as fly ash.« less

  19. Note: Influence of rinsing and drying routines on growth of multilayer thin films using automated deposition system.

    PubMed

    Gamboa, Daniel; Priolo, Morgan A; Ham, Aaron; Grunlan, Jaime C

    2010-03-01

    A versatile, high speed robot for layer-by-layer deposition of multifunctional thin films, which integrates concepts from previous dipping systems, has been designed with dramatic improvements in software, positioning, rinsing, drying, and waste removal. This system exploits the electrostatic interaction of oppositely charged species to deposit nanolayers (1-10 nm thick) from water onto the surface of a substrate. Dip times and number of deposited layers are adjustable through a graphical user interface. In between dips the system spray rinses and dries the substrate by positioning it in the two-tiered rinse-dry station. This feature significantly reduces processing time and provides the flexibility to choose from four different procedures for rinsing and drying. Assemblies of natural montmorillonite clay and polyethylenimine are deposited onto 175 microm poly(ethylene terephthalate) film to demonstrate the utility of this automated deposition system. By altering the type of rinse-dry procedure, these clay-based assemblies are shown to exhibit variations in film thickness and oxygen transmission rate. This type of system reproducibly deposits films containing 20 or more layers and may also be useful for other types of coatings that make use of dipping.

  20. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance temperature.

  1. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.

    2015-03-01

    Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (<5 at.%). Iron-enriched Al-silicates or illite-smectites (Fe >10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long-range order. Adsorption of U and nucleation of metazeunerite and cuprosklodowskite are strongly controlled by the presence of the adsorbed oxy-anion species arsenate and silica on the Fe-enriched silicates. Heterogeneous nucleation of nano-crystals of the uranyl minerals occurs most likely on adsorption sites of binary uranyl-, arsenate- and silica-complexes as well as on ternary uranyl-arsenate or uranyl-silicate complexes. The uranyl minerals occur as aggregates of misoriented nano-size crystals and are the result of supersaturated solutions and a high number of nucleation sites that prevented the formation of larger crystals through Oswald ripening. The results of this study provide an understanding of interfacial nano-scale processes between uranyl species and altered clay buffers in a potential Nuclear Waste repository as similar alteration conditions of clays may occur in a multi-barrier system.

  2. Clay deposits of the Tierra Colorado district, southern Orange County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    The clay of this district is being mined for fire brick by the Vitrofrax Corporation. Much of the clay contains 35 percent or more of alumina and between 1 and 2 percent of iron oxide. Production is largely from an underground mine as the best clay deposit known in the district occurs on the side of a steep hill with more than 100 feet of sandstone overlying most of it. The good clay deposits occur at the base of an Eocene sandstone formation, and overlie mottled clays with a high iron content that are residual deposits formed on an old weathered surface. Mapping indicates that the clay deposits are very lenticular, though all occur at the same stratigraphic position, and they grade laterally into sandy clay and quartz sand. Topographic relief and the dip of the strata preclude finding large areas where the clay strata have relatively little overburden.

  3. Illitization within bentonite engineered barrier system in clay repositories for nuclear waste and its effect on the swelling stress: a coupled THMC modeling study

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.

    2014-12-01

    Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The modeling work is illustrative in light of the relative importance of different processes occurring in EBS bentonite and clay host rock at higher than 100 oC conditions, and could be of greater use when site specific data are available.

  4. Effects of using arsenic-iron sludge wastes in brick making.

    PubMed

    Hassan, Khondoker Mahbub; Fukushi, Kensuke; Turikuzzaman, Kazi; Moniruzzaman, S M

    2014-06-01

    The arsenic-iron sludge generated in most of the treatment systems around the world is discharged into the nearest watercourse, which leads to accumulative rise of arsenic and iron concentrations in water. In this study, attempts were made to use the arsenic-iron sludge in making bricks and to analyze the corresponding effects on brick properties. The water treatment plant sludge is extremely close to brick clay in chemical composition. So, the sludge could be a potential substitute for brick clay. This study involved the addition of sludge with ratios 3%, 6%, 9% and 12% of the total weight of sludge-clay mixture. The physical and chemical properties of the produced bricks were then determined and evaluated and compared to control brick made entirely from clay. Results of different tests indicated that the sludge proportion and firing temperature were the two key factors in determining the quality of bricks. The compressive strength of 3%, 6%, 9% and 12% sludge containing brick samples were found to be 14.1 MPa, 15.1 MPa, 9.4 MPa and 7.1 MPa, respectively. These results indicate that the compressive strength of prepared bricks initially increased and then decreased with the increase of sludge proportion. Leaching characteristics of burnt bricks were determined with the variation of pH at a constant temperature. The optimum amount of sludge that could be mixed with clay to produce good bonding of clay-sludge bricks was found to be 6% (safely maximum) by weight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Installation Restoration Program. Phase 1. Records Search Andrews AFB. Maryland

    DTIC Science & Technology

    1985-06-01

    red to silvery-qrey, functions ma a conf ining bed. Formation. ~Va plastics thin lonses of pole gray silt. Ann"a Formation. ye (0-210 sand, qrsenieh...the Nanjemoy Formation (a clayey glauconi- tic sand, two to thirty feet thick) and the Marlboro Clay (a plastic clay with silt partings, two to... plastics , empty 55-gallon drums, waste lumber, tires, pipes, and hospital wastes such as unused needles and chemical reagents. In the past, Site D-4 was

  6. Shale: an overlooked option for US nuclear waste disposal

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  7. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Soler, Josep M.

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  8. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Environmental Protection Agency's program to close and clean up hazardous waste land disposal facilities. Hearing before the Environment, Energy, and Natural Resources Subcommittee of the Committee on Government Operations, House of Representatives, One Hundred Second Congress, Second Session, May 28, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    This hearing concerns the slow pace of EPA's actions to close and clean up most of the US hazardous waste land disposal facilities. Statements made personally to the subcommittee include Don R. Clay, Solid Waste and Emergency Response, EPA; Richard L. Hembra, Environmental Issues, Resources, Community, and Economic Development Division of the US General Accounting Office; Harold F. Reheis, Environmental Protection Division, Georgia Department of Natural Resources; Hon. Mike Synar, Chairman of the Subcommittee. Submitted for the record were 4 prepared documents from Don R. Clay, Richard L. Hembra; Sylvia Lowrance, Office of Solid Waste, EPA; Harold F. Reheis.

  10. Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima.

    PubMed

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C; Lammers, Laura N; Ikeda, Takashi; Sassi, Michel; Rosso, Kevin M; Machida, Masahiko

    2018-04-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE PAGES

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.; ...

    2018-03-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  12. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  13. The Leaching of Aluminium In Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid.

    NASA Astrophysics Data System (ADS)

    Fernández, A. M.; Ibáñez, J. L.; Llavona, M. A.; Zapico, R.

    The acid leaching of aluminium from several non traditional ores, bayerite, kaolinite, different clays, coal mining wastes and coal fly ashes, and the kinetic of their dissolution are described. The effects of time, temperature, acid concentration, sample calcination, particle size were examined. The leaching of aluminium is dependent on acid concentration and strongly on temperature. Generally, the time to reach a fixed percentage of dissolution decreases with increasing acid concentration in the range 6% to 40% acid by weight. On clays and coal mining wastes a good relation between Al removal and ratio kaolinite/illite was also observed at all temperatures and acid concentration tested. Coal fly ashes are particles that were heated at very high temperatures in the power station and Al compounds were transformed into mullite and so Al recovery was minor. Several rate equations describing the kinetics of the leach reaction were discussed and Kinetic parameters and activation energy values of samples are presented.

  14. Application of woven tires waste as soft clay subgrade reinforcement for preventing highway structural failure

    NASA Astrophysics Data System (ADS)

    Apriyono, Arwan; Sumiyanto, Gusmawan, Dadan Deri

    2017-03-01

    This study presents the application of woven waste tires as soft clay subgrade reinforcement for preventing highway structural failure, reducing construction cost and minimizing environmental hazards associated with the increasingly large amount of waste tires in Indonesia. To his end, we performed experiments using five stripe distance variations of woven tires - i.e. 2, 2.5, 3, 3.5 and 4 cm. Five soft clay samples were made and each was reinforced using each of these woven tires. The California Bearing Ratio (CBR) test was conducted on each softclay sample and the CBR value was determined from the stress on the displacement of 0.10 and 0.20 inch. The correlation between CBR value and strip distance was used to infer the optimum woven tires strip distance, indicated by the largest CBR value. The result suggests that the strip distance of 3 cm is optimum with corresponding CBR value of ˜20%, which is 115% increase compared to softclay without reinforcement.

  15. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    PubMed

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  16. Speciation of uranium in surface-modified, hydrothermally treated, (UO{sub 2}){sup 2+}-exchanged smectite clays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.

    1997-08-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less

  17. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    PubMed

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  19. Clay and Shale Permeability at Lab to Regional Scale

    NASA Astrophysics Data System (ADS)

    Neuzil, C.

    2017-12-01

    Because clays, shales, and other clay-rich media tend to be only poorly permeable, and are laterally extensive and voluminous, they play key roles in problems as diverse as groundwater supply, waste confinement, exploitation of conventional and unconventional oil and gas, and deformation and failure in the crust. Clay and shale permeability is a crucial but often highly uncertain analysis parameter; direct measurements are challenging, error-prone, and - perhaps most importantly - provide information only at quite small scales. Fortunately, there has been a dramatic increase in clay and shale permeability data from sources that include scientific ocean drilling, nuclear waste repository research, groundwater resource studies, liquid waste and CO2 sequestration, and oil and gas research. The effect of lithology as well as porosity on matrix permeability can now be examined and permeability - scale relations are becoming discernable. A significant number of large-scale permeability estimates have been obtained by inverse methods that essentially treat large-scale flow systems as natural experiments. They suggest surprisingly little scale-dependence in clay and shale permeabilities in subsiding basins and accretionary complexes. Stable continental settings present a different picture; as depths increase beyond 1 km, scale dependence mostly disappears even over the largest areas. At depths less than 1 km, secondary permeability is not always present over areas of 1 - 10 km2, but always evident for areas in excess of about 103 km2. Transmissive fractures have been observed in very low porosity (< 0.03) shales in these settings, but the cause of scale dependence in other cases is unclear; it may reflect time-dependent, or "dynamic" conditions, including irreversible and ongoing changes imposed on subsurface flow systems by human activities.

  20. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    DTIC Science & Technology

    2015-02-01

    processability of the polymer (i.e. viscosity ), as is characteristic with conventional macroscopic fillers. When dispersed throughout the polymer and...approximately half the 3 Figure 4. Conventional Composites vs. Nanocomposites Layer ed Clay M o n o m er In Intercalated Na noc om pos ite...polymer/ clay layers. Exfoliation occurs when the clay platelets become further separated by the polymer chains. The separation distance can be from 80

  1. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.

    PubMed

    Martínez-García, C; Eliche-Quesada, D; Pérez-Villarejo, L; Iglesias-Godino, F J; Corpas-Iglesias, F A

    2012-03-01

    The main aim of this study is to assess the effect of incorporating waste sludge on the properties and microstructure of clay used for bricks manufacturing. Wastewater treatment plants produce annually a great volume of sludge. Replacing clay in a ceramic body with different proportions of sludge can reduce the cost due to the utilization of waste and, at the same time, it can help to solve an environmental problem. Compositions were prepared with additions of 1%, 2.5%, 5%, 7.5%, 10% and 15% wt% waste sludge in body clay. In order to determine the technological properties, such as bulk density, linear shrinkage, water suction, water absorption and compressive strength, press-moulded bodies were fired at 950 °C for coherently bonding particles in order to enhance the strength and the other engineering properties of the compacted particles. Thermal heating destroys organic remainder and stabilizes inorganic materials and metals by incorporating oxides from the elemental constituent into a ceramic-like material. Results have shown that incorporating up to 5 wt% of sludge is beneficial for clay bricks. By contrast, the incorporation of sludge amounts over 5 wt% causes deterioration on the mechanical properties, therefore producing low-quality bricks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  3. Coupled Multi-physical Simulations for the Assessment of Nuclear Waste Repository Concepts: Modeling, Software Development and Simulation

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Nagel, T.; Bilke, L.; Böttcher, N.; Heusermann, S.; Fischer, T.; Kumar, V.; Schäfers, A.; Shao, H.; Vogel, P.; Wang, W.; Watanabe, N.; Ziefle, G.; Kolditz, O.

    2016-12-01

    As part of the German site selection process for a high-level nuclear waste repository, different repository concepts in the geological candidate formations rock salt, clay stone and crystalline rock are being discussed. An open assessment of these concepts using numerical simulations requires physical models capturing the individual particularities of each rock type and associated geotechnical barrier concept to a comparable level of sophistication. In a joint work group of the Helmholtz Centre for Environmental Research (UFZ) and the German Federal Institute for Geosciences and Natural Resources (BGR), scientists of the UFZ are developing and implementing multiphysical process models while BGR scientists apply them to large scale analyses. The advances in simulation methods for waste repositories are incorporated into the open-source code OpenGeoSys. Here, recent application-driven progress in this context is highlighted. A robust implementation of visco-plasticity with temperature-dependent properties into a framework for the thermo-mechanical analysis of rock salt will be shown. The model enables the simulation of heat transport along with its consequences on the elastic response as well as on primary and secondary creep or the occurrence of dilatancy in the repository near field. Transverse isotropy, non-isothermal hydraulic processes and their coupling to mechanical stresses are taken into account for the analysis of repositories in clay stone. These processes are also considered in the near field analyses of engineered barrier systems, including the swelling/shrinkage of the bentonite material. The temperature-dependent saturation evolution around the heat-emitting waste container is described by different multiphase flow formulations. For all mentioned applications, we illustrate the workflow from model development and implementation, over verification and validation, to repository-scale application simulations using methods of high performance computing.

  4. Phase modification and dielectric properties of a cullet-paper ash-kaolin clay-based ceramic

    NASA Astrophysics Data System (ADS)

    Samah, K. A.; Sahar, M. R.; Yusop, M.; Omar, M. F.

    2018-03-01

    Novel ceramics from waste material made of ( x) paper ash-(80 - x) cullet-20 kaolin clay (10wt% ≤ x ≤ 30wt%) were successfully synthesized using a conventional solid-state reaction technique. Energy-dispersive X-ray analysis confirmed the presence of Si, Ca, Al, and Fe in the waste material for preparing these ceramics. The influence of the cullet content on the phase structures and the dielectric properties of these ceramics were systematically investigated. The impedance spectra were verified in the range from 1 Hz to 10 MHz at room temperature. The phase of the ceramics was found to primarily consist of wollastonite (CaSiO3), along with minor phases of γ-dicalcium silicate (Ca2SiO4) and quartz (SiO2). The sample with a cullet content of 55wt% possessed the optimum wollastonite structure and exhibited good dielectric properties. An increase of the cullet content beyond 55wt% resulted in a structural change from wollastonite to dicalcium silicate, a decrease in dielectric constant, and an increase in dielectric loss. All experimental results suggested that these novel ceramics from waste are applicable for electronic devices.

  5. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    NASA Astrophysics Data System (ADS)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch experiments with NO3- will support the understanding of sorption behavior of the anions. All hydrophilic samples have a higher retardation capacity, indicated by diffusion coefficients of 2.44 x 10-11 m/s2 for original bentonite and ˜2.1 x 10-11m/s2 for hydrophilic organo-clays. For hydrophobic organo-clays the H2O diffusion can be higher and is increased at high bulk density (1-1.5 g/m3) up to 2.76 x 10-10m2/s. Experiments with NO3- at bulk density of 1.5 g/m3 reveal that the apparent diffusion coefficients of nitrate are with results up to 5.61 x 1012 m2/s distinctively lower than free diffusion of nitrate in pure water (6.46 x 1010 m2/s at experimental conditions) and nitrate diffusion in natural bentonite (2.63 x 1011 m2/s). The measurements allow the interpretation of the different sorption mechanisms, retardation capacity and diffusion behavior of the analyzed clays at different anion concentrations. Ongoing molecular dynamic simulations will contribute understanding of diffusion processes in organo-clays including the conditions at the interface of the clay minerals and in solution. References: [1] Shackelford, C.D., Moore S.M. (2013) Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Engineering Geology, 152, 133-147. [2] Rytwo, G., Nir, S., Shuali, U. (2012) Clay and water treatment. Applied Clay Science, 67-68, 117-118. [3] Lorenzetti, R.L., Bartelt-Hunt, S.L., Burns, S.E., Smith, J.A. (2005) Hydraulic conductivities and effective diffusion coefficients of geosynthetic clay liners with organobentonite amendments. Geotextiles and Geomembranes, 23, 385-400. [4] Schampera, B., Dultz, S. (2011) H2O self-diffusion in compacted clays as influenced by surface charge and wettability - obstruction effects of bound H2O layers. Clay and Clay Minerals,59, 42-57.

  6. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.

    PubMed

    Haque, Md Obaidul; Sharif, Ahmed

    2014-05-01

    Informal incineration or open pit burning of waste materials is a common practice in the peripheral area of Dhaka, one of the fastest growing mega-cities in the world. This study deals with the effect of open pit burned (i.e. open burned) household waste bottom ash on fired clay bricks. Between 0 to 50% (by weight) of open pit burned household waste bottom ash was mixed with clay to make bricks. The molded specimens were air-dried at room temperature for 24 h and then oven dried at 100 °C for another 24 h to remove the water. The raw bricks were fired in a muffle furnace to a designated temperature (800, 900 and 1000 °C, respectively). The firing behaviour (mechanical strength, water absorption and shrinkage) was determined. The microstructures, phase compositions and leachates were evaluated for bricks manufactured at different firing temperatures. These results demonstrate that open pit burned ash can be recycled in clay bricks. This study also presents physical observations of the incinerated ash particles and determination of the chemical compositions of the raw materials by wet analysis. Open pit burned ash can be introduced easily into bricks up to 20% wt. The concentrations of hazardous components in the leachates were below the standard threshold for inert waste category landfill and their environmental risk during their use-life step can be considered negligible.

  7. Clay facial masks: physicochemical stability at different storage temperatures.

    PubMed

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  8. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE PAGES

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    2016-04-25

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  9. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  10. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.

    PubMed

    Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R

    2005-01-01

    Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.

  11. Preliminary study on immobilization of buffing dust by solidification method in ceramic brick

    NASA Astrophysics Data System (ADS)

    Yuliansyah, Ahmad Tawfiequrrahman; Prasetya, Agus; Putra, Arif Eka; Satriawan, Humam Budi

    2017-11-01

    Leather-based industries generate a substantial amount of hazardous solid and liquid wastes in their process. One of the solid wastes is buffing dust, which is fine particulates containing fat, tanning, dyes and chromium. From 1 ton of leather processed, approximately 2-6 kg of buffing dust is generated. Chromium in the buffing dust is carcinogenic, so a proper handling is highly required. Solidification is a method commonly used to immobilize toxic material. Hence, the material is trapped in a matrix made of binding agents to minimize its mobility. However, a very small amount of the materials is sometimes released to the environment during storage. This study investigates leaching process of chromium from immobilized buffing dust in ceramic brick. Buffing dust, which contains chromium, is solidified by mixing it with clay at certain compositions and fired in a muffle furnace to produce a ceramic brick. Performance of the solidification process is evaluated by measuring the leaching of chromium in the leaching test. The results show that the solidification has significantly reduced the potential release of chromium to the environment. Higher of the firing temperature, less chromium is leached from ceramic brick. The chromium concentration of leachate water from 800°C brick is 0.376 ppm, while those from 850 and 900°C brick are 0.212 and 0.179 ppm respectively.

  12. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.

  13. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 1. Literature review.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    Measuring and modeling the surface charge of clays, and more especially smectites, has become an important issue in the use of bentonites as a waste confinement material aimed at retarding migration of water and solutes. Therefore, many studies of the acid-base properties of montmorillonite have appeared recently in the literature, following older studies principally devoted to cation exchange. It is striking that beyond the consensus about the complex nature of the surface charge of clays, there are many discrepancies, especially concerning the dissociable charge, that prevents intercomparison among the published data. However, a general trend is observed regarding the absence of common intersection point on raw titration curves at different ionic strengths. Analysis of the literature shows that these discrepancies originate from the experimental procedures for the preparation of the clays and for the quantification of their surface charge. The present work is an attempt to understand how these procedures can impact the final results. Three critical operations can be identified as having significant effects on the surface properties of the studied clays. The first one is the preparation of purified clay from the raw material: the use of acid or chelation treatments, and the repeated washings in deionized water result in partial dissolution of the clays. Then storage of the purified clay in dry or wet conditions strongly influences the equilibria in the subsequent experiments respectively by precipitation or enhanced dissolution. The third critical operation is the quantification of the surface charge by potentiometric titration, which requires the use of strong acids and bases. As a consequence, besides dissociation of surface sites, many secondary titrant consuming reactions were described in the literature, such as cation exchange, dissolution, hydrolysis, or precipitation. The cumulated effects make it difficult to derive proper dissociation constants, and to build adequate models. The inadequation of the classical surface complexation models to describe the acid-base behavior of clays is illustrated by the electrokinetic behavior of smectites, which is independent from the pH and the ionic strength. Therefore, there is still a need on one hand for accurate data recorded in controlled conditions, and on the other hand for new models taking into account the complex nature of the charge of clays.

  14. Development of low thermal conductivity brick using rice husk, corn cob and waste tea in clay brick manufacturing

    NASA Astrophysics Data System (ADS)

    Saman, Nor Sarwani Mat; Deraman, Rafikullah; Hamzah, Mohamad Hazmi

    2017-12-01

    The consumption of energy for cooling the indoor environment of buildings in Malaysia is high and mostly related to poor thermal performance of the building envelope. It is evident that reducing energy consumption of buildings has become vital, taking into considerations the limitation of conventional energy resources and the adverse effects associated with the use of such type of energy on the environment. Therefore, selecting the proper thermal properties of a building envelope play a major role in determining the energy consumption patterns and comfort conditions in enclosed spaces. The objective of this study is to investigate the potential application of rice husk (RH), corn cob (CC) and waste tea (WT) as an additive agent in a fired clay brick manufacturing to produce an improved thermal conductivity of final brick product. In the execution of this study, these agricultural wastes were mixed together with clay soil in different percentages, ranging from 0 %, 2.5 %, 5 %, 7.5 % and 10 % by weight. Physical and mechanical properties including soil physical properties, density, shrinkage, water absorption, compressive strength as well as thermal conductivity were measured, reported and discussed in accordance with BS 1377: Part 2: 1990, BS 3921: 1985, MS 76: 1972: Part 2 and ASTM C 518. The results show that RH at 7.5 % is the most effective combination to achieve low thermal conductivity of fired clay brick. This finding suggests that RH waste is a potentially good additive material to be used for thermal properties enhancement of the building envelope.

  15. The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts

    NASA Astrophysics Data System (ADS)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-12-01

    In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms (species of the genus Eisenia), as well as the effect of those amendments on carbon mineralization after application to soil. We added two different doses of clay, biochar or their mixture to pre-composted green wastes and monitored carbon mineralization over 21 days in the absence or presence of worms. The resulting co-composts and vermicomposts were then added to a loamy Cambisol and the CO2 emissions were monitored over 30 days in a laboratory incubation. Our results indicated that the addition of clay or clay/biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose. The effect of the amendments on carbon mineralization after addition to soil was small in the short term. Overall, composts increased OM mineralization, whereas vermicomposts had no effect. The presence of biochar reduced OM mineralization in soil with respect to compost and vermicompost without additives, whereas clay reduced mineralization only in the composts. Our study indicates a significant role of the conditions of composting on mineralization in soil. Therefore, the production of a low CO2 emission amendment requires optimization of feedstocks, co-composting agents and worm species.

  16. Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay

    NASA Astrophysics Data System (ADS)

    Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.

    2009-11-01

    Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  17. Assessment of the long-term durability of concrete in radioactive waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, A.; Goult, D.J.; Hearne, J.A.

    1986-01-01

    A preliminary assessment of the long-term durability of concrete in a repository sited in clay is presented. The assessment is based on recorded experience of concrete structures and both field and laboratory studies. It is also supported by results of the examination of a concrete sample which had been buried in clay for 43 years. The engineering lifetime of a 1 m thick reinforced concrete slab, with one face in contact with clay, and the way in which pH in the repository as a whole is likely to vary with time have both been estimated from available data. The estimatesmore » indicate that engineering lifetimes of about 10/sup 3/ years are expected (providing that sulfate resisting cement is used) and that pH is likely to remain above 10.5 for about 10/sup 6/ years.« less

  18. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.

    PubMed

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-14

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  19. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  20. Bentonite Clay Evolution at Elevated Pressures and Temperatures: An experimental study for generic nuclear repositories

    NASA Astrophysics Data System (ADS)

    Caporuscio, F. A.; Cheshire, M.; McCarney, M.

    2012-12-01

    The Used Fuel Disposition Campaign is presently engaged in looking at various generic repository options for disposal of used fuel. Of interest are the disposal of high heat load canisters ,which may allow for a reduced repository footprint. The focus of this experimental work is to characterize Engineered Barrier Systems (EBS) conditions in repositories. Clay minerals - as backfill or buffer materials - are critical to the performance of the EBS. Experiments were performed in Dickson cells at 150 bar and sequentially stepped from 125 oC to 300 oC over a period of ~1 month. An unprocessed bentonite from Colony, Wyoming was used as the buffer material in each experiment. An K-Ca-Na-Cl-rich brine (replicating deep Stripa groundwater) was used at a 9:1 water:rock ratio. The baseline experiment contained brine + clay, while three other experiments contained metals that could be used as waste form canisters (brine +clay+304SS, brine+clay+316SS, brine+clay+Cu). All experiments were buffered at the Mt-Fe oxygen fugacity univarient line. As experiment temperature increased and time progressed, pH, K and Ca ion concentrations dropped, while Si, Na, and SO4 concentrations increased. Silicon was liberated into the fluid phase (>1000 ppm) and precipitated during the quenching of the experiment. The precipitated silica transformed to cristobalite as cooling progressed. Potassium was mobilized and exchanged with interlayer Na, transitioning the clay from Na-montmorillonite to K-smectite. Though illitization was not observed in these experiments, its formation may be kinetically limited and longer-term experiments are underway to evaluate the equilibrium point in this reaction. Clinoptilolite present in the starting bentonite mixture is unstable above 150 oC. Hence, the zeolite broke down at high temperatures but recrystallized as the quench event occurred. This was borne out in SEM images that showed clinoptilolite as a very late stage growth mineral. Both experimental runs containing steel exhibit the generation of a chlorite / Fe-saponite layer at the clay-metal boundary. The formation of minor amounts of pentlandite [(Fe,Ni)9S8] also occurs on both steel plates. Chalcocite (Cu2S) formed as a corrosion product on the Cu plates. The two sulfide phases have been produced by the generation of H2S gas during the experimental runs. The H2S is formed by the breakdown of pyrite framboids at high temperature in the bentonite. Such experiments on representative EBS materials at elevated P,T repository conditions are providing useful information for generic repository studies. Lack of illite formation is common in clay experiments and may be related to kinetics or K concentration. Precipitated SiO2 may potentially seal heating cracks in the clay backfill. The chlorite layer generated on steel may act as a passivation material and prevent corrosion of the steel canister wall. Finally, even if zeolites break down during the high temperature thermal pulse of a repository, zeolites may form again as the repository inventory cools off and perform as radionuclide sorbing phases.

  1. Physical and mechanical properties by utilizing empty fruit bunch into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Mokhtar, Siti Zulaikha; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    Palm oil plantation has become one of the country's success stories in agricultural development which also generates the highest number of waste among the agricultural waste. In this study, the investigation on the possibility to utilize the empty fruit bunch (EFB) waste into the fired clay brick was carried out. The main purpose of this study is to determine the physical and mechanical properties of bricks incorporated with different percentages of EFB. In this study, bricks with four different percentages of EFB (0 %, 1 %, 5 % and 10 %) were manufactured. Manufactured bricks were fired at 1050 °C with heating rate of 1 °C/min. Physical and mechanical properties including shrinkage, density, Initial Rate of Suction (IRS) and compressive strength were reported and discussed. Since shrinkage for each mixing is below than 8 %, then a good brick was manufactured. Bricks become more porous due to the organic content of EFB are burnt away and voids are formed in the specimen, giving it a lighter appearance and were produced lightweight brick which is suitable for non-loading purposes. As a conclusion, the incorporation of EFB into fired clay brick gives some advantages to the brick properties and also provides an alternative solution to disposed EFB waste.

  2. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and vicinity, Savannah River Plant, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The hydrogeologic framework of the area around the Savannah River Plant, South Carolina consists of 2 to 3 separate water bearing units. In the northern half of the study area, the Barnwell and underlying McBean aquifers are considered one aquifer owing to the absence of the tan clay-confining unit between them. In the southern half of the study area they are separated by the tan clay into two aquifers. Underlying these aquifers, and separated from them by the green clay-confining unit, is the Congaree aquifer. Hydraulic conductivities of the aquifers range from 0.00000001 to 0.0001 ft/sec. Directions of groundwater flow in the Barnwell and McBean aquifers are to the north, with a component of flow directed downward across the green clay and into the Congaree aquifer. The direction of flow in the Congaree aquifer is to the northwest. Water in these aquifers evolves from an acidic (pH < 6.5) mixed-cation type in the Barnwell aquifer to an alkaline (pH > 8) calcium bicarbonate water in the Congaree aquifer. Laboratory experiments indicate that reactions between sediments of the Barnwell aquifer and a salt-solution waste to be stored at the study area would significantly reduce the permeability of the sediment, thereby limiting the movement of the waste in groundwater at the site. (USGS)

  3. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    NASA Astrophysics Data System (ADS)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and Desulfobacter). This study demonstrates that microorganisms are a characteristic component of the unperturbed Opalinus Clay Formation.

  4. Synthesis of solid catalyst from egg shell waste and clay for biodiesel production

    NASA Astrophysics Data System (ADS)

    Setiadji, S.; Sundari, C. D. D.; Munir, M.; Fitriyah, S.

    2018-05-01

    Until now, energy consumption in Indonesia is almost entirely fulfilled by fossil fuels, thus, its availability will be limited and continue to decrease. To overcome these problems, development and utilization of renewable energy are required, one of which is biodiesel. Biodiesel can be prepared through transesterification reaction of vegetable oil using catalyst. In this research, a solid catalyst for biodiesel synthesis was prepared from chicken egg shell waste and clay. Optimization of the transesterification reaction of coconut (Cocos nucifera) oil to obtain biodiesel was also carried out. The formation of CaO/kaolin catalyst was confirmed based on the results of XRD and SEM-EDS. This catalyst is suitable for biodiesel synthesis from vegetable oils with lower FFA (free fatty acid) levels, i.e. coconut oil with FFA level of 0.18%. Based on FTIR result, FFA level and flame tests, it was found that biodiesel was successfully formed. Synthesis of biodiesel has the optimum conditions on reaction time of 16 hours and temperature of 64 °C, with oil: methanol ratio of 1: 15 and CaO/kaolin catalyst concentration of 0.9% in a reflux system.

  5. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    PubMed

    Francisković-Bilinski, S; Bilinski, H; Grbac, R; Zunić, J; Necemer, M; Hanzel, D

    2007-02-01

    The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (<3-mm fraction) was carelessly deposited in gardens, forests, and into a sinkhole, which has an underground link with the Kupica River, a tributary of the Kupa River. Barium waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (<63-microm fraction) has shown that it contains 23.5% clay-size material in comparison with 7-8% clay-size material in stream sediments. It is our aim to combine geochemical and medical methods to investigate the possible impact of waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future studies has been highlighted. A preliminary study of diseases diagnosed in Lokve shows that about 18% of the total inhabitants have serious medical problems. Diseases of the circulatory system, endocrine, nutritional, and metabolic diseases, neoplasms, and respiratory diseases predominate. This paper calls for further multidisciplinary research on the health effects of barium and trace elements, as well as for bioremediation of contaminated gardens and for watershed management of vulnerable karstic aquifers.

  6. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay

    NASA Astrophysics Data System (ADS)

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1 Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t = 104 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1 Ma are approximately equal to 1 and 3.3 cm thick, respectively. The hyper-alkaline front (pH > 8.5) spreads 2.5 cm into the clay formation after 1 Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1 Ma.

  7. Shales and geological waste repositories: from microstructure description to macro-scale properties

    NASA Astrophysics Data System (ADS)

    Tournassat, C.; Steefel, C. I.; Gaboreau, S.

    2017-12-01

    The mineralogical and chemical properties of clays have been the subject of longstanding study for the long-term disposal of nuclear wastes in geological repositories. The low permeability of clay materials, including shales, provides at least part of the safety functions for radionuclide contaminants confinement. From a geochemical and mineralogical point of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic conductivities by greatly increasing the retardation of radionuclides and other contaminants, making clays ideal where isolation from the biosphere is desired. While their low permeability and high adsorption capacity are widely acknowledged, it is clear nonetheless that there is a need for an improved understanding of how the chemical and mineralogical properties of shales impact their macroscopic properties. It is at the pore-scale that the chemical properties of clay minerals become important since their electrostatic properties can play a large role. The negative electrostatic potential field at the clay mineral surfaces results in the presence of porosity domains where electroneutrality is not achieved: cations are attracted by the surfaces while anions are repulsed from them, resulting in the presence of a diffuse ion swarm - or diffuse layer. Numerical methods for modeling macroscopic properties of clay media with the consideration of the presence of a diffuse ion swarm have met a growing interest in diverse communities in the past years. In this presentation we will highlight the complex interplays of mineralogical, chemical and microstructural characteristics of clay materials that are ultimately responsible for a remarkable array of macro-scale properties such as specific adsorption, high swelling pressure, semi-permeable membrane properties, and non-Fickian diffusional behavior.

  8. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.

    PubMed

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t=10 4 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1Ma are approximately equal to 1 and 3.3cm thick, respectively. The hyper-alkaline front (pH>8.5) spreads 2.5cm into the clay formation after 1Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1Ma. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Leaching of nitrogen and base cations from calcareous soil amended with organic residues.

    PubMed

    Zarabi, Mahboubeh; Jalali, Mohsen

    2012-01-01

    The potential for groundwater and surface water pollution by nutrients in organic residues, primarily nitrogen (N) and base cations (K+, Na+, Ca2+, Mg2+), is a consideration when applying such residues to land. In this study, we used a laboratory column leaching procedure to examine the leaching of N, K+, Na+, Ca2+ and Mg2+ in soils treated with two types of raw organic residues (poultry manure and potato residues) and one municipal waste compost, which are currently recycled on agricultural land in Iran. Each organic residue was thoroughly mixed with two different soils (sandy loam and clay) at the rate of 3%. Soil columns were leached at 4-d intervals for 92 d with distilled water, and effluents were analysed for pH, EC, nitrate (NO3(-)-N), ammonium (NH4(+)-N) K+, Na+, Ca2+ and Mg2+. The results indicated that the amounts of NO3(-)-N and NH4(+)-N leached from the poultry manure and potato residues could represent very important economic losses of N and pose an environmental threat under field conditions. The sandy loam soil amended with poultry manure lost the highest amount of NO3(-)-N (206.4 kg ha(-1)), and clay soil amended with poultry manure lost the highest amounts of NH4(+)-N (454.3 kg ha(-1)). The results showed that a treatment incorporating 3% of municipal waste compost could be used without negative effects to groundwater N concentration in clay soil. Significant amounts of K+, Na+, Ca2+, and Mg2+ were leached owing to the application of poultry manure, potato and municipal waste compost to soils. There was a positive relationship between K+, Na+, Ca2+, and Mg2+ with NO3(-)-N and NH4(+)-N leached in soils. Analysis of variance detected significant effects of amendment, soil type and time on the leaching NO3(-)-N, NH4(+)-N, K+, Na+, Ca2+ and Mg2+.

  10. Characterization and Thermodynamics Studies of Feldspar and Feldspathoid Minerals

    NASA Astrophysics Data System (ADS)

    Rudow, M.; Lilova, K.

    2015-12-01

    The application of thermal analysis and calorimetry for the studies of minerals has a history as long as the existence of the thermal methods themselves. New advanced calorimetric techniques have been developed for more accurate characterization of both bulk and nano materials thus impacting their design, processing, and applications. TG-DTA and TG-DSC are used to characterize the composition of complex minerals (e.g. [KxNa1-x(AlSi3)O8]) based on the weight changes and phase transformations observed with temperature increase. Additionally, those techniques allow to determine the quantity of the different types of water contained in natural feldspars and feldspathoids (absorbed, interlayer, structural). The results for several clays will be discussed. The geochemical properties and thermal stability of another class of minerals - aluminosilicate frameworks (alkali sodalities, natrolites, etc.) as related to high-level nuclear waste treatment facilities, radioactive waste storage and management were studied. The natural sodalite Na8[Al6Si6O24]Cl2 and similar frameworks with different anions are part of sodium-aluminosilicate (NAS) low activity radioactive waste produced during steam reforming process treatment. The enthalpies and entropies of formation and the hydration enthalpies of the above-mentioned feltspathoids are obtained and the effect of the different cations and anions on the thermodynamic stability was studied. The results will allow to predict the long term behavior of the compounds in the environment under different conditions.

  11. Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review.

    PubMed

    Alby, Delhia; Charnay, Clarence; Heran, Marc; Prelot, Bénédicte; Zajac, Jerzy

    2018-02-15

    Liquid wastes containing non-ferrous heavy metal ions and some radionuclides, 137 Cs and 90 Sr in particular, represent one of the most dangerous sources of environmental contamination. The remediation of wastewater containing such pollutants continue to be among the biggest challenges of Sustainable Development and Environmental Safety. Sorption-based technologies have proven their efficiency also in reducing the radionuclide content in aqueous streams to low-level residual activity, with the concomitant decrease in the amount of ultimate solid waste generated. Although sorption of cesium and strontium by resins, clays, and zeolites has been investigated intensively and even used in real applications, there is still considerable scope for improvement in terms of retention capacity and selectivity. Recent progress in design and preparation of nanostructured inorganic materials has attracted growing interest based on the potential for improving the retention performance when coupling such functionalities as ion exchange capacity, structural flexibility that may result in steric retention effects, as well as the propensity to interact specifically with the target metal cations. Titanate, vanadate, and tungsten based materials, manganese oxides, hexacyanoferrates, metal sulfides, ammonium molybdophosphates, or hydroxyapatite, characterized by various structures and morphologies, are reviewed with the emphasis being put on synthesis and shaping of such materials, their structure in relationship with the capacity and selectivity of trapping cesium and strontium from either single or multi-component aqueous solutions, as well as the possible retention mechanism. The potential candidates for remediation uses are selected with regard to their sorption capacity and distribution coefficient towards target cations, and also the pH window for an optimum cation capture. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane.

    PubMed

    Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M

    2017-05-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.

  13. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decademore » or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: Development of a reference case for shale/argillite; Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; and Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment;ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.« less

  14. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  15. Geochemical transformations and modeling of two deep-well injected hazardous wastes

    USGS Publications Warehouse

    Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.

    1991-01-01

    Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.

  16. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  17. Seal Formation Mechanism Beneath Animal Waste Holding Ponds

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Tyner, J. S.; Wright, W. C.

    2005-12-01

    Infiltration of animal waste from holding ponds can cause contamination of groundwater. Typically, the initial flux from a pond decreases rapidly as a seal of animal waste particulates is deposited at the base of the pond. The purpose of this study was to investigate the mechanism of the seal formation. Twenty-four soil columns (10-cm diameter by 43-cm long) were hand-packed with sand, silty loam or clay soils. A 2.3 m column of dairy or swine waste was applied to the top of the each column. The leakage rate from each column was measured with respect to time to analyze the effect of seal formation on different soil textures and animal waste types. We tested our hypothesis that seal growth and the subsequent decrease of leachate production adheres to a filter cake growth model. Said model predicts that the cumulative leakage rate is proportional to the square root of time and to the square root of the height of the waste.

  18. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.

  19. Association of actinides with microorganisms and clay: Implications for radionuclide migration from waste-repository sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnuki, T.; Francis, A.; Kozai, N.

    2010-04-01

    We conducted a series of basic studies on the microbial accumulation of actinides to elucidate their migration behavior around backfill materials used in the geological disposal of radioactive wastes. We explored the interactions of U(VI) and Pu(VI) with Bacillus subtilis, kaolinite clay, and within a mixture of the two, directly analyzing their association with the bacterium in the mixture by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The accumulation of U by the mixture rose as the numbers of B. subtilis cells increased. Treating the kaolinite with potassium acetate (CH{sub 3}COOK) removed approximately 80% of the associated uraniummore » while only 65% was removed in the presence of B. subtilis. TEM-EDS analysis confirmed that most of the U taken from solution was associated with B. subtilis. XANES analyses revealed that the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both was U(VI). The amount of Pu sorbed by B. subtilis increased with time, but did not reach equilibrium in 48 h; in kaolinite alone, equilibrium was attained within 8 h. After 48 h, the oxidation state of Pu in the solutions exposed to B. subtilis and to the mixture had changed to Pu(V), whereas the oxidation state of the Pu associated with both was Pu(IV). In contrast, there was no change in the oxidation state of Pu in the solution nor on kaolinite after exposure to Pu(VI). SEM-EDS analysis indicated that most of the Pu in the mixture was associated with the bacteria. These results suggest that U(VI) and Pu(VI) preferentially are sorbed to bacterial cells in the presence of kaolinite clay, and that the mechanism of accumulation of U and Pu differs. U(VI) is sorbed directly to the bacterial cells, whereas Pu(VI) first is reduced to Pu(V) and then to Pu(IV), and the latter is associated with the cells. These results have important implications on the migrations of radionuclides around the repository sites of geological disposal. Microbial cells compete with clay colloids for radionuclides accumulation, and because of their higher affinity and larger size, the microbes accumulate radionuclides and migrate much slower than do the clay colloids. Additionally, biofilm coatings formed on the fractured rock surfaces also accumulate radionuclides, thereby retarding radionuclide migration.« less

  20. Leach test of cladding removal waste grout using Hanford groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. Themore » semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.« less

  1. Sediment characteristics and configuration within three dam impoundments on the Kalamazoo River, Michigan, 2000

    USGS Publications Warehouse

    Rheaume, S.J.; Rachol, C.M.; Hubbell, D.L.; Simard, Andreanne

    2002-01-01

    The removal of the remnants of three hydroelectric dams on the Kalamazoo River near Plainwell, Otsego, and Allegan, Michigan, has been proposed. The benefits of this removal include returning the Kalamazoo River to its pre-dam flow, increasing recreational use and safety on the river, and improving aquatic habitat. The U.S. Environmental Protection Agency has designated this reach of the Kalamazoo River as a Federal Superfund site because of the historical discharge of papermill waste containing polychlorinated biphenyls. Much of this waste material remains concentrated in organic sediment and kaolinite clay deposited upstream from the three dam foundations. Sediment containing up to 150 milligrams per kilogram polychlorinated biphenyls could move if dam foundations are removed; therefore, it is necessary to estimate the characteristic and configuration of the sediment before work begins. Data collected from augered sections and sediment cores show that impoundment sediments were deposited in two distinctly different sedimentary environments. Interbedded lacustrine sediments that overlie the pre-dam channel surface consist of organic-rich silt and clay, fine to medium sand, and some gravel. These materials were deposited in a repetitive, cyclic fashion related to former stream velocities when the impoundment water levels were 5-10 feet higher. Lowering of these water levels and demolition of the superstructures of these dams resulted in erosion of much of these instream lacustrine sediments and subsequent deposition of coarse-grained alluvium in the impounded channel behind the remaining dam foundations. The composite thicknesses of the lacustrine deposits and overlying alluvium was determined from sediment cores collected from each impoundment. The volume of instream sediment contained in each impoundment is estimated to be about 77,600 cubic yards at the Plainwell impoundment; 268,900 cubic yards at the Otsego impoundment; and 1,192,600 cubic yards at the Trowbridge impoundment. Estimates do not include bank or flood-plain deposits.

  2. Monitoring water content in Opalinus Clay within the FE-Experiment: Test application of dielectric water content sensors

    NASA Astrophysics Data System (ADS)

    Sakaki, T.; Vogt, T.; Komatsu, M.; Müller, H. R.

    2013-12-01

    The spatiotemporal variation of water content in the near field rock around repository tunnels for radioactive waste in clay formations is one of the essential quantities to be monitored for safety assessment in many waste disposal programs. Reliable measurements of water content are important not only for the understanding and prediction of coupled hydraulic-mechanic processes that occur during tunnel construction and ventilation phase, but also for the understanding of coupled thermal-hydraulic-mechanical (THM) processes that take place in the host rock during the post closure phase of a repository tunnel for spent fuel and high level radioactive waste (SF/HLW). The host rock of the Swiss disposal concept for SF/HLW is the Opalinus Clay formation (age of approx. 175 Million years). To better understand the THM effects in a full-scale heater-engineered barrier-rock system in Opalinus Clay, a full-scale heater test, namely the Full-Scale Emplacement (FE) experiment, was initiated in 2010 at the Mont Terri underground rock laboratory in north-western Switzerland. The experiment is designed to simulate the THM evolution of a SF/HLW repository tunnel based on the Swiss disposal concept in a realistic manner during the construction, emplacement, backfilling, and post-closure phases. The entire experiment implementation (in a 50 m long gallery with approx. 3 m diameter) as well as the post-closure THM evolution will be monitored using a network of several hundred sensors. The sensors will be distributed in the host rock, the tunnel lining, the engineered barrier, which consists of bentonite pellets and blocks, and on the heaters. The excavation is completed and the tunnel is currently being ventilated. Measuring water content in partially saturated clay-rich high-salinity rock with a deformable grain skeleton is challenging. Therefore, we use the ventilation phase (before backfilling and heating) to examine the applicability of commercial water content sensors and to design custom-made TDR sensors. The focus of this study is mainly on dielectric-based commercial water content sensors. Unlike soils for which the sensors were originally designed, it requires significantly more attention to properly install it onto rock (i.e., a good contact with the sensor and rock). The results will be used to select and design the instrumentation set-up for monitoring water content during the heating phase where sensors have to withstand harsh conditions (high salinity, high temperature, high pressures, high clay content and long term monitoring up to 10 years). The sensor tests are beneficial also in the sense that the water content data generated during these tests provide insights into drainage processes after tunnel construction and seasonal water content variations in the near field rock around the test gallery. We will present results from the tests and measurements performed during the first year.

  3. Frictional Properties of Opalinus Clay: Implications for Nuclear Waste Storage

    NASA Astrophysics Data System (ADS)

    Orellana, L. F.; Scuderi, M. M.; Collettini, C.; Violay, M.

    2018-01-01

    The kaolinite-bearing Opalinus Clay (OPA) is the host rock proposed in Switzerland for disposal of radioactive waste. However, the presence of tectonic faults intersecting the OPA formation put the long-term safety performance of the underground repository into question due to the possibility of earthquakes triggered by fault instability. In this paper, we study the frictional properties of the OPA shale. To do that, we have carried out biaxial direct shear experiments under conditions typical of nuclear waste storage. We have performed velocity steps (1-300 μm/s) and slide-hold-slide tests (1-3,000 s) on simulated fault gouge at different normal stresses (4-30 MPa). To establish the deformation mechanisms, we have analyzed the microstructures of the sheared samples through scanning electron microscopy. Our results show that peak (μpeak) and steady state friction (μss) range from 0.21 to 0.52 and 0.14 to 0.39, respectively, thus suggesting that OPA fault gouges are weak. The velocity dependence of friction indicates a velocity strengthening regime, with the friction rate parameter (a - b) that decreases with normal stress. Finally, the zero healing values imply a lack of restrengthening during interseismic periods. Taken together, if OPA fault reactivates, our experimental evidence favors an aseismic slip behavior, making the nucleation of earthquakes difficult, and long-term weakness, resulting in stable fault creeping over geological times. Based on the results, our study confirms the seismic safety of the OPA formation for a nuclear waste repository.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Claudia; Mibus, Jens; Trepte, Paul

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca 2UO 2(CO 3) 3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3 mm, 1.5 mm, and 1 mm into the clay plug at ρ = 1.3, 1.6, and 1.9 g/cm 3, respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uraniummore » contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, D e and D a, decreased with increasing dry density. The D a values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, D a values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). Finally, the results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.« less

  5. Long-term diffusion of U(VI) in bentonite: Dependence on density

    DOE PAGES

    Joseph, Claudia; Mibus, Jens; Trepte, Paul; ...

    2016-10-12

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca 2UO 2(CO 3) 3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3 mm, 1.5 mm, and 1 mm into the clay plug at ρ = 1.3, 1.6, and 1.9 g/cm 3, respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uraniummore » contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, D e and D a, decreased with increasing dry density. The D a values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, D a values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). Finally, the results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.« less

  6. Strategies for characterizing compositions of industrial pulp and paper sludge

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, Solmaz; Kemal, Rahmat A.; Pribowo, Amadeus Y.

    2018-01-01

    The large quantities of waste sludge produced by the pulp and paper industry present significant environmental challenges. In order to minimize the amounts of waste, the pulp sludge should be utilized for productive applications. In order to find feasible solutions, the sludge need to be characterized. In this study, the potential of using acid pretreatment and ashing method to determine the chemical compositions of the sludge is investigated. This study shows that acid pretreatment could be used to dissolve and determine the composition of CaCO3 in the pulp sludge. CaCO3 removal also facilitates the measurement of fiber and ash (clay) contents by using the ashing method. The optimum acid concentration used to completely dissolve CaCO3 was determined using a titration method. Using this method, the measurement of the chemical composition of the sludge sample revealed that it consisted primarily of CaCO3 (55% w/w), clay (25%, w/w), and fibers (18%, w/w). Based on these chemical compositions, potential utilization for the sludge could be determined.

  7. Feasibility study on utilization of palm fibre waste into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sarani, N. A.; Zaman, N. N.; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    Malaysia is the second largest of palm oil producer after Indonesia, which contribute to 50 % of palm oil production. With this demand, the increasing of palm oil plantation over the years has led to the large production of agricultural waste, for example palm fibre waste. This study investigates different percentages of palm fibre (0 %, 1 %, 5 % and 10 %) to be incorporated into fired clay brick. Manufactured bricks were fired at 1 °C/min heating rate up to 1050 °C. The effects of manufacture bricks on the physical and mechanical properties of manufactured brick were also determined. All brick samples were tested due to the physical and mechanical properties which include dry density, firing shrinkage, initial rate of suction (IRS), water absorption, porosity and compressive strength. Findings show that increasing palm fibre waste affected the properties of brick, which decreased their density, besides increased firing shrinkage, IRS, water absorption, porosity and compressive strength. However, all the manufactured brick still followed the requirement.

  8. Diffusion of Chlorinated Organic Contaminants into Aquitards: Enhanced by the Flocculation of Clay?

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Otero, M.; Demond, A. H.; Goltz, M. N.; Huang, J.

    2011-12-01

    Waste organic contaminants stored in low permeability subsurface layers serve as long-term sources for dissolved phase contaminant plumes. Current models consider the movement into and out of aquitards or other low permeability layers to occur through transverse diffusion. Yet, field evidence suggests higher transport rates of contaminants than can be accounted for by diffusion alone. Waste organic liquids contain both organic liquid solvents as well as surface-active solutes. Measurements using montmorillonite in contact with pure chlorinated organic liquids such as trichloroethylene (TCE) showed that the basal spacing is similar to the case of montmorillonite in contact with air, thus suggesting that these fluids have similar flocculation effects. On the other hand, the basal spacing increased in contact with aqueous surfactant solutions. Measurements of the basal spacing in contact with a TCE waste gave the same results as with pure TCE, suggesting that effect on basal spacing is dominated by the organic solvent matrix rather than by the surfactant content. Since flocculation can lead to cracking, this behavior suggests that aquitards underlying aquifers contaminated with chlorinated organic wastes may develop cracks, thus enhancing the transport into low permeability layers.

  9. Regional hydrogeological screening characteristics used for siting near-surface waste-disposal facilities in Oklahoma, U.S.A.

    USGS Publications Warehouse

    Johnson, K.S.

    1991-01-01

    The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.

  10. Evapotranspiration (ET) covers.

    PubMed

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information about specific projects using ET covers. There are three general approaches for non-conventional cover systems to achieve approval for installation; the first is when equivalent performance to conventional final cover systems can be demonstrated directly on site. This is the approach used by the Sandia study, by most ACAP sites, and the Rocky Mountain Arsenal. A second approach is used when there are data from a site specific study such as an ACAP installation at a site that has analogous soil and climate conditions. Several sites in Colorado and Southern California have achieved approval based on data from similar sites. The third most common approach for regulatory approval is by installation of data collection systems with the agreement that the permanence of the ET cover installation is contingent on success of the cover in meeting certain performance goals. This article is intended as an introduction to the topic and is not intended to serve as guidance for design or construction, nor indicate the appropriateness of using an ET cover systems at a particular site.

  11. Development of road soil cement compositions modified with complex additive based on polycarboxylic ether

    NASA Astrophysics Data System (ADS)

    Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.

    2018-03-01

    The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.

  12. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.

  13. Multidecadal persistence of organic matter in soils: insights from spatially resolved investigations at the submicrometer scale

    NASA Astrophysics Data System (ADS)

    Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Alléon, Julien; Chenu, Claire

    2016-04-01

    Better understanding the mechanisms responsible for the pluri-decadal persistence of carbon in soils requires well constraining the dynamics, the distribution and the chemical nature of both the soil organic carbon (SOC) and the associated mineral phases. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here, benefiting from the unique opportunity offered by an INRA long term bare fallow (LTBF) experiment having started in 1928 in Versailles (France), we report the in-situ characterization of SOC dynamics in four clay fractions of this silty loam soil (total clays [TC, <2μm], coarse clays [CC, 0.2-2μm], intermediate clays [IC, 0.05-0.2μm] and fine clays [FC, 0-0.05μm]). The IC and FC fractions only contain smectite and illite/smectite mixed-layered clay minerals while the CC fraction also contains illite and kaolinite. In the absence of any carbon input, the plant-free LTBF clay fractions from Versailles progressively lost SOC during the first 50 years of the experiment, until they reached a seemingly stable concentration. Of note, the investigated clay fractions did not lose the same amount of SOC and do not exhibit the same final carbon concentrations. The decrease of the organic C:N ratios with LTBF duration corresponds to a progressive enrichment in N-rich SOC for all fractions which can be attributed to microbial material. Even though the speciation of SOC appears to only slightly evolve with LTBF duration, an enrichment in carboxyl and carbonyl groups is revealed by bulk-scale C-NEXAFS data for SOC from all clay fractions. In addition, STXM-based NEXAFS investigations at the submicrometer scale reveal three types of SOC-clay assemblages in addition to clay-free SOC and organic-free clays. While SOC appears mostly adsorbed onto clay surfaces within the IC and FC fractions, other protection mechanisms occur within the CC fraction. Altogether, the present study suggests that smectite have more efficient protection capabilities than those of illite and kaolinite.

  14. Development of wind operated passive evaporative cooling structures for storage of tomatoes

    USDA-ARS?s Scientific Manuscript database

    A wind operated passive evaporative cooler was developed. Two cooling chambers were made with clay containers (cylindrical and square shapes). These two containers were separately inserted inside bigger clay pot inter- spaced with clay soil of 7 cm (to form pot-in-pot and wall-in wall) with the outs...

  15. Properties of fired clay brick incorporating with sewage sludge waste

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  16. Micro-fabric damages in Boom Clay inferred from cryo-BIB-SEM experiment: recent results

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schmatz, Joyce; Klaver, Jop; Urai, Janos L.

    2017-04-01

    The Boom Clay is considered as a potential host rock in Belgium for nuclear waste disposal in a deep geological formation. One of the keys to understand the long-term performance of such a host rock is the fundamental understanding of coupling between microstructural evolution, poromechanical behaviour and the state of hydration of the system. At in situ conditions, Boom Clay is a nearly water-saturated (>94%) clay-rich geomaterial. Subsequently, for measurement of mechanical and transport properties in laboratory, cores of Boom Clay are vacuum-packed in Al-coated-poly-ethylene barrier foil to be best preserved at original hydric state. Because clay microstructures are very sensitive to dehydration, the validity of investigations done on such preserved or/and dried samples is often questionable. Desbois et al. (2009, 2013, 2014) showed the possibility to image fluid-filled porosity in Boom Clay, by using the FIB-cryo-SEM (FIB: Focussed Ion Beam) and FIB-cryo-SEM (BIB: Broad Ion Beam) techniques. However, surprisingly in Desbois et al. (2014), BIB-cryo-SEM experiments on Boom Clay, shown that the majority of the pores were fluid-free, contrasting with result in Desbois et al. (2009). In Desbois et al. (2014), several reasons were discussed to explain such discrepancies. The likely ones are the sealing efficiency of the Al-barrier foil at long term and the volume expansion due to the release of in-situ stress after core extraction, contributing both to dehydration and microfabric damage. This contribution presents the newest results based on cryo-BIB-SEM. Small pieces (30 mm3) of Boom Clay were preserved in liquid nitrogen after the core extraction at the MOL/Dessel Underground Research Laboratory in Belgium. A maximum of ten minutes time span was achieved between opening the core, the sub-sample extraction and the quenching of sub-samples in liquid nitrogen. First results show that all pores visible at cryo-SEM resolution are water saturated. However, water-filled micro-cracks are also present and they are interpreted to result from the releasing of in-situ stress after the core extraction. Moreover, the comparison of the clay micro-fabrics in the same preserved and dried sample suggests collapsing of the clay aggregates' pores in dried sample. These newest results are still preliminary and they need to be analysed in more details. However, if they are confirmed they may be important input to discuss about the validity of measurement of mechanical and transport properties done in laboratory. Desbois G., Urai J.L. and Kukla P.A. (2009). Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. E-Earth, 4 :15-22. Desbois G., J.L. Urai, F. Pérez-Willard, Z. Radi, S. van Offern, I. Burkart, P.A. Kukla, U. Wollenberg (2013). Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. Journal of Microscopy, 249(3): 215-235. Desbois G., Urai J.L., Hemes S., Brassinnes S., De Craen M., Sillen X. (2014). Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from Belgian clay formations inferred by BIB-cryo-SEM. Engineering Geology, 170:117-131.

  17. Site characterization for LIL radioactive waste disposal in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaconu, D. R.; Birdsell, K. H.; Witkowski, M. S.

    2001-01-01

    Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background,more » unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.« less

  18. Feasibility of Using Unbound Mixed Recycled Aggregates from CDW over Expansive Clay Subgrade in Unpaved Rural Roads

    PubMed Central

    Del Rey, Isaac; Ayuso, Jesús; Galvín, Adela P.; Jiménez, José R.; Barbudo, Auxi

    2016-01-01

    Social awareness aims to increase practical skills, such as sustainable development, which seeks to increase the use of different types of waste in construction activities. Although insufficient attention is sometimes given to these actions, it is essential to spread information regarding new studies in the field of waste recycling, which encourages and promotes waste use. Reusing and recycling construction waste in the creation of buildings and infrastructure are fundamental strategies to achieving sustainability in the construction and engineering sectors. In this context, the concept of waste would no longer exist, as waste would become a material resource. Therefore, this study analyses the behaviours of two unbound mixed recycled aggregates (MRA) in the structural layers of an unpaved rural road with low traffic (category T43). The sections were built on inappropriate soil (A-7-6) with a high degree of free swelling. The experimental road consisted of three sections: the first was made with natural aggregates (NA) that were used as a control, the second was composed of MRA in the subbase and NA in the base, and the third section was completely composed of MRA. The materials were characterised in the laboratory. The behaviours of the structural layers in the experimental road were determined by controlling compaction (“in situ” density and moisture) and measuring the deflections and load capacity (deflectometer) during the 18 months after construction. The results show that the sections made with recycled aggregates meet the technical specifications required by General Technical Specifications for Road and Bridge Works (PG-3). Therefore, the water-soluble sulphate content and Los Angeles abrasion coefficient limits can be increased for recycled aggregates without compromising the quality of this type of road with low traffic. To the best of our knowledge, this is the first study regarding the use of unbound MRA made from construction and demolition waste (CDW) in the construction of an unpaved rural road with low traffic on an expansive clay subgrade. PMID:28774053

  19. New evidence for the catastrophic demise of a prehistoric settlement (the Lajia Ruins) in the Guanting Basin, upper Yellow River, NW China

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Huang, Chun Chang; Zheng, Zixing; Hu, Ying; Zhang, Yuzhu; Guo, Yongqiang; Zhou, Qiang

    2017-09-01

    The Lajia Ruins in the Guanting Basin, NW China, are a product of the prehistoric Qijia Culture. Like Pompeii, they are a rare example of an archaeological site preserved by a natural disaster and are therefore important in archaeology, anthropology and geology. However, the nature of the disaster(s) responsible for the destruction of the site remains controversial. Most studies have focused on an earthquake and a red clay layer directly overlying the site and a detailed stratigraphic study of the mid-Holocene sedimentary strata combined with other intervals of red clay deposition (hence possible disasters) is lacking. We identified a mid-Holocene paleosol sequence (the Shanglajia section) at the site which contains two layers of red clay, dated to 3950 a BP and 3500 a BP, intercalated within the mid-Holocene paleosol (S0). Subsequent multi-proxy analysis indicated that the characteristics of the two red clay layers resemble those of typical Tertiary red clay deposits and the modern gully deposit at the foot of the Great Red Hills, but are distinctly different from those of the slackwater deposits of the Yellow River and the mid-Holocene paleosol. Our results suggest that, at 3950 a BP and 3500 a BP, two large-scale rainstorm-induced mudflow events, originating from the gullies to the north, flooded the Lajia area on the second terrace of the Yellow River, devastating and burying the human settlements. We infer that the intensified erosion and mass wasting were caused by human activity; in addition, natural factors such as rainstorms and earthquakes, may also have played an important role in triggering catastrophic mudflow events in the Tertiary Red Clay deposits. Overall, our results provide further insights into prehistoric man-land relationships in this environmentally sensitive region which may have implications for modern land use in this region of China and elsewhere.

  20. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    NASA Astrophysics Data System (ADS)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be attributed to different core preparation techniques. Careful re-stressing of core barrels and sealing techniques also ensure that experiments are conducted on near in situ condition. The construction of tunnels within shale clearly aids our understanding of the interaction of engineered operations (borehole drilling or tunnelling) on the behaviour of the rock. References: Angeli, M., Soldal, M., Skurtveit, E. and Aker, E., (2009) Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1, 3351-3358 Cuss, R.J., Harrington, J.F., Giot, R., and Auvray, C. (2012) Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian Claystone. Poster Presentation 5th International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Montpellier, France October 22nd - 25th 2012.

  1. Clay-based matrices incorporating radioactive silts: A case study of sediments from spent fuel pool

    NASA Astrophysics Data System (ADS)

    Antonenko, Mikhail; Myshkin, Vyacheslav; Grigoriev, Alexander; Chubreev, Dmitry

    2018-03-01

    Radioactive silt sediments from uranium reactors may be effectively and safely included by ceramic compounds. The purpose of the paper is to determine the influence of composition and preparation conditions on physicochemical and mechanical properties of clay-based matrices containing radioactive silt. Clay matrices were prepared from four minerals, took from Siberian regions, as kaolin, loan, bentonite and red clay, and they included radioactive silt sediments collected from Spent Fuel Pool of a Uranium-graphite Reactor. The rate of 137Cs leaching from the matrices of different compositions was studied. The results of the studies allowed determining the optimal compositions and the preparation conditions of the matrices. It has been shown that red clay from "Zykovskaya" career (Krasnoyarsk region, Russia) is preferable for use as a matrix for incorporating the silt sediments compared to kaolin, loam and bentonite due to the maximum values tensile strength and minimal change in ultimate strength for compression after irradiation, freezing and water exposure. Nevertheless, 137Cs leaching rate of all studied composites did not exceed 10-3 g/cm2.day.

  2. Nuclear Repository steel canister: experimental corrosion rates

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.; Norskog, K.

    2017-12-01

    The U.S. Spent Fuel & Waste Science & Technology campaign evaluates various generic geological repositories for the disposal of spent nuclear fuel. This experimental work analyzed and characterized the canister corrosion and steel interface mineralogy of bentonite-based EBS 304 stainless steel (SS), 316 SS, and low-carbon steel coupons in brine at higher heat loads and pressures. Experiments contrasted EBS with and without an argillite wall rock. Unprocessed bentonite from Colony, Wyoming simulated the clay buffer and Opalinus Clay represented the wall rock. Redox conditions were buffered at the magnetite-iron oxygen fugacity univariant curve. A K-Na-Ca-Cl-based brine was chosen to replicate generic granitic groundwater compositions, while Opalinous Clay groundwater was used in the wall rock series of experiments. Most experiments were run at 150 bar and 300°C for 4 to 6 weeks and one was held at elevated conditions for 6 months. The two major experimental mixtures were 1) brine-bentonite clay- steel, and 2) brine-bentonite clay-Opalinus Clay-steel. Both systems were equilibrated at a high liquid/clay ratio. Mineralogy and aqueous geochemistry of each experiment were evaluated to monitor the reactions that took place. In total 4291 measurements were obtained: 2500 measured steel corrosion depths and 1791 were of phyllosilicate mineral reactions/growths at the interface. The low carbon steel corrosion mechanism was via pit corrosion, while 304 SS and 316 SS were by general corrosion. The low carbon steel corrosion rate (1.95 μm/day) was most rapid. The 304 SS corrosion rate (0.37 μm/day) was slightly accelerated versus the 316 SS corrosion rate (0.26 μm/day). Note that the six month 316 SS experiment shows inhibited corrosion rates (0.07 μm/day). This may be in part due to mantling by the Fe-saponite/chlorite authigenic minerals. All phyllosilicate growth rates at the interface exhibit similar growth rate patterns to the steels (i.e. LCS>304>316> 316 six month).

  3. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  4. POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION

    EPA Science Inventory

    A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...

  5. Properties of Clay for Ceramics with Rock Waste for Production Structural Block by Pressing and Firing

    NASA Astrophysics Data System (ADS)

    Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.

    Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.

  6. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.

  7. Constraints for estimating the future burial depth of host rocks for geological waste disposal: a case study from the Boom Clay, Campine area, Northern Belgium

    NASA Astrophysics Data System (ADS)

    Beerten, K.; De Craen, M.; Brassinnes, S.

    2012-04-01

    An important requirement for geological formations hosting a repository for radioactive waste is sufficient depth to ensure isolation of the waste for a very long time period, up to 1 Ma and beyond. Over such long timescales, the repository depth and the thickness of the overburden may vary significantly due to various geodynamic processes. In Belgium, the Boom Clay in the Campine area (NE-Belgium) is considered as reference host formation for the geological disposal of radioactive waste. First results are presented that illustrate the possible impact of future climate change (based on several scenarios studied in the BIOCLIM project (BIOCLIM, 2001)) and tectonic movements in the Campine area on the thickness of the sediment mass overlying the Boom Clay. At present, the subcrop area of Boom Clay in the Campine area is relatively flat (between ~ 0 m a.s.l. near the river Scheldt estuary in the west and ~ 60 m a.s.l. on the Campine Plateau in the east) and is occupied by several sub-basins that belong to the rivers Meuse and Scheldt. Future development of the area will heavily depend on the behaviour of these rivers and tributaries throughout the considered timeframe, in response to climatic changes and tectonic movements. The area is characterised by a long burial history, with some minor isolated uplift and erosional events during the last 30 Ma. In a global warming scenario during a long interglacial (> 50 ka AP), and/or in the case of subsidence, (relative) sea-level may rise such that various parts of the Boom Clay area will be occupied by the marine realm. This is likely to be a minimal erosion scenario because the baseline for landscape evolution will rise in the upstream parts while estuarine and marine deposition may increase the thickness of the overburden in the downstream parts. In the case of a continuation of Pleistocene glacial cycles, i.e. the alternation between warm interglacials and cold glacials, the area will be exposed to erosion and denudation as occurred before. From a detailed analysis of the geological record described in the literature it is determined that during a future glaciation with significant sea-level fall, the river Scheldt basin will become a tributary of the major river system occupying the North Sea valley. This situation already existed ~ 400 ka BP ago, and was probably responsible for the formation of the Flemish Valley. Today, this valley system is completely filled with sediment, but may be reactivated during next glaciations. Together with extreme uplift rates taken from the Maastricht area, south of the Boom Clay subcrop zone, the total amount of erosion may add up to 100-150 m after 1 Ma, which is regarded as a conservative value. We conclude that constraints for future burial depths and erosion rates in the Campine area should consider the combined effect of both climate change and internal geodynamics (uplift/subsidence). Such effects can easily be deduced from geological archives in the region, that take into account specific and local circumstances.

  8. Development of a cellulose-based insulating composite material for green buildings: Case of treated organic waste (paper, cardboard, hash)

    NASA Astrophysics Data System (ADS)

    Ouargui, Ahmed; Belouaggadia, Naoual; Elbouari, Abdeslam; Ezzine, Mohammed

    2018-05-01

    Buildings are responsible for 36% of the final energy consumption in Morocco [1-2], and a reduction of this energy consumption of buildings is a priority for the kingdom in order to reach its energy saving goals. One of the most effective actions to reduce energy consumption is the selection and development of innovative and efficient building materials [3]. In this work, we present an experimental study of the effect of adding treated organic waste (paper, cardboard, hash) on mechanical and thermal properties of cement and clay bricks. Thermal conductivity, specific heat and mechanical resistance were investigated in terms of content and size additives. Soaking time and drying temperature were also taken into account. The results reveal that thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. In the case of the composite paper-cement, it is found that, for an additives quantity exceeding 15%, the compressive strength exceeds the standard for the hollow non-load bearing masonry. However, the case of paper-clay mixture seems to give more interesting results, related to the compressive strength, for a mass composition of 15% in paper. Given the positive results achieved, it seems possible to use these composites for the construction of walls, ceilings and roofs of housing while minimizing the energy consumption of the building.

  9. The spectroscopic, chemical, and photophysical properties of Martian soils and their analogs (MERC, phase 2)

    NASA Technical Reports Server (NTRS)

    Banin, Amos; Orenberg, James

    1990-01-01

    A series of variably proportioned iron/calcium smectite clays and iron loaded smectite clays containing iron up to the level found in the Martian soil were prepared from a typical montomorillonite clay using the Banin method. Evidence was obtained which supports the premise that these materials provide a unique and appropriate model soil system for the Martian surface in that they are consistent with the constraints imposed by the Viking surface elemental analysis, the reflectance data obtained by various spacecraft instruments and ground based telescopes, and the chemical reactivity measured by one of the Viking biology experiments, the Labeled Release (LR) experiment.

  10. Pore space analysis of NAPL distribution in sand-clay media

    USGS Publications Warehouse

    Matmon, D.; Hayden, N.J.

    2003-01-01

    This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratorymore » scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short-term field tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.« less

  12. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  13. Intranasal inoculation of white-tailed deer (Odocoileus virginianus) with lyophilized chronic wasting disease prion particulate complexed to montmorillonite clay

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or TSE of deer and elk, occurring primarily in North America. The TSEs are fatal neurodegenerative disorders associated with conversion of a normal cell protein to a pathogenic and potentially infectious agent by post trans...

  14. Biomimetic nanoclay scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was used for preparing composites (films and scaffolds) containing in situ HAPclay. Composite films showed significantly improved nanomechanical properties. Human MSCs formed mineralized ECM on films in absence of osteogenic supplements and were able to infiltrate the scaffolds. Atomic force microscopy imaging of mineralized ECM formed on composite films showed similarities in dimensions, arrangement of collagen and apatite with their natural bone counterparts. This work indicates the potential of in situ HAPclay to impart polymeric scaffolds with osteoinductive, osteoconductive abilities and improve their mechanical properties besides emphasizing nanoclays as cell-instructive materials.

  15. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less

  16. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane

    PubMed Central

    Saheli, P. T.; Rowe, R. K.; Petersen, E. J.; O’Carroll, D. M.

    2017-01-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10−15 m2/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs. PMID:28740357

  17. Impact of spreading olive mill waste water on agricultural soils for leaching of metal micronutrients and cations.

    PubMed

    Aharonov-Nadborny, R; Tsechansky, L; Raviv, M; Graber, E R

    2017-07-01

    Olive mill waste water (OMWW) is an acidic (pH 4-5), saline (EC ∼ 5-10 mS cm -1 ), blackish-red aqueous byproduct of the three phase olive oil production process, with a high chemical oxygen demand (COD) of up to 220,000 mg L -1 . OMWW is conventionally disposed of by uncontrolled dumping into the environment or by semi-controlled spreading on agricultural soils. It was hypothesized that spreading such liquids on agricultural soils could result in the release and mobilization of indigenous soil metals. The effect of OMWW spreading on leaching of metal cations (Na, K, Mg, Mn, Fe, Cu, Zn) was tested in four non-contaminated agricultural soils having different textures (sand, clay loam, clay, and loam) and chemical properties. While the OMWW contributed metals to the soil solution, it also mobilized indigenous soil metals as a function of soil clay content, cation exchange capacity (CEC), and soil pH-buffer capacity. Leaching of soil-originated metals from the sandy soil was substantially greater than from the loam and clay soils, while the clay loam was enriched with metals derived from the OMWW. These trends were attributed to cation exchange and organic-metal complex formation. The organic matter fraction of OMWW forms complexes with metal cations; these complexes may be mobile or precipitate, depending on the soil chemical and physical environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sorption-desorption behavior of PCP on soil organic matter and clay minerals.

    PubMed

    Pu, Xunchi; Cutright, Teresa J

    2006-08-01

    Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.

  19. Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations

    NASA Astrophysics Data System (ADS)

    Desbois, G.; Urai, J. L.; Kukla, P. A.

    2009-12-01

    Mudrocks and clay-rich fault gouges are important mechanical elements in the Earth’s crust and form seals for crustal fluids such as groundwater and hydrocarbons. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. In addition, coupled flows, capillary processes, and associated deformation are of importance in many applied fields. A key factor to understanding these processes is a detailed understanding of the morphology of the pore space. Classic studies of porosity in fine grained materials are performed on dried or freeze dried samples and include metal injection methods, magnetic susceptibility measurement, SEM and TEM imaging, neutron scattering, NMR spectroscopy, and ESEM. Confocal microscopy and X-ray tomography are used to image porosity in coarse grained sediments but the resolution of these techniques is not sufficient at present for applications to mudrocks or clay-rich fault gouges. Therefore, observations and interpretations remain difficult because none of these approaches is able to directly describe the in-situ porosity at the pore scale. In addition, some methods require dried samples in which the natural structure of pores may have been damaged to some extent due to desiccation and dehydration of the clay minerals. A recently developed alternative is to study wet samples using a cryo-SEM, which allows stabilization of wet media at cryo-temperature, in-situ sample preparation by ion beam cross-sectioning (BIB, FIB) and observations of the stabilized microstructure at high resolution. We report on a study of Boom clay from a proposed disposal site of radioactive waste (Mol site, Belgium) using cryo-SEM at cryogenic temperature, with ion beam cross-sectioning to prepare smooth, damage free surfaces. Pores commonly have crack-like tips, preferred orientation parallel to bedding and power law size distribution. We define a number of pore types depending on shape and location in the microstructure. 3-D reconstruction by serial cross-sectioning shows 3-D connectivity of the pore space. These findings offer a new insight into the morphology of pores down to nano-scale and provide the basis for microstructure-based models of transport in clays. SEM image (SE) of a Broad Ion Beam polished cross-section performed on dry Boom clay (Mol site, Belgium) showing the 2D apparent porosity (26.3%). The cross-section is perpendicular to the bedding.

  20. Structural ceramics containing electric arc furnace dust.

    PubMed

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Final Regulations to Reduce Toxic Air Pollutant Emissions from Brick and Structural Clay Products Manufacturing and Clay Ceramics Manufacturing Fact Sheets

    EPA Pesticide Factsheets

    This page contains a February 2003 and September 2015 fact sheet with information regarding the final rules to the NESHAP for Brick and Structural Clay Products Manufacturing and the NESHAP for Clay Ceramics Manufacturing

  2. Utilization of Electric Arc Furnace Dust as raw material for the production of ceramic and concrete building products.

    PubMed

    Sikalidis, Constantine; Mitrakas, Manassis

    2006-01-01

    The up to 20 wt% addition of the Electric Arc Furnace Dust (EAFD) hazardous waste on the properties of extruded clay-based ceramic building products fired at various temperatures (850 to 1050 degrees C), as well as of dolomite-concrete products was investigated. Chemical, mineralogical and particle size distribution analyses were performed in order to characterize the used EAFD. The results showed that the ceramic specimens prepared had water absorption, firing shrinkage, apparent density, mechanical strength, colour and leaching behaviour within accepted limits. Addition of 7.5 to 15 wt% EAFD presented improved properties, while 20 wt% seems to be the upper limit. Dolomite-concrete specimens were prepared by vibration and press-forming of mixtures containing cement, sand, dolomite, EAFD and water. Modulus of rupture values were significantly increased by the addition of EAFD. The leaching tests showed stabilization of all toxic metals within the sintered ceramic structure, while the leaching behaviour of lead in dolomite-concrete products needs further detailed study.

  3. Lead, cadmium and cobalt (Pb, Cd, and Co) leaching of glass-clay containers by pH effect of food.

    PubMed

    Valadez-Vega, Carmen; Zúñiga-Pérez, Clara; Quintanar-Gómez, Samuel; Morales-González, José A; Madrigal-Santillán, Eduardo; Villagómez-Ibarra, José Roberto; Sumaya-Martínez, María Teresa; García-Paredes, Juan Diego

    2011-01-01

    Recent studies have shown that handcrafted glass-clay containers are a health risk because they can be contaminated by heavy metals, which can be transferred to food, thus reaching the human body to potentially cause illness. Therefore, in the present work, we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from four regions in the Mexican state of Hidalgo. Repetitive extractions from the containers were carried out to quantify the leaching of the heavy metals into the salsa, the chickpea puree, and acetic acid using the technique proposed by the USFDA. The results show that greater use of the containers leads to more leaching of heavy metals into both types of food and into the acetic acid, with the greatest metal extraction recorded for the Ixmiquilpan vessels. These results indicate that the metals present in the glass-clay containers leach into the food and that increased reuse increases the risk to the people who use them in food preparation.

  4. Lead, Cadmium and Cobalt (Pb, Cd, and Co) Leaching of Glass-Clay Containers by pH Effect of Food

    PubMed Central

    Valadez-Vega, Carmen; Zúñiga-Pérez, Clara; Quintanar-Gómez, Samuel; Morales-González, José A.; Madrigal-Santillán, Eduardo; Villagómez-Ibarra, José Roberto; Sumaya-Martínez, María Teresa; García-Paredes, Juan Diego

    2011-01-01

    Recent studies have shown that handcrafted glass-clay containers are a health risk because they can be contaminated by heavy metals, which can be transferred to food, thus reaching the human body to potentially cause illness. Therefore, in the present work, we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from four regions in the Mexican state of Hidalgo. Repetitive extractions from the containers were carried out to quantify the leaching of the heavy metals into the salsa, the chickpea puree, and acetic acid using the technique proposed by the USFDA. The results show that greater use of the containers leads to more leaching of heavy metals into both types of food and into the acetic acid, with the greatest metal extraction recorded for the Ixmiquilpan vessels. These results indicate that the metals present in the glass-clay containers leach into the food and that increased reuse increases the risk to the people who use them in food preparation. PMID:21731445

  5. Implementation of a best management practice (BMP) system for a clay mining facility in Taiwan.

    PubMed

    Lin, Jen-Yang; Chen, Yen-Chang; Chen, Walter; Lee, Tsu-Chuan; Yu, Shaw L

    2006-01-01

    The present paper describes the planning and implementation of a best management practice (BMP) system for a clay mining facility in Northern Taiwan. It is a challenge to plan and design BMPs for mitigating the impact of clay mining operations due to the fact that clay mining drainage typically contains very high concentrations of suspended solids (SS), Fe-ions, and [H+] concentrations. In the present study, a field monitoring effort was conducted to collect data for runoff quality and quantity from a clay mining area in Northern Taiwan. A BMP system including holding ponds connected in series was designed and implemented and its pollutant removal performance was assessed. The assessment was based on mass balance computations and an analysis of the relationship between BMP design parameters such as pond depth, detention time, surface loading rate, etc. and the pollutant removal efficiency. Field sampling results showed that the surface-loading rate is exponential related to the removing rate. The results provide the basis for a more comprehensive and efficient BMP implementation plan for clay mining operations.

  6. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  7. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  8. Selective Clay Placement within a Silicate Clay-Epoxy Blend Nanocomposite and the Effect on Physical Properties

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.

    2009-01-01

    Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.

  9. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for various periods to a specific humidity (e.g., relative humidity: RH=100%, RH=75%). The humidity is controlled by using saturated aqueous solutions, consisting of specific H2O/D2O mixtures. Our results have shown distinct variations in water adsorption and moisture diffusivity among clays. Our results allow us to obtain on the pore scale porosity changes due to water movement in clays. As emergent transport property, nano- to micro-scale structural characterization is crucial in providing insights into pore-scale transport processes, which are pertinent to upscale continuum model development involving flow and transport at low water content, flow and phase behavior under confinement, and low-permeability media.

  10. Leaching behaviour of hazardous demolition waste.

    PubMed

    Roussat, Nicolas; Méhu, Jacques; Abdelghafour, Mohamed; Brula, Pascal

    2008-11-01

    Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.

  11. Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results.

    PubMed

    Banin, A; Rishpon, J

    1979-12-01

    Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160 degrees C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low '1st peak' and significant '2nd peak'. The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.

  12. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    PubMed

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    DOE PAGES

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    2016-01-08

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe 2+ and Al 3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show thatmore » Al 3+ misfolds cell membrane proteins, while Fe 2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe 3+-oxides as biomolecular damage proceeds. In conclusion, discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.« less

  14. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe 2+ and Al 3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show thatmore » Al 3+ misfolds cell membrane proteins, while Fe 2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe 3+-oxides as biomolecular damage proceeds. In conclusion, discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.« less

  15. Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films.

    PubMed

    Müller, Péter; Kapin, Éva; Fekete, Erika

    2014-11-26

    TPS/Na-montmorillonite nanocomposite films were prepared by solution and melt blending. Clay content changed between 0 and 25 wt% based on the amount of dry starch. Structure, tensile properties, and water content of wet conditioned films were determined as a function of clay content. Intercalated structure and VH-type crystallinity of starch were found for all the nanocomposites independently of clay and plasticizer content or preparation method, but at larger than 10 wt% clay content nanocomposites prepared by melt intercalation contained aggregated particles as well. In spite of the incomplete exfoliation clay reinforces TPS considerably. Preparation method has a strong influence on mechanical properties of wet conditioned films. Mechanical properties of the conditioned samples prepared by solution homogenization are much better than those of nanocomposites prepared by melt blending. Water, which was either adsorbed or bonded in the composites in conditioning or solution mixing process, respectively, has different effect on mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Clay-cement suspensions - rheological and functional properties

    NASA Astrophysics Data System (ADS)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  17. Unearthing the Antibacterial Mechanism of Medicinal Clay: A Geochemical Approach to Combating Antibiotic Resistance

    PubMed Central

    Morrison, Keith D.; Misra, Rajeev; Williams, Lynda B.

    2016-01-01

    Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe2+ and Al3+ that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show that Al3+ misfolds cell membrane proteins, while Fe2+ evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe3+-oxides as biomolecular damage proceeds. Discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents. PMID:26743034

  18. 77 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... E (Phosphorus), and 1613B (Dioxins and Furans). The laboratory Quality Assurance Plan (Attachment 2... fine sand layer that underlies the North Landfarm but overlies a clay liner. Within said sand layer are... Quality Objectives are to demonstrate that samples of the ExxonMobil North Landfarm underflow water are...

  19. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The highest sorption capacity was observed for clay modified with hydroxyapatite and calcium salts. Sorption capacity increased with a rise of temperature; the best pH value for sorption was 5. Immobilization of metals in soil, as well as industrial wastewater treatment can be accomplished by using sorbents on modified clay basis.

  1. Monitoring morphological changes in an arid zone by spaceborne images and aerial photography between 1945 - 2009; the Yamin Plateau, Israel

    NASA Astrophysics Data System (ADS)

    Hetz, Guy; Blumberg, Dan; Avraham, Dody; Cohen, Hai

    2010-05-01

    This research focuses on a geomorphic mapping of the Yamin Plateau in southern Israel which is part of the Yamin-Rotem Syncline and covers about 200 km2. This area has been restricted since the 1950s and therefore, provides a unique opportunity to study undisturbed geomorphic processes. Nowadays, the national nuclear waste depository is located in this area accepting waste from industrial factories, research institutes and hospitals. This is the main reason why environmental processes are of major interest in terms of landform changes in space and time. The exposed geology section of the Yamin Plateau mostly consists of the Miocene Hazeva Group where sedimentary processes started 20 million years ago and continued for 12-14 million years. Two formations of the Miocene Hazeva Group appear in the study area Zefa and Rotem. The compositions of these two formations are similar and sometimes defined as "the main sand body" in the Hazeva Group. The restriction of the area stopped the grazing and let the development of a biological soil crust on the surface. The research objective was to document and characterize landform changes from 1945 until 2009 within the Yamin Plateau based on spaceborne images and aerial photography. All the parameters we extracted in the laboratory were validated with field measurements. A combination of the spaceborne images, aerial photography and field measurements leads us to the following conclusions: The research results show that soil stabilization processes took place earlier than the area closure. Inspite of decreasing precipitation tendencies as measured during the last 50 years in Yamin Plateau, the vegetation cover increased from 55% in 1945 to 67% in 2009. The main reason for this is the area closure and reduction in grazing along with developing of vegetation and biological soil crusts. Field studies and image processing of aerial photographs and recent QuickBird images alongside grain-size distribution show that in the past there were active zibar morphologies in the region. The most frequent grain-size of 350 μm supports this. Although the current geology map of the Yamin Plateau is characterized by sand soil texture, nowadays the study area surface contains 50% of clay minerals, which were probably trapped by soil crusts during dust storms. A grain size analysis shows the dominance of medium-coarse sand (350 μm) that partially mantle the Yamin Plateau surface. Aeolian activity that took place in the past and was concentrated in the southern and eastern parts of the plateau and included linear zibars. We also present a new index, the Clay Crust Index (CCI) that includes the combination of the Crust Index and the 7-th band of the Landsat TM that covers the clay absorption range. The idea behind this combination is based on trapping of clays by biological soil crusts which deepens the absorption feature in the spectrum of 7-th band of the Landsat TM. From 1945 to 2004 there were no evidence that indicate aeolian nor fluvial activities. Yet, a single extreme rain event that took place in 29 October 2004 caused the largest landform changes in the past 60 years. The runoff widened in the eastern channel streams. To summarize, the study area's closure in the late 1950's had contributed to the decrease of aeolian processes. The fluvial processes are very limited, yet, when there is an unusually large rainstorm event there is a risk of undermining and extreme erosion processes, especially when the surface is covered by soil crusts and clay.

  2. Critical Review of Cement-Based Stabilisation/Solidification Techniques for the Disposal of Hazardous Wastes.

    DTIC Science & Technology

    1986-12-01

    composed of crystalline par- ticles for one or more types accepted and studies of clay organic intaractions gained momentum (7), with some of the...ammonium cations) lessens this effect as the water of hydratior is less strongly held creating a more hydrophobic environment between the layers and...soil (35) and the wate- solubility of the compounds influences the extent of adsorption (19,20), presumably by increasing the extent of hydrophobic

  3. Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier

    NASA Astrophysics Data System (ADS)

    Huang, W. H.; Chuang, Y. F.

    2014-12-01

    Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  4. The Swedish nuclear waste program and the long-term corrosion behaviour of copper

    NASA Astrophysics Data System (ADS)

    Rosborg, B.; Werme, L.

    2008-09-01

    The principal strategy for high-level radioactive waste disposal in Sweden is to enclose the spent fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bedrock. Besides rock movements, the biggest threat to the canister in the repository is corrosion. 'Nature' has proven that copper can last many million of years under proper conditions, bentonite clay has existed for many million years, and the Fennoscandia bedrock shield is stable. The groundwater may not stay the very same over very long periods considering glaciations, but this will not have dramatic consequences for the canister performance. While nature has shown the way, research refines and verifies. The most important task from a corrosion perspective is to ascertain a proper near-field environment. The background and status of the Swedish nuclear waste program are presented together with information about the long-term corrosion behaviour of copper with focus on the oxic period.

  5. Leachate from market refuse and biomethanation study.

    PubMed

    Mukherjee, S N; Kumar, Sunil

    2007-12-01

    The market place is considered to be an important centre of daily life of campus community. In India, as in Europe and the USA, other forms of shopping have emerged significantly and now predominate, for instance department stores and supermarkets. Though, it is suffered from poor waste management, but the place could be a potential source for obtaining non-conventional energy. The present study examined the quality of market waste management of the Indian Institute of Technology Campus along with the feasibility of biogas production from leachate generated in the waste. Solid wastes from different storage locations of the market place were collected and analyzed. The characteristics of solid wastes were found to be degradable in nature. The wastes, composed of 85% of vegetable origin, were placed in a container and water was added to to generate leachate. The self-purification efficiency of leachate was also studied in the Indian environment and compared with research findings in the USA under an identical moisture application rate. Leachate characterization was investigated both under saturated and submerged conditions. The treatability of leachate was studied in a laboratory-scale up-flow anaerobic filter with hollow burnt clay rings as packing media. It was observed that 4,000-6,000 mg/l would be the optimum range of inlet chemical oxygen demand (COD) concentration for leachate treatment because of the inhibitory effect of ammonia, sulphide, volatile fatty acids and toxic metals in high concentrations at higher strengths of leachate. The gas production rate was found to be at a maximum at 38 degrees C and containing 70-75% methane. From experimental data, it was revealed that 83% COD was removed with input COD concentration of 5,475 mg/l at 2 days hydraulic retention time with biogas yield coefficients of 0.61. The present study also investigated the removal efficiency of chloride, ammonia, sulphide and nitrate.

  6. Can clays ensure nuclear waste repositories?

    NASA Astrophysics Data System (ADS)

    Zaoui, A.; Sekkal, W.

    2015-03-01

    Research on argillite as a possible host rock for nuclear waste disposal is still an open subject since many issues need to be clarified. In the Underground Research Laboratories constructed for this purpose, a damaged zone around the excavation has been systematically observed and characterized by the appearance of micro-fissures. We analyse here -at nanoscale level- the calcite/clay assembly, the main constituents of argillite, under storage conditions and show the fragility of the montmorillonite with respect to calcite. Under anisotropic stress, we have observed a shear deformation of the assembly with the presence of broken bonds in the clay mineral, localised in the octahedral rather than the tetrahedral layers. The stress/strain curve leads to a failure strength point at 18.5 MPa. The obtained in-plane response of the assembly to perpendicular deformation is characterized by smaller perpendicular moduli Ez = 48.28 GPa compared to larger in-plane moduli Ex = 141.39 GPa and Ey = 134.02 GPa. Our calculations indicate the instability of the assembly without water molecules at the interface in addition to an important shear deformation.

  7. Effect of leaving group on the oligomerization of 5'-AMP on montmorillonite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Prabahar, K. Joseph; Ferris, James P.

    1994-01-01

    The oligomerization of imidazole derivative of 5'-AMP (ImpA) in the presence of montmorillonite clay yields oligomers containing up to 10 monomer units. In these reactions, the heterocyclic base, imidazole is the leaving group. In our present study, we synthesized a series of activated nucleotides of 5'AMP using other leaving groups such as pyrazole, 1,2,4-triazole, piperidine, morpholine, 4-aminopyridine, 4-methylaminopyridine, 4-dimethylaminopyridine, 2-aminobenzimidazole etc. to determine the effect of amine leaving group on the products of the oligomerization reaction. Earlier results from our laboratory showed that the presence AppA in the clay reaction of ImpA enhances the oligomerization reaction to yield higher oligomers. We also studied the effect of AppA in the clay mediated oligomerization reaction of the activated nucleotides. Oligomerization of 2-amino-benzimidazole derivative of 5'-AMP gave higher oligomers containing up to nine monomer units in the presence of AppA.

  8. Mineralogical control of soil organic carbon persistence at the multidecadal time scale

    NASA Astrophysics Data System (ADS)

    Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Chenu, Claire

    2015-04-01

    One of the current challenges in understanding the long term persistence of organic carbon in soils is to assess how mineral surfaces, especially at small scale, can stabilize soil organic carbon (SOC). The question we address in this work is whether different mineral species stabilize different types of SOC. Here we used the unique opportunity offered by long term bare fallows to study in situ C dynamics in several fine fractions of a silty loam soil. Indeed, with no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of bare fallow. To separate mineral phases of the clay size fraction we performed a size fractionation on samples taken from 4 different plots at 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF) and analyzed the SOC in the different fractions thus obtained. First, the clay fraction (< 2 µm) was isolated by wet sieving and centrifugation in water. Then, the clay fraction was further separated into 3 size fractions by centrifugation: fine clay (< 0.05 µm), intermediate clay (0.05 - 0.2 µm), and coarse clay (0.2 - 2 µm). X-ray diffraction was used to determine the mineralogy of the phases and we found that the coarse clay fraction on the one hand and fine and intermediate clay fractions on the other hand exhibited contrasted mineralogies. Fine and intermediate clay fractions contained almost exclusively smectite and mixed-layered illite/smectite minerals whereas coarse clays contained also discrete illite and kaolinite on top of smectite and illite/smectite. We carried out CHN elemental analysis to study the C and nitrogen dynamics with time in the different fractions. And synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) was used to get information on the distribution and the chemical speciation of the SOC in fractions with contrasted mineralogies. Data analysis is still ongoing and full results will be presented at EGU. First results show that the dynamics and quality of the SOC differ in the different clay fractions. SOC decay was greater in coarse clays compared to intermediate clays, SOC in the coarse clay fraction displaying more diversity than in the other fractions. SOC persistence at the multidecadal timescale also seems to be mineral dependent: smectite being more efficient at protecting carbon compared to illite.

  9. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2015-06-01

    A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.

  10. ASSESSMENT AND RECOMMENDATIONS FOR IMPROVING THE PERFORMANCE OF WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This broad-based study addressed three categories of issues related to the design,
    construction, and performance of waste containment systems used at landfills, surface
    impoundments, and waste piles, and in the remediation of contaminated sites. Geosynthetic materials have...

  11. Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil.

    PubMed

    Angulo, S C; Ulsen, C; John, V M; Kahn, H; Cincotto, M A

    2009-02-01

    This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the São Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry.

  12. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    NASA Astrophysics Data System (ADS)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  13. Review of buried crystalline rocks of eastern United States in selected hydrogeologic environments potentially suitable for isolating high-level radioactive wastes

    USGS Publications Warehouse

    Davis, R.W.

    1984-01-01

    Among the concepts suggested for the deep disposal of high-level radioactive wastes from nuclear power reactors is the excavation of a repository in suitable crystalline rocks overlain by a thick sequence of sedimentary strata in a hydrogeologic environment that would effectively impede waste transport. To determine the occurrence of such environments in the Eastern United States, a review was made of available sources of published or unpublished information, using the following hydrogeologic criteria:The top of the crystalline basement rock is 1,000 to 4,000 feet below land surface.The crystalline rock is overlain by sedimentary rock whose lowermost part, at least, contains ground water with a dissolved-solids concentration of 10,000 milligrams per liter or more.Shale or clay confining beds overlie the saline-water aquifer.The flow system in the saline-water aquifer is known or determinable from presently available data.All of these hydrogeologic conditions occur in two general areas: (1) parts of Indiana, Ohio, and Kentucky, underlain by part of the geologic structure known as the Cincinnati arch, and (2) parts of the Atlantic Coastal Plain from Georgia to New Jersey.

  14. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1). This suggests that swelling phases promote their stability. Swelling phases and organic C decreased for greater intensities of disaggregation. These results and the SEM images taken at different disaggregation intensities indicate that when increasing disaggregation intensity above 5 J mL-1, the recovered material consists on sand particles covered by physical coatings of illite and kaolinite. Our results show that different clay minerals have different contribution to soil aggregation. Swelling phases are especially important for water-stable aggregates formation, whereas illite and kaolinite can either contribute to aggregation or been coated to sand grains in "mineral aggregates", without porosity and organic C protection capability. In conclusion, soils with large proportion of swelling clay minerals have greater potential for carbon storage by occlusion in aggregates and greater resistance to erosion. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 62: 141-163.

  15. Deformation mechanisms and evolution of the microstructure of gouge in the Main Fault in Opalinus Clay in the Mont Terri rock laboratory (CH)

    NASA Astrophysics Data System (ADS)

    Laurich, Ben; Urai, Janos L.; Vollmer, Christian; Nussbaum, Christophe

    2018-01-01

    We studied gouge from an upper-crustal, low-offset reverse fault in slightly overconsolidated claystone in the Mont Terri rock laboratory (Switzerland). The laboratory is designed to evaluate the suitability of the Opalinus Clay formation (OPA) to host a repository for radioactive waste. The gouge occurs in thin bands and lenses in the fault zone; it is darker in color and less fissile than the surrounding rock. It shows a matrix-based, P-foliated microfabric bordered and truncated by micrometer-thin shear zones consisting of aligned clay grains, as shown with broad-ion-beam scanning electron microscopy (BIB-SEM) and optical microscopy. Selected area electron diffraction based on transmission electron microscopy (TEM) shows evidence for randomly oriented nanometer-sized clay particles in the gouge matrix, surrounding larger elongated phyllosilicates with a strict P foliation. For the first time for the OPA, we report the occurrence of amorphous SiO2 grains within the gouge. Gouge has lower SEM-visible porosity and almost no calcite grains compared to the undeformed OPA. We present two hypotheses to explain the origin of gouge in the Main Fault: (i) authigenic generation consisting of fluid-mediated removal of calcite from the deforming OPA during shearing and (ii) clay smear consisting of mechanical smearing of calcite-poor (yet to be identified) source layers into the fault zone. Based on our data we prefer the first or a combination of both, but more work is needed to resolve this. Microstructures indicate a range of deformation mechanisms including solution-precipitation processes and a gouge that is weaker than the OPA because of the lower fraction of hard grains. For gouge, we infer a more rate-dependent frictional rheology than suggested from laboratory experiments on the undeformed OPA.

  16. The use of expanded clay dust in paint manufacturing

    NASA Astrophysics Data System (ADS)

    Sverguzova, S. V.; Sapronova, Zh A.; Starostina, Yu L.; Belovodskiy, E. A.

    2018-01-01

    Production increase of useful products is accompanied by the formation and the accumulation of the vast amounts of industrial wastes, the bulk of which is not involved in the recycling processes. An example of such wastes is dust bag filters of ceramsite production. At the large enterprises, the volume of its formation can reach 7-8 tons of dust per day, which is 10-15% of feedstock mass. The studies on the use of ceramsite production dust as filler pigment in the composition of organic mixed primer of red-brown color are carried out in this work. For comparison, red iron oxide pigment (Pg FGM) was used. The results showed that, primer with the use of expanded clay dust is characterized by the short drying time and meets all regulatory requirements.

  17. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  18. Laboratory-scale study of possible use of residual sludge from glass sand beneficiation

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Weishauptova, Zuzana; Zach, Jaroslav; Kozlovcev, Petr

    2016-04-01

    Beneficiation of quartz sand from sedimentary deposits for glass sands results in significant amounts of under-size fraction, a sludge rich in clay minerals. This sludge is considered as a waste and is returned in mined-out spaces for a simple rehabilitation, which is also the case of one of the largest glass sand production areas in the Czech Republic. The amount of produced waste sludge in the studied area (glass sand works in Provodín area, Bohemian Cretaceous Basin) is about 20 kt per year. In the recent study, we have focused on possible employment of this waste material for three applications: (1) a clay component in a raw material mixture for making of hydraulic lime, (2) a kaolinite absorbent, and (3) a geotechnical material. The sampled sludge was primarily analysed for mineralogical and chemical composition, mechanical and physical properties, the specific surface area, and parameters of pore space. X-ray analysis proved the presence of kaolinite, illite (both WCI and PCI), quartz, and accessory microcline. According to silicate analysis, the material is composed of SiO2 (80.52 wt. %), Al2O3 (11.36 wt. %), and K2O (2.14 wt. %). For its potential use as an artificial admixture for hydraulic lime production, the studied material was mixed with pure limestone in ratio of 10, 15, 20, and/or 25 wt. %. The experimental mixtures were burnt in the temperature range from 850 to 1,200°C. XRD was employed for the detection of newly formed phases showing formation of hydraulic phase such as C2S, C3A, C4AF starting from the 1050°C burning temperature. Peak burning temperature significantly influenced amount of individual phases in the burnt product. Second possible mode of use of the investigated waste material focused on its application as a sorbent. Pore space and specific surface area characteristics (SBET 7.4 sq. m/g) range this material to the group of low grade kaolinite-dominated adsorbents. Thermal treatment (burning of raw waste material at temperatures of 500°C and/or 900°C) lead to rapid deterioration of specific surface area, probably due to the structural and phase changes of dominant clay minerals. The latest considered use in the field of geotechnical applications proved possible employment of the studied material as a sealing clay for smaller dams, ponds and/or as a geotechnical barrier for waste dumps.

  19. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    EPA Science Inventory

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  20. 40 CFR 258.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water... the MSWLF unit meets the conditions of § 258.1(f)(1). Open burning means the combustion of solid waste...

  1. 40 CFR 258.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water... the MSWLF unit meets the conditions of § 258.1(f)(1). Open burning means the combustion of solid waste...

  2. 40 CFR 258.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; stone, glass, clay, and concrete products; textile manufacturing; transportation equipment; and water... the MSWLF unit meets the conditions of § 258.1(f)(1). Open burning means the combustion of solid waste...

  3. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    PubMed

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  4. 2,3,7,8-DIBENZO-P-DIOXINS IN MINED CLAY PRODUCTS ...

    EPA Pesticide Factsheets

    Ball clay was the source of dioxin contamination discovered in selected chickens analyzed as part of a joint U.S. Department of Agriculture/U.S. Environmental Protection Agency national survey of the U.S. poultry supply conducted in 1997. The affected animals, which had been raised in the southern United States, represented approximately 5% of the national poultry production . All of these chickens and other animal food sources (i.e., farm-raised catfish), similarly contaminated, were fed a diet of animal feed containing ball clay as an anti-caking additive. The clay was mined in northwestern Mississippi within a geological formation referred to as the Mississippi Embayment. Individual raw and processed ball clay samples were analyzed for the presence of the 2,3,7,8-PCDDs/PCDFs. The average toxic equivalents (TEQs) for the raw and processed samples were 1513 and 996 ppt dry weight, respectively. Other mined clay-based products used in animal feeds revealed lower TEQs. All of the products exhibited either an absence of detectable concentrations of 2,3,7,8-PCDFs or concentrations 2-3 orders of magnitude lower than the PCDDs. The isomer distribution, specific isomer identification, and congener profile of the PCDDs in the clay were established and compared to known sources of dioxin contamination. Several unique features of this isomer distribution are characteristic of the clays and are distinguishable from those other known sources. These characteristic

  5. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  6. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  7. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  8. 21 CFR 186.1256 - Clay (kaolin).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain... kaolin. Kaolinite or china clay is whiter, less contaminated with extraneous minerals, and less plastic...

  9. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  10. Coupling Effects of Heat and Moisture on the Saturation Processes of Buffer Material in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing

    2017-04-01

    Clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation behavior of clay barrier, with emphasis on the coupling effects of heat and moisture of buffer material in the near-field of a repository during groundwater intrusion processes. A locally available clay named "Zhisin clay" and a standard bentotine material were adopted in the laboratory program. Water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the buffer material. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. The finite element program ABAQUS was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on Zhisin clay. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. It was found that, due to the variation in suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  11. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  12. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Clay Chemistry's Influence on the Average Carbon Content and Particle Size at the Ninety-Six Historical Site, South Carolina

    NASA Astrophysics Data System (ADS)

    Lintz, L.; Werts, S. P.

    2014-12-01

    The Ninety-Six National Historic Site is located in Greenwood County, SC. Recent geologic mapping of this area has revealed differences in soil properties over short distances within the park. We studied the chemistry of the clay minerals found within the soils to see if there was a correlation between the amounts of soil organic carbon contained in the soil and particle size in individual soil horizons. Three different vegetation areas, including an old field, a deciduous forest, and a pine forest were selected to see what influence vegetation type had on the clay chemistry and carbon levels as well. Four samples containing the O, A, and B horizons were taken from each location and we studied the carbon and nitrogen content using an elemental analyzer, particle size using a Laser Diffraction Particle Size Analyzer, and clay mineralogy with powder X-ray diffraction of each soil sample. Samples from the old field and pine forest gave an overall negative correlation between carbon content and clay percentage, which is against the normal trend for Southern Piedmont Ultisols. The deciduous forest samples gave no correlation at all between its carbon content and clay percentage. Together, all three locations show the same negative relationship, while once separated into vegetation type and A and B horizons it shows even more abnormal relationships of negative while several show no correlation (R2= 0.007403- 0.56268). Using powder XRD, we ran clay samples from each A and B horizon for the clay mineralogy. All three vegetation areas had the same results of containing quartz, kaolinite, and Fe oxides, therefore, clay chemistry is not a reason behind the abnormal trend of a negative correlation between average carbon content and clay percentage. Considering that all three locations have the same climate, topography, and parent material of metagranite, it could be reasonable to assume these results are a factor of environmental and biological influences rather than clay type.

  14. Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vliet, James A.

    2012-07-01

    During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facilitymore » consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)« less

  15. Dinosaurs, spherules, and the “magic” layer: A new K-T boundary clay site in Wyoming

    NASA Astrophysics Data System (ADS)

    Bohor, Bruce F.; Triplehorn, Don M.; Nichols, Douglas J.; Millard, Hugh T., Jr.

    1987-10-01

    A new Cretaceous-Tertiary (K-T) boundary clay site has been found along Dogie Creek in Wyoming in the drainage of Lance Creek—the type area of the Lance Formation of latest Cretaceous age. The boundary clay was discovered in the uppermost part of the Lance Formation, 4 7 cm beneath the lowest lignite in the Paleocene Fort Union Formation and approximately 1 m above a fragmented dinosaur bone. The boundary clay consists of a basal kaolinitic claystone layer as much as 3 cm thick containing hollow goyazite spherules, overlain by a 2 3 mm smectitic layer (the “magic” layer) containing both shock-metamorphosed minerals and an iridium anomaly of 21 ppb. A palynological break coincides with the base of the claystone layer; numerous Late Cretaceous palynomorph species terminate at this boundary. The paleontological significance of this new boundary site lies in its close association with the well-studied assemblage of dinosaurs and other vertebrates and flora within the type area of the Lance Formation. The spherules at the Dogie Creek site are extremely well preserved by virtue of their replacement by the mineral goyazite. This preservation should facilitate the resolution of the origin of the spherules and of their host layer.

  16. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    PubMed

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  17. Effective combination of DIC, AE, and UPV nondestructive techniques on a scaled model of the Belgian nuclear waste container

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Sokratis N.; Areias, Lou; Pyl, Lincy; Vantomme, John; Van Marcke, Philippe; Coppens, Erik; Aggelis, Dimitrios G.

    2015-03-01

    Protecting the environment and future generations against the potential hazards arising from high-level and heat emitting radioactive waste is a worldwide concern. Following this direction, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the reference design which considers the geological disposal of the waste in purely indurated clay. In this design the wastes are first post-conditioned in massive concrete structures called Supercontainers before being transported to the underground repositories. The Supercontainers are cylindrical structures which consist of four engineering barriers that from the inner to the outer surface are namely: the overpack, the filler, the concrete buffer and possibly the envelope. The overpack, which is made of carbon steel, is the place where the vitrified wastes and spent fuel are stored. The buffer, which is made of concrete, creates a highly alkaline environment ensuring slow and uniform overpack corrosion as well as radiological shielding. In order to evaluate the feasibility to construct such Supercontainers two scaled models have so far been designed and tested. The first scaled model indicated crack formation on the surface of the concrete buffer but the absence of a crack detection and monitoring system precluded defining the exact time of crack initiation, as well as the origin, the penetration depth, the crack path and the propagation history. For this reason, the second scaled model test was performed to obtain further insight by answering to the aforementioned questions using the Digital Image Correlation, Acoustic Emission and Ultrasonic Pulse Velocity nondestructive testing techniques.

  18. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    NASA Astrophysics Data System (ADS)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and about eight water molecules in the first hydration shell within a radius of 3.3 Å at all higher hydration states. Moreover, the MD results show that the complete hydration shells are nearly spherical with an orthogonal coordination sphere. They could only be formed when the basal spacing d001 ≥ 18.7 Å, i.e., approximately, the interlayer separation h ≥ 10 Å. Comparison between DFT and MD simulations shows that DFT failed to reproduce the outer-sphere complexes in the Stern-layer (within ˜5.0 Å from the clay basal-plane), observed in the MD simulations.

  19. USARCENT AOR Contingency Base Waste Stream Analysis: An Analysis of Solid Waste Streams at Five Bases in the U. S. Army Central (USARCENT) Area of Responsibility

    DTIC Science & Technology

    2013-03-31

    certainly remain comingled with other solid waste. For example, some bases provided containers for segregation of recyclables including plastic and...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic

  20. Assessment of the Effectiveness of Clay Soil Covers as Engineered Barriers in Waste Disposal Facilities with Emphasis on Modeling Cracking Behavior

    DTIC Science & Technology

    2008-06-01

    escaping the clay and keeping its compacted conditions constant. Other stabilizing additives such as surfactants or cement and applications such as foamed ...not a local phenomenon. Once a crack is formed, increasing the width of the crack at the surface by additional shrinkage will also extend the depth...at the surface, increasing the width of the crack by additional shrinkage will drive the crack deeper into the soil mass, expos- ing new surfaces to

  1. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com; Aditya, Gautam, E-mail: gautamaditya2001@gmail.com; Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities ofmore » tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that are most frequently disposed off contributed largely to the sustenance of Aedes mosquito population in the city. This calls for a strict legislation towards disposal as well as enhanced management of the household wastes. A link between the wastes disposed and subsequent conversion to the mosquito larval habitats cautions for continuance of Aedes population and possibility of dengue epidemics if the existing management practices are not improved.« less

  2. The effect of various pozzolanic additives on the concrete strength index

    NASA Astrophysics Data System (ADS)

    Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.

    2017-10-01

    The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.

  3. Effect of intermediate soil cover on municipal solid waste decomposition.

    PubMed

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  4. Simultaneous flow of gas and water in a damage-susceptible argillaceous rock

    NASA Astrophysics Data System (ADS)

    Nguyen, T. S.

    2011-12-01

    A research project has been initiated by the Canadian Nuclear Safety Commission (CNSC) to study the influence of gas generation and migration on the long term safety of deep geological repositories for radioactive wastes. Such facilities rely on multiple barriers to isolate and contain the wastes. Depending on the level of radioactivity of the wastes, those barriers include some or all of the following: corrosion and structurally resistant containers, low permeability seals around the emplacements rooms, galleries and shaft, and finally the host rock formations. Large quantities of gas may be generated from the degradation of the waste forms or the corrosion of the containers. The generated gas pressures, if sufficiently large, can induce cracks and microcracks in the engineered and natural barriers and affect their containment functions. The author has developed a mathematical model to simulate the above effects. The model must be calibrated and validated with laboratory and field experiments in order to provide confidence in its future use for assessing the effects of gas on the long term safety of nuclear wastes repositories. The present communication describes the model and its use in the simulation of laboratory and large scale in-situ gas injection experiments in an argillaceous rock, known as Opalinus clay, from Mont Terri, Switzerland. Both the laboratory and in-situ experiments show that the gas flow rate substantially increases when the injection pressure is higher than the confining stress. The above observation seems to indicate that at high gas injection pressures, damage could possibly be induced in the rock formation resulting in an important increase in its permeability. In order to simulate the experiments, we developed a poro-elastoplastic model, with the consideration of two compressible pore fluids (water and gas). The bulk movement of the pore fluids is assumed to obey the generalized Darcy's law, and their respective degree of saturation is represented by the Van Genuchten's functions. The solid skeleton is assumed to be elastoplastic, with degradation of the strength and elastic modulus accompanied by an increase in permeability when damage is accumulated. The model can predict the three distinct flow regimes found in the experiments: a low flow regime where gas movement is restricted to the injection zone, a moderate flow regime when damage is limited, and a high flow regime when damage induces a substantial increase in the permeability.

  5. An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste

    NASA Astrophysics Data System (ADS)

    Kumavat, Hemraj Ramdas

    2016-09-01

    The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.

  6. The effect of soil type on the bioremediation of petroleum contaminated soils.

    PubMed

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thermal Properties of Soils

    DTIC Science & Technology

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  8. EVALUATION OF THE EFFECTS ON BENTHIC ORGANISMS FROM CLAY FLOCCULATION OF RED TIDE ORGANISMS

    EPA Science Inventory

    Evaluating the feasibility of controlling red tide using clay flocculation is part of an ECOHAB-funded project. One aspect for the feasibility and future application of clays is the determination of potential negative environmental impacts. The removal of toxin-containing dinofl...

  9. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid-shaped time-swell curves of typical bentonites. That is, a greater part of swelling strain develops after the completion of primary swelling strain. At an optimal amount of 1% Na2CO3 in weight, the maximum swelling strain was found to be 3 times as much as that of untreated Zhisin clay. Furthermore, the Na2CO3-activated Zhisin clay exhibited improved resistance to thermal environments and behaved similar to Na-type bentonites under various hydrothermal temperatures.

  10. Spectroscopic analyses of Fe and water in clays: A Martian surface weathering study

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, Carle M.; Edwards, J. O.; Coyne, L. M.; Chang, S.

    1991-01-01

    Martian surface morphology suggests the presence of liquid H2O on Mars in the past. Reflectance spectra of the Martian surface include features which correspond to the crystal field transitions of iron, as well as features supporting the presence of ice and minerals containing structural OH and surface water. Researchers initiated further spectroscopic studies of surface iron and water and structural OH in clays in order to determine what remotely obtained spectra can indicate about the presence of clays on Mars based on a clearer understanding of the factors influencing the spectral features. Current technology allows researchers to better correlate the low frequency fundamental stretching and bending vibrations of O-H bonds with the diagnostic near infrared overtone and combination bands used in mineral characterization and identification.

  11. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Bristow, T. F.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W.; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    One of the primary science goals of Mars Science Laboratory (MSL) is to investigate layered clay mineral-bearing deposits outcropping in the lower NW slopes of Aeolis Mons (Mt. Sharp) detected from orbit. Martian clay mineral-bearing layered rocks are of particular interest because they are potential markers of sedimentary deposits formed in habitable aqueous environments. The CheMin X-ray diffraction (XRD) instrument aboard MSL has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. Previously, the high concentrations of clay minerals (approximately 20 wt.%) detected in drill powders of mudstone (Sheepbed member) at Yellowknife Bay (YKB) allowed their detailed characterization. Drill powders recovered from lacustrine mudstones of the Sheepbed member at YKB contain smectite clay minerals. Based on the position of 02l reflections in XRD patterns, which serve as an indicator of octahedral occupancy, the smectites are Fe-bearing, trioctahedral species analogous to ferrian saponites from terrestrial deposits. The smectites are thought to have been formed through a process of isochemical aqueous alteration of detrital olivine close to the time of sediment deposition under anoxic to poorly oxidizing conditions. The clay minerals are key indicators that the lake waters were benign and habitable at the time. Clay minerals were detected at other locations during MSL's traverse, including samples from the Pahrump Hills, but lower abundances and overlapping peaks from crystalline phases in XRD patterns hamper in-depth analysis.

  12. Chemical-mineralogical characterization of C and D waste recycled aggregates from Sao Paulo, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angulo, S.C.; Ulsen, C.; John, V.M.

    2009-02-15

    This study presents a methodology for the characterization of construction and demolition (C and D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C and D samples taken from the Sao Paulo region in Brazil are discussed.more » Chemical compositions of mixed C and D aggregate samples have mostly been influenced by particle size rather than the visual classification of C and D into red or grey and geographical origin. The amount of measured soluble salts in C and D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C and D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C and D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C and D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO{sub 2}, the powders have potential use as raw materials for the cement industry.« less

  13. Application of risk management techniques for the remediation of an old mining site in Greece.

    PubMed

    Panagopoulos, I; Karayannis, A; Adam, K; Aravossis, K

    2009-05-01

    This article summarizes the project and risk management of a remediation/reclamation project in Lavrion, Greece. In Thoricos the disposal of mining and metallurgical wastes in the past resulted in the contamination with heavy metals and acid mine drainage. The objective of this reclamation project was to transform this coastal zone from a contaminated site to an area suitable for recreation purposes. A separate risk assessment study was performed to provide the basis of determining the relevant environmental contamination and to rate the alternative remedial schemes involved. The study used both existing data available from comprehensive studies, as well as newly collected field data. For considering environmental risk, the isolation and minimization of risk option was selected, and a reclamation scheme, based on environmental criteria, was applied which was comprised of in situ neutralization, stabilization and cover of the potentially acid generating wastes and contaminated soils with a low permeability geochemical barrier. Additional measures were specifically applied in the areas where highly sulphidic wastes existed constituting active acid generation sources, which included the encapsulation of wastes in HDPE liners installed on clay layers.

  14. RISK ASSESSMENT FOR THE DYE AND PIGMENT ...

    EPA Pesticide Factsheets

    This risk assessment calculates the maximum loadings of constituents found in dyes and pigment industries waste streams which can be disposed in different types of waste management units without causing health benchmarks to be exceeded at plausible receptor locations. The assessment focuses on potential risks from volatilization and leaching to groundwater of constituents disposed in surface impoundments and landfills with either clay liners or composite liners. This product will be used by EPA decision makers to assist in determining whether certain waste streams generated by the dyes and pigments industries should be designated as hazardous.

  15. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    PubMed Central

    Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés

    2014-01-01

    Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520

  16. Application of hydroxy aluminum treated clays to waste water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, T.F.; Fogler, H.S.

    1985-01-01

    Concern over the possible health effects of chlorinated biphenyls and dibenzodioxins has a scientific basis. Polychlorinated biphenyls are known mutagens and tetragens. The toxicological properties of 2,3,7,8-TCDD are well documented. One study found that 2,3,7,8-TCDD had higher inherent toxicity for mice than better known poisons; sodium cyanide, strychnine, and diphtheria toxin. It is apparent that development of technologies for the reduction of chlorinated polycyclics in the environment is desirable. It has been demonstrated that hydroxyl aluminum treatment of clay can produce an extremely powerful sorbent; even more powerful for octachlorodibenzodioxin than previously reported. The results indicate that the treatment proceduremore » is effective for several different clays.« less

  17. Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.

    PubMed

    Bories, Cecile; Borredon, Marie-Elisabeth; Vedrenne, Emeline; Vilarem, Gerard

    2014-10-01

    Today, clay bricks are facing technological challenges and are uncompetitive compared to materials such as concrete. Their performance must be improved if they are to stand up to the competition. Increasing environmental concerns over the accumulation of unmanaged wastes from agricultural or industrial productions have made these good candidates for incorporation into building materials to improve their performance. This process leads to the formation of pores in the bricks, producing lightweight and sustainable building materials. This paper reviews the different pore-forming agents from renewable or mineral resources as described in the literature. It also presents the impact of pore-forming agents on the physical, mechanical and thermal properties of clay bricks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of temperature on the containment properties of argillaceous rocks: The case study of Callovo-Oxfordian claystones.

    PubMed

    Savoye, S; Goutelard, F; Beaucaire, C; Charles, Y; Fayette, A; Herbette, M; Larabi, Y; Coelho, D

    2011-07-01

    Heat generated by high level radioactive wastes could alter the performance of a clay repository. It was intended to investigate the effect of such a thermal period on the diffusive properties of Callovo-Oxfordian claystones. Thus, through-diffusion experiments with HTO, Cl-36, Na-22 and Cs-137 were performed before, during and after stages of heating at 80°C that lasted for up to one year. A special attention was paid to limit the occurrence of any chemical disturbance. Therefore (i) the temperature was raised to 80°C, then progressively brought back to 21°C, thanks to three intermediate temperature stages, and (ii) specific synthetic solutions were used for each temperature, chemistry of which being close to the equilibrium state, especially with respect to the carbonate and sulphate minerals. It was found that experiments carried out at 80°C showed a clear increase of the effective diffusion coefficient values for the four tracers with respect to those obtained at 21°C (by a factor of 3 for HTO and Cl-36, 5 for Na-22 and 2 for Cs-137). On the other hand, the porosity and rock capacity values did not exhibit any significant discrepancy between 21°C and 80°C, indicating no observable damage of both the pore conducing network and the sorption properties of clay minerals. The Stokes-Einstein relationship, based on the temperature dependency of the viscosity of bulk water, could be used to describe the temperature dependence of the diffusion of HTO and Cl-36 but failed to describe the diffusive evolution of the two sorbing cations, Na-22 and Cs-137. Furthermore, experiments performed after the thermal period led to diffusive properties well matching those obtained before heating. All these results suggest that at the lab scale the heating of rock samples would not alter the claystone containment properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effect of temperature on the containment properties of argillaceous rocks: The case study of Callovo-Oxfordian claystones

    NASA Astrophysics Data System (ADS)

    Savoye, S.; Goutelard, F.; Beaucaire, C.; Charles, Y.; Fayette, A.; Herbette, M.; Larabi, Y.; Coelho, D.

    2011-07-01

    Heat generated by high level radioactive wastes could alter the performance of a clay repository. It was intended to investigate the effect of such a thermal period on the diffusive properties of Callovo-Oxfordian claystones. Thus, through-diffusion experiments with HTO, Cl-36, Na-22 and Cs-137 were performed before, during and after stages of heating at 80 °C that lasted for up to one year. A special attention was paid to limit the occurrence of any chemical disturbance. Therefore (i) the temperature was raised to 80 °C, then progressively brought back to 21 °C, thanks to three intermediate temperature stages, and (ii) specific synthetic solutions were used for each temperature, chemistry of which being close to the equilibrium state, especially with respect to the carbonate and sulphate minerals. It was found that experiments carried out at 80 °C showed a clear increase of the effective diffusion coefficient values for the four tracers with respect to those obtained at 21 °C (by a factor of 3 for HTO and Cl-36, 5 for Na-22 and 2 for Cs-137). On the other hand, the porosity and rock capacity values did not exhibit any significant discrepancy between 21 °C and 80 °C, indicating no observable damage of both the pore conducing network and the sorption properties of clay minerals. The Stokes-Einstein relationship, based on the temperature dependency of the viscosity of bulk water, could be used to describe the temperature dependence of the diffusion of HTO and Cl-36 but failed to describe the diffusive evolution of the two sorbing cations, Na-22 and Cs-137. Furthermore, experiments performed after the thermal period led to diffusive properties well matching those obtained before heating. All these results suggest that at the lab scale the heating of rock samples would not alter the claystone containment properties.

  20. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols

    PubMed Central

    Shiravand, Fatemeh; Hutchinson, John M.; Calventus, Yolanda; Ferrando, Francesc

    2014-01-01

    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para-amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF3·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF3·MEA into the clay galleries of nanocomposites containing 2 wt% MMT. PMID:28788672

  1. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite

    USGS Publications Warehouse

    Boyd, Stephen A.; Mortland, Max M.; Chiou, Cary T.

    1988-01-01

    When hexadedyltrimethylammonium (HDTMA) ion is exchanged for metal cations like calcium in smectite, the sorptive properties of the clay are greatly modified. The resultant HDTMA-smectite complex behaves as a dual sorbent, in the sorption of organic compounds, in which the mineral fraction functions as a solid adsorbent and the organic (HDTMA) phase as a partition medium. Capacities of mineral adsorption and partition uptake by HDTMA in the HDTMA-smectites are illustrated by sorption of benzene, trichloroethene (TCE), and water as vapors on the dry sample and by sorption of benzene and TCE from water. The exchanged HDTMA in clay is found to be a much more powerful partition medium than ordinary soil organic matter in the uptake of benzene and TCE. Based on this finding, HDTMA-smectite appears to be an effective sorbent for removing organic contaminants from water. It is suggested that such sorptive organo-clay complexes could be used to enhance the containment capabilities of clay landfill liners and bentonite slurry walls.

  2. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols.

    PubMed

    Shiravand, Fatemeh; Hutchinson, John M; Calventus, Yolanda; Ferrando, Francesc

    2014-05-30

    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para -amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF₃·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF₃·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.

  3. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  4. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged applicationmore » is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)« less

  5. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    NASA Astrophysics Data System (ADS)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  6. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  7. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  8. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  9. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  10. Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.

    Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.

  11. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (< 0.7) and the lack of space, respectively. The most probable zones of microbial activity, those likely to develop sustainable biofilms are within the interface zones. A major restriction for the initial development of microbial colonies is the high pH controlled by the cement solution. Archea are able to survive at high pH, when hydrogen gas is available as an energy sources; they are therefore likely candidates for an initial biofilm formation. It can not be excluded that other micro-organisms such as fungi may develop as well in such conditions. It also needs to be evaluated how conditions change with time and how this affects microbial ecology. The following is known about the impact of microbes on the waste cell biogeochemistry: • enhancement of redox reaction kinetics (particularly involving nitrates, sulphate, selenate, pertechnetate, organic matter and H2), thus a faster move towards reducing conditions, important to guarantee the low mobility of critical RN, • increased retardation of mobile RN in biofilms (i.e. adsorption on microbial cell surfaces and products of possible biomineralization); complexation by embedded extracellular polymeric substances, • secretion of organic substances (i.e siderophores) known to complex RN and to enhance their mobility, • biodegradation of dissolved organic substances, such as those released form the waste (organic acids) or generated by microbes, • production of CO2 or other gases that may affect cement integrity. Quantification of microbial activity has been implemented into biogeochemical models but the important parameters describing their evolution and metabolism in the real system (ecology, mass, energy sources, metabolites) need to be obtained via specific empirical studies. Such studies require a particular trans-disciplinary approach that brings together the competence of chemical and environmental engineers, microbiologists and system modellers.

  12. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  13. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  14. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  15. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  16. CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...

  17. Waste from grocery stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collectionmore » process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.« less

  18. Waste minimization charges up recycling of spent lead-acid batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queneau, P.B.; Troutman, A.L.

    Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less

  19. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  20. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  1. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  2. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    PubMed

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Experimental study of Human Adenoviruses interactions with clays

    NASA Astrophysics Data System (ADS)

    Bellou, Maria; Syngouna, Vasiliki; Paparrodopoulos, Spyros; Vantarakis, Apostolos; Chrysikopoulos, Constantinos

    2014-05-01

    Clays are used to establish low permeability liners in landfills, sewage lagoons, water retention ponds, golf course ponds, and hazardous waste sites. Human adenoviruses (HAdVs) are waterborne viruses which have been used as viral indicators of fecal pollution. The objective of this study was to investigate the survival of HAdV in static and dynamic clay systems. The clays used as a model were crystalline aluminosilicates: kaolinite and bentonite. The adsorption and survival of HAdVs onto these clays were characterized at two different controlled temperatures (4 and 25o C) under static and dynamic batch conditions. Control tubes, in the absence of clay, were used to monitor virus inactivation due to factors other than adsorption to clays (e.g. inactivation or sorption onto the tubes walls). For both static and dynamic batch experiments, samples were collected for a maximum period of seven days. This seven day time - period was determined to be sufficient for the virus-clay systems to reach equilibrium. To infer the presence of infectious HAdV particles, all samples were treated with Dnase and the extraction of viral nucleid acid was performed using a commercial viral RNA kit. All samples were analyzed by Real - Time PCR which was used to quantify viral particles in clays. Samples were also tested for virus infectivity by A549 cell cultures. Exposure time intervals in the range of seven days (0.50-144 hours) resulted in a load reduction of 0.74 to 2.96 logs for kaolinite and a reduction of 0.89 to 2.92 for bentonite. Furthermore, virus survival was higher onto bentonite than kaolinite (p

  4. Inventorying Toronto's single detached housing stocks to examine the availability of clay brick for urban mining.

    PubMed

    Ergun, Deniz; Gorgolewski, Mark

    2015-11-01

    This study examines the stocks of clay brick in Toronto's single detached housing, to provide parameters for city scale material reuse and recycling. Based on consensus from the literature and statistics on Toronto's single detached housing stocks, city scale reusable and recyclable stocks were estimated to provide an understanding of what volume could be saved from landfill and reintroduced into the urban fabric. On average 2523-4542 m(3) of brick was determined to be available annually for reuse, which would account for 20-36% of the volume of virgin brick consumed in new house construction in 2012. A higher volume, 6187 m(3) of brick, was determined to be available annually for recycling because more of the prevalence of cement-based mortar, which creates challenges for brick reuse in Toronto. The results demonstrated that older housing containing reusable brick were being mostly landfilled and replaced with housing that contained only recyclable brick. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hazardous Waste Cleanup: American Standard Incorporated in Hamilton Township, New Jersey

    EPA Pesticide Factsheets

    American Standard Incorporated is located at 240 Princeton Avenue in Trenton, New Jersey. American Standard's Trenton Pottery Facility has operated at its present location since 1923. The facility manufactures ceramic plumbing fixtures using clay, plaster

  6. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales.« less

  7. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    DOE PAGES

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; ...

    2016-11-09

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales.« less

  8. 2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladden, J.B.

    2003-08-28

    Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less

  9. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  10. Lithofacies variability in the Lower Khvalynian sediments of the North Caspian Sea region.

    NASA Astrophysics Data System (ADS)

    Makshaev, Radik; Svitoch, Aleksandr

    2016-04-01

    The Early Khvalynian period (~15 500-12 500 cal years B.P.) is characterized by continuous dynamic changes in North Caspian Sea region environment, which has been confirmed by numerous data obtained during the lithofacies analysis of its key sections. Lithofacies complex of the North Caspian Sea region contains four subfacies - clayey, laminated, sandy-clayey and aleurite-clayey. Clayey facie is characterized by absolutely clayey structure with massive nonlamellated or subfissile dark-brown clays and rarely contains thin aleurite layers. This subfacie is one of the most widespread in the North Caspian Sea region. Clayey facies are typical for the most of the key sections in the Middle Volga (Bykovo, Torgun, Rovnoe, Novoprivolnoe, Chapaevka), Lower Volga (Svetly Yar) and on the left side of the Volga River valley (Verkhny Baskunchak, Krivaya Loshchina, Bolshoy Liman). Deep paleodepressions of the Lower Volga and the left side of the Volga River valley are also characterized by the maximum of the average clays thickness, which can reach up to 10 m. Sandy-clayey subfacie is characterized by stratified structure with horizontal and lenticular lamination of clays with sandy-aleuritic interlayers. The average thickness of sand layers is 2-5 cm. At most of the key sections thickness of clay layers is up to twice larger than the sands layers and only on depressions' periphery can be exceeded by some terrigenous interlayers. Sandy-aleuritic parts of clays have different mineral structure. Light suite is dominated by quartz and feldspar with some debris of heavy minerals, glauconite and calcite. Fraction of the heavy minerals contains titano ferrite, epidote, granite, zircon, amphibole, rutile, disthene, tourmaline, sillimanite. Layered subfacie is the most abundant among the chocolate clays and is widespread in the Lower Volga River region and the Ural River valley, but sporadic in Kalmykia and the Volga Delta. Sandy-clayey and aleurit-clayey subfacies have rare distribution. Sandy-clayey subfacie (Raigorog section) contains two patches of clays, that are interbedded by thick sandy layer with khvalynian mollusks shells. Aleurite-clayey subfacie is typical for the upper part of the Volgian estuary (Chapaevka, Torgun). During the Early Khvalynian transgression only clayey-aleuritic deposits, which represent the Early Khvalynian period, accumulated in flooded territory of the Volga river valley. On the most part of investigated territory facies are presented by clays (chocolate clays), which are predominantly located in the middle part of the Early Khvalynian sections and constrained by sands with mollusk shells on its bottom and top. These facies are very common in the bottom part of the sections in the Lower Volga region, while in the Middle Volga region clays are dominated in all segments of the Khvalynian strata. But these clays can't be classified into an individual stratigraphic layer as they don't contain index mollusks and have different stratigraphic location. This work is supported by the RFBR (Project 14-05-00227) and the RSCF (Project 16-17-10103).

  11. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46 parts per million, is very much higher than that of the other clays. Plots of average REE contents of the flint and plastic clays, normalized to chondritic abundances, show that the clays from Missouri differ from the same types of clay from Pennsylvania. The plot of REE contents for the miscellaneous clays shows that the normalized means for the elements lanthanum through samarium for IPT-28 are much greater than those for the other miscellaneous clays. The means for the elements europium through lutetium are similar for all three miscellaneous clays.

  12. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.

  13. Improvement of barrier properties of rotomolded PE containers with nanoclay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylenemore » (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, Douglas

    Planning for ultimate Decontamination and Decommissioning (D and D) of a nuclear facility is as much a part of a successful nuclear strategy as is the ultimate disposal of radioactive waste. As facilities, in this case radioactive waste disposal trenches, are closed and abandoned leading to ultimate decommissioning, long term monitoring may be required. However, preplanning by characterizing, modeling, and monitoring the environment around the facility prior to and during operations will allow a performance assessment to be made and future behavior predicted. In the radioactive waste burial grounds of the Savannah River Site new slit trenches were constructed tomore » receive demolition debris associated with site foot print reduction. Some of the construction debris and associated process waste contained small amounts of tritium. Since the trenches were constructed over an existing tritium groundwater plume the monitoring and performance assessment of the trench, particularly with respect to tritium contributions to the vadose zone and groundwater, were important. These disposal trenches vary in length and width but are typically constructed within the upper 7 to 8 meters (21 to 24 feet) of the local sediments. The unconfined aquifer (water table) typically underlies the area at depths varying from 20 to 24 meters (60 to 72 feet), depending on elevation. Therefore, with downward flow and 13 to 16 meters (40 to 48 feet) of unsaturated sediments separating the base of the waste trenches from the unconfined aquifer, there was potential for an environmental impact to the sediments within the vadose zone and to the underlying groundwater. Monitoring and predicting this impact can support ultimate D and D activities and future performance assessment evaluation. From this work several key observations were made that will support long term monitoring and subsequent D and D: - The observed lateral variation of thinly bedded sands and clays may be less than 20 meters particularly if lenticular sands are present. Ultimate D and D should consider monitoring and remedial activities that consider sampling on scales to address this issue. - The detailed modeling, when compared with the modeled depositional patterns, indicates flow paths for vadose zone fluids, therefore a plan should allow for these flow paths. - Detailed lithostratigraphic modeling, when based on correlations between soil properties, CPT soundings and borehole geophysical logs, can aid in precision placement of subsurface sensors and sample points for performance monitoring and D and D assessment.« less

  15. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Laboratory study on metal attenuation capacity of fine grained soil near ash pond site.

    PubMed

    Ghosh, Sudipta; Mukherjee, Somnath; Sarkar, Sujoy; Kumar, Sunil

    2008-10-01

    Waste settling tanks of earthen containment nature are common in India for disposal of solid waste in slurry form. For a large pond system, e.g. ash slurry disposal tank of coal base thermal power plant, leachate generation and its migration pose a serious problem. A natural attenuation of controlling the migratory leachate is to use locally available clay material as lining system due to the adsorption properties of soil for reducing some metallic ions. The present investigation was carried out to explore the Ni2+ and Cr6+ removal capacity of surrounding soil of the ash pond site of Super Thermal Power Plant in West Bengal, India through some laboratory scale and field studies. The soil and water samples collected from the site showed the existence of Ni2+ and Cr6+ in excess to permissible limit. A two-dimensional adsorption behaviour of these pollutants through soil was assessed. The results showed that more than 80% of nickel and 72% of chromium were found to be sorbed by the soil corresponding to initial concentrations of two ions, i.e. 1.366 mg/L and 0.76 mg/L respectively. The batch adsorption data are tested Langmuir and Freundlich isotherm models and found reasonably fit. Breakthrough adsorption study uptake also showed a good adsorption capacity of the soil. The experimental results found to fit well with the existing two dimensional (2D) mathematical models as proposed by Fetter (1999).

  17. Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae).

    PubMed

    Cornelius, Mary L; Osbrink, Weste L A

    2010-06-01

    This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.

  18. Artificial soils from alluvial tin mining wastes in Malaysia--a study of soil chemistry following experimental treatments and the impact of mycorrhizal treatment on growth and foliar chemistry.

    PubMed

    Tompkins, David S; Bakar, Baki B; Hill, Steve J

    2012-01-01

    For decades Malaysia was the world's largest producer of Sn, but now the vast open cast mining operations have left a legacy of some 100,000 ha of what is effectively wasteland, covered with a mosaic of tailings and lagoons. Few plants naturally recolonise these areas. The demand for such land for both urban expansion and agricultural use has presented an urgent need for better characterisation. This study reports on the formation of artificial soils from alluvial Sn mining waste with a focus on the effects of experimental treatments on soil chemistry. Soil organic matter, clay, and pH were manipulated in a controlled environment. Adding both clay tailings and peat enhanced the cation exchange capacity of sand tailings but also reduced the pH. The addition of peat reduced the extractable levels of some elements but increased the availability of Ca and Mg, thus proving beneficial. The use of clay tailings increased the levels of macro and micronutrients but also released Al, As, La, Pb and U. Additionally, the effects of soil mix and mycorrhizal treatments on growth and foliar chemistry were studied. Two plant species were selected: Panicum milicaeum and Pueraria phaseoloides. Different growth patterns were observed with respect to the additions of peat and clay. The results for mycorrhizal treatment (live inoculum or sterile carrier medium) are more complex, but both resulted in improved growth. The use of mycorrhizal fungi could greatly enhance rehabilitation efforts on sand tailings.

  19. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  20. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  1. Effect of radiation-induced amorphization on smectite dissolution.

    PubMed

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  2. Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.

    PubMed

    Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin

    2005-07-01

    Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier.

  3. Mont Terri Underground Rock Laboratory, Switzerland-Research Program And Key Results

    NASA Astrophysics Data System (ADS)

    Nussbaum, C. O.; Bossart, P. J.

    2012-12-01

    Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants and the potential for self-sealing, has brought clay formations into focus as potential host rocks for the geological disposal of radioactive waste. Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching clay formations. Research is carried out in the underground facility, which is located adjacent to the security gallery of the Mont Terri motorway tunnel. Fifteen partners from European countries, USA, Canada and Japan participate in the project. The objectives of the research program are to analyze the hydrogeological, geochemical and rock mechanical properties of the Opalinus Clay, to determine the changes induced by the excavation of galleries and by heating of the rock formation, to test sealing and container emplacement techniques and to evaluate and improve suitable investigation techniques. For the safety of deep geological disposal, it is of key importance to understand the processes occurring in the undisturbed argillaceous environment, as well as the processes in a disturbed system, during the operation of the repository. The objectives are related to: 1. Understanding processes and mechanisms in undisturbed clays and 2. Experiments related to repository-induced perturbations. Experiments of the first group are dedicated to: i) Improvement of drilling and excavation technologies and sampling methods; ii) Estimation of hydrogeological, rock mechanical and geochemical parameters of the undisturbed Opalinus Clay. Upscaling of parameters from laboratory to in situ scale; iii) Geochemistry of porewater and natural gases; evolution of porewater over time scales; iv) Assessment of long-term hydraulic transients associated with erosion and thermal scenarios and v) Evaluation of diffusion and retention parameters for long-lived radionuclides. Experiments related to repository-induced perturbations are focused on: i) Influence of rock liner on the disposal system and the buffering potential of the host rock; ii) Self-sealing processes in the excavation damaged zone; iii) Hydro-mechanical coupled processes (e.g. stress redistributions and pore pressure evolution during excavation); iv) Thermo-hydro-mechanical-chemical coupled processes (e.g. heating of bentonite and host rock) and v) Gas-induced transport of radionuclides in porewater and along interfaces in the engineered barrier system. A third research direction is to demonstrate the feasibility of repository construction and long-term safety after repository closure. Demonstration experiments can contribute to improving the reliability of the scientific basis for the safety assessment of future geological repositories, particularly if they are performed on a large scale and with a long duration. These experiments include the construction and installation of engineered barriers on a 1:1 scale: i) Horizontal emplacement of canisters; ii) Evaluation of the corrosion of container materials; repository re-saturation; iii) Sealing of boreholes and repository access tunnels and iv) Long-term monitoring of the repository. References Bossart, P. & Thury, M. (2008): Mont Terri Rock Laboratory. Project, Programme 1996 to 2007 and Results. - Rep. Swiss Geol. Surv. 3.

  4. Origin, distribution, and rapid removal of hydrothermally formed clay at Mount Baker, Washington

    USGS Publications Warehouse

    Frank, David

    1983-01-01

    Clay minerals are locally abundant in two hydrothermal areas at Mount Baker-Sherman Crater and the Dorr Fumarole Field. The silt- and clay-size fractions of volcanic debris that is undergoing alteration at and near the ground surface around areas of current fumarolic activity in Sherman Crater are largely dominated by alunite and a silica phase, either opal or cristobalite, but contain some kaolinite and smectite. Correspondingly, the chemistry of solutions at the surface of the crater, as represented by the crater lake, favors the formation of alunite over kaolinite. In contrast, vent-filling debris that was ejected to the surface from fumaroles in 1975 contains more than 20 percent clay-size material in which kaolinite and smectite are dominant. The youngest eruptive deposit (probably 19th century) on the crater rim was also altered prior to ejection and contains as much as 27 percent clay-size material in which kaolinite, smectite, pyrophyllite, and mixed-layer illitesmectite are abundant. The hydrothermal products, kaolinite and alunite, are present in significant amounts in five large Holocene mudflows that originated at the upper cone of Mount Baker. The distribution of kaolinite in crater and valley deposits indicates that, with the passage of time, increasingly greater amounts of this clay mineral have been incorporated into large mass movements from the upper cone. Either erosion has cut into more kaolinitic parts of the core of Sherman Crater, or the amount of kaolinite has increased through time in Sherman Crater.

  5. Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan

    2017-01-01

    Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite

  6. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    NASA Astrophysics Data System (ADS)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (< 5% chance of failure in 8-15 years after construction) contained soils with a liquid limit < 36%, a plasticity index < 16%, and a clay content < 32%. These data show that if one is constructing embankments and one wants to prevent slope failure of the 3:1 slopes, check the above soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  7. A framework for a decision support system for municipal solid waste landfill design.

    PubMed

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  8. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.; Pitts, M.; Ludowise, J.D.

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removesmore » outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)« less

  9. Effect of dietary supplementation with clay-based binders on biochemical and histopathological changes in organs of turkey fed with aflatoxin-contaminated diets.

    PubMed

    Lala, A O; Ajayi, O L; Oso, A O; Ajao, M O; Oni, O O; Okwelum, N; Idowu, O M O

    2016-12-01

    This study was carried out to investigate the effect of dietary supplementation with molecular or nano-clay binders on biochemical and histopathological examination of organs of turkeys fed diets contaminated with aflatoxin B 1. Two hundred and sixteen unsexed 1-day-old British United Turkeys were randomly allotted to nine diets in a 3 × 3 factorial arrangement of diets supplemented with no toxin binder, molecular toxin binder (MTB) and nano-clay toxin binder, each contaminated with 0, 60 and 110 ppb aflatoxin B 1 respectively. There were three replicates per treatment with eight turkeys per replicate. Biochemical analyses, organ weights and histopathological changes of some organs were examined at the end of the study which lasted for 84 days. Turkeys fed diets supplemented with molecular and nano-binders showed higher (p < 0.001) total serum protein, reduced (p < 0.001) serum uric acid and GGT concentration values when compared with those fed aflatoxin-contaminated diets supplemented with no binder. Turkeys fed aflatoxin-contaminated diets supplemented with no binder had increased (p < 0.001) AST and ALT concentration when compared with other treatments. The heaviest (p < 0.001) liver and intestinal weight was noticed with turkeys fed diets supplemented with no binder and contaminated with 110 ppb aflatoxin B 1 . Pathologically, there was no visible morphological alteration noticed in all turkeys fed uncontaminated diets and nano-clay-supplemented group. Hepatic paleness, hepatomegaly and yellowish discolouration of the liver were observed with turkeys fed diets containing no binder but contaminated with 60 and 110 ppb aflatoxin B1. Intestinal histopathological changes such as goblet cell hyperplasia, villous atrophy and diffuse lymphocytic enteritis were more prominent in turkeys fed diets containing no toxin binder and MTB. In conclusion, there were improved biochemical parameters and reduced deleterious effects of aflatoxin B 1 in turkeys fed diet supplemented with clay binders. However, the improvement was more conspicuous in the nano-clay-supplemented group than molecular clay group. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  10. Theoretical backgrounds of non-tempered materials production based on new raw materials

    NASA Astrophysics Data System (ADS)

    Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.

    2018-03-01

    One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.

  11. Ground-water flow near two radioactive-waste-disposal areas at the Western New York Nuclear Service Center, Cattaraugus County, New York; results of flow simulation

    USGS Publications Warehouse

    Bergeron, M.P.; Bugliosi, E.F.

    1988-01-01

    Two adjacent burial areas were excavated in a clay-rich till at a radioactive waste disposal site near West Valley in Cattaraugus County, N.Y.: (1) which contains mainly low-level radioactive wastes generated onsite by a nuclear fuel reprocessing plant, has been in operation since 1966; and (2) which contains commercial low-level radioactive wastes, was operated during 1963-75. Groundwater below the upper 3 meters of till generally moves downward through a 20- to 30-meter thick sequence of tills underlain by lacustrine and kame-delta deposits of fine sand and silt. Groundwater in the weathered, upper 3 meters of till can move laterally for several meters before either moving downward into the kame-delta deposits or discharging to the land surface. A two-dimensional finite-element model that simulates two vertical sections was used to evaluate hydrologic factors that control groundwater flow in the till. Conditions observed during March 1983 were reproduced accurately in steady-state simulations that used four isotropic units of differing hydraulic conductivity to represent two fractured and weathered till units near land surfaces, an intermediate group of isolated till zones that contain significant amounts of fine sand and silt, and a sequence of till units at depths that have been consolidated by overburden pressure. Recharge rates used in the best-fit simulation ranged from 1.4 cm/yr along smooth, sloping or compacted surfaces to 3.8 cm/yr near swampy areas. Values of hydraulic conductivity and infiltration used in the calibrated best-fit model were nearly identical to values used in a previous model analysis of the nearby commercial-waste burial area. Results of the model simulations of a burial pit assumed to be filled with water indicate that water near the bottom of the burial pit would migrate laterally in the shallow, weathered till for 5 to 6 meters before moving downward into the unweathered till, and water near the top of the pit would move laterally less than 20 meters before moving downward into the unweathered till. These results indicate that subsurface migration of radionuclides in groundwater to points of discharge to land surface is unlikely as long as the water level does not rise into the reworked cover material. (Author 's abstract)

  12. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    PubMed

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO 2 , sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  13. Quantifying In Situ Metal and Organic Contaminant Mobility in Marine Sediments

    DTIC Science & Technology

    2009-01-01

    and west of Ford Island, within the Pearl Harbor Naval Base. Sediments are fine grain silts and clays of basaltic origins and contain various... fiber filters for organics), and check valves (Figure 8) connected to synchronized parallel rotary valves connected to the collection chamber. Samples

  14. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less

  15. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    DOE PAGES

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less

  16. Smectite clays of Serbia and their application in adsorption of organic dyes

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2014-05-01

    Colorants and dyes are currently available in over a 100.000 different species and several biggest industries are using them daily in their manufacture processes (textile, cosmetics, food industry, etc.). Since colorants are easily dissoluble in water they pass through filter membranes without further decomposing and in that manner they end up in the environment. The main goal of this work is to apply certain methods in determining the suitability of individual clay in adsorbing and removing colorants from polluted waters. For this study we have chosen four different raw clays from three regions in Serbia: Svrljig (B), Bogovina (Bo) and Slatina-Ub (C and V) and as colorant - methylene blue dye (MB (MERCK, for analytical purposes)). Experiments where carried out to determine the sample structure (XRD and IR), grain size (granulometry), cationic exchange capacity (CEC via spectrophotometry using MB) and adsorption capabilities (spectrophotometry and fluorimetry using MB). XRD and IR data are showing that the samples are smectite clays where samples B i Bo are mainly montmorillonite while C and V are montmorillonite-illite clays. Granulometric distribution results indicate that samples B i Bo have smaller grain size, less that 1μ (over 60%) whereas the samples C and V are more coarse grained (40% over 20μ). This grain distribution is affecting their specific surface area in the manner that those coarse grained samples have smaller specific surface area. Cationic exchange capacity determined with methylene blue indicate that montmorillonite samples have larger CEC (B = 37 meq/100g, Bo = 50 meq/100g) and montmorillonite-illite samples smaller CEC (V = 5 meq/100g, V = 3 meq/100g). Fluorimetry measurement results gave us a clear distinction between those with higher and smaller adsorption capability. Montmorillonite samples (B and Bo) with higher CEC values and smaller grain size are adsorbing large amounts of methylene blue witch is visible by absence of fluorimetric band corresponding to methylene blue. Montmorillonite-illite samples with smaller CEC values and coarser grain size are adsorbing very small amounts of methylene blue from the suspension which is visible by appearance of the methylene blue band. Untreated, raw smectite clays of Serbia are efficient adsorbent material for removal of dyes from polluted waters. Samples from two regions especially, Bogovina and Svrljig, are showing favorable adsorption results and they are representing good raw materials for purification of waste-waters containing dyes. References: - Jović-Jovičić, N., Milutinović-Nikolić, A., Gržetić, I., Jovanović, D.; Organobentonite as efficient textile dye sorbent; Chem. Eng. Technol. 2008, 31, No. 4, 567-574 - Žunić, M.J., Milutinović-Nikolić, A.D., Jović-Jovičić, N.P., Banković, P.T., Mojović, Z.D., Manojlović, D.D., Jovanović, D.M.; Modified bentonite as adsorbent and catalyst for purification of wastewaters containing dyes; Hem. ind. 2010, 64 ,No. 3, 193-199

  17. Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

    2012-01-01

    Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

  18. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  19. Environmental Compatible Nursery Production

    USDA-ARS?s Scientific Manuscript database

    Amending bark substrates with clay significantly increases water use efficiency and decreases phosphorus leaching from containers. Best results were achieved with a small particle 24-48 sieved clay that was heat treated at 1472)º F (800º C)....

  20. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  1. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Storch, S.N.; Lewis, L.C.

    1998-07-07

    The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storagemore » of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.« less

  2. Constraints on silicates formation in the Si-Al-Fe system: Application to hard deposits in steam generators of PWR nuclear reactors

    NASA Astrophysics Data System (ADS)

    Berger, Gilles; Million-Picallion, Lisa; Lefevre, Grégory; Delaunay, Sophie

    2015-04-01

    Introduction: The hydrothermal crystallization of silicates phases in the Si-Al-Fe system may lead to industrial constraints that can be encountered in the nuclear industry in at least two contexts: the geological repository for nuclear wastes and the formation of hard sludges in the steam generator of the PWR nuclear plants. In the first situation, the chemical reactions between the Fe-canister and the surrounding clays have been extensively studied in laboratory [1-7] and pilot experiments [8]. These studies demonstrated that the high reactivity of metallic iron leads to the formation of Fe-silicates, berthierine like, in a wide range of temperature. By contrast, the formation of deposits in the steam generators of PWR plants, called hard sludges, is a newer and less studied issue which can affect the reactor performance. Experiments: We present here a preliminary set of experiments reproducing the formation of hard sludges under conditions representative of the steam generator of PWR power plant: 275°C, diluted solutions maintained at low potential by hydrazine addition and at alkaline pH by low concentrations of amines and ammoniac. Magnetite, a corrosion by-product of the secondary circuit, is the source of iron while aqueous Si and Al, the major impurities in this system, are supplied either as trace elements in the circulating solution or by addition of amorphous silica and alumina when considering confined zones. The fluid chemistry is monitored by sampling aliquots of the solution. Eh and pH are continuously measured by hydrothermal Cormet© electrodes implanted in a titanium hydrothermal reactor. The transformation, or not, of the solid fraction was examined post-mortem. These experiments evidenced the role of Al colloids as precursor of cements composed of kaolinite and boehmite, and the passivation of amorphous silica (becoming unreactive) likely by sorption of aqueous iron. But no Fe-bearing was formed by contrast to many published studies on the Fe-clay interactions in the nuclear waste storage, and by contrast with basic thermodynamic predictions. Conclusion: The Fe-clays and steam generators contexts imply relatively close aqueous environments: hydrothermal, reduced, diluted, neutral to slightly alkaline. The main difference is the status of iron: ferric/ferrous (magnetite) in the steam generators, metallic in the Fe-clay experiments. The concentration of aqueous iron when supplied by magnetite is low and does not allow its incorporation in secondary phases. By contrast, aqueous ferrous iron released by the corrosion of steel is not limited by the source, rather by the sink, and produces Fe-rich silicates. This example illustrates the discrepancy between complex mineral reactions and oversimplified predictions when sorption/passivation and nucleation/growth constraints are ignored. Reference: [1] Lanson et al. (2012) Amer. Min. 97, 864-871. [2] Lantenois et al. (2005) Clays & Clay Min. 53, 597-612. [3] Mosser-Ruck et al. (2010) Clays & Clay Min. 58, 280-291. [4] Perronnet et al. (2008) App. Clay Sci. 38, 187-202. [5] Osacky et al. (2010) App. Clay Sci. 50, 237-244. [6] Guillaume et al. (2003) Clay Min. 38, 281-302. [7] Rivard et al. (2013) Amer. Mineral. 98, 163-180. [8] Svensson and Hansen (2013) Clays & Clay Min. 61, 566-579.

  3. The Alberhill and other clay deposits of Temescal Canyon, Riverside County, California

    USGS Publications Warehouse

    Daviess, Steven Norman; Bramlette, M.N.

    1953-01-01

    Clay is mined in open pits by several companies in the Alberhill district, and the refractory clays of relatively high alumina sediment are used largely for fire brick. The Alberhill Coal and Clay Company is the largest operator and has produced a little over 2,000,000 tons of clay, of which nearly half was the refractory type. The clay occurs at the contact of the lower Tertiary and the Mesozoic basement complex. The weathered surface of basement rocks includes much clay of high iron and low alumina content, and the better clay occurs in the basal Tertiary sediments. The clay deposits vary rather abruptly in thickness and quality, and only local lenses contain workable deposits. Structural deformation makes dips of 10 to 20 degrees common and the clay strata therefore pitch under excessive overburden in short distances. Extensive deposits of thick alluvial fan deposits cover the clay-bearing strata over most of the area, and add to the overburden problems. The apparent lack of clay deposits of good quality that would total several million tons of ore, and the geological conditions that would make exploration and mining difficult and expensive make this district unpromising.

  4. Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada

    USGS Publications Warehouse

    Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.

    1996-01-01

    The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and Blue Star deposits. Rocks classified as silicic-argillic in the Popovich Formation represent the most significant gold host. Silicicargillic rocks commonly exhibit bedding-parallel alteration zones. This pattern of alteration indicates that stratigraphy as well as northwest-trending structures played a significant role in the migration of gold-bearing fluids. Based on K-Ar age determinations of hydrothermal 1M illite associated with gold, the main event of mineralization in the Genesis and Blue Star deposits occurred between 93 and 100 Ma, during mid-Cretaceous time.

  5. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  6. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  7. Improving the properties of geopolymer containing oil-contaminated clay, metakaolin, and blast furnace slag by applying nano-SiO2.

    PubMed

    Luo, Huan-Lin; Lin, Deng-Fong; Chen, Shih-Chieh

    2017-07-01

    In this study, geopolymer specimens based on calcined oil-contaminated clays (OCCs), metakaolin replacements of OCCs, and blast furnace slag were manufactured by the addition of nano-SiO 2 to improve their properties. The effects of adding 0, 1, 2, or 3% nano-SiO 2 on the properties and microstructures of the geopolymer specimens were determined using compressive strength tests, flow tests, setting time tests, scanning electron microscopy (SEM), and silicon nuclear magnetic resonance spectroscopy (Si-NMR). The results showed that the setting time and flowability of the geopolymer specimens decreased and the compressive strength increased as the amount of nano-SiO 2 increased. These results were supported by the SEM and Si-NMR assays. This study suggests that the addition of nano-SiO 2 was beneficial and improved the properties of the geopolymer specimens containing calcined OCC.

  8. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.

    PubMed

    Kalaoğlu, Özlem I; Ünlü, Cüneyt H; Galioğlu Atıcı, Oya

    2016-08-20

    This study aims at evaluation of cellulose recovered from agricultural waste (corn cob) in terms of synthesis of graft copolymers, polymer/clay nanocomposites, and nanofibers. The copolymers and nanocomposites were synthesized in aqueous solution using Ce(4+) initiator. Conditions (concentrations of the components, reaction temperature, and period) were determined first for copolymer synthesis to obtain the highest conversion ratio. Then found parameters were used to synthesize nanocomposites adding clay mineral to reaction medium. Although there was a decrease in conversion in nanocomposites syntheses, thermal and rheologic measurements indicated enhancements compared to pristine copolymer. Obtained polymeric materials have been successfully electrospun into nanofibers and characterized. Average diameter of the nanofibers was about 650nm and was strongly influenced by NaMMT amount in the nanocomposite sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fluorine in the UK environment.

    PubMed

    Fuge, R; Andrews, M J

    1988-12-01

    Relatively low concentrations of fluorine in drinking water (≤ 1 mg F/l) have been shown to significantly reduce the degree of dental caries in children and fluorine would also appear to have a beneficial effect on bone formation in both humans and farm animals. However, it is apparent that elevated levels of fluorine in the diet have sometimes resulted in problems of increased dental caries and of the development of bone deformities. Much of the fluorine in rocks and soils occurs in apatite and hydroxysilicate minerals, fluorite being the only relatively common rock forming mineral containing fluorine as an essential constituent.Little systematic data are available on fluorine concentrations in soils, plants and natural waters in the UK. General background soil concentrations lie in the range 200 - 400 mg F/kg. For waters the average fluorine content is low, <0.1 mg F/l.In the British Isles there are several areas where there are enhanced levels of fluorine. In the northern Pennines, Derbyshire, northeast Wales and Cornwall, fluorite occurs as a significant component of mineralisation and much fluorine has been added to the environment from mining waste dumps. Soils in northeast Wales contain up to 3,650 mg F/kg and in the northern Pennines up to 20,000 mg F/kg. Waters contain up to 2.3 mg F/l. In southwest England, the granites are generally fluorine-rich with the fluorite granites of the St Austell pluton containing as much as 1 percent fluorine. These rocks are frequently kaolinised and intensively worked as a source of china clay. Soils in the vicinity of the waste tips contain up to 3,300 mg F/kg and grasses up to 2,950 mg F/kg. Surface waters in the St Austell area contain up to 1.25 mg F/l.Atmospheric fluorine pollution around brickworks in the Peterborough and Bedford areas has resulted in fluorosis in farm animals. Other sources of atmospheric fluorine pollution are aluminium smelters, steelworks and fossil fuel burning.

  10. Waste treatment: Beverage industry. January 1984-October 1989 (Citations from the Food Science and Technology Abstracts data base). Report for January 1984-October 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 223 citations, all of which are new entries to the previous edition.)

  11. Waste treatment: Beverage industry. January 1972-December 1983 (Citations from the Food Science and Technology Abstracts data base). Report for January 1972-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 312 citations, none of which are new entries to the previous edition.)

  12. Study of Adsorption and Flocculation Properties of Natural Clays to Remove Prorocentrum lima

    PubMed Central

    Louzao, Maria Carmen; Abal, Paula; Fernández, Diego A.; Vieytes, Mercedes R.; Legido, José Luis; Gómez, Carmen P.; Pais, Jesus; Botana, Luis M.

    2015-01-01

    High accumulations of phytoplankton species that produce toxins are referred to as harmful algal blooms (HABs). HABs represent one of the most important sources of contamination in marine environments, as well as a serious threat to public health, fisheries, aquaculture-based industries, and tourism. Therefore, methods effectively controlling HABs with minimal impact on marine ecology are required. Marine dinoflagellates of the genera Dinophysis and Prorocentrum are representative producers of okadaic acid (OA) and dinophysistoxins responsible for the diarrhetic shellfish poisoning (DSP) which is a human intoxication caused by the consumption of shellfish that bioaccumulate those toxins. In this work we explore the use of natural clay for removing Prorocentrum lima. We evaluate the adsorption properties of clays in seawater containing the dinoflagellates. The experimental results confirmed the cell removal through the flocculation of algal and mineral particles leading to the formation of aggregates, which rapidly settle and further entrain cells during their descent. Moreover, the microscopy images of the samples enable one to observe the clays in aggregates of two or more cells where the mineral particles were bound to the outer membranes of the dinoflagellates. Therefore, this preliminary data offers promising results to use these clays for the mitigation of HABs. PMID:26426051

  13. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    PubMed

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  14. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.

    PubMed

    Bristow, Thomas F; Rampe, Elizabeth B; Achilles, Cherie N; Blake, David F; Chipera, Steve J; Craig, Patricia; Crisp, Joy A; Des Marais, David J; Downs, Robert T; Gellert, Ralf; Grotzinger, John P; Gupta, Sanjeev; Hazen, Robert M; Horgan, Briony; Hogancamp, Joanna V; Mangold, Nicolas; Mahaffy, Paul R; McAdam, Amy C; Ming, Doug W; Morookian, John Michael; Morris, Richard V; Morrison, Shaunna M; Treiman, Allan H; Vaniman, David T; Vasavada, Ashwin R; Yen, Albert S

    2018-06-01

    Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe 3+ -bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate.

  15. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags ), volcanic glass , fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...solidified with alkali- activated glass slag US Army Corps of Engineers 4 Pohakuloa Training Area (PTA) as a Test Site • Serious dust problem at site...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass ( slag , fly ash) can be used • More alkaline solution is

  16. Computational and experimental study of atmospheric moisture in ceramic blocks filled with waste fibres in winter season

    NASA Astrophysics Data System (ADS)

    Stastnik, S.

    2016-06-01

    Development of materials for vertical outer building structures tends to application of hollow clay blocks filled with some appropriate insulation material. Ceramic fittings provide high thermal resistance, but the walls built from them suffer from condensation of air humidity in winter season frequently. The paper presents the computational simulation and experimental laboratory validation of moisture behaviour of such masonry with insulation prepared from waste fibres under the Central European climatic conditions.

  17. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  18. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  19. Gehlenite and anorthite formation from fluid fly ash

    NASA Astrophysics Data System (ADS)

    Perná, Ivana; Šupová, Monika; Hanzlíček, Tomáš

    2018-04-01

    Fluid fly ash could be considered a waste, but, when well treated, it may also become a useful secondary source material. Its rather high content of calcium-containing phases along with thermally treated alumino-silicate residues resulting from coal combustion can lead to the formation of a stable system with newly formatted phases. The high temperature destroys the clay lattice and activates a new configuration of aluminum ions, changing their coordination to oxygen. The effect is accompanied by changes in charge in the surroundings, which are compensated for by calcium ions. The higher the temperature of the fluid ash treatment, the more pronounced the appearance of gehlenite and anorthite in the final mass. Both are natural materials and, together with mullite and anhydrite, they could ensure safety and protection even if exposed to open fire of up to 1150 °C.

  20. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    PubMed

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  1. Effect of boron waste on the properties of mortar and concrete.

    PubMed

    Topçu, Iker Bekir; Boga, Ahmet Raif

    2010-07-01

    Utilization of by-products or waste materials in concrete production are important subjects for sustainable development and industrial ecology concepts. The usages as mineral admixtures or fine aggregates improve the durability properties of concrete and thus increase the economic and environmental advantages for the concrete industry. The effect of clay waste (CW) containing boron on the mechanical properties of concrete was investigated. CW was added in different proportions as cement additive in concrete. The effect of CW on workability and strength of concrete were analysed by fresh and hardened concrete tests. The results obtained were compared with control concrete properties and Turkish standard values. The results showed that the addition of CW had a small effect upon the workability of the concrete but an important effect on the reduction of its strength. It was observed that strength values were quite near to that of control concrete when not more than 10% CW was used in place of cement. In addition to concrete specimens, replacing cement with CW produced mortar specimens, which were investigated for their strength and durability properties. The tests of SO( 4) (2-) and Cl(-) effect as well as freeze-thaw behaviour related to the durability of mortar were performed. Consequently, it can be said that some improvements were obtained in durability properties even if mechanical properties had decreased with increasing CW content.

  2. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  3. CEM V based special cementitious materials investigated by means of SANS method. Preliminary results

    NASA Astrophysics Data System (ADS)

    Dragolici, A. C.; Balasoiu, M.; Orelovich, O. L.; Ionascu, L.; Nicu, M.; Soloviov, D. V.; Kuklin, A. I.; Lizunov, E. I.; Dragolici, F.

    2017-05-01

    The management of the radioactive waste assume the conditioning in a cement matrix as an embedding, stable, disposal material. Cement matrix is the first and most important engineering barrier against the migration in the environment of the radionuclides contained in the waste packages. Knowing how the microstructure develops is therefore desirable in order to assess the compatibility of radioactive streams with cement and predict waste form performance during storage and disposal. For conditioning wastes containing radioactive aluminum new formulas of low basicity cements, using coatings as a barrier between the metal and the conditioning environment or introducing a corrosion inhibitor in the matrix system are required. Preliminary microstructure investigation of such improved CEM V based cement matrix is reported.

  4. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressuremore » is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different climate conditions. The results of experimental study and numerical simulation reveal that as the degree of saturation and thickness of clay increase, the gas breakthrough pressure increases but the gas emission rate decreases significantly. Under a gas pressure of 10 kPa (the upper bound limit of typical landfill gas pressure), a 0.6 m or thicker compacted clay is able to prevent gas breakthrough at degree of saturation of 60% or above (in humid regions). Furthermore, to meet the limit of gas emission rate set by the Australian guideline, a 0.6 m-thick clay layer may be sufficient even at low degree of saturation (i.e., 10% like in arid regions)« less

  5. Hollow Cylinder Tests on Boom Clay: Modelling of Strain Localization in the Anisotropic Excavation Damaged Zone

    NASA Astrophysics Data System (ADS)

    François, Bertrand; Labiouse, Vincent; Dizier, Arnaud; Marinelli, Ferdinando; Charlier, Robert; Collin, Frédéric

    2014-01-01

    Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).

  6. Waste isolation safety assessment program. Task 4. Collection and generation of transport data theoretical and experimental evaluation of waste transport in selected rocks. Annual progress report, October 1, 1978-September 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.J.; Benson, L.V.; Yee, A.W.

    1979-09-30

    The objective of the program is to establish a basis for the prediction of radionuclide sorption in geologic environments. In FY 79, experimental and theoretical efforts were concentrated on a study of the sorption of cesium on the solid substrates Min-u-sil (quartz) and Belle Fourche clay (montmorillonite). Cesium sorption isotherms were obtained for the two substrates at 26/sup 0/C as a function of initial Cs concentration in solution (10/sup -3/M to 10/sup -9/M), pH (5 to 10) and supporting electrolyte concentration (0.002M, 0.01M, 0.1M, and 1M) NaCl and a simulated basalt groundwater in batch-type experiments using crushed material. Characterization ofmore » the solid phases included measurements of chemical compositions, particle sizes, surface areas, and cation-exchange capacities. In addition, potentiometric acid/base titrations of the solid phases were conducted in order to determine the acid dissociation and electrolyte exchange constants of the surfaces. Preliminary analysis of the sorption data indicate that while the clay data could be explained by simple mass-action expressions, the quartz data could not. Theoretical efforts were aimed at developing and testing an electrolyte binding electrical double-layer model to predict sorption isotherms. A computerized version of the model, MINEQL, which simultaneously considers surface and solution chemical equilibria, was brought to operational status. Input parameters required by MINEQL were determined and sorption isotherms for Cs on the Belle Fourche clay were calculated over the same range of parameters as the experimental measurements. Comparisons showed that the model was able to simulate the isotherms quite well except at the lowest pH values for the 0.002M and 0.01M NaCl solutions.« less

  7. Performance of Kaolin Clay on the Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  8. Monitoring regional effects of high pressure injection of wastewater in a limestone aquifer

    USGS Publications Warehouse

    Faulkner, Glen L.; Pascale, Charles A.

    1975-01-01

    More than 10 billion gallons (38 × 106 m3) of acid industrial liquid waste has been injected in about 11 years under high pressure into a saline-water-filled part of a limestone aquifer of low transmissivity between 1,400 and 1,700 feet (430 and 520 m) below land surface near Pensacola, Florida. A similar waste disposal system is planned for the same zone at a site about 8.5 miles (13.7 km) to the east. The injection zone is the lower limestone of the Floridan aquifer. The lower limestone is overlain by a confining layer of plastic clay about 220 feet (67 m) thick at the active injection site and underlain by another confining layer of shale and clay. The upper confining layer is overlain by the upper limestone of the Floridan aquifer.The active injection system consists of two injection wells about a quarter of a mile (0.4 km) apart and three monitor wells. Two of the monitor wells (deep monitors) are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations about 1.5 miles (2.4 km) south and 1.9 miles (3.1 km) north of the center of the injection site. The third well (shallow monitor), used to observe any effects in the upper limestone, is about 100 feet (30 m) from one of the injection wells. Since 1972 the injection zone has also been monitored at a test well at the planned new injection site. Three more monitor wells in the injection zone were activated in early 1974 at sites 17 miles (27 km) northeast, 22 miles (35 km) east and 33 miles (53 km) northeast of the injection site. The six deep monitors provide a system for evaluating the regional effects of injecting wastes. No change in pressure or water quality due to injection was, by mid-1974, evident in the upper limestone at the injection site, but static pressures in the lower limestone at the site had increased 8 fold since injection began in 1963. Chemical analyses indicated probable arrival of the diluted waste at the south monitor well in 1973. By mid-1974 waste evidently had not reached the north monitor well.Calculations indicate that by mid-1974 pressure effects from waste injection extended radially more than 40 miles (64 km) from the injection site. By mid-1974 pressure effects of injection were evident from water-level measurements made at the five deep monitor wells nearest the active injection site. No effects were recognized at the well 33 miles (53 km) away. Less than 20 miles (32 km) northeast of the active injection site, the lower limestone contains fresh water. Changes in the pressure regime due to injection indicate a tendency for northeastward movement of the fresh-water/salt-water interface in the lower limestone.

  9. Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles

    NASA Astrophysics Data System (ADS)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham; Semnani, Dariush

    2015-10-01

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO2 were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO2 nanoparticles.

  10. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  11. Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository.

    PubMed

    Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena

    2017-12-01

    The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.

  12. Development of anti-slip sustainable tiles from agricultural waste

    NASA Astrophysics Data System (ADS)

    Zulkefli, Zainordin Firdaus; Zainol, Mohd Remy Rozainy Mohd Arif; Osman, Norhayati

    2017-04-01

    In general of 80% the human activities is located in the building. Buildings constructed should be in line with full functions and optimum safety features. Aspects to be emphasized is the slip on the floor of the building. The selection of tiles must have anti-slip characteristics and achieve standard strength stress. This study is conducted to develop anti-slip tiles modification using agricultural waste. The material used is agricultural waste such rice husks, palm fibre and saw dusk mixed into the clay and then baked at a temperature of 900-1185 C °. Agricultural waste mixture ratio is 5%, 10% and 15%. The samples of tiles are produced for experiments. The results of agricultural waste tiles show that the strength is higher than standard strength, the water absorption less than standard tiles and pendulum value test is exceeds 36.

  13. Heavy metal migration in soils and rocks at historical smelting sites.

    PubMed

    Maskall, J; Whitehead, K; Thornton, I

    1995-09-01

    The vertical migration of metals through soils and rocks was investigated at five historical lead smelting sites ranging in age between 220 and 1900 years. Core samples were taken through metal-contaminated soils and the underlying strata. Concentration profiles of lead and zinc are presented from which values for the distances and rates of migration have been derived. Slag-rich soil horizons contain highly elevated metal concentrations and some contamination of underlying strata has occurred at all sites. However, the amounts of lead and zinc that have migrated from soils and been retained at greater depths are comparatively low. This low metal mobility in contaminated soils is partly attributed to the elevation of soil pH by the presence of calcium and carbonate originating from slag wastes and perhaps gangue minerals. Distances and rates of vertical migration were higher at those sites with soils underlain by sandstone than at those with soils underlain by clay. For sites with the same parent material, metal mobility appears to be increased at lower soil pH. The mean migration rates for lead and zinc reach maxima of 0.75 and 0.46 cm yr(-1) respectively in sandstone at Bole A where the elements have moved mean distances of 4.3 and 2.6 m respectively. There is some evidence that metal transport in the sandstone underlying Bole A and Cupola B occurs preferentially along rock fractures. The migration of lead and zinc is attenuated by subsurface clays leading to relatively low mean migration rates which range from 0.03 to 0.31 cm yr(-1) with many values typical of migration solely by diffusion. However, enhanced metal migration in clays at Cupola A suggest a preferential transport mechanism possibly in cracks or biopores.

  14. Miscellaneous chemical basin expedited site characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riha, B.D.; Pemberton, B.E.; Rossabi, J.

    1996-12-01

    A total of twenty nine cone penetrometer test (CPT) pushes in three weeks were conducted for vadose zone characterization of the Miscellaneous Chemical Basin (MCB) waste unit at the Savannah River Site. The shallow, unlined basin received liquid chemical wastes over an 18 year period beginning in 1956. This characterization was initiated to determine the vertical and lateral extent of contamination in the vadose zone and to install vadose zone wells for remediation by barometric pumping or active vapor extraction to help prevent further contamination of groundwater. The CPT locations within the waste site were selected based on results frommore » previous shallow soil gas surveys, groundwater contamination data, and the suspected basin center. Geophysical data and soil gas samples were collected at twenty five locations and twenty five vadose zone wells were installed. The wells were screened to target the clay zones and areas of higher soil gas concentrations. The well construction diagrams are provided in Appendix B. Baro-Ball{trademark} valves for enhanced barometric pumping were installed on each well upon completion to immediately begin the remediation treatability study at the site.« less

  15. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    PubMed Central

    Ribeiro, Simone P S; Estevão, Luciana R M; Nascimento, Regina S V

    2008-01-01

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials. PMID:27877975

  16. Influence of Clay Platelet Spacing on Oxygen Permeability of Thin Film Assemblies

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite clay and various polyelectrolytes have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient in an effort to show the influence of clay platelet spacing on thin film permeability. After polymer-clay layers have been sequentially deposited, the resulting transparent films exhibit a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall forms an extremely tortuous path for a molecule to traverse, creating channels perpendicular to the concentration gradient that increase the molecule's diffusion length and delay its transmission. To a first approximation, greater clay spacing (i.e., reduced clay concentration) produces greater oxygen barrier. Oxygen transmission rates below 0.005 cm^3/m^2.day have been achieved for films with only eight clay layers (total thickness of only 200 nm). With optical transparencies greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  17. Models of compacted fine-grained soils used as mineral liner for solid waste

    NASA Astrophysics Data System (ADS)

    Sivrikaya, Osman

    2008-02-01

    To prevent the leakage of pollutant liquids into groundwater and sublayers, the compacted fine-grained soils are commonly utilized as mineral liners or a sealing system constructed under municipal solid waste and other containment hazardous materials. This study presents the correlation equations of the compaction parameters required for construction of a mineral liner system. The determination of the characteristic compaction parameters, maximum dry unit weight ( γ dmax) and optimum water content ( w opt) requires considerable time and great effort. In this study, empirical models are described and examined to find which of the index properties correlate well with the compaction characteristics for estimating γ dmax and w opt of fine-grained soils at the standard compactive effort. The compaction data are correlated with different combinations of gravel content ( G), sand content ( S), fine-grained content (FC = clay + silt), plasticity index ( I p), liquid limit ( w L) and plastic limit ( w P) by performing multilinear regression (MLR) analyses. The obtained correlations with statistical parameters are presented and compared with the previous studies. It is found that the maximum dry unit weight and optimum water content have a considerably good correlation with plastic limit in comparison with liquid limit and plasticity index.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 12.5-acre Anderson Development site is an active chemical manufacturing facility in Adrian, Madison Township, Lenawee County, Michigan. The site is in a 40-acre industrial park, and is comprised of several areas of contamination that exceed health-based levels, including a 0.5-acre former process wastewater pretreatment lagoon containing lagoon sludge, clay underlying the lagoon, and a small quantity of soil near the lagoon. From 1970 to 1979, the plant produced 4,4-methylene bis(2-chloroaniline) (MBOCA), a hardening agent for the production of polyurethane plastics. Process wastewater was discharged directly to surface water until 1973, when it was discharged to a publicly owned treatmentmore » works (POTW). In 1979, the State ordered the POTW not to accept the waste stream because of the decreased efficiency of the POTW resulting from MBOCA. In 1980 and 1981, the site owner and the State performed a cleanup action of all contaminated site areas with levels of MBOCA above 1 ppm. This included decontaminating the plant, sweeping streets, shampooing/vacuuming residential carpet, and removing some surface soil. The Record of Decision (ROD) addresses the remediation of the pretreatment lagoon area. The primary contaminants of concern affecting soil and lagoon sludge are organics, namely MBOCA and its degradation products.« less

  19. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  20. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.

    PubMed

    Sutcu, Mucahit; Ozturk, Savas; Yalamac, Emre; Gencel, Osman

    2016-10-01

    Production of porous clay bricks lightened by adding olive mill waste as a pore making additive was investigated. Factors influencing the brick manufacturing process were analyzed by an experimental design, Taguchi method, to find out the most favorable conditions for the production of bricks. The optimum process conditions for brick preparation were investigated by studying the effects of mixture ratios (0, 5 and 10 wt%) and firing temperatures (850, 950 and 1050 °C) on the physical, thermal and mechanical properties of the bricks. Apparent density, bulk density, apparent porosity, water absorption, compressive strength, thermal conductivity, microstructure and crystalline phase formations of the fired brick samples were measured. It was found that the use of 10% waste addition reduced the bulk density of the samples up to 1.45 g/cm(3). As the porosities increased from 30.8 to 47.0%, the compressive strengths decreased from 36.9 to 10.26 MPa at firing temperature of 950 °C. The thermal conductivities of samples fired at the same temperature showed a decrease of 31% from 0.638 to 0.436 W/mK, which is hopeful for heat insulation in the buildings. Increasing of the firing temperature also affected their mechanical and physical properties. This study showed that the olive mill waste could be used as a pore maker in brick production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Study of thermo-hydro-mechanical processes at a potential site of an Indian nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Maheshwar, Sachin; Verma, A. K.; Singh, T. N.; Bajpai, R. K.

    2015-12-01

    A detailed scientific study is required for the disposal of high-level radioactive wastes because they generate extremely high heat during their half-life period. Although, several methods have been proposed for the disposal of nuclear wastes, deep underground repository is considered to be a suitable option. In this paper, field investigation has been done near to Bhima basin of peninsular India. Detailed fracture analysis near the borehole shows very prominent maxima of fractures striking N55∘E coinciding with the trace of master basement cover metasediment fault. Physico-mechanical properties of rocks have been determined in the laboratory. The host rock chosen is granite and engineered barrier near the canister is proposed to be clay. A thermo-hydro-mechanical (THM) analysis has been done to study the effect of heat on deformations, stresses and pore-pressure variation in granite and clay barriers. For this purpose, finite difference method has been used. Suitable rheological models have been used to model elastic canister and elasto-plastic engineered barrier and host rock. It has been found that both temperature and stresses at any point in the rockmass is below the design criteria which are 100∘C for temperature and 0.2 for damage number.

  2. Hydrogeologische Untersuchungen im oberflächennahen Opalinuston (Bohrloch Lausen, Schweiz)

    NASA Astrophysics Data System (ADS)

    Vogt, Tobias; Hekel, Uwe; Ebert, Andreas; Becker, Jens K.; Traber, Daniel; Giger, Silvio; Brod, Monika; Häring, Christian

    2017-09-01

    In Switzerland, the Opalinus Clay is being investigated in detail as a host rock for disposal of radioactive waste. To complement and improve existing data on near-surface decompaction effects, hydraulic-hydrochemical characterization of the Opalinus Clay from the weathering zone into the unweathered rock below was performed. For these investigations, one borehole of a borehole heat-exchanger field in Lausen (Canton Basel-Landschaft, Switzerland), which penetrates the near-surface Opalinus Clay, was completely cored. The hydraulic conductivity was determined by means of hydraulic tests in different depths and shows an decrease from 10-4 m/s at the very shallow weathered zone to 10-13 m/s starting at a depth of 28 m below the decompaction zone. In addition, different groundwater types could be identified. Moreover, the structural investigations indicate the end of the weathering zone at a depth of 18 m and that decompaction has no influence on hydraulic conductivity from 28 m onwards.

  3. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    NASA Astrophysics Data System (ADS)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  4. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Logan, John M.

    1981-06-01

    The effects of simulated fault gouge on the sliding behavior of Tennessee sandstone are studied experimentally with special reference to the stabilizing effect of clay minerals mixed into the gouge. About 30 specimens with gouge composed of pure clays, of homogeneously mixed clay and anhydrite, or of layered clay and anhydrite, along a 35° precut are deformed dry in a triaxial apparatus at a confining pressure of 100 MPa, with a shortening rate of about 5 · 10 -4/sec, and at room temperature. Pure clay gouges exhibit only stable sliding, and the ultimate frictional strength is very low for bentonite (mont-morillonite), intermediate for chlorite and illite, and considerably higher for kaolinite. Anhydrite gouge shows violent stick-slip at 100 MPa confining pressure. When this mineral is mixed homogeneously with clays, the frictional coefficient of the mixed gouge, determined at its ultimate frictional strength, decreases monotonically with an increase in the clay content. The sliding mode changes from stick-slip to stable sliding when the frictional coefficient of the mixed clay-anhydrite gouge is lowered down below 90-95% of the coefficient of anhydrite gouge. The stabilizing effect of clay in mixed gouge is closely related to the ultimate frictional strength of pure clays; that is, the effect is conspicuous only for a mineral with low frictional strength. Only 15-20% of bentonite suppresses the violent stick-slip of anhydrite gouge. In contrast, violent stick-slip occurs even if the gouge contains as much as 75% of kaolinite. The behavior of illite and chlorite is intermediate between that of kaolinite and bentonite. Bentonite—anhydrite two-layer gouge exhibits stable sliding even when the bentonite content is only 5%. Thus, the presence of a thin, clay-rich layer in a fault zone stabilizes the behavior much more effectively than do the clay minerals mixed homogeneously with the gouge. This result brings out the mechanical significance of internal structures of a fault zone in understanding the effects of intrafault materials on the fault motion. Based on the present experimental results incorporated with some other experimental data, it is argued that although the stabilizing effect of montmorillonite and vermiculite is indeed remarkable at room temperature, the effect should be much less pronounced at elevated temperatures, due perhaps to the dewatering of the clays. In most geological environments where shallow earthquakes occur, the stabilizing effect of clays is probably not so conspicuous as to completely suppress the unstable motion of a fault.

  5. Spatially resolved nanoscale observations of soil carbon multidecadal persistence

    NASA Astrophysics Data System (ADS)

    Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.

    2015-12-01

    Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are decreasing with time, evidencing the dominant presence of microbial SOC. STXM-NEXAFS data shows that, in the fine and intermediate clay fractions, during the first 50 years of BF all mineral particles are associated with SOC. On the contrary, in the coarse clays, SOC displays more diversity: the chemical signature is more diverse and mineral particles not associated with SOC appear more quickly.

  6. Species removal from aqueous radioactive waste by deep-bed filtration.

    PubMed

    Dobre, Tănase; Zicman, Laura Ruxandra; Pârvulescu, Oana Cristina; Neacşu, Elena; Ciobanu, Cătălin; Drăgolici, Felicia Nicoleta

    2018-05-26

    Performances of aqueous suspension treatment by deep-bed sand filtration were experimentally studied and simulated. A semiempirical deterministic model and a stochastic model were used to predict the removal of clay particles (20 μm) from diluted suspensions. Model parameters, which were fitted based on experimental data, were linked by multiple linear correlations to the process factors, i.e., sand grain size (0.5 and 0.8 mm), bed depth (0.2 and 0.4 m), clay concentration in the feed suspension (1 and 2 kg p /m 3 ), suspension superficial velocity (0.015 and 0.020 m/s), and operating temperature (25 and 45 °C). These relationships were used to predict the bed radioactivity determined by the deposition of radioactive suspended particles (>50 nm) from low and medium level aqueous radioactive waste. A deterministic model based on mass balance, kinetic, and interface equilibrium equations was developed to predict the multicomponent sorption of 60 Co, 137 Cs, 241 Am, and 3 H radionuclides (0.1-0.3 nm). A removal of 98.7% of radioactive particles was attained by filtering a radioactive wastewater volume of 10 m 3 (0.5 mm sand grain size, 0.3 m bed depth, 0.223 kg p /m 3 suspended solid concentration in the feed suspension, 0.003 m/s suspension superficial velocity, and 25 °C operating temperature). Predicted results revealed that the bed radioactivity determined by the sorption of radionuclides (0.01 kBq/kg b ) was significantly lower than the bed radioactivities caused by the deposition of radioactive particles (0.5-1.8 kBq/kg b ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS)more » feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.« less

  8. Macro-scale deformation behavior and characterization of deformation mechanisms below µm-scale in experimentally deformed Boom Clay by using the combination of triaxial compression, X-ray µ-CT imaging, DIC, BIB cross sectioning, and SEM

    NASA Astrophysics Data System (ADS)

    Oelker, Anne; Desbois, Guillaume; Urai, Janos L.; Bésuelle, Pierre; Viggiani, Gioacchino; Levasseur, Séverine

    2017-04-01

    Boom Clay is one formation being studied in Belgium as a potential host rock for deep geological disposal of radioactive waste. This poorly indurated clay presents in its natural state favorable properties against the migration of radionuclides: low permeability, low solute diffusion rates, good retention and sorption capacity for many radionuclides and good self-sealing capacity. During construction of disposal galleries, stress redistribution will lead to perturbation of the clay and the formation around galleries of the so-called "Excavation disturbed Zone" (EdZ). The study of deformation mechanisms and evolution of Boom Clay properties at macro but also micro scale allows to assess in a more mechanistic way the evolution of Boom Clay properties in this EdZ. In this work, we show microstructural investigations of Boom Clay deformed in undrained triaxial compression by linking conventional stress/strain curves with Digital Image Correlation (DIC) and scanning electron microscopy (SEM) imaging of broad-ion-beam (BIB) milled cross-sections to deduce deformation mechanisms based on microstructures at sub-micron resolution. Two specimens, collected in Mol (Belgium) at the European Underground Laboratories (URL) on HADES level, were analyzed: The major principal stress σ1 was applied parallel as well as perpendicular to the bedding direction with an initial mean normal effective stress of 4.5 MPa and an initial pore water pressure of 2.3 MPa, which are equal to the in-situ values. Linking the resulting DIC-derived maps of incremental strains with the corresponding stress/strain curve give not only information about the moment of the shear band development, but also on the way strain evolves within the specimen throughout the rest. Incremental DIC analysis of X-ray tomographic scans performed during loading tests give a time evolution of the strain field, and subsequently allow to detect strain localization which appears close to the stress peak. Regions with a comparable high and low shear strain were chosen and prepared for BIB-SEM investigations. In this case, shear bands show typical characteristics of uncemented small-grained clay-rich materials deformed at high shear strains including anastomosing shears. At nano-scale, the preferential orientation of clay particles in the anastomosing shears are construed to be responsible for the shear weakness. In addition, the reorientation of clay particles during the deformation leads to the strong reduction of porosity in the shear band. Ductile deformation mechanisms represented by grain-rotation, grain-sliding, bending, and granular flow are strongly involved for the development of the shear band.

  9. Fate of organic carbon from different waste materials in cropland soils

    NASA Astrophysics Data System (ADS)

    Paetsch, Lydia; Mueller, Carsten; Rumpel, Cornelia; Houot, Sabine; Kögel-Knabner, Ingrid

    2015-04-01

    Organic amendments are widely used to enhance the fertility of cropland soils. However, there is only scarce knowledge about the long term impact of added organic matter (OM) on the soil organic carbon (SOC) pool. Therefore, we analyzed a long-term field experiment in Feucherolles (France), which regularly received three different composts (home sorted bio-waste mixed with green waste (BIO), municipal solid waste (MSW) and a mixture of green waste and sewage sludge (GWS) and cattle manure since 1998. With these organic materials approximately 4 Mg total OC were added to the soil in two year intervals. The experiment was fully randomized with 4 replicates for each amendment. In September 2013 we took samples from the surface soil (0-5 cm of Ap horizon) of all 4 treatments and the unamended control. To study the chemical alteration and the fate of the added OC into different soil compartments, we fractionated the soils by physical means using a combined density and particle size protocol. Carbon and N content were determined in bulk soils, amendments as well as in size fractions (fPOM, oPOM <20µm and oPOM >20µm, sand, silt and a combined fine silt-clay fraction). Chemical composition was determined by solid-state 13C CPMAS NMR spectroscopy. We found significant higher C contents for the oPOM small and sand fraction of BIO treated soil and for the clay fraction of GWS treated soils (p<0.05). Nitrogen contents were significantly higher for BIO treated soils in bulk soil, fPOM, oPOM small and for GWS treated soils in bulk soil, fPOM and oPOM. The NMR measurements revealed that only the chemical composition of the fPOM differed according to the treatment; towards the more altered fractions as the oPOM small, the compositional differences leveled out and became almost homogeneous. Furthermore, the NMR measurements indicate a similar OC composition within the independent field replicates regarding the different amendments and fractions. As previously shown, N was found to be concentrated in the clay fractions, but interestingly we were able to show this also for the oPOM small. Proteins and peptides, as indicated by the broad resonance between 30 and 55 ppm, clearly point to the presence of microbial products and residues in this fraction.

  10. Nationwide Risk-Based PCB Remediation Waste Disposal Approvals under Title 40 of the Code of Federal Regulations (CFR) Section 761.61(c)

    EPA Pesticide Factsheets

    This page contains information about Nationwide Risk-Based Polychlorinated Biphenyls (PCBs) Remediation Waste Disposal Approvals under Title 40 of the Code of Federal Regulations (CFR) Section 761.61(c)

  11. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    NASA Astrophysics Data System (ADS)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  12. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  13. The manufacture and use of sludge test materials for R and D purposes in the treatment and processing of magnox based sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, D.R.; Thompson, E.J.

    2013-07-01

    Among the Intermediate Level Waste materials in store and awaiting treatment and processing in the UK are quantities of magnesium hydroxide sludge. This sludge is a product of radioactive Magnox Swarf which arose from the de-canning of used magnox fuel element rods. As the Swarf was stored underwater, a corrosion reaction occurred over the course of time between the magnox and the water resulting in a magnesium hydroxide based sludge. The differing conditions and materials present in the various storage areas means that the sludge can range in consistency from that of a slurry through to a thick clay. Sludgemore » test materials are required to underpin and validate the research and development equipment and processes that are to be used to treat the waste material. Necessary restrictions imposed on the sampling and testing of the radioactive waste means that the available data on the properties and behaviour of the sludge is limited. The raw materials used to create the sludge test materials are based upon magnesium hydroxide so that as far as possible the chemical behaviour will be similar to that of the waste material. The most representative sludge test material is manufactured by the corrosion of non-radioactive magnox or magnesium. However, time constraints make it impractical to supply this material in sufficient quantities for full scale validation trials. An alternative is to use sludge manufactured from commercially available magnesium hydroxide. The particle shape of commercially available materials differs from corrosion product magnesium hydroxide which means that properties such as the rheological behaviour cannot be replicated. Nevertheless, valuable trial data can be obtained, giving a greater degree of confidence in the waste treatment process than would be possible if only the more representative but less available corrosion product materials were to be used. Key test material parameters used in the trials have been identified as the particle size distribution and the sludge thickness (measured as yield shear strength). Other properties including cohesion, adhesion and rheological behaviour are also considered. The use of different mixers for sludge manufacture has the potential to affect the behavioural properties and a brief description of each of these mixers is included. The scale of mixing has been found to make a significant difference to the ageing. A chemical impurity in the commercially available materials has been successfully exploited, so that sludge mixed at comparatively low yield shear strengths can thicken into the consistency of clay. This aids manufacture and allows large quantities of thick material to be produced relatively easily. (authors)« less

  14. 77 FR 49991 - Small Business Size Standards; Adoption of 2012 North American Industry Classification System for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Manufacturing. ......... 322215 Nonfolding Sanitary ......... 750 employees....... Food Container Manufacturing... Manufacturing. ......... 327113 Porcelain Electrical 500 employees. Supply Manufacturing. 327120 Clay Building N 2b 750 employees....... 327121 Brick and Structural 500 employees. Material and Clay Tile...

  15. Hazardous Waste Cleanup: Niagara Mohawk Power Corporation – Seventh North Service Center in Liverpool, New York

    EPA Pesticide Factsheets

    Niagara Mohawk Power Corporation (NMPC) - Seventh North Service Center is located on an approximately 119 acre-parcel of property located in the Town of Clay, Onondaga County, New York. The facility is located in an industrially zoned area, and is bordered

  16. Hazardous Waste Cleanup: Square D Company in Bordentown, New Jersey

    EPA Pesticide Factsheets

    Square D Company is located at 90 US Highway 130 in Bordentown, New Jersey. The site was formerly used for clay mining in the 1930's and then for a municipal landfill. The site was originally used as for a copper-foil manufacturing process under a company

  17. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  18. Development of novel composite membranes using quaternized chitosan and Na+-MMT clay for the pervaporation dehydration of isopropanol.

    PubMed

    Choudhari, Santosh K; Kariduraganavar, Mahadevappa Y

    2009-10-01

    Novel polymer-clay-based composite membranes were prepared by incorporating sodium montmorillonite (Na(+)-MMT) clay into quaternized chitosan. The resulting membranes were characterized by Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WXAD), and thermogravimetric analysis (TGA). The effect of membrane swelling was studied by varying the water concentration in the feed. The membranes were employed for the pervaporation dehydration of isopropanol in terms of feed composition and Na(+)-MMT clay loading. The experimental results demonstrated that membrane containing 10 mass% of Na(+)-MMT clay showed the highest separation selectivity of 14,992 with a flux of 14.23x10(-2) kg/m(2) h at 30 degrees C for 10 mass% of water in the feed. The total flux and flux of water are found to be overlapping each other particularly for clay-incorporated membranes, signifying that the composite membranes developed in the present study involving quaternized chitosan and Na(+)-MMT clay are highly selective toward water. From the temperature-dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The resulting activation energy values obtained for water permeation (E(pw)) are much lower than those of isopropanol permeation (E(pIPA)), suggesting that the developed composite membranes have higher separation efficiency for the water-isopropanol system. The estimated E(p) and E(D) values ranged between 8.97 and 11.89, and 7.56 and 9.88 kJ/mol, respectively. The positive heat of sorption (DeltaH(s)) values were obtained for all the membranes, suggesting that Henry's mode of sorption is predominant in the process.

  19. Organoclay nanocomposites of post-industrial waste poly(butylene terephthalate) from automotive parts.

    PubMed

    Quispe, Noe B; Fernandes, Elizabeth G; Zanata, Fernanda; Bartoli, Julio R; Souza, Diego H S; Ito, Edson N

    2015-10-01

    Polymeric nanocomposites are novel materials of huge interest owing to their favourable cost/performance ratio with low amount of nanofillers, improved thermal resistance, flame retardancy and mechanical properties in relation to their matrices. In this work, composites based on post-industrial waste or primary recycled poly(butylene terephthalate) and 5 wt.% of organic modified montmorillonite clays were melt compounded using a twin-screw extruder. A 2(2) factorial experimental design was used to study the compounding and processing variables: Organic modified montmorillonite with one or two hydrogenated tallow (initial basal spacing) and screw speed of the extruder. X-ray diffraction and transmission electron microscopy suggest that a partial exfoliation of the organoclay in the recycled poly(butylene terephthalate) matrix was achieved for organic modified montmorillonite with lower initial basal spacing. On the other hand, formulations containing organic modified montmorillonite with higher initial basal spacing showed only intercalated structure. The recycled poly(butylene terephthalate)-organic modified montmorillonite nanocomposites did not drip flaming material during burning tests. Storage of dynamic-mechanical, tensile and flexural moduli of the recycled poly(butylene terephthalate)-organic modified montmorillonite were improved when compared with both virgin and recycled poly(butylene terephthalate)s, mainly for nanocomposites formulated at a lower initial basal spacing organoclay. This could be related to a better diffusion of polymer into organic modified montmorillonite layers compared with the higher initial basal spacing organoclay. The improvements on the physical properties of recycled poly(butylene terephthalate) showed the feasibility to add value to primary recycled engineering thermoplastics with a very small amount of organic modified montmorillonite. © The Author(s) 2015.

  20. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials.

    PubMed

    Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores

    2018-07-01

    The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and possible supergene alteration. Clay minerals present are kaolinite, smectite and chlorite. The formation of these minerals is however ambiguous, and can form during both hydrothermal as weathering processes, calling for a detailed micromorphological study. Micromorphological investigations on undisturbed samples by microscopic and ultramicroscopic techniques allow us to interpretate the processes behind the formation of technic soil in the matrix of the waste rock pile, as well as the rate and chronology of mineral formation and arenisation related to weathering (formation of protosoil and saprolitisation). By studying the formation of weathering aureaoles in between the different granitic blocks, we quantify the anthropogenic influence on weathering of this rock pile and their impacts on local ecosystem by comparing our site with natural occuring outcrops of granites currently subjected to weathering. Electron microscope imaging and microgeochemical mapping permits us to make detailed micromorphological observations linking nanoscale processes to petrolographical macroscopic features and field observations. Different petrographic and electronic images of the mineral paragenesis in the micromass associated to their microgeochemical characteristics will be presented. Also, the impact of previous hydrothermal alteration will be highlighted.

  2. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  3. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis; modifications to Drever's filter-membrane peel technique

    USGS Publications Warehouse

    Pollastro, R.M.

    1982-01-01

    Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.

  5. Influence of Dry Soil on the Ability of Formosan Subterranean Termites, Coptotermes formosanus, to Locate Food Sources

    PubMed Central

    Cornelius, Mary L.; Osbrink, Weste L.A.

    2011-01-01

    The effect of barriers of dry soil on the ability of Formosan subterranean termites, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), to construct tunnels and find food was evaluated. Termite movement and wood consumption in a three—chambered apparatus were compared between treatments with dry soil in the center container and treatments where the soil in the center container was moist. When a wood block was located in the release container, termites fed significantly more on that block, regardless of treatment or soil type. In the treatment with dry clay, none of the termites tunneled through the dry clay barrier to reach the distal container. When termites had to tunnel through a barrier of dry sand, topsoil, or clay to reach the sole wood block, there was no effect on wood consumption for the sand treatment, but there was significantly less feeding on wood in the treatments with dry topsoil or clay. When foraging arenas had a section of dry sand in the center, the dry sand significantly reduced tunneling in the distal section after 3 days, but not after 10 days. There was a highly significant effect on the ability of termites to colonize food located in dry sand. Only one feeding station located in dry sand was colonized by termites, compared with 11 feeding stations located in moist sand. PMID:22239343

  6. The Effect of COD Concentration Containing Leaves Litter, Canteen and Composite Waste to the Performance of Solid Phase Microbial Fuel Cell (SMFC)

    NASA Astrophysics Data System (ADS)

    Samudro, Ganjar; Syafrudin; Nugraha, Winardi Dwi; Sutrisno, Endro; Priyambada, Ika Bagus; Muthi'ah, Hilma; Sinaga, Glory Natalia; Hakiem, Rahmat Tubagus

    2018-02-01

    This research is conducted to analyze and determine the optimum of COD concentration containing leaves litter, canteen and composite waste to power density and COD removal efficiency as the indicator of SMFC performance. COD as the one of organic matter parameters perform as substrate, nutrient and dominating the whole process of SMFC. Leaves litter and canteen based food waste were obtained from TPST UNDIP in Semarang and treated in SMFC reactor. Its reactor was designed 2 liter volume and equipped by homemade graphene electrodes that were utilized at the surface of organic waste as cathode and in a half of reactor height as anode. COD concentration was initially characterized and became variations of initial COD concentration. Waste volume was maintained 2/3 of volume of reactor. Bacteria sources as the important process factor in SMFC were obtained from river sediment which contain bacteroides and exoelectrogenic bacteria. Temperature and pH were not maintained while power density and COD concentration were periodically observed and measured during 44 days. The results showed that power density up to 4 mW/m2 and COD removal efficiency performance up to 70% were reached by leaves litter, canteen and composite waste at days 11 up to days 44 days. Leaves litter contain 16,567 mg COD/l providing higher COD removal efficiency reached approximately 87.67%, more stable power density reached approximately 4.71 mW/m2, and faster optimum time in the third day than canteen based food waste and composite waste. High COD removal efficiency has not yet resulted in high power density.

  7. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    NASA Astrophysics Data System (ADS)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay particle lengths and aspect ratios, which was attributed to the growth of skewed aggregates during concentration. The melt induced clay concentration and increased clay particle dimensions caused significant decreases in the permeability of the nanocomposite microlayers and reduced the overall permeability of the multilayered films. Morphology and transport behavior of these microlayered films were compared to a series of bulk nanocomposites using a second LLDPE-g-MA containing M 2(HT)2 with varying clay content.

  8. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacentmore » to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The membranes generally exhibited reasonable stable rejection rates over time for chloride for a range of concentrations between 0.01 and 2.5 M. One membrane ran in excess of three months with no apparent loss of usability. This suggests that clay membranes may have a long useable life. Twenty different hyperfiltration-induced solute precipitation experiments were either attempted or completed and are reported here. The results of these experiments suggest that hyperfiltration-induced solute precipitation is possible, even for very soluble substances such as NaCl. However, the precipitation rates obtained in the laboratory do not appear to be adequate for commercial application at this time. Future experiments will focus on making the clay membranes more compact and thinner in order to obtain higher flux rates. Two alternative methods of removing solutes from solution, for which the New Mexico Tech Research Foundation is preparing patent applications, are also being investigated. These methods will be described in the next annual report after the patent applications are filed. Technology transfer efforts included two meetings (one in Farmington NM, and one in Hobbs, NM) where the results of this research were presented to independent oil producers and other interested parties. In addition, members of the research team gave seven presentations concerning this research and because of this research project T. M. (Mike) Whitworth was asked to sit on the advisory board for development of a new water treatment facility for the City of El Paso, Texas. Several papers are in preparation for submission to peer-reviewed journals based on the data presented in this report.« less

  9. Willow water uptake and shoot extension growth in response to nutrient and moisture on a clay landfill cap soil.

    PubMed

    Martin, Peter J; Stephens, William

    2008-09-01

    Extension growth of willow (Salix viminalis L.) and changes in soil water were measured in lysimeters containing clay and sandy loam soils with different amendment and watering treatments. No water uptake was found below 0.3m in the nutritionally poor unamended clay; amendment with organic matter to 0.4m depth resulted in water extraction down to 0.5m depth whereas in the sandy loam, there was greater extraction from all depths down to 0.6m. With water stress, wilting of plants occurred when the volumetric soil water content at 0.1m was about 31% in the clay and 22% in the sandy loam. Compared with shoots on plants in the amended clay, those in the unamended treatment showed reduced extension growth, little increase in stem basal area (SBA) and a small shoot leaf area, resulting from a reduced number of leaves shoot(-1) and a small average area leaf(-1). Water stress also reduced shoot extension growth, SBA gain and the leaf area on extension growth. Shoot growth rates were significantly correlated with air temperature and base temperatures between 2.0 and 7.6 degrees C were indicated for the different treatments. These studies have helped to explain some of the large treatment effects described previously on biomass production and plant leaf area.

  10. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The migration of most radionuclides in clayrocks, in particular the actinides, is limited by their strong sorption on rock mineral surfaces. Much effort was devoted in Funmig to improving understanding of this process on the clayrocks being studied in the Swiss, Belgian and French radwaste management programs. Specific attention was focused on (i) elucidating the effect of dissolved organic matter on Am(III), Th(IV), Eu(III) sorption on clayrock surfaces and (ii) determining the link between Kd measured on dispersed rock systems and the Kd operant in intact rock volumes, i.e. during diffusion. Regarding the latter question, results indicate that Kd values for ‘dispersed' and ‘intact' materials are quite similar for certain elements (Na, Sr, Cs, Co). On the other hand, Kd values obtained by modeling results of diffusion experiments involving strongly sorbing elements as Cs, Co and Eu were always significantly smaller than those predicted based on sorption data measured in corresponding batch systems. This is an area where additional research is being planned. A major effort was devoted to improving understanding of the effects of small-scale (m to cm) clayrock structure and large-scale (dm to hm) mineralogical composition on radionuclide diffusion-retention. The program focusing on the small-scale produced a method for simulating the results of tracer diffusion in an intact rock based on the actual rock microstructure of the rock sample to be used in the diffusion experiment. This model was used to predict / inverse model the spatial distribution of highly sorbing tracers (Eu, Cu). This overall approach is also being used to understand how changes in mineralogical composition can affect the values of macroscopic diffusion parameters (De, tortuosity, anisiotropy). At a much larger scale, the results of (i) a geostatistical analysis of clayrock mineralogical variability and (ii) measurements of De and Kd dependence on mineralogy for Cs and Cl, were combined to create models of parameter variability at the formation scale. These models were used to evaluate the effects of formation scale heterogeneity on predictive modeling of radionuclide migration. Measurements and modeling of natural tracer profiles were also carried out in order to evaluate the diffusion characteristics at geological time and space scales.

  11. Hillslope Chromatography in Savannas

    NASA Astrophysics Data System (ADS)

    Hartshorn, A.; Khomo, L.; Chadwick, O.; Rogers, K.; Kurtz, A.; Heimsath, A.

    2005-12-01

    In semiarid ecosystems, vegetation patterns are controlled in part by soil water availability. Along hillslopes in Kruger National Park, South Africa, water availability is strongly dependent on soil texture and textural differences with depth, which are a function of landscape position (convergent or divergent crests, midslopes, and footslopes) and parent material. We are studying weathering and landscape development on the western side of the park, which is underlain by granitic gneisses. Hillslopes in the park are often described as catenas, where rainfall catalyzes chemical weathering and drives the downslope transport of clays and weathering products, forming a predictable sequence of soil types. Sandy crest soils grade to midslope soils where sandy surface horizons overlie clayey subsurface horizons; footslopes generally have higher volumetric clay contents. The boundary between the sandy and clayey soils is of ecological significance because this is the location where run-on from upslope landscape positions is diverted to the surface, initiating overland flow and reducing infiltration. In a geochemical sense these hillslopes can be thought of as chromatographic columns that accentuate differential solute mobility along the long (~1-2 km) potential flowpaths. We use the compound topographic index (a terrain attribute that indexes soil wetness by dividing the upslope contributing area by the slope) to predict the redistribution of clays across these semiarid hillslopes and hope to demonstrate that landscape positions occupying comparable plan and profile curvatures contain clay and organic carbon in proportion to contributing area. Thus far, we have derived contributing area values for 40 soil pits using LiDAR-based digital elevation models and then tested how well contributing area and other terrain attributes predicted clay and carbon content for 218 horizons at these 40 locations. Depth-weighted soil clay ranged from 3 to 25% and total soil carbon ranged from 0.1 to 2.1%. Our preliminary results suggest that greater contributing area only produces greater soil clay content up to a threshold clay content, after which clay illuviation and in situ clay production slows following the diversion of water to the surface.

  12. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    EPA Pesticide Factsheets

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  13. Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture

    NASA Astrophysics Data System (ADS)

    Marto, Aminaton; Ridzuan Jahidin, Mohammed; Aziz, Norazirah Abdul; Kasim, Fauziah; Zurairahetty Mohd. Yunus, Nor

    2016-11-01

    Marine clay is found widely along the coastal area and had caused expensive solutions in the construction of coastal highways. Hence, soil stabilization was suggested by some consultant to increase the strength of this soil in order to meet the highway construction requirement and also to achieve the specification for the development. Biomass Silica (BS), particularly the SH85 as a non-traditional stabilisation method, has been gaining more interest from the engineers recently. Rubber chips (RC), derived from waste rubber tyres, are considered ‘green’ element and had been used previously in some geotechnical engineering works. This paper presents the effect of using BS and RC as a mixture (BS-RC mixture), to increase the strength of marine clay for highway construction. Samples of marine clay, obtained from the West Coast Expressway project at Teluk Intan, Perak, were oven dried and grind to fine-grained sized. The marine clay was mixed with 9 % by weight proportion of BS- RC; that were 8%-l% and 7%-2%, respectively. For comparison purposes the result of BS-RC was compared to the result of stabilization by using 9% BS only. Laboratory tests were then carried out to determine the Atterberg limits and compaction characteristics of the untreated and treated marine clay. The Unconfined Compressive Strength (UCS) of the untreated and treated marine clays, compacted at the optimum moisture content was later obtained. The treated marine clay was tested at 0, 3 and 7 days curing periods. The results show that the Plasticity Index of BS-RC treated marine clay was lower than the untreated marine clay. From the UCS test results, it is shown that BS-RC mixtures had significantly improved the strength of marine clay. With the same percentage of 9% BS-RC, the increased of BS from 7% to 8% increased the UCS further to about six times more than untreated marine clay soils in 7 days curing period. The strength gained by using BS-RC at 8%-1% is slightly below the strength by using 9% BS only. From the experimental results, it is shown that BS, in the form of SH85, admixed with rubber chips could significantly improve the strength of marine clay soils.

  14. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars

    PubMed Central

    Chipera, Steve J.; Hazen, Robert M.; Horgan, Briony; Hogancamp, Joanna V.; Mangold, Nicolas; Morookian, John Michael; Morris, Richard V.; Vaniman, David T.; Yen, Albert S.

    2018-01-01

    Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5–billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate. PMID:29881776

  15. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  16. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems.

    PubMed

    Crimi, Michelle; Quickel, Mark; Ko, Saebom

    2009-02-27

    In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however, the addition of HMP prevented this plugging within the columns, increasing the oxidant throughput.

  17. An experimental study of the effects of adsorbing and non-adsorbing gases on friction and permeability evolution in clay-rich fault gouge

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zoback, M. D.

    2017-12-01

    Understanding the flow of fluids through fractures in clay-rich rocks is fundamental to a number of geoengineering enterprises, including development of unconventional hydrocarbon resources, nuclear waste storage and geological carbon sequestration. High clay content tends to make rocks plastic, low-porosity and anisotropic. In addition, some gasses adsorb to clay mineral surfaces, resulting in swelling and concomitant changes in physical properties. These complexities can lead to coupled behaviors that render prediction of fluid behavior in the subsurface difficult. We present the results of a suite of triaxial experiments on binary mixtures of quartz and illite grains to separate and quantify the effects of hydrostatic pressure, differential stress, clay content and gas chemistry on the evolution of mechanical and hydraulic characteristics of the gouge material during deformation. Tests are run on saw-cut samples prepared with gouge at 20 MPa confining pressure, 10 MPa pore pressure and at room temperature. Argon or carbon dioxide is used as pore fluid. Sample permeability, stress and strain are monitored continuously during hydrostatic and axial deformation. We find that pressure and shearing both lead to reductions in permeability. Adsorbing gas leads to swelling and promotes permeability reduction, but appears to have no effect on frictional properties. These results indicate that the seal integrity of clay-rich caprocks may not be compromised by shear deformation, and that depletion and shear deformation of unconventional reservoirs is expected to result in production declines.

  18. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Mickol, R. L.; Archer, P. D.; Kral, T. A.

    2017-01-01

    Clay minerals have been identified on Mars' oldest (Noachian) terrain and their presence suggests long-term water-rock interactions. The most commonly identified clay minerals on Mars to date are nontronite (Fe-smectite) and montmorillonite (Al-smectite) [1], both of which contain variable amounts of water both adsorbed on their surface and within their structural layers. Over Mars' history, these clay miner-al-water assemblages may have served as nutrient sources for microbial life.

  19. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  20. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    NASA Astrophysics Data System (ADS)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    While most magnetic resonance imaging (MRI) applications concern medical research, there is a rapidly increasing number of MRI studies in the field of environmental science and technology. In this presentation, MRI will be introduced from the latter perspective. While many processes in these areas are similar to those addressed in medical applications of MRI, parameters and experimental implementations are often quite different and, in many respects, far more demanding. This hinders direct transfer of existing methods developed for biomedical research, especially when facing the challenging task of obtaining spatially resolved quantitative information. In MRI investigation of soils, clays, and rocks, mainly water signal is detected, similarly to MRI of biological and medical samples. However, a strong variation of water mobility and a wide spread of water spin relaxation properties in these materials make it difficult to use standard MRI approaches. Other significant limitations can be identified as following: T2 relaxation and probe dead time effects; molecular diffusion artifacts; varying dielectric losses and induced currents in conductive samples; limited dynamic range; blurring artifacts accompanying drive for increasing sensitivity and/or imaging speed. Despite these limitations, by combining MRI techniques developed for solid and liquid states and using independent information on relaxation properties of water, interacting with the material of interest, true images of distributions of both water, material and molecular properties in a wide range of concentrations can be obtained. Examples of MRI application will be given in the areas of soil and mineral research where understanding water transport and erosion processes is one of the key challenges. Efforts in developing and adapting MRI approaches to study these kinds of systems will be outlined as well. Extensive studies of clay/water interaction have been carried out in order to provide a quantitative measure of clay distribution in extended samples during different physical processes such as swelling, dissolution, and sedimentation on the time scale from minutes to years [1-3]. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. Both natural clays and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. These results have a significant impact for engineering barriers for storage of spent nuclear fuel where clay erosion by low salinity water must be addressed. Presented methods were developed under the motivation of using bentonite clays as a buffer medium to build in-ground barriers for the encapsulation of radioactive waste. Nevertheless, the same approaches can be found suitable in other applications in soil and environmental science to study other types of materials as they swell, dissolve, erode, or sediment. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. [1] N. Nestle, T. Baumann, R. Niessner, Magnetic resonance imaging in environmental science. Environ. Sci. Techn. 36 154A (2002). [2] S. V. Dvinskikh, K. Szutkowski, I. Furó. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198 146 (2009). [3] S. V. Dvinskikh, I. Furó. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Technical Report, TR-09-27, SKB (2009), www.skb.se.

  1. Interphase vs confinement in starch-clay bionanocomposites.

    PubMed

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Early detection and evaluation of waste through sensorized containers for a collection monitoring application.

    PubMed

    Rovetta, Alberto; Xiumin, Fan; Vicentini, Federico; Minghua, Zhu; Giusti, Alessandro; Qichang, He

    2009-12-01

    The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and volume. The latter data were subsequently used as parameters for the routing optimization of collection trucks and material density evaluation.

  3. Leaching characteristics, ecotoxicity, and risk assessment based management of mine wastes

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ju, W. J.; Jho, E. H.; Nam, K.; Hong, J. K.

    2016-12-01

    Mine wastes generated during mining activities in metal mines generally contain high concentrations of metals that may impose toxic effects to surrounding environment. Thus, it is necessary to properly assess the mining-impacted landscapes for management. The study investigated leaching characteristics, potential environmental effects, and human health risk of mine wastes from three different metal mines in South Korea (molybdenum mine, lead-zinc mine, and magnetite mine). The heavy metal concentrations in the leachates obtained by using the Korean Standard Test Method for Solid Wastes (STM), Toxicity Characteristics Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP) met the Korea Waste Control Act and the USEPA region 3 regulatory levels accordingly, even though the mine wastes contained high concentrations of metals. Assuming that the leachates may get into nearby water sources, the leachate toxicity was tested using Daphnia Magna. The toxic unit (TU) values after 24 h and 48 h exposure of all the mine wastes tested met the Korea Allowable Effluent Water Quality Standards (TU<1). The column leaching test showed that the lead-zinc mine waste may have long-term toxic effects (TU>1 for the eluent at L/S of 30) implying that the long-term effect of mine wastes left in mining areas need to be assessed. Considering reuse of mine wastes as a way of managing mine wastes, the human health risk assessment of reusing the lead-zinc mine waste in industrial areas was carried out using the bioavailable fraction of the heavy metals contained in the mine wastes, which was determined by using the Solubility/Bioavailability Research Consortium method. There may be potential carcinogenic risk (9.7E-05) and non-carcinogenic risk (HI, Hazard Index of 1.0E+00) as CR≧1.0E-05 has carcinogenic risk and HI≧1.0E+00 has non-carcinogenic risk. Overall, this study shows that not only the concentration-based assessment but ecological toxic effect and human health risk based assessments can be utilized for mining-impacted landscapes management.

  4. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  5. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.

  6. Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Connell, John W.; Smith, Joseph G., Jr.

    2003-01-01

    A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/ clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet-shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/ clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

  7. Waste-water characterization/hazardous-waste survey, Beale Air Force Base, California. Final report, 12-26 September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attebery, C.W.; Zimmer, A.T.; Hedgecock, N.S.

    1989-01-01

    A waste-water characterization hazardous-waste survey was conducted at Beale AFB by USAFOEHL/ECQ personnel to provide the base with sufficient information to address a State of California Notice of Violation concerning excessive discharges of boron and cyanide from the base sewage-treatment plant (STP). The results of the survey showed that the 9th RTS Precision Photo Lab along with other film-processing organizations were major contributors to the boron and cyanide discharge problems being experienced by the base STP. Maintenance organizations that utilize soaps and detergents that contain boron and cyanide also contributed to the problem.

  8. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  9. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Use of bioassays for testing soils and/or sediments contaminated by mining activities

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; García-Lorenzo, M. L.; Molina, J.

    2009-04-01

    Ecotoxicity tests measure the bioavailability of the contaminants and the effects of the chemically not measured toxic compounds on the members of the soil community. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. They are solid phase tests based on terrestrial methods and tests performed on water extracts using aquatic test protocols. The extent and degree of heavy metal contamination around mines may vary depending on geochemical characteristics, the mineralization of tailings, physico-chemical conditions and the processes used to extract metals. Portman Bay was subject to mining from the time of the Roman Empire to 1991 when the activity ceased. Since 1957, the wastes from mining operations were discharged directly into the sea. These wastes mainly consisted of clay, quartz, siderite, magnetite, remains of sphalerite, pyrite and galena and residues of the chemical reagents used in floatation. In our study two methods of environmental toxicological tests were compared and applied to sediments of the Portman Bay (SE, Spain): the standardized toxicological test based on inhibition of luminescence employing Microtox

  11. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  12. Intensity and duration of chemical weathering: An example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii

    USGS Publications Warehouse

    Johnsson, Mark J.; Ellen, Stephen D.; McKittrick, Mary Anne

    1993-01-01

    Orographic precipitation on the southern flank of the southeastern Koolau Mountains produces a pronounced precipitation gradient. The corresponding gradient in the intensity of the chemical weathering environment provides an opportunity to address the effects of varying chemical weathering intensity on the composition of clay-size weathering products in soils developed on basalt. In addition, little-modified remnants of the constructional surface of the Koolau Volcano, isolated by stream dissection, remain as facets on the southern ends of the parallel ridges of the study area. By comparing clay mineralogy of soils developed on these older geomorphic surfaces with those developed on the younger sharp-crested ridges and steep side slopes, the effects of weathering duration on clay mineralogy can also be addressed.Soil clays in this part of the Koolau Mountains are mineralogically complex; principal phases include smectite, kaolinite, and halloysite, but pure end member phases are uncommon. Rather, most phases contain some amount of mixed layering. Smectite may contain small (<5%) amounts of randomly interstratified halloysite. Similarly, kaolinite commonly contains a small proportion of halloysite interlayers. A complex halloysitic phase shows evidence of interstratification with both smectite and kaolinite. Nonphyllosilicates found in the clay fraction include gibbsite, goethite, rare quartz, and perhaps cristobalite.The gradient in precipitation is reflected in soil clay mineralogy by varying proportions of dominantly smectitic, kaolinitic, and halloysitic phases. In regions of relatively low precipitation (<2,000 mm/yr), soils are dominated by the smectitic and halloysitic phases. With increased precipitation (as much as ∼4,000 mm/yr), kaolinitic and halloysitic phases become the dominant clay minerals, and goethite and gibbsite become increasingly abundant.Older soils developed on geomorphic surfaces representing the original constructional surface of Koolau Volcano are markedly more leached than those from younger landscapes in the same precipitation regime. Although smectite may be present, kaolinite is the dominant phase, and accumulations of Fe and Ti occur in the uppermost soil levels. Enrichment of Zr and Ti in these soils, as compared to concentrations in the original basaltic parent material, indicates that as much as 75% of the parent material has been lost. Thus weathering duration may affect soil clay composition in the same way as weathering intensity.Because smectite and halloysite are expandable clay minerals, their presence in soils may decrease slope stability and influence the nature of slope processes. Soil avalanches occur on steep slopes throughout the study area, whereas slow-moving landslides appear to be restricted to gentler slopes in drier parts of the study area where smectite is abundant. The clay mineralogy of soils thus appears to influence the nature of slope processes in the southeastern Koolau Mountains.

  13. 'Geo'chemical research: a key building block for nuclear waste disposal safety cases.

    PubMed

    Altmann, Scott

    2008-12-12

    Disposal of high level radioactive waste in deep underground repositories has been chosen as solution by several countries. Because of the special status this type waste has in the public mind, national implementation programs typically mobilize massive R&D efforts, last decades and are subject to extremely detailed and critical social-political scrutiny. The culminating argument of each program is a 'Safety Case' for a specific disposal concept containing, among other elements, the results of performance assessment simulations whose object is to model the release of radionuclides to the biosphere. Public and political confidence in performance assessment results (which generally show that radionuclide release will always be at acceptable levels) is based on their confidence in the quality of the scientific understanding in the processes included in the performance assessment model, in particular those governing radionuclide speciation and mass transport in the geological host formation. Geochemistry constitutes a core area of research in this regard. Clay-mineral rich formations are the subjects of advanced radwaste programs in several countries (France, Belgium, Switzerland...), principally because of their very low permeabilities and demonstrated capacities to retard by sorption most radionuclides. Among the key processes which must be represented in performance assessment models are (i) radioelement speciation (redox state, speciation, reactions determining radionuclide solid-solution partitioning) and (ii) diffusion-driven transport. The safety case must therefore demonstrate a detailed understanding of the physical-chemical phenomena governing the effects of these two aspects, for each radionuclide, within the geological barrier system. A wide range of coordinated (and internationally collaborated) research has been, and is being, carried out in order to gain the detailed scientific understanding needed for constructing those parts of the Safety Case supporting how radionuclide transfer is represented in the performance assessment model. The objective here is to illustrate how geochemical research contributes to this process and, above all, to identify a certain number of subjects which should be treated in priority.

  14. Ceramization of low and intermediate level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiquet, O.; Berson, X.

    1993-12-31

    A ceramic conditioning is studied for a large variety of low and intermediate level wastes. These wastes arise from several waste streams coming from all process steps of the fuel cycle. The physical properties of ceramics can advantageously be used for radioactive waste immobilization. Their chemical durability can offer a barrier against external aggression. More over, some minerals have possible host sites in their crystal structure for heavy elements which can confer the best immobilization mechanism. The general route for development studies is described giving compositions and process choices. Investigations have been conducted on clay materials and on the processmore » parameters which condition the final product properties. Two practical examples are described concerning chemical precipitation sludge resulting from liquid waste treatment and chamot used as a fluidized bed in a graphite incinerator. Important process parameters are put in evidence and the possibility of a pilot plant development is briefly mentioned. Results of investigations are promising to define a new route of conditioning.« less

  15. Phosphates in some Missouri refractory clays

    USGS Publications Warehouse

    Halley, Robert B.; Foord, Eugene E.; Keller, David J.; Keller, Walter D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays.The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River. In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspore, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore (“burley”" clay).The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality.The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite. The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water, nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host. The wavellite and variscite-strengite veinlets are secondary, precipitated from ion complexes in ground water percolating along cracks in the flint clay. The flint clay host of the variscite-strengite veinlet contains strontian crandallite. All of the phosphates contain significant amounts of strontium. The source of P, Ca and Sr was the marine carbonates. Dissolution of these carbonates produced the argillic residue that became the primordial Cheltenham paludal mud, which ultimately altered to fireclay.Preliminary firing tests show that the presence of phosphates lowers fusion temperature. However, it is not clear whether poor refractoriness is due to the presence of phosphates, per se, or to Ca, Sr and other alkaline elements present in the phosphates.

  16. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less

  18. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    PubMed

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  19. Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusido, Joan A., E-mail: joan.antoni.cusido@upc.edu; Soriano, Cecilia

    2011-06-15

    A direct result of the growing number of municipal wastewater-treatment plants (WWTPs) has been an increase in the generation of large amounts of sewage sludge that requires environmentally acceptable final destination. To decrease the volume of sludge, a common technique is drying the sludge at a low temperature in rotary kilns. The result of this process is a granulated material consisting of dehydrated sludge pellets. After this treatment, this pelletized material becomes easier to manipulate, but it also becomes a more toxic waste, containing dangerous substances, mostly of the lipid type. At its final stage, this material is usually incinerated,more » used as a comburent material, used as an agricultural fertilizer, or used in the cement industry. Each application has its own problems and requires remediation measures from the safety and environmental viewpoints. In this study, we looked beyond these possible applications and analyzed the transformation of sewage sludge through a ceramization process into a material similar to expanded clays; we subsequently explored its uses in the building industry or in the agriculture industry, among others. Both the properties of the product material and the production method were characterized, and an environmental analysis was conducted. The new, lightweight material had a microstructure with open porosity and low thermal conductivity. Environmental characterization such as the leaching test revealed that undetectable amounts of hazardous metals from the sludge were present in the leachate after the sludge went through a thermal treatment, despite their initial presence (with the exception of vanadium, which could pose some restrictions on some of the proposed uses for the final product). Toxicity tests also showed negative results. The study of gaseous emissions during production revealed emissions factors similar to those during the production of conventional clay ceramics, although with higher organic emissions. As for conventional clay ceramics, industrial production would require the implementation of some type of air-depuration system. The results showed that the ceramization of sludge pellets is a promising valorization technique worth considering from both the economic and technological perspectives.« less

  20. Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics.

    PubMed

    Cusidó, Joan A; Soriano, Cecilia

    2011-06-01

    A direct result of the growing number of municipal wastewater-treatment plants (WWTPs) has been an increase in the generation of large amounts of sewage sludge that requires environmentally acceptable final destination. To decrease the volume of sludge, a common technique is drying the sludge at a low temperature in rotary kilns. The result of this process is a granulated material consisting of dehydrated sludge pellets. After this treatment, this pelletized material becomes easier to manipulate, but it also becomes a more toxic waste, containing dangerous substances, mostly of the lipid type. At its final stage, this material is usually incinerated, used as a comburent material, used as an agricultural fertilizer, or used in the cement industry. Each application has its own problems and requires remediation measures from the safety and environmental viewpoints. In this study, we looked beyond these possible applications and analyzed the transformation of sewage sludge through a ceramization process into a material similar to expanded clays; we subsequently explored its uses in the building industry or in the agriculture industry, among others. Both the properties of the product material and the production method were characterized, and an environmental analysis was conducted. The new, lightweight material had a microstructure with open porosity and low thermal conductivity. Environmental characterization such as the leaching test revealed that undetectable amounts of hazardous metals from the sludge were present in the leachate after the sludge went through a thermal treatment, despite their initial presence (with the exception of vanadium, which could pose some restrictions on some of the proposed uses for the final product). Toxicity tests also showed negative results. The study of gaseous emissions during production revealed emissions factors similar to those during the production of conventional clay ceramics, although with higher organic emissions. As for conventional clay ceramics, industrial production would require the implementation of some type of air-depuration system. The results showed that the ceramization of sludge pellets is a promising valorization technique worth considering from both the economic and technological perspectives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    USDA-ARS?s Scientific Manuscript database

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  2. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or less...

  3. 40 CFR 761.75 - Chemical waste landfills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the disposal of PCBs and PCB Items are as follows: (1) Soils. The landfill site shall be located..., the soil shall have a high clay and silt content with the following parameters: (i) In-place soil thickness, 4 feet or compacted soil liner thickness, 3 feet; (ii) Permeability (cm/sec), equal to or less...

  4. Toxic element mobility assessment and modeling for regional geo-scientific survey to support Risk Assessment in a European Union context

    NASA Astrophysics Data System (ADS)

    Abdaal, Ahmed; Jordan, Gyozo; Bartha, Andras; Fugedi, Ubul

    2013-04-01

    The Mine Waste Directive 2006/21/EC requires the risk-based inventory of all mine waste sites in Europe. The geochemical documentation concerning inert classification and ranking of the mine wastes requires detailed field study and laboratory testing and analyses of waste material to assess the Acid Mine Drainage potential and toxic element mobility. The procedure applied in this study used a multi-level decision support scheme including: 1) expert judgment, 2) data review, 3) representative field sampling and laboratory analysis of formations listed in the Inert Mining Waste List, and 4) requesting available laboratory analysis data from selected operating mines. Based on expert judgment, the listed formations were classified into three categories. A: inert B: probably inert, but has to be checked, C: probably not inert, has to be examined. This paper discusses the heavy metal contamination risk assessment (RA) in leached quarry-mine waste sites in Hungary. In total 34 mine waste sites (including tailing lagoons and heaps of both abandoned mines and active quarries) have been selected for scientific testing using the EU Pre-selection Protocol. Over 93 field samples have been collected from the mine sites including Ore (Andesite and Ryolite), Coal (Lignite, black and brown coals), Peat, Alginite, Bauxite, Clay and Limestone. Laboratory analyses of the total toxic element content (aqua regia extraction), the mobile toxic element content (deionized water leaching) and the analysis of different forms of sulfur (sulfuric acid potential) ) on the base of Hungarian GKM Decree No. 14/2008. (IV. 3) concerning mining waste management. A detailed geochemical study together with spatial analysis and GIS has been performed to derive a geochemically sound contamination RA of the mine waste sites. Key parameters such as heavy metal and sulphur content, in addition to the distance to the nearest surface and ground water bodies, or to sensitive receptors such as settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA methods. Results show that some of the waste rock materials assumed to be inert were found non/inert. Thus, regional RA needs more spatial and petrological examination with special care to rock and mineral deposit genetics.

  5. Effects of a thermal perturbation on mineralogy and pore water composition in a clay-rock: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Gailhanou, H.; Lerouge, C.; Debure, M.; Gaboreau, S.; Gaucher, E. C.; Grangeon, S.; Grenèche, J.-M.; Kars, M.; Madé, B.; Marty, N. C. M.; Warmont, F.; Tournassat, C.

    2017-01-01

    The physical and chemical properties of clay-rocks are, at least partly, controlled by the chemical composition of their pore water. In evaluating the concept of disposing of radioactive waste in clay-rock formations, determining pore water composition is an important step in predicting how a clay-rock will behave over time and as a function of external forces, such as chemical and thermal perturbations. This study aimed to assess experimental and modeling methodology to calculate pore water composition in a clay-rock as a function of temperature (up to 80 °C). Hydrothermal alteration experiments were carried out on clay-rock samples. We conducted comprehensive chemical and mineralogical characterization of the material before and after reaction, and monitored how the chemical parameters in the liquid and gas phases changed. We compared the experimental results with the a priori predictions made by various models that differed in their hypotheses on the reactivity of the minerals present in the system. Thermodynamic equilibrium could not be assessed unequivocally in these experiments and most of the predicted mineralogy changes were too subtle to be tracked quantitatively. However, from observing the neo-formation of minerals such as goethite we were able to assess the prominent role of Fe-bearing phases in the outcome of the experiments, especially for the measured pH and pCO2 values. After calibrating the amount of reacting Fe-bearing phases with our data, we proposed a thermodynamic model that was capable of predicting the chemical evolution of the systems under investigation as well as the evolution of other systems already published in the literature, with the same clay-rock material but with significant differences in experimental conditions.

  6. A parametric study on hydraulic conductivity and self-healing properties of geotextile clay liners used in landfills.

    PubMed

    Parastar, Fatemeh; Hejazi, Sayyed Mahdi; Sheikhzadeh, Mohammad; Alirezazadeh, Azam

    2017-11-01

    Nowadays, the raise of excessive generation of solid wastes is considered as a major environmental concern due to the fast global population growth. The contamination of groundwater from landfill leachate compromises every living creature. Geotextile clay liner (GCL) that has a sandwich structure with two fibrous sheets and a clay core can be considered as an engineered solution to prevent hazardous pollutants from entering into groundwater. The main objective of the present study is therefore to enhance the performance of GCL structures. By changing some structural factors such as clay type (sodium vs. calcium bentonite), areal density of clay, density of geotextile, geotextile thickness, texture type (woven vs. nonwoven), and needle punching density a series of GCL samples were fabricated. Water pressure, type of cover soil and overburden pressure were the environmental variables, while the response variables were hydraulic conductivity and self-healing rate of GCL. Rigid wall constant head permeability test was conducted on all the samples. The outlet water flow was measured and evaluated at a defined time period and the hydraulic conductivity was determined for each sample. In the final stage, self-healing properties of samples were investigated and an analytical model was used to explain the results. It was found that higher Montmorillonite content of clay, overburden pressure, needle punching density and areal density of clay poses better self-healing properties and less hydraulic conductivity, meanwhile, an increase in water pressure increases the hydraulic conductivity. Moreover, the observations were aligned with the analytical model and indicated that higher fiber inclusion as a result of higher needle-punching density produces closer contact between bentonite and fibers, reduces hydraulic conductivity and increases self-healing properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  8. Can shale safely host US nuclear waste?

    USGS Publications Warehouse

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  9. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    NASA Astrophysics Data System (ADS)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  10. Water-assisted extrusion of bio-based PETG/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Naeun; Lee, Sangmook

    2018-02-01

    Bio-based polyethylene terephthalate glycol-modified (PETG)/clay nanocomposites were prepared using the water-assisted extrusion process. The effects of different types of clay and clay mixing methods (with or without the use of water) and the resulting nanocomposites properties were investigated by measuring the rheological and tensile properties and morphologies. The valuable properties were achieved when Cloisite 30B was mixed in a slurry state. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nano-clay was well dispersed within the PETG matrix. This shows that the slurry process could be an effective exfoliation method for many nanocomposites systems as well as for bio-based PETG/clay nanocomposites.

  11. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  12. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The use of fortified soil-clay as on-site system for domestic wastewater purification.

    PubMed

    Oladoja, N A; Ademoroti, C M A

    2006-02-01

    The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.

  14. The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulik, V.I.; Biland, A.B.

    2012-07-01

    New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less

  15. Method for the regeneration of spent molten zinc chloride

    DOEpatents

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  16. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  17. Mobile fission and activation products in nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Grambow, Bernd

    2008-12-01

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  18. Mobile fission and activation products in nuclear waste disposal.

    PubMed

    Grambow, Bernd

    2008-12-12

    When disposing nuclear waste in clay formations it is expected that the most radiotoxic elements like Pu, Np or Am move only a few centimetres to meters before they decay. Only a few radionuclides are able to reach the biosphere and contribute to their long-term exposure risks, mainly anionic species like I129, Cl36, Se79 and in some cases C14 and Tc99, whatever the scenario considered. The recent OECD/NEA cosponsored international MOFAP workshop focussed on transport and chemical behaviour of these less toxic radionuclides. New research themes have been addressed, such as how to make use of molecular level information for the understanding of the problem of migration at large distances. Diffusion studies need to face mineralogical heterogeneities over tens to hundreds of meters. Diffusion rates are very low since the clay rock pores are so small (few nm) that electrostatic repulsion limits the space available for anion diffusion (anion exclusion). The large volume of traversed rock will provide so many retention sites that despite weak retention, even certain of these "mobile" nuclides may show significant retardation. However, the question how to measure reliably very low retention parameters has been posed. An important issue is whether redox states or organic/inorganic speciation change from their initial state at the moment of release from the waste during long term contact with surfaces, hydrogen saturated environments, etc.

  19. Analytic Hierarchy and Economic Analysis of a Plasma Gasification System for Naval Air Station Oceana-Dam Neck

    DTIC Science & Technology

    2014-08-30

    asbestos containing material, pathological wastes, contaminated soils, glass waste, hazardous fly ash, solvents, ceramic waste, incinerator ash, paints...industrial waste into synthetic gas (Syn-Gas) and slag . For this study, the focus will be on the disposal of municipal solid waste. However, there is...Chemical Reactor The two primary by-products resulting from the gasification process are molten slag , which is collected through a portal at the base

  20. Evaluation of P-Listed Pharmaceutical Residues in Empty ...

    EPA Pesticide Factsheets

    Under the Resource Conservation and Recovery Act (RCRA), some pharmaceuticals are considered acute hazardous wastes because their sole active pharmaceutical ingredients are P-listed commercial chemical products (40 CFR 261.33). Hospitals and other healthcare facilities have struggled with RCRA's empty container requirements when it comes to disposing of visually empty warfarin and nicotine containers, and this issue is in need of investigation. For example, nicotine gums, patches and lozenges are hazardous wastes because nicotine and its salts are listed as P075, and Coumadin (also known as warfarin) is hazardous because warfarin and its salts are listed as P001 (when warfarin is present at concentrations greater than 0.3%). Therefore, when unused nicotine-based smoking cessation products (e.g., patches, gum and lozenges) and Coumadin are discarded, they are acute hazardous wastes and must be managed in accordance with all applicable RCRA regulations. Furthermore, due to additional management requirements for P-listed wastes, any acute hazardous water residues remaining in containers (and therefore the container itself) must be managed as hazardous unless the container has been rendered

Top